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ABSTRACT
The Cellular Automata represent a universal method of modelling and simulation. 
They enable the performance of calculations for even the most complex processes and 
phenomena. They are also used successfully in mechanical and material engineering. 
In this paper, the concept of application of the Cellular Automata method for simulat-
ing the behaviour of material under stress is presented. The proposed numerical algo-
rithm created performs a number of calculations of local stress states in the structure 
of precipitation hardened material. The principle of its operation is based on the ap-
plication of the equivalent truss model, which is often used in the optimisation and de-
sign of structures. In this paper, this model was used to simulate a system embodying a 
section of the material containing various phases with different mechanical properties.

Keywords: Cellular Automata, numerical methods, stress state, strength of materials, 
precipitation hardening.

INTRODUCTION

The equivalent truss model was applied suc-
cessfully to optimise the structural topology. Op-
timisation methods were applied to elements in 
both macro- and microscopic scale [1]. All the 
theoretical aspects of modern structural optimi-
zation issues were described by Rozvany in his 
work [2]. In that work, this method is used to 
solve the stress state in a deformed material. The 
theoretical model is implemented into the algo-
rithm based on the Cellular Automata method.

The notion of Cellular Automata (abbrevi-
ated as CA) was formulated for the first time in 
1940s by John von Neumann, a mathematician 
and computer scientist of Hungarian origin. A 
cellular automaton is a self-replicating system 
consisting of a cellular grid where every cell 
has a finite number of states [3]. Such a grid can 
have any number of dimensions. Automatons in 
one, two or three dimensions are those used the 

most often. For every cell, the so-called neigh-
bourhood is defined, that is, a set of cells that 
remain in direct contact with it and the states of 
which are taken into account when establishing 
the state of the cell. A cellular automaton is a dis-
crete model. Its space, number of possible states 
and time during which it evolves are finite and 
countable. The system evolution consists in the 
cell state being established in every pass on the 
basis of state of neighbourhood cells and state of 
the cell concerned during the previous step. The 
above dependencies are defined via passage rules. 
The principles of operation of cellular automata 
have been widely documented [3, 4, 5].

The equivalent truss model is based on the 
assumption that a solid body, being a continuous 
centre, can be presented in the form of a truss 
with a specified geometry [6]. Cellular Automa-
ta are a frequently used method of implementing 
a model into numerical algorithms. Using them 
for the above mentioned purpose was descried 
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by Gurdal and Abdalla [7, 8], Kita and Toyoda 
[9], Gurdla and Tatting [6, 10] and Abdalla and 
Zakhama [11]. Until now the truss model has not 
been applied in Cellular Automata for determin-
ing the stresses inside multi-phase materials.

NUMERICAL MODEL

The numerical model assumed writing an al-
gorithm that creates the two-dimensional geom-
etry of a multi-phase material and then executes 
a simulation of the material deformation process 
and calculates stresses at every point of the Cel-
lular Automaton grid.

Computational domain

The computational domain of an automaton 
is constituted by a system which is a two-dimen-
sional digital representation of a square section 
of the material containing a circular or elliptical 
hardening phase precipitate in its centre. The pre-
cipitate geometry is created by the user who in-
troduces its parameters into the software or estab-
lished on the basis of a microscopic image of the 
actual particle observed. The types of geometry 
generated by the software include only circular 
or elliptical precipitates containing one or two 
phases of the material.

A cellular grid with a resolution of 200x200 is 
imposed onto the geometry. Every cell has fixed 
values of mechanical properties assigned, de-
pending on its affiliation to a given phase of the 
material. A cell is embedded in the direct neigh-
bourhood of the Moore type, i.e. it has 8 most ad-
jacent neighbours.

The geometry is generated by the software in 
the form of a bitmap. Every single map pixel is a 
single automaton cell. The bitmap includes three 
colours, each of which corresponds to one of the 
material’s phases. Black represents the material’s 

matrix, while light and dark grey represent partic-
ular precipitation phases. When reading a pixel’s 
colour, the algorithms assign appropriate material 
constants to a cell.

The algorithm operates on dimensionless 
sizes. The size of a single pixel is equivalent to 
a length of 1. This enables large-scale simula-
tion, without imposing specific dimensions of 
precipitates and sections of material. In reality, 
the scale of precipitate sizes in aluminium alloys 
is very small, which complicates the calculation 
of actual stresses.

