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INTRODUCTION

Automation of peg-in-hole assembly remains 
a relevant problem of mechanical engineering 
due to the increasing use of robotic systems. The 
fundamental principles of the mechanical mo-
tion of this assembly could predict the process 
depending on the initial contact and relative po-
sitions of the components. The use of these fun-
damental principles could significantly benefit to 
the development of assembly devices. The devel-
opment of assembly devices includes conception, 
design, mathematical modeling of their mecha-
nisms and the development of process manage-
ment programs.

The topic of automated peg-in-hole assembly 
is quite broad. The related researches could be 
roughly divided into two main branches: theoreti-
cal description and process control. 

The works on theoretical description have in-
cluded the research on the geometrical parame-
ters of detailed motion [12], kinematic character-
istics and force interactions between them. These 
tasks were solved for contacts at one, two or three 
points [5–7, 13]. All the theoretical researches, 
however, consider the motion of a component 
depending on the change of only one parameter 
– a nutation angle. This is the angle between the 
components’ axes, which represents the misalign-
ment of the components.

 Along with alignment some currently de-
signed and utilized assembly devices use the sec-
ond parameter. This is the rotational motion of 
a peg around its or holes’ axis. In practice this 
rotation reduces the interaction forces between 
the components, and eases their alignment. The 
theoretical study of this case was performed us-
ing the gyroscopic approximation [3, 8, 9]. This 

PEG-ON-HOLE: FUNDAMENTAL PRINCIPLES OF MOTION OF A PEG 
LEANING ON A HORIZONTAL HOLE EDGE

L.B. Chernyakhovskaya1, D.A. Simakov2

1	 Department of Mechanics, Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, 
Russia, e-mail: tms@samgtu.ru

2	 Independent Researcher, Wackenroderstrasse 1, 07745 Jena, Deutschland, e-mail: dmsimak@gmail.com

Advances in Science and Technology 
Research Journal
Volume 11, Issue 4, December 2017, pages 49–59
DOI: 10.12913/22998624/77036 

Research Article

ABSTRACT
This paper presents a solution to the problem of a peg leaning on the edge of a horizon-
tal hole at three points. The object of the interest is the motion in the course of auto-
mated peg-in-hole assembly. The complex motion of a peg is described in two degrees 
of freedom. These degrees of freedom are planar motion and rotational motion. Planar 
motion provides parts alignment via a change of nutation angle. Rotational motion oc-
curs around a hole axis. It is described by a precession angle. The kinematic analysis 
of these was performed. Based on this analysis the directions of the peg velocities at 
the contact points were established. The directions of forces acting on the peg at these 
points were also determined. The system of Dynamic Differential Equations of the 
generalized coordinates was derived. This system determines the equations of the peg 
motion and dynamic reactions. During rotational motion, the forces acting on the peg 
at contact points are shown to be significantly reduced. This reduction improves the 
conditions of parts alignment and increases the assembly quality.

Key words: cylindrical parts, three contact points, complex motion, two degrees of 
freedom, dynamic reactions, differential equations.

Received: 	 2017.09.15
Accepted: 	 2017.11.01
Published: 	 2017.12.05



Advances in Science and Technology Research Journal  Vol. 11 (4), 2017

50

approximation assumes for simplicity that the 
component has only one fixed point. This ap-
proximation, however, does not correctly reflect 
the dynamics of the motion.

The process control of the assembly auto-
mation was a point of interest in the later years. 
There have been the studies based on experiment 
[1, 2, 11], and on mathematical modeling [4, 10].

This work returns back to the theoretical fun-
damental investigations of the problem. The orig-
inal mathematical model developed in this paper 
broadens the understanding of geometry and of 
dynamics of the peg-on-hole assembly with re-
spect to preceding papers. The new knowledge is 
expected to be applied process control and other 
practical applications easier.

One of the improvements, suggested by the 
mathematical model of this paper is increase of 
the considered dimensions. As it was mentioned, 
previously, only a nutation angle γ = γ(t) describ-
ing the alignment, was taken correctly into ac-
count. This angle is one of the three Euler angles, 
required for the full description of mechanics and 
kinematics of the peg-on-hole motion. 

The full set of Euler angles includes: (i) the 
angle of the rotation around peg’s axes φ = φ(t), 
(ii) peg rotation around the hole axis described 
by precession angle ψ = ψ(t) , and (iii) a planar 
motion of the component alignment, described by 
the nutation angle γ = γ(t)  between the compo-
nents’ axes.

The original model of this paper considers 
correctly two of these generalized coordinates 
(see Fig. 1). In addition the previously considered 
nutation angle γ = γ(t), the precession angle ψ = 
ψ(t)  is now taken into account.

Another novelty of this model is representa-
tion of the results of the analysis in the form of 
Dynamic Differential Equations deduced from 
the Lagrangian.

Dynamic Differential Equations are a pow-
erful tool to study forces, positions and veloci-
ties during peg-on-hole alignment motion. The 
mechanics for a large number of alignment sce-
narios could be predicted using analytical and 
numerical solutions of the equations. This paper 
demonstrates the power of Dynamic Differential 
Equations by comparing two simple cases of mo-
tion, with one and two degrees of freedom. In this 
simple comparison Dynamic Differential Equa-
tions predicts the advantages of an additional pre-
cession rotation.  

In the investigations of this paper, the peg 
and the hole are assumed to be rigid bodies of 

the regular geometric features with the following 
dimensions (see Fig. 1): d is a peg diameter, H 
is its height, D is a diameter of the hole, D-d is 
size of a guaranteed gap, γ is an angle between the 

components’ axis, the value of which is taken as  

γ > ,arccos
D
d

which corresponds to the contact 
between the components at three points. One of 
the contact points K is placed between the genera-
trix of the peg and the hole edge in the plane, go-
ing through the axis of the components, two other 
contact points B1 and В2 are placed between the 
edges of both components symmetric to the plane. 

The description of the positions of the ele-
ments and points requires a coordinate system. 
It is convenient to use the Cartesian coordinate 
systems for the problems of this paper. So every-
where the authors refer to a coordinate system, 
they always assume a Cartesian coordinate sys-
tem, and the corresponding coordinates are Car-
tesian coordinates.

To determine the position of the peg in rela-
tion to the hole (see Fig. 1) a fixed coordinate sys-
tem О1xyz is chosen which origin coincides with 
the centre О1 of a horizontal circle of the edge of 
the hole. The coordinate plane О1уz goes through 
the hole axes О1z and the initial position of peg’s 

Fig. 1. Position of the peg with two degrees of free-
dom ψ and γ. Sections 1 and 2 are the sections of the 
peg by the moving plane of coordinates Сх1у1 and 
the translation of the fixed coordinate system О1xy.  

The other notations are presented in the in-troduction 
of the paper
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axis О2ζ. The axes О1х is directed perpendicular 
to this plane. Angle γ between the axes of the hole 
О1z and of the peg О2ζ, and is a nutation angle. 

The moving system of coordinates Сх1у1z1, 
the axes of which are moving translationally par-
allel to the corresponding fixed axes, is connected 
with the mass centre C. Plane Сх1у1 bisects the 
peg to form section 1. Section 2 is formed by the 
plane going through point C. This plane is paral-
lel to the base of the hole.  Section 2 bisects sec-
tion 1 of the peg along the line of nodes CN.

The angle between axis Сх1 and the line of 
nodes CN is a precession angle ψ1. Based on the 
geometric analysis it was deduced that the line of 
nodes is parallel to segment В1В2.

In order to simplify some required math-
ematical transformation, in the subsequent 
analysis of the rotational motion of the peg, 
the angle ψ complementary to ψ1 is chosen for 
a generalized coordinate. 

Thus on further consideration of the align-
ment process the position of the peg leaning at 
the hole is characterized by coordinates хС, уС, zС 
of mass centre C, and two angles γ and ψ. 

Since the peg is not a free body, its position 
in the space is constrained by the bounds applied 
to it – three contacts points К, В1 and В2. Thus 
it has two degrees of freedom and its position is 
determined by two generalized coordinates: γ and 
ψ. Therefore, to describe the motion of the peg in 
this case it is necessary to determine the depend-
ence of the mass centre coordinates хС, уС, zС, and 
of all its points affecting the components align-
ment from generalized coordinates γ and ψ.      

The goals of this work is divided into sections 
as follows:
1)	kinematic analysis of the peg motion with one 

and two degrees of freedom,
2)	determination of interaction forces at con-

tact points and their effect on the process of 
alignment,

3)	determination of mechanical motion rules, 
which defines the alignment of the parts.

KINEMATIC ANALYSIS OF THE PEG 
MOTION

Motion in 1D: consideration of nutation angle γ

First let us consider the change of the nutation 
angle γ only. In this case the peg leaning on three 
points of the hole edge performs a plane-parallel 

motion characterized by the motion of its AEDN 
section in its own plane (see Fig. 2) relative to 
О1ηz coordinate system with the origin at the cen-
ter the hole edge О1. Based on the geometrical 
analysis it was defined that all properties of this 
motion are the functions of angle γ.

The distance between intersection point О of 
the components’ axes and the centers of aligning 
edges of the hole О1 and of the peg О2 (see Fig. 2) 
is expressed by the equations

;
sin2

cos
11 

DdООa 
  

.
sin2

cos
22 

dDООa 
  

(1)

The location of symmetrical contact points 
В1 and В2 (see Fig. 2) can be determined by the 
distances S1 = О1В and S2 = О2В between the aper-
ture center О1 of the hole or center О1 of the pegs 
base on one side, and point В in the middle of the 
section between the symmetrical contact points 
on the other side: 

             BOS 11 


sin
cos12 aa 

;         

            .
sin

cos21
22 

aaBOS 
     

(2)

Fig.2. Velocity distribution at plane-parallel motion of 
the peg at points K, B, A. Contact points B1 and B2 
as well as point B are projected to the same point in 

this section, and have equal velocities. The projection 
is denoted here as B for simplicity. See introduction 

and section 1 for notations
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The center of mass С of the peg is convenient 
to consider in the О1ηz coordinates system, which 
is located in the plane of the symmetry of the 
components (see Fig. 2). The coordinates of the 
center of mass in this system are the following 

        ,sin)5.0( 2  aHC   

           .cos)5.0( 12 ааHzC    
(3)

Point А is located in the symmetry plane at 
the peg edge, at the diameter end overhanging 
maximally above the hole (see Fig. 2). Its coordi-
nate in the same coordinate system are

,cos
2 21  






  SdSA  (4a)

where:	 S2 defined in (2) is the distance between 
the peg edge centre and the intersection 
of its most overhanging diameter with the 
hole edge.

The first expression in (4) could be simplified 
with the following result: ηA = 0.5D.  The obtained 
value means that point А moves along the straight 
line coinciding with the generatrix of the hole 
internal surface. Therefore, its velocity for any 
value of angle γ is directed vertically downwards. 

In addition, the velocity direction of another 
peg point is known. It is that of contact point К 
located in the components plane of symmetry. 
The velocity is directed along its generatrix (see 
Fig. 2). Knowledge of the velocities at these two 
points allows determination of the location of 
their instantaneous center L. It is an intersection 
point of the perpendiculars of the AV  and KV  ve-
locities. The coordinates of L are equal to

                   ,1SL  .2 1azL                              (4b)

Thus the direction of the velocity of point В 
during plane-parallel motion of the peg can be 
determined. According to the definition of an in-
stantaneous velocity centre, the velocity direction 
is perpendicular to BL section (see Fig. 2). Due to 
geometry this section goes through the intersec-
tion point О3 of the axes of the peg and the hole. 

