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ABSTRACT

Balanced fuzzy sets (BFS), introduced in 20006, offer a new perspective on describing reality. In fuzzy logic, the
negation of partial membership becomes another form of partial membership, which leads to the indistinguishability
of a set from its complement. In BFS, where the sign of a value determines the nature of membership — positive or
negative — this ambiguity is removed, and negation regains its semantic role as an opposite. This is consistent with
the natural interpretation of human reasoning, in which the strengths of positive and negative premises are treated
as equally important. It allows for the modelling of positive, negative, and neutral information. Moreover, they also
account for the fact that the shape of the membership and non-membership functions can change. The innovation of
the presented work lies in its new approach to negation, which takes into account the need to generate the negations
adapted to the observed processes representing human perception of reality. This allows understanding that the ne-
gation of a value symbolizing partial excess is a partial deficiency, meaