PL EN
CONSTRUCTION TECHNOLOGY OF TIMBER-FRAME HOUSES RESISTANT TO DYNAMIC LOADS – STUDY ON MODELS OF EXTERIOR WALLS
Marcin Szczepanski 1  
,   Wojciech Migda 1  
,   Robert Jankowski 1  
 
More details
Hide details
1
Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233 Gdansk, Poland
Publication date: 2015-11-27
 
Adv. Sci. Technol. Res. J. 2015; 9(28):75–80
 
KEYWORDS
ABSTRACT
The aim of this paper is to show the numeric representation of experimental studies concerning the behaviour of exterior wall models of a timber-frame house under harmonic loading. A single wall model according to traditional technology of timber-frame house walls (filling with mineral wool) was tested. The analysis was conducted for the following frequencies: 0.5 Hz, 1.0 Hz, 2.0 Hz and 5.0 Hz for various values of the specified displacement. A number of hysteresis loops were obtained for each of the tests. Based on them, the damping ratio as well as stiffness were calculated. The skeleton model filled with mineral wool (traditional technology) experienced serious damage under larger displacements. The results of the study have been used to propose a numerical model of wall filled with mineral wool. The proposed numerical model is consistent with the results for the values ​​obtained during the experimental study, which proves the correctness of the adopted solution.
 
REFERENCES (13)
1.
ECS, Eurocode 8: Design provisions for earthquake resistance of structures. European Committee for Standardization, Brussels, Belgium 1998.
 
2.
Jankowski R., Badania dynamiczne modeli konstrukcji budowlanych na stole wstrząsowym. CzasopismoTechniczne, 2-B, 2007, 29–37.
 
3.
Jankowski R., Nonlinear rate dependent model of high damping rubber bearing. Bulletin of Earthquake Engineering EAEE, 1(3), 2003, 397–403.
 
4.
Kiyono J., Furukawa A., Casuality occurence mechanism in the collapse of timber-frame house during an earthquake. Earthquake Engineering and Structural Dynamics, 33, 2004, 1233–1248.
 
5.
Nitka W., Mój dom z drewna. Centrum Informacyjne Lasów Państwowych, Warszawa 2010.
 
6.
Pei S., Van de Lindt J.W., Coupled shear-bending formulation for seismic analysis of stacked wood shear wall systems. Earthquake Engineering and Structural Dynamics, 38, 2009, 1631–1647.
 
7.
Seo J-M., Choi I-K., Lee J-R., Experimental study on the aseismic capacity of a wooden house using shaking table. Earthquake Engineering and Structural Dynamics, 28, 1999, 1143–1162.
 
8.
Szczepański M., Jankowski R., Experimental dynamic study on a timber-frame house using shaking table. In: Current Scientific Challenges in Concrete and Steel Structures and Concrete Technology. Gdansk University of Technology, Gdańsk 2011, 155–162.
 
9.
Toratti T., Seismic design of timber structures.FEMA, 1994.
 
10.
Zembaty Z, Cholewicki A, Jankowski R., Szulc J., Trzęsienia ziemi 21 września 2004 r. w Polsce północno-wschodniej oraz ich wpływ na obiekty budowlane. Inżynieria i Budownictwo, 1, 2005, 3–9.
 
11.
Zembaty Z, Jankowski R., Cholewicki A, Szulc J., Trzęsienie ziemi 30 listopada 2004 r. na Podhalu oraz jego wpływ na obiekty budowlane. Inżynieria i Budownictwo, 9, 2005, 507–511.
 
12.
Vessby J. Analysis of shear walls for multi-storey timber buildings. Linnaeus University Dissertations No 45, 2011.
 
13.
Zarnic R., Dujic B. Study of rateral resistance of massive X-lam wooden wall system subjected to horizontal loads. Earthquake Engineering on Timber Structures, Portugal 2006.