The instantaneous velocity center L is related 
to the nutational motion with angle γ. Thus, the 
velocities of В and К points could be found cor-
respondingly as

                   , BLVB   , КLVK        (5)

where:	
2
1

2
12 SaBL   , sin

2 1aKL    are the 
distances of these points from the instan-
taneous velocity center (see Fig. 2), and 

γ  is the angular velocity of the hole roll-
ing nutational motion.

During planar motion points В1 and В2 are 
located on one straight line going through В 
point perpendicular to the components’ symme-
try plane, Thus, their velocities are parallel to 
the velocity of В point and the values of all three 
velocities are equal, i.e. the velocities are equal 

.21
γγγ

BBB VVV ==

Motion in 2D: consideration of nutation angle 
γ and of precession angle ψ

Now the peg motion determined by two gen-
eralized coordinates of γ and ψ is considered. 
Given this motion the coordinates of center of 
mass take the following values (see Fig. 3, where 
ОС is the peg axis)

;sinsin)5.0(cos 2  aHx CC                                                              
;cossin).0(sin 2  aHy CC                          

     .cos)5.0( 12 ааHzC    

(6)

The coordinates of К, В1 and В2 contact points, 
in fixed coordinates (see Fig. 4), are equal to

;sin5.0 DxK                  
;cos5.0 DyK                                                                    

.0Kz  
(7)

Fig. 3. Coordinates of mass center in fixed system 
of coordinates shown at the peg axis and the hole 

aperture
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);cos(5.01   DxB  
);sin(5.01   DyB                                                               

.01 Bz  
(8)

);sin(5.02   DxB    
);cos(5.02  By  

.02 Bz    
(9)

The velocities of the rotational movement 
of all contact points are located in the horizontal 
plane, are directed tangentially to the edge of the 
hole aperture (see Fig. 4), and are equal to value 

of ,5.021 ψψψψ DVVV BBK ===  where ψ  is the 
precession angular velocity, which is the angular 
velocity of the peg rotation around the hole axis.

The projections of absolute velocities at the 
contact points

 21,, BBK VVV
 
to the О1η axis 

are equal (see Fig.2 and Fig. 4) to the sum of pro-
jections of the velocities components

;sin1  KLVK   
;cos5.0cos1   DBLVB   

 ;sin5.0cos2   DBLVB   
(10)

The projections of the absolute velocities of 

1, BK VV , 2BV  to the fixed coordinate axes are 
equal to 

;cos5.0sinsin1   DKLV x
K   

;sin5.0cossin1   DKLV y
K   

.cos1 KLV z
K   

(11)

);sin(5.0coscos1    DBLV x
B                             

);(cos,0sincos1    DBLV y
B  

.sin1 BLV z
B   

(12)

);cos(5.0coscos2    DBLV x
B  

);sin(5.0sincos2    DBLV y
B  

.sin.2 BLV z
B   

(13)

In these expressions (see Fig. 4): 	
,

5.0
cos,

5.0
sin 1

D
S

D
b

  .25.0 2
1

2
1 SDBBb   

The obtained values allow determination of 
the direction of friction forces at contact points 
with the help of direction cosines, the values of 
which are opposite in sign to the direction cosines 
of absolute velocities at corresponding points. 
Thus, direction cosines of the angles between by 
friction forces at points К, В1  and В2 and О1η axis 
are equal to

;cos
K

K
К V

V    

;cos
1

1
1

B

B
В V

V    

.cos
2

2
2

В

B
В V

V    

Direction cosines of friction forces at contact 
points with fixed coordinates may be determined 
in a similar way. 

ANALYSIS OF FORCES ACTING AT THE 
PEG AT CONTACT POINTS

During the motion, the peg is affected at each 
contact point (see Fig. 6) by four kind of forces: 
(i) the assembling exertion, (ii) gravity, (iii) nor-
mal reaction, and (iv) the friction force. The fric-
tion force hinders the alignment course. 

