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ABSTRACT
The paper presents a method combining the processes of straightening and thermal 
treatment. Technological processes with axial strain were considered, for the case of 
heated material and without its heating. The essence of the process in the case of 
heated material consisted in the fact that if under tension all longitudinal forces in 
the first approximation are uniform - the same strains are generated. The presented 
technological approach, aimed at reducing the curvature of axial-symmetrical parts, is 
acceptable as the process of rough, preliminary machining, in the case of shafts with 
the ratio L/D≤100 (L – shaft length, d – shaft diameter) and without a tendency of 
strengthening. To improve the accuracy and stability of geometric form of low-rigid-
ity parts, a method was developed that combines the processes of straightening and 
heat treatment. The method consists in that axial strain – tension, is applied to the shaft 
during heating, and during cooling the product is fixed in a fixture, the cooling rate of 
the shaft being several-fold greater than that of the fixture. A device is presented for 
the realisation of the method of controlling the process of plastic deformation of low-
rigidity shafts. In the case of the presented device and the adopted calculation scheme, 
a method was developed that permits the determination of the length of shaft section 
and of the time of its cooling. 
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INTRODUCTION

Parts with low rigidity often undergo warp-
ing due to residual stress appearing under load-
ing of a semi-finished products due to plastic 
strains of various values. In the course of rolling 
of long semi-finished products one can identify 
two causes for the appearance and development 
of residual stress, i.e. non-uniformity of plastic 
deformations of metal during its cold-working 
and non-uniformity of temperature field during 
cooling [8, 9]. 

To reduce the level of residual stress in low-
rigidity parts, depending on their physico-me-
chanical properties, we can apply annealing or 

tempering [2, 4, 5, 14]. One of the methods of 
ensuring the maintenance of shape is heat treat-
ment at rigid fixing of the positioning of the semi-
finished product. In the course of heat treatment, 
without such stabilisation (e.g. during tempering) 
there is practically always a change in shaft di-
mensions (relaxation takes place with creep). The 
complex mechanical condition of material during 
heat treatment of products in a tensile condition, 
combined with the diversity of phase conditions, 
can cause a change of the dimensions of the prod-
ucts in the course of successive machining op-
erations or during storage. Warping in free state 
takes place also after heat treatment, initially of-
ten in a specific direction (bending, tension), be-
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fore the termination of phase transformations and 
non-elastic deformations. The stabilisation of a 
product during quenching is also characterised by 
specific features. For example, when the stabilisa-
tion of a quenched product lasts relatively long, 
deformations are slight (in the case of test pieces 
1–2% of the value of plastic deformation generat-
ed under load). Tempering realised after quench-
ing, in particular with the occurrence of residual 
austenite, when phase transformations take place 
in the material, causes an increase of secondary 
strains that add up (along the same directions) 
with strains generated previously. 

To minimise warping – deformations of low-
rigidity shafts in the course of heat treatment 
under load, we need to create the conditions for 
the appearance of suitable plastic deformation or 
phase transformation [7,10]. For example, during 
the martensite transformation steel loses strength 
and undergoes a slight deformation. At quench-
ing temperatures the field of residual stresses 
gets reduced to zero and is uniform in the sec-
tion – the layer hardened by cold-working gets 
fully eliminated. It is technologically difficult to 
preserve such a condition of the material during 
cooling to ambient temperature, as during cooling 
with the load removed the condition of conform-
ance of plastic-elastic deformations is not met. In 
this case it is to the point to analyse the specific 
technological aspect of product preparation for 
heat treatment. It s necessary that the geomet-
ric parameters of the semi-finished product after 
straightening and machining do not exceed the 
tolerance for profiling. Non-uniformity of defor-
mations in the section and along the semi-finished 
product is determined by inaccuracy of fabrica-
tion (especially the value of eccentric of the semi-
finished product – non-coincidence of the techno-
logical and theoretical axes). Under loading, the 
lack of symmetry in the cross-section causes the 

generation of a bending moment, with resultant 
deformations [6, 11, 13]. 

CHARACTERISATION OF THE METHOD 
OF THERMO-MECHANICAL TREATMENT 
OF LOW-RIGIDITY SHAFTS

To increase the accuracy and stability of form 
of low-rigidity shafts a technique was developed 
that combines the processes of straightening and 
heat treatment. Successive technological opera-
tions (processes) were considered, with the ap-
plication of axial deformation, both for the case 
of heated material and without its heating. Each 
of the operations can be an autonomous one, de-
pending on the function of the product. The es-
sence of the first technological process consists 
in that, during tension, all longitudinal forces 
are equivalent, in the first approximation, i.e. the 
same stresses are generated (Figure 1а). The val-
ue of the working stresses sr can be determined 
from the stress diagram with relation to the rela-
tive deformation er (Figure 1c).