Boundary conditions

A system which is the computational domain 
of an automaton is subjected to axial tensioning 
with a fixed force until the moment of achieving 
the deformation set. In the algorithm described, 
it was assumed that the lower edge of the system 
remains immobile, fixed to the substrate. The de-
formation is applied to the upper edge of the sys-
tem. The value of this deformation is set by the 
user and expressed as a percentage. There are no 
boundary conditions on the side cells, so these are 
not fixed and are free to move.

Calculations

To make this a problem suitable for Cellular 
Automata calculation, we first have to change the 
continuum body into an equivalent truss model. 
Every body cell is treated as a truss node con-
nected to eight cells of the Moore neighbourhood 
using rods with specific sections and material 
constants. There exist forces in these truss mem-
bers when these are elongated or shortened. This 
kind of model is easily implemented in a cellular 
automata scheme. We update every node by po-
sitioning it so that the sum of the acting forces is 
zero. This also coincides with searching for the 
point of minimal potential energy. After sufficient 
iterations, the whole body will be very close to its 
point of minimal potential energy. This means we 
are converging on the actual solution. Of course 
this method needs a certain (large) amount of it-
erations depending on the number of nodes.

As an illustration of this method, we ana-
lysed a simple structure. This structure is a flat 
square made from a homogeneous material with 
Young’s modulus E1. In the middle, we model the 
precipitate by adding a ellipsoid area with a dif-
ferent Young’s modulus E2. This is the most basic 
way we can model an alloy with a certain pre-

 
Fig. 1. Examples of geometry generated 

by the algorithm
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cipitate on a microscopic scale. Of course, with 
this method, any number of different configura-
tions can be analysed, but this one can be easily 
checked analytically. 

As we are modelling a continuum body as a 
truss model, we need to relate the thickness of 
this continuum body and the cross-sectional area 
of the truss members. These can then be used in 
the calculation of the stresses and forces in our 
truss model. We can model this as a superposi-
tion of the diagonal and horizontal and vertical 
members. The members can be interpreted as 
the springs, with elastic constants corresponding 
with Young’s modulus of the phase material, con-
necting the nodes being the cell centers [10]. The 
diagonal members have a cross-sectional area Ad 
and the horizontal and vertical members have a 
cross-sectional area Ao. These areas can be cal-
culated by using the equivalence of strain energy 
between the truss cell and the continuum cell for 
given nodal displacements.

(1)

(2)

(3)

Where l and t are the height and the thickness of 
the cell.

The starting point of this method is the forc-
es acting on a joint in the mesh. These joints are 
equally spaced. We use each iteration of cellular 
automata to sequentially position the cell so that 
the sum of all forces is zero. This gives us a vec-
tor equation and a closed expression for the new 
position of each cell. If we do enough iterations, 
the resulting positions of each of the joints will be 
without internal forces, so we will have found the 
solution to the problem. 

Here we are using a Moore neighbourhood, 
so we have 8 forces coming from 8 members act-
ing on each joint. 

These are used in the force equations to deter-
mine the stresses and thus the position where the 
force is zero. These equations can be rearranged 
in the x- and y-direction. From these we can di-
rectly calculate the x- and y-position of each par-
ticle in each iteration. 		

(4)
where: E – Young’s modulus, A – member’s 

cross-sectional area, ε – strain in a mem-
ber, Fi – external force.

(5)

(6)

          (7)

          (8)
When the truss nodes change their location, 

the directional cosines for the constituent forces 
change their values. This results in the system 
balance location solution being reduced to a sys-
tem of complex non-linear equations without an 
analytical solution. However, due to the fringe 
conditions adopted and the fact that the analy-
sis is performed for a rigid continuous body, the 
angle values only change to a very minor extent. 
The changes in node location for a single algo-
rithm iteration are at the level of 10-8. In view of 
the above reasons it was assumed that omitting 
the angle changes would not have any significant 
impact on the simulation result. The system was 
reduced to linear equations, where the θ angle is 
always 45°. This type of solution is probably not 
going to perform well in the case of deformations 
of greater magnitude.