The directions of normal reactions at contact 
points depend on the type of interaction. In the 
course of alignment (see Fig. 5) the peg leans on 
the edge of the hole at point K with its generatrix. 
The normal reaction 1KN  at this point is directed 
perpendicular to the generatrix. This reaction is 
situated inside the plain of the components’ sym-
metry. The projections of 1KN  reaction to coordi-
nates Оη and Оz (Fig.5) are equal to

;cos
KK NN   

;cosK
z
K NN   

(14)

The normal reaction at each of the symmet-
ric contact points В1 and В2 is located in two 

Fig. 4. Coordinates and velocities of the peg at 
contact points, viewed from above the peg. See the 

notations at section 1
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planes simultaneously: (i) a plane normal to the 
peg edge and going through the axis of peg, and 
(ii) a plane normal to the hole edge and going 
through the axis of hole (see Fig. 5). The line of 
their intersection connects a contact point to point 
О of the intersection of the components’ axes. 
Thus, the normal reactions acting on the peg are 
directed along the straight lines going through 
B1O and B2O. They are connecting the contact 
points В1 and В2 with point of intersection O of 
the peg and the hole axes.

The projections of the normal reactions at the 
symmetric contact points (Fig. 5 and Fig. 6) to the 
fixed coordinates are equal to 

;coscos11 K
x
K NN   

;sincos11 K
y
K NN   

;sin11 K
z
K NN   

(15)

);cos(cos11   B
x
B NN  

);sin(cos11   B
y
B NN  

;sin11 B
z
B NN   

(16)

).sin(cos22   B
x
B NN  

);cos(cos22   B
y
B NN  

;sin22 B
z
B NN   

(17)

The angle ν in these expressions is the angle 
between sides О1В1 and ОВ1 in triangle О1В1О3 
(see Fig. 5).

The value of friction force F acting on the peg 
at a contact point is defined by the laws of Amon-
tons and Coulomb, and its modulus is equal to fN, 
where f is a friction coefficient and N is the value 
of the normal reaction at the corresponding point.

The directions of the friction forces are oppo-
site to their absolute velocities at the correspond-
ing points. The projections of these forces on the 
coordinate axes are determined using direction 
cosines. The values of these direction cosines 
have the opposite sign to the direction cosines of 
the absolute velocities. Therefore, the direction 
cosines of the force frictions at the points K, В1

 

and В2 are equal to

;cos

;cos

;cos

K

Kz
K

K

Ky
K

K

Kx
K

V
V

V
V

V
V













 (18)
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1
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1
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1
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zB
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B
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B

B
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V
V

V
V

V
V


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







 (19)

,cos

;cos

;cos

2

2
2

2

2
2

2

2
2

B

zB
B

B

yB
B

B
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B

V
V

V
V

V
V













 (20)

Fig. 5. Directions of normal reactions at con-tact 
points. See notations at section 2

Fig. 6. Projections of normal reactions to О1ху plane, 
view from above at the peg. For notations see section 2
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where the values of the velocity projections 
to the coordinate axes are defined by the values 
from (11–13).

The direction cosines of the angles made by 
the friction forces with axis О1η at points K, В1 
and В2 are equal to

;cos
K

K
К V

V   ;cos
1

1
1

B

B
В V

V    

;cos
2

2
2

В

B
В V

V    

(21)

  where the projections of the velocities on 
axis О1η are defined by the values` (10).

DYNAMIC DIFFERENTIAL EQUATIONS OF 
THE PEG MOTION

To determine the position of the peg with two 
orders of freedom, Lagrangian differential equa-
tions are defined.

;
QTT

dt
d










 .

