The aim of this paper is to show the numeric representation of experimental studies concerning the behaviour of exterior wall models of a timber-frame house under harmonic loading. A single wall model according to traditional technology of timber-frame house walls (filling with mineral wool) was tested. The analysis was conducted for the following frequencies: 0.5 Hz, 1.0 Hz, 2.0 Hz and 5.0 Hz for various values of the specified displacement. A number of hysteresis loops were obtained for each of the tests. Based on them, the damping ratio as well as stiffness were calculated. The skeleton model filled with mineral wool (traditional technology) experienced serious damage under larger displacements. The results of the study have been used to propose a numerical model of wall filled with mineral wool. The proposed numerical model is consistent with the results for the values obtained during the experimental study, which proves the correctness of the adopted solution.
REFERENCES(13)
1.
ECS, Eurocode 8: Design provisions for earthquake resistance of structures. European Committee for Standardization, Brussels, Belgium 1998.
Kiyono J., Furukawa A., Casuality occurence mechanism in the collapse of timber-frame house during an earthquake. Earthquake Engineering and Structural Dynamics, 33, 2004, 1233–1248.
Seo J-M., Choi I-K., Lee J-R., Experimental study on the aseismic capacity of a wooden house using shaking table. Earthquake Engineering and Structural Dynamics, 28, 1999, 1143–1162.
Szczepański M., Jankowski R., Experimental dynamic study on a timber-frame house using shaking table. In: Current Scientific Challenges in Concrete and Steel Structures and Concrete Technology. Gdansk University of Technology, Gdańsk 2011, 155–162.
Zembaty Z, Cholewicki A, Jankowski R., Szulc J., Trzęsienia ziemi 21 września 2004 r. w Polsce północno-wschodniej oraz ich wpływ na obiekty budowlane. Inżynieria i Budownictwo, 1, 2005, 3–9.
Zembaty Z, Jankowski R., Cholewicki A, Szulc J., Trzęsienie ziemi 30 listopada 2004 r. na Podhalu oraz jego wpływ na obiekty budowlane. Inżynieria i Budownictwo, 9, 2005, 507–511.
Zarnic R., Dujic B. Study of rateral resistance of massive X-lam wooden wall system subjected to horizontal loads. Earthquake Engineering on Timber Structures, Portugal 2006.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.