PL EN
Ensemble Model for Network Intrusion Detection System Based on Bagging Using J48
 
More details
Hide details
1
Department of Computer Science and Information, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
 
 
Corresponding author
Mohammad Mahmood Otoom   

Department of Computer Science and Information, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
 
 
Adv. Sci. Technol. Res. J. 2023; 17(2):322-329
 
KEYWORDS
TOPICS
ABSTRACT
Technology is rising on daily basis with the advancement in web and artificial intelligence (AI), and big data developed by machines in various industries. All of these provide a gateway for cybercrimes that makes network security a challenging task. There are too many challenges in the development of NID systems. Computer systems are becoming increasingly vulnerable to attack as a result of the rise in cybercrimes, the availability of vast amounts of data on the internet, and increased network connection. This is because creating a system with no vulnerability is not theoretically possible. In the previous studies, various approaches have been developed for the said issue each with its strengths and weaknesses. However, still there is a need for minimal variance and improved accuracy. To this end, this study proposes an ensemble model for the said issue. This model is based on Bagging with J48 Decision Tree. The proposed models outperform other employed models in terms of improving accuracy. The outcomes are assessed via accuracy, recall, precision, and f-measure. The overall average accuracy achieved by the proposed model is 83.73%.
Journals System - logo
Scroll to top