QTT
dt
d










 

 In these equations the kinetic energy Т of the 
peg’s complex motion, is equal to the sum of ki-
netic energies of a planar motion, the main axis 
of which coincides with the symmetry axis of 
the components, and of a rotational movement 
around the hole axis О1z. This energy is defined 
by the expression

,
222

222
1
  zOCC IImV

T   (22)

where:	m is the peg mass; 
	 VCγ– is the velocity of its mass centre at 

planar motion, which is defined through
 

 

2222 ])()[( 



 

d
dz

d
d

V Cc
C   ;

	

 

)3(
12

22 HRmIС   
 
is a peg inertia mo-

ment in relation to its central axis Сε go-
ing through center of mass perpendicular 
to the symmetry plane;

	 zOI
1  is a peg inertia moment in relation 

to the hole axis О1z, and ψ  is the angular 
velocity of the rotational movement.

During the alignment process, the inertia mo-
ment zOI

1  of the peg in relation to the hole axis О1z 
depends on angle γ and is defined by the expression

222 cossin
1 CССzО mIII     (23)

where 

 

,
2

2mRIС    and 

 

)3(
12

22 HRmIС    
are the main central moments of the pegs inertia. 

After the substitution of the expression of 
kinetic energy into Lagrange equation and the 
consequent transformations, the left parts of the 
Lagrange equations are reduced to the form









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2
2

2

2

2
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)(
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
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
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
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d
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d
dz

d
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d
dmI

d
dz

d
dmTT

dt
d

CCCC
C
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;]5,0([ 2
2

2









d

dI
d

d
d

dm СzCC   

(24)
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Im
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



 (25)

In the first Lagrange equation, the general-
ized force Qγ equals the sum of moments of all 
the forces in relation to instantaneous rotational 
axis Ll (see Fig. 8) going through point L perpen-
dicular to the plane of the components’ symmetry. 
The sum of moments is composed of moment Мγ 
created by the assembling forces, the moment of 
gravity Мmg and the sums of the friction forces at 
the contact points. The moments of the normal re-
actions in relation to point L equal zero, because 
their lines of action cross the instantaneous axis 
of rotation.

The moment of the gravity force in rela-
tion to the instantaneous axis (see Fig. 8) equals 

 

).()( 1 CLmg SmggmmM    
To determine the moments of the friction 

forces in relation to the instantaneous axis Ll the 
new coordinate axes are introduced: (i) axis Lη1 
parallel to axes О1η, and (ii) axis Lz1 parallel to 
axes О1z (see Fig. 7). The moment of the friction 
force at each contact point K, B1, B2 is determined 
by a formula 

 

1111)(  FzFFm zLl    , where 
Fz1 and Fη1 are the projection of friction forces 
on coordinate axes Lz1 and Lη1 (see KF and BF
at Fig. 8), while η1 and z1 are the coordinates of 
the points of contact K and B in this coordinate 
system. Here B is the general notation for the two 
contact points B1 and B2.
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Projection of the friction forces Fz1= Fz , and 
Fη1 = Fη   are found with use of direction cosines, 
the values of which are presented by the expres-
sions (18, 19, 20) and (21).

Coordinates of the points of contact К, В1 and 
В2 in the coordinate system related to the instanta-
neous velocity centre are shown in Fig. 7 and equal 
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After the substitution of all the values and the 
subsequent transformations, the first Lagrange 
equation is reduced to the form 
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(26)

In the second Lagrange equation the gener-
alized force Qψ equals the sum of the moments 
of the assembling forces Мψ and the moments 
of friction forces in relation to the hole axis О1z. 
Moments of the normal reactions and of gravity 
force in relation to the same axis equal zero.

Moments of friction forces at each contact 
point K, B1, B2 in relation to axis О1z were defined 
by the formula 

 

xyz yFxFFm )(   , where  x 
and y are the coordinates of the points of contact 
in the fixed coordinate system О1хуz, the values 
of which are determined with the equations (7–9). 
The projections of the friction forces Fx and Fy 
onto the fixed coordinate axes are determined with 
the help of the direct cosines, the expressions of 
which are determined with expressions (18–20).