On section that are bent in spite of the ten-
sion applied, straightening of the semi-finished 
product also takes place, due to which the relative 
deformations of longitudinal layers of those sec-
tions are different. Usually the radius of the cur-
vature is not less than 20–30-fold height of cross-
section of rolled semi-finished products, and the 
character of distribution of deformations in the 
cross-section of shaft during straightening can be 
adopted like that in the bending of a straight-line 
beam. In this case the distribution of relative de-
formations along the height of the semi-finished 
product conforms with a linear relation (Fig. 1b), 
and their highest and lowest values in the extreme 
outer and inner layers of the shaft can be repre-
sented as: 

Fig. 1. Deformations and stresses during axial loading



Advances in Science and Technology Research Journal  Vol. 10 (29), 2016

64

	
k

rm
k

r r
d

r
d

2
,

2
−=+= εεεεσ ,	

where:	 εσ – highest value of deformation,
	 εr – relative deformation,
	 rk  – radius of curvature of semi-finished 

product,
	 εm – lowest value of deformation.

The values of relative elongations fall within 
the range represented in the stress diagram by the 
zone εσ – εm (Figure 1c). It can be assumed that 
the tangent modulus of longitudinal elasticity Ey 
is constant. In this case, the distribution of stresses 
along the height of the shaft also conforms to a 
linear relationship (Figure 1b). Stresses within the 
zone of relative deformations can be written as: 
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where:   – highest value of stress, 
 r – working stress, 
 Ey – tangent modulus of longitudinal elasticity, 
 E – Young modulus, 
 v – stress coordinate with relation to the central layer of semi-finished product. 

The tensile force and the bending moment can be determined from the relation: 

 
JE
vE

MSF y
zgwrroz 


 , , (2) 

where:  rozF  – tensile force,  
 Sw – cross-section area of shaft, 
 zgM  – bending moment,  
 J – moment of inertia. 

As a result of non-uniform distribution of stresses relative to the diameter on the bent sections, 
there is an effect of external forces that should be balanced by an external bending moment. That 
moment is generated through a shift of the centre of gravity of the cross-section of the shaft section 
relative to the line along the tensile force acts. In this case the bending moment from the external 
forces is equal to Mzewn = Froz  ye,  
where yе – absolute value of the part of final bending that can be represented by means of known 

values as follows:  
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The value yе is only a part of the final bend remaining after the straightening. The basic part of 
the final bend is generated at the removal of the external tensile load, as a result of relaxation of 
residual stresses and non-elastic effects, i.e. shaft sections bent earlier partially recreate their curvature 
as apart from the tensile force also the bending moment originating from those forces is removed as 
well.  

Based on the analytical study of the processes of axial deformation of shafts one can formulate 

the conclusion that the final curvature of a product depends on the initial warp 
kr
1

, on the physico- 

mechanical properties of the material and on the technology of fabrication. Therefore, one should take 
note of several approaches to the design of technological processes of machining of low-rigidity 
shafts, with relation to the material of the semi-finished product. When the material of the semi-
finished product has a growing characteristic, during the determination of the external tensile load the 
zone of relative elongations  – m should correspond  to the diagram section  – , with minimum 
tangent modulus of longitudinal elasticity. In the case of low-carbon steels, this is the zone of 
plasticity (Ey = 0). When determining the axial deformation of materials with a tendency to 
strengthening, zone  – m in diagram  –  should be situated after the initial section with a steep 
slope of the stress curve. Low-carbon and high-alloy steels are characterised by a steep rise of stresses 
on the section of uniform elongation, as a result of high values of the tangent modulus of longitudinal 
elasticity. Large axial loads are required, which causes that the deformation notable exceed the 
strength limit of the material.  
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where: 	Froz – tensile force, 
	 Sw – cross-section area of shaft,
	 Mzg – bending moment, 
	 J – moment of inertia.

As a result of non-uniform distribution of 
stresses relative to the diameter on the bent sec-
tions, there is an effect of external forces that 
should be balanced by an external bending mo-
ment. That moment is generated through a shift 
of the centre of gravity of the cross-section of the 
shaft section relative to the line along the tensile 
force acts. In this case the bending moment from 
the external forces is equal to Mzewn = Froz × ye, 
where yе – absolute value of the part of final bend-
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The value yе is only a part of the final bend 
remaining after the straightening. The basic part 
of the final bend is generated at the removal of 
the external tensile load, as a result of relaxation 

of residual stresses and non-elastic effects, i.e. 
shaft sections bent earlier partially recreate their 
curvature as apart from the tensile force also the 
bending moment originating from those forces is 
removed as well. 

