VISUAL ANALYSIS OF HEAT TRANSPORT IN A UNIQUE OBJECT
 
More details
Hide details
1
Fundamentals of Technology Faculty, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Publish date: 2015-11-27
 
Adv. Sci. Technol. Res. J. 2015; 9(28):153–159
KEYWORDS
ABSTRACT
The paper presents a visual analysis of heat propagation in selected elements of a unique building structure. Numerous spots of construction deterioration and weakening are exemplary to the presented method and to the procedure of concluding for the purpose of combined research and education at the third academic level of education. The described procedures use a thermographic camera. The most attention has been put to thermal bridges to avoid energy loss in further modernization of the investigated object and how the conclusion process can be supported. The discussion is based on four parallel types of camera imaging: thermal, multispectral, thermal fusion and digital. The selected important aspects of measurement conditions have been discussed to justify the reliability of presented measurements.
 
REFERENCES (7)
1.
Albatici R., Tonelli A.M., Chiogna M., A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Applied Energy, 141(1), 2015, 218–228, http://dx.doi.org/10.1016/j.ap....
 
2.
Kylili A., Fokaides P.A., Christou P., Kalogirou S.A., Infrared thermography (IRT) applications for building diagnostics: A review. Applied Energy, 134(12), 2014, 531–549, http://dx.doi.org/10.1016/j.ap....
 
3.
Lehmann B., Wakili K.G., Frank Th., Collado B.V., Tanner Ch., Effects of individual climatic parameters on the infrared thermography of buildings. Applied Energy, 110(10), 2013, 29–43, http://dx.doi.org/10.1016/j.ap....
 
4.
Ohlsson K.E.A., Olofsson T., Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface. Applied Energy, 134(12), 2014, 499–505, http://dx.doi.org/10.1016/j.ap....
 
5.
Wai-Lok L.W., Ka-Kin L., Chi-Sun P., Validation of size estimation of debonds in external wall’s composite finishes via passive Infrared thermography and a gradient algorithm. Construction and Building Materials, 87(7), 2015, 113–124, http://dx.doi.org/10.1016/j.co....
 
6.
Zou H., Huang F., A novel intelligent fault diagnosis method for electrical equipment using infrared thermography. Infrared Physics and Technology, 73(11), 2015, 29–35, http://dx.doi.org/10.1016/j.in....
 
7.
FLIR System, Inc., User’s manual Flir R&D Software 3.3, 2014, 80–84.