DEFORMATION AND ENERGY PARAMETERS OF FRACTURE OF STEEL OF THE MAIN GAS PIPELINE
 
More details
Hide details
1
Ternopil Ivan Pul’uj National Technical University, 56 Ruska Str., Ternopil 46001, Ukraine
2
Institute of Strength Physics and Materials Science SB RAS, 2/4 pr. 2 Akademicheskii, Tomsk 634021, Russia
3
Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
4
Technical University of Košice, Department of Technology and Materials, Košice, Slovakia
Publish date: 2015-11-27
 
Adv. Sci. Technol. Res. J. 2015; 9(28):40–46
KEYWORDS:
ABSTRACT:
By example of steel 17G1S, the regularities in the impact fracture of Charpy specimens at normal and low temperatures are described. The relationship between the energy parameters of fracture (impact toughness) and the deformation response of the material (the height of shear lips) of the specimens from the pipe steel is established. The micromechanisms of impact fracture of the material are described. At 20 °C and –30 °C, focal splitting of the material was observed on the fracture surface of specimens; at –60 °C, the material failed in a brittle manner by the mechanism of cleavage.
 
REFERENCES (24):
1. Gabetta G., Nykyforchyn H.M., Lunarska E., Zonta P.P., Tsyrulnyk O.T., Nikiforov K., Hredil M.I., Petryna D.Yu., Vuherer T.: In-service degradation of gas trunk pipeline X52 steel. Materials Science, 44 (1), 2008, 104–119.
2. Nykyforchyn H., Lunarska E., Tsyrulnyk O.T., Nikiforov K., Genarro M.E., Gabetta G.: Environmentally assisted “in-bulk” steel degradation of long term service gas trunkline. Engineering Failure Analysis, 17(3), 2010, 624–632.
3. Banahevych Yu.V., Andreikiv O.E., Kit M.B.: Prediction of residual pipeline recourse taking into account the operation loading conditions. Strength of Materials, 397(1), 2009, 44–52.
4. Nykyforchyn H., Lunarska E., Tsyrulnyk O., Nikiforov K., Gabetta G.: Effect of the long-term service of the gas pipeline on the properties of the ferrite-pearlite steel. Materials and Corrosion, 60, 2009, 716–725.
5. Kryzhanivs’kyi E.I., Nykyforchyn H.M.: Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs. Materials Science, 47(2), 2011, 127–136.
6. Tsyrul’nyk O.T.: Application of the electrochemical methods in the diagnostics of the engineering state of structural materials. Materials Science, 49(4), 2014, 449–460.
7. Marushchak P.O., Salo U.V., Bishchak R.T., Poberezhnyi L.Ya.: Study of main gas pipeline steel strain hardening after prolonged operation. Chemical and Petroleum Engineering, 50(1-2), 2014, 58–61.
8. Konovalenko I.V., Marushchak P.O., Danilyuk I.M.: Fractographic and defect measurement analysis of multiple pitting corrosion parameters. Chemical and Petroleum Engineering, 50(7-8), 2014, 457–463.
9. Kim J.-H., Choi S.-W., Park D.-H., Lee J.-M.: Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: Effect of low temperatures. Materials & Design, 65, 2015, 914–922.
10. Panin V.E., Pleshanov V.S., Kobzeva S.A., Burkova S.P.: Relaxation mechanism of rotational type in fracture of weld joints for austenic steels. Theoretical and Applied Fracture Mechanics, 29(2), 1998, 99–102.
11. Richards F.: Failure Analysis of a natural gas pipeline rupture. Journal of Failure Analysis and Prevention, 13(6), 2013, 653–657.
12. Verdeja J.I., Asensio J., Pero-Sanz J.A.: Texture, formability, lamellar tearing and HIC susceptibility of ferritic and low carbon steels. Materials Characterization, 50, 2003, 81–86.
13. Yamamoto I., Mukaiyama T., Yamashita K., Sund Z.M.: Effect of loading rate on absorbed energy and fracture surface deformation in a 6061-T651 aluminum alloy. Engineering Fracture Mechanics, 71(9–10), 2004, 1255–1271.
14. Shterenlikht A., Howard I.C.: Partition of Charpy fracture surface with digital image processing. International Journal of Fracture, 129(1), 2004, 39–50.
15. Maruschak P.O., Bishchak R.T., Vuherer T.: Laws governing the dynamic fracture of two-layer bimetallic composites. Metallurgist, 55(5-6), 2011, 444–449.
16. Maruschak P.O., Danyliuk I.M., Bishchak R.T., Vuherer T.: Low temperature impact toughness of the main gas pipeline steel after long-term degradation. Central European Journal of Engineering, 4(4), 2014, 408–441.
17. Makarov P.V.: Localized deformation and fracture of polycrystals at mesolevel. Theor. Appl. Fracture Mech., 33(1), 2000, 23–30.
18. Balokhonov R.R., Stefanov Yu.P., Makarov P.V., Smolin I.Yu.: Deformation and fracture of surface-hardеned materials at meso- and macroscale levels. Theor. Appl. Fracture Mech., 33(1), 2000, 9–20.
19. Romanova V., Balokhonov R., Makarov P., Schmauder S., Soppa E.: Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Computational Materials Science, 28 (3-4 spec. iss.), 2003, 518–528.
20. Goritskii V.M., Shneyderov G.R., Lushkin M.A.: Nature of anisotropy of impact toughness of structural steels with ferrite-pearlite structure. The Physics of Metals and Metallography, 114(10), 2013, 877–883.
21. Joo M.S., Suh D.W., Bae J.H, Bhadeshia H.K.D.H.: Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. Materials Science and Engineering A, 546, 2012, 314–322.
22. Balokhonov R., Romanova V., Schmauder S.: Numerical simulation of intermittent yielding at the macro and mesolevels. Computational Materials Science, 32(3-4), 2005, 261–267.
23. Maruschak P., Bishchak R., Konovalenko I., Menou A., Brezinová J.: Effect of long term operation on degradation of material of main gas pipelines. Materials Science Forum, 782, 2014, 279–283.
24. Fassina P., Bolzoni F., Fumagalli G., Lazzari L., Vergani L., Sciuccati A.: Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels. Engineering Fracture Mechanics, 81, 2012, 43–55.