Based on the analytical study of the processes 
of axial deformation of shafts one can formulate 
the conclusion that the final curvature of a product 
depends on the initial warp 1/rk, on the physico-
mechanical properties of the material and on the 
technology of fabrication. Therefore, one should 
take note of several approaches to the design of 
technological processes of machining of low-ri-
gidity shafts, with relation to the material of the 
semi-finished product. When the material of the 
semi-finished product has a growing characteris-
tic, during the determination of the external ten-
sile load the zone of relative elongations εσ – εm 
should correspond to the diagram section σ – ε, 
with minimum tangent modulus of longitudinal 
elasticity. In the case of low-carbon steels, this is 
the zone of plasticity (Ey = 0). When determining 
the axial deformation of materials with a tenden-
cy to strengthening, zone εσ – εm in diagram σ – ε 
should be situated after the initial section with a 
steep slope of the stress curve. Low-carbon and 
high-alloy steels are characterised by a steep rise 
of stresses on the section of uniform elongation, 
as a result of high values of the tangent modulus 
of longitudinal elasticity. Large axial loads are re-
quired, which causes that the deformation notable 
exceed the strength limit of the material. 

The presented technological approach to an 
improvement of the curvature of axial-symmet-
rical parts can be accepted as a process of rough-
ing, preliminary machining, in the case of shafts 
with the ratio L/d ≤ 100 and without a tendency 
of strengthening.

To increase the accuracy and stability of geo-
metric form of low-rigidity parts a method was 
developed that combines the processes of straight-
ening and heat treatment [1, 3, 12]. The method 
consists in that axial strain – tension, is applied 
to the shaft during heating (quenching tempera-
ture), and during cooling the product is fixed in a 
fixture, the cooling rate of the shaft being several-
fold greater than that of the fixture (Figure 2а). In 
Figures 2 and 3 the numeric character 1 is used 
to denote the fixture, and 2 – the product and the 
characteristics during heating and cooling.

In the theoretical calculations it was assumed 
that the curvature of the axis of the semi-finished 
product y is described by the sinusoid: 
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and the value of change in the length of the semi-
finished product was determined from the relation 
(Figure 2а): 
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where: 	α 	– initial deflection,
	 yα	– initial curvature.

In the tension of a semi-finished product with 
initial curvature not exceeding 1% on length L, 
the value of deformations yα1 is related with the 
initial curvature yα by the following relation:
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from which we can determine the value of axial load required to reduce the deflection  
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where Fkr – critical axial force. 

 
Fig. 2.  Simplified schematic of technological realisation of the method of machining – а), 
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thermal expansion coefficients of the product (αw) 
and the fixture (αurz), as well as of their lengths 
(the semi-finished product is positioned in the fix-
ture and mounted by its ends on the fronts – Fig-
ure 2а). The difference between the elongations of 
the semi-finished product and the fixture is deter-
mined from the relation: 
	 wwurzurz LTTLTTL ⋅⋅−⋅⋅=∆  )()( αα . (10) 
where:	ΔL – difference of elongations of semi-

finished product and fixture,
	 αurz – thermal expansion coefficient of fix-

ture,
	 αw – thermal expansion coefficient of 

product,
	 T o – temperature,
	 Lurz – length of fixture,
	 Lw – length of product.

Analysis of the relation shows that with in-
crease in the heating temperature the difference 
of elongations increases in a non-linear manner. 
To stabilise the geometry of the product, during 
heat treatment in a fixture the produced summary 
elongation should be not less than 1% of the prod-
uct length.

During heating the semi-finished product un-
dergoes elongation by: 
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For analytical solution of equation (12) we 
need to define the boundary conditions: 1) initial 
temperature distribution in the material; 2) effect 
of the environment on the surface of the material, 
which can be defined in three ways, by means of: 
а)  surface temperature, b)  amount of heat pen-
etrating the surface, c) ambient temperature and 
heat transfer coefficient g. According to the New-
ton Law:
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where:  – coefficient of heat transfer on the boundary surface, 
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  – coefficient of heat conductivity,  
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A shaft can be represented as an infinitely long cylinder with radius R; in this case the differential 
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Initial conditions: at t = 0; Q = Q. 
The graph of the relation  = (T) (Fig. 2b) shows the character of the relation between the 

deformation of the fixture and the shaft during cooling, where ost – semi-finished product deformation 
by the value of m (Fig. 3b) – in the case of difference between the thermal expansion coefficients.  
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The graph of the relation ε  =  ψ(T°) (Fig-
ure  2b) shows the character of the relation be-
tween the deformation of the fixture and the shaft 
during cooling, where εost – semi-finished product 
deformation by the value of εm (Figure 3b) – in the 
case of difference between the thermal expansion 
coefficients. 