The second Lagrange equation after the sub-
stitution of all the values and the consequent 
transformations is reduced to the following form:
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(27)

Except generalized coordinates γ and ψ equa-
tions (26) and (27) contain three normal reactions 

KN , 1ÂN  and 2ÂN  with unknown value applied 
at the points at which the two components touch. 
To determine these reactions, it is necessary to set 
up the differential equations for the motion of the 
peg’s center of mass:
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 (28)

In these equations the coordinates of the peg’s 
center of mass are determined by equations (6). 
The right sides of equations (28) represent the 
projections on the fixed coordinates of all forces 
applied to the peg: (i) assembly effort, the geo-
metrical sum of which is equal to 

 
asF   , (ii) grav-

ity force gm , normal reactions KN , 1ÂN  and 
2ÂN , and the friction forces related to the nor-

mal reactions by Coulomb’s law. The projections 
of normal reactions are determined by equations 
(15–17), and the projections of friction forces are 
expressed through the direction cosines.

The equations of center of mass movement 
after substituting all the values and transforma-
tions are reduced to the form

Fig. 7.  Coordinate system Lη1z1, starting at the 
instantaneous velocity centre L. See further notation 

in section 2 
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The obtained differential equations (12), (27), 
(29), (30), (31) are the so-called Dynamical Dif-
ferential Equations. They represent a mathemati-
cal model of the alignment process of cylindrical 
parts. This model allows to determine the laws of 
mechanical motion and interaction forces for peg 
movement with two degrees of freedom.

The Dynamical Differential Equations permit 
to describe thoroughly the peg-on-hole align-
ment motion. The mechanics for large number 
of the alignment scenarios can be completely 
solved using their analytical and numerical solu-
tions. This paper demonstrates the power of the 
Dynamical Differential Equations by comparing 
two simple cases of rotational movement and 
deducing important results about the system dy-
namics from them. The simple cases are: (i) two-
dimensional motion with two degrees of freedom, 
where both degrees of freedom evolve linearly 

tCt γγγ == )(  and tCt ψψψ == )(  and (ii) 
motion with one degree of freedom evolving also 
linearly: tCt γγγ == )( . This simple compari-
son could bring to important results, showing the 
potential for analysis of more complicated tasks.  

In the case (ii) the dynamic reactions are de-
termined for the system of forces located in the 

components’ symmetry plane, affecting the peg 
and resulting to the force 

 
сбF   and the pair of 

forces with the momentum Мγ In this case the 
peg performs a planar movement, its position is 
determined by one generalized coordinate γ, and 
the position of its center of mass is determined 
by two coordinates – ηС and zC in the coordinate 
system О1ηz (see Fig. 8). 

For the determination of the peg position in 
the second case, it is necessary to use three equa-
tions: The Lagrange equation for determining 
the generalized γ coordinate, and two differential 
equations for center of mass movement to deter-
mine the dynamic reactions. These equations are 
obtained from the differential equations by exclu-
sion of the parameters related to generalized co-
ordinate ψ, i.e. by substituting 0=ψ  and 0=ψ .

During transformations of the equations it 
should be noted that in planar movement all the 
active forces are aligned along the plane. Normal 
reactions (see Fig. 9) at symmetrical points В1 and 
В2 have equal absolute values and are reduced to 
the resultant BN , which is located in the symme-
try plane of the components and is applied to the 
middle of В1В2 section (at point В), and is directed 
along the straight line going through point О of 
the intersection of the axes of the components. It 
can be shown geometrically that points В, О and 
L are in one straight line. Thus, the line of the 
direction of the resultant also points through the 

Fig. 8. Directions of normal reactions N and fric-tion 
forces F together with velocities V of pla-nar move-
ment at contact points K and B.  Addi-tionally, the 
center of mass of the peg C and the instantaneous 

rotation center L with their pro-jections to axes O1z 
and O1η as well as assem-bling force moment Mγ. 

Other notations are in the text of the paper
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instantaneous center L of the velocities. The value 
of the resultant (see Fig. 8) is equal to:

αsin2 1BB NN = ,
where:	 NB1 = NB2 are the reactions at symmetrical 

contact points В1 and В2, and
	 α is an angle between segments ОВ1 and 

В1В2.