The original no-stress heights of the cells are 
equal to 1 (dimensionless). These can easily be 
adapted to the grid size. But as all formulas are 

 
Fig. 2. Diagram of an equivalent truss model

 
Fig. 3. Forces acting on a truss node
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dimensionless, this does not matter. From these 
formulas, we note that the forces and the direction 
of the forces on the joint are dependent on how 
much and in which direction the actual position 
deviates from these no-stress lengths. The strains 
in the local points of the body are calculated as the 
deformation of the original no-stress lengths. Since 
the lengths of the cells are equal to 1 and their po-
sitions in the Cartesian coordinate system corre-
spond with the coordinates of bitmap pixels (they 
differ by one), this deformation can be calculated 
as the difference between two positions of neigh-
bouring cells and their original, undeformed gap.

(9)
The stress values are later calculated using 

Hooke’s law.

(10)

Convergence of the solution

In this method, each cell is dependent on 
the displacements of its neighbours to calculate 
its own displacement. For this we can use two 
different calculation methods; both have their 
drawbacks as well as benefits. As we are using a 
whole array of cells, we can calculate all of them 
in parallel or sequentially. Using parallel comput-
ing means we can use the true benefits of cellular 
automata: the short calculation time, but this re-
quires special code and implementation. We store 
the old array of cells and calculate the new array 
directly using the old one. This is called a Jacobi 
iteration, but is inefficient for any process that 
converges. If we only have a sequential processor, 

we can help the rate of convergence by using the 
updated array of cells to calculate the new posi-
tions sequentially. This is called the Gauss-Seidel 
iteration method. The new values are calculated 
using the updated values. Smaller numbers of it-
erations are required to obtain convergence. This 
however eliminates the possibility of using paral-
lel computing [12].

The convergence criterion has been set at 10-6 
* MAX (maximum value of the positional change 
in the last iteration in the system). For the method 
adopted, the convergence is achieved after about 
130 000 iterations.

RESULTS

The calculations were performed assuming 
the mechanical properties for the 2024 aluminium 
alloy containing precipitates after ageing process-
ing. The values of the Young module and Pois-
son coefficient for a given material are indicated 
in Table 1.  All the simulations were performed 
for the total deformation in a tensioning direction 
equal to 0.05%.

The simulation results are presented in the 
form of a bitmap imposed onto the geometry. 

Table 1.  Adopted values of mechanical properties of 
Al 2024 alloy after processing

Phase of the 
material

Young’s modulus 
[MPa] Poisson ratio

Matrix 73 000 0,33

Precipitate 240 000 0,33

 
Fig. 4. Maps of σy stresses for precipitates with diameters of 40px and 80px
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Fig. 5. Maps of σy stresses for a circular precipitate with diameter of 50px and an elliptical precipitate with the 

same section area and aspect ratio of 3

Fig. 6. Profile of directional stresses going through the centre of a precipitate with diameter of 50 px

Fig. 7. Directional stress values for different diameters of circular precipitates
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The calculation results for every automaton 
cell are recorded in text files. By using the co-
ordinates, it is possible to determine the stress 
profile along the line going through the centre 
of precipitate. All the coordinates are measured 
in pixels. From the results obtained, the aver-
age values of directional stresses inside the pre-
cipitate were calculated. The results were com-
pared among circular precipitates with various 
diameters in order to determine the relationship 
between the precipitate size and the stress gen-
erated inside of it. Afterwards, the results were 
compared between a circular precipitate and el-
liptical precipitates with the same section area 
and different aspect ratios.

DISCUSSION AND CONCLUSIONS

A computational algorithm was calculated em-
ploying the Cellular Automata method, being an 
iterative method of simulating the stresses in two-
phase materials. Simulations of axial tensioning of 
material containing a single hard hardening phase 
precipitate on the example of the Al 2024 alloy were 
performed. In the case of the CA algorithm devel-
oped it is possible to introduce our own geometries 
based on digital representations of microscopic im-
ages of actual precipitates. The software is going to 
be developed within that scope in the future. 

On the basis of the calculation results obtained 
the following conclusions were formulated:

•• For identical values of total deformation the 
values of internal stresses of precipitates de-
pend on their size. The larger the precipitate 
diameter, the higher the values of the direc-
tional stresses.

•• The distribution of stresses is influenced to a 
great extent also by the shape of precipitates. 
For the precipitates with identical surface area, 
the stresses were inversely proportional to the 
ratio of precipitate width to its height.
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