If the thermal expansion coefficients of the 
shaft and the fixture are identical, the axial defor-
mation can be obtained (in accordance with the 
calculations) as the difference between the length 
of the fixture and the shaft, or through proper se-
lection of the rate of their cooling (Figure 3а).

Axial tensile stresses in heat treatment are de-
termined from the relation:
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During quenching of a stepped semi-finished product (shaft) the conditions of equality of 
working stresses at each step of the shaft are determined from the relation:  
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przS  – planes of cross-sections of shaft and fixture at steps “ n ” and “ 1n ”.  
At the first stage of cooling of a shaft (semi-finished product) in a fixture, i.e. when the difference 

of their temperatures is the greatest, the value of small final deformations of the shaft is the sum of 
elastic deformations y, plastic deformations pl and temperature deformation T: 
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In the developed technology of heat treatment involving the application of axial deformations, 
stresses remaining from preceding operations are eliminated [6,12], irrespective of the properties of 
the material. However, during cooling of a shaft under tension, mounted in a fixture, new tensile 
stresses are generated, distributed uniformly in the cross-section of the semi-finished product. The 
level of the final stresses is determined by the relation: 
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During cooling, the semi-finished product cools down faster on the outside than on the inside, 
and the stresses in the surface layers will be of an opposite sign to those inside the semi-finished 
product. At the point of complete cooling, the signs of the stresses will be reversed. The primary 
advantage of the proposed technological undertaking consists in that the stresses in the outer layers 
will be of the same sign, which precludes the warping of the part.  

Further machining, with uniform removal of material relative to the shaft axis, will also not cause 
any warping.  

The relations presented are correct with the assumption if linearity of the model. Non-linearity, 
i.e. plastic deformation during quenching with axial deformation, does not exceed 1%, which permits 
approximation of the relation with an accuracy that is sufficient in practice.  

The process of quenching is the beginning of the technology of heat treatment, and therefore the 
processes of relaxation and other consequences are not considered here.  

Active control of the condition of materials in the process of heating and deformation of the 
semi-finished product permits the control of residual stresses during the whole process of fabrication.  

 
SYSTEM FOR THE CONTROL OF THE PROCESS OF PLASTIC DEFORMATION OF 
LOW-RIGIDITY SHAFTS 
 

The process of achieving suitable accuracy of shafts through their thermal-mechanical treatment 
takes place in a system whose schematic is presented in Fig. 4. The system for the realisation of the 
method of control of the process of plastic deformation of low-rigidity shafts is composed of a shaft 
furnace 1 with sectional electric heating elements 2. The semi-finished product to be treated is aligned 
in a vee block and placed in the furnace. Initially, on the semi-finished product fins are positioned, 
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During cooling, the semi-finished product 
cools down faster on the outside than on the in-
side, and the stresses in the surface layers will 
be of an opposite sign to those inside the semi-
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is attained, the system of axial tension application 
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Fig. 4. Schematic of system for the control of the process of plastic deformation of low-rigidity shafts

Fig. 5. Calculation scheme for the determination of shaft section length and time of its cooling 
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In the case of the system presented here and 
the adopted calculation scheme the method de-
veloped permits the determination of the length 
of shaft section and the time of its cooling, nec-
essary for the achievement of the required accu-
racy of the shaft, obtained as a result of aplication 
of the presented method of thermal-mechanical 
treatment. 

CONCLUSIONS

The paper presents a method combining the 
processes of straightening and thermal treatment, 
permitting an improvement of the accuracy and sta-

Fig. 6. Calculation scheme for the determination of 
rod section cooling time 
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bility of the geometric form of low-rigidity shafts. 
The essence of the method consists in that axial 
strain – tension, is applied to the shaft during heat-
ing, and during cooling the product is stabilised rel-
ative to a fixture, the cooling rate of the shaft being 
several-fold greater than that of the fixture. A theo-
retical substantiation of the method is presented. 

A system was developed for the thermal-me-
chanical treatment, permitting the achievement of 
required accuracy of shafts. During heating, a shaft 
deforms at an assumed rate, in accordance with the 
technology of heat treatment. The system expands 
to a greater extent than the product, proportion-
ally to the difference between the coefficients of 
linear expansion of the materials applied, and the 
rate of its cooling is from 1.5 to 3-fold lower from 
the cooling rate of the shaft. This permits stabilisa-
tion of axial load at the beginning of cooling, and 
smooth removal of the load. 

For the proposed method of thermal-mechan-
ical treatment relations were developed for the 
determination of the shaft section length and the 
time of its coling, permitting the achievement of 
required accuracy of the shaft in the realisation of 
the technological process in the proposed system. 
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