Friction forces at symmetrical contact points 
are directed opposite to the velocities at these 
points, and are equal in value and reduced to the 
resultant applied at point В, equal to: FB = 2fNB1

After all transformations the Dynamical Dif-
ferential Equations of the peg movement are con-
sidered under the effect of only one moment γM  
and have the following form:
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The system of differential equations (32 – 34) 
allows determining the values of dynamic reac-
tions at contact points KN , 1BN  and of the rota-
tional moment M γ dependent on the angle γ.

Determination of dynamic reactions at con-
tact points was done numerically with the help of 
the software Mathcad for both cases (i) and (ii). 
The algorithm for the problem solution was de-
veloped based on equations (33, 34) in case (i), 
and equations (29 – 31) in case (ii). The algorithm 
allows the assembly mode and dimensions of the 
aligned parts to be chosen. In this work the simu-
lation results for the alignment with the following 
set of the components’ dimensions are presented: 
D = 50 mm, d = 49.95 mm, Н = 70 mm. The 

angular velocities of the constituent motions here 
were taken to be constant: 2=γ 1/s, 

 
10    

1/s, and friction factor is f = 0.2. The solution for 
the components with the indicated dimensions 
is presented at Fig. 9 in the form of plots of the 
dependence of 

 

mg
N

N B1
1    on angle γ. This value 

1N  represents the ratio of normal reaction to the 
peg gravity at one of the symmetric contact points 
В1. Here the dashed line represents case (i) with 

,01 =ψ  and the solid line represents case (ii) 
with 

 
1

2 10  s  .
From the graph we can see that in both cas-

es the forces acting on the peg contact points 
increase during alignment, with the significant 

change near the value D
d

O arccos=γ . At this 
angle the symmetric contact points merge at the 
symmetry axis into one point, thus turning a 
three-point contact into a two-point contact. Near 
this point the value 1N  for case (i) significantly 
exceeds the peg gravity force, which can cause 
the jamming of the components or the damaging 
of their surfaces. By comparing the forces 1N  for 
the cases (i) and (ii) it is quite distinctive that the 
rotational movement in case (ii) significantly re-
duces the interaction forces, which improves the 
conditions of the parts aligning and reduces the 
probability of jamming.

Fig. 9. Dependence of normal re-action at point В1 
upon angular velocity of rotation around the ax-is of 

the hole.
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CONCLUSIONS

The detailed kinematic analysis of the peg’s 
complex movement while leaning on the edge of 
the vertically fixed hole, with two degrees of free-
dom in the course of cylindrical parts alignment 
was performed. The directions of the interaction 
forces at points of contact between the peg and 
the hole were determined. The Dynamical Differ-
ential Equations describing the process of align-
ment of the components in dependence on their 
relative location, acting forces and taking the ef-
fect of a rotational movement on this process in 
consideration were set up.

The usability and the power of the Dynami-
cal Differential Equations was demonstrated by 
the study of two simple cases of alignment of the 
components. This study showed that an additional 
rotation of the peg around its axis could decrease 
the risk of jamming and the surface damage during 
the alignment. 

In general, the mathematical model of the peg 
and hole alignment based on Dynamical Differen-
tial Equations, represented in this paper, allows a 
more tailored and thorough application and can be 
a powerful tool for the very broad spectrum of tech-
nical tasks extending the technological possibilities 
of robotic assembly of the cylindrical parts, includ-
ing selection of parameters and modes of assembly, 
development of assembly devices as well as com-
puter modeling extending the technological possi-
bilities of robotic assembly of the cylindrical parts.

In this paper the peg-on-hole assembly was 
considered in two Euler angles: nutation angle 

)(tγγ = , and the precession angle )(tψψ = . 
In the future work another combination of Euler 
angles is planned to be considered: the align-
ment angle )(tγγ =  and the rotation of the peg 
around its own axes )(tϕϕ = .
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