Investigation of the Surface Topography of Titanium Alloys Applied to Friction Components
More details
Hide details
1
Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
Publication date: 2022-04-01
Corresponding author
Magdalena Niemczewska-Wójcik
Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
Adv. Sci. Technol. Res. J. 2022; 16(2):150-158
KEYWORDS
TOPICS
ABSTRACT
The subject of this study and analysis was titanium alloy, applied among others to the friction components of orthopaedic (artificial hip joint) implants. This material was subjected to abrasive finishing using a synthetic diamond as a tool. The properties of the studied titanium alloy were characterised. The processing technology and the research methods are discussed.
The surfaces, after being subjected to abrasive machining, were studied using three research instruments – an interference microscope, a scanning electron microscope, and an atomic force microscope. Advanced metrology software was used to analyse the measurement data.
The aim of the research was to present the changes taking place in the forming of the surface of the studied titanium alloy, in particular those occurring in the final sequential processing. A characterisation of the machined surfaces was prepared based on parametric (surface topography – parameters and functions) and non-parametric (surface morphology – images) analysis.
The significant influence of the sequence and the tool (diamond grain and micro-grain) on the surface topography shaped during the technological process is presented. Improvement in the surface quality and features was observed. Parametric analysis showed no significant differences between TA-III and TA-IV surfaces, while these differences were visualised by non-parametric analysis. Moreover, the hereditary features of the surface topography (isotropy and pits/valleys) and their influence on the potential functional properties (place/area for accumulation/retaining of the lubricant in the friction zone) of the titanium alloy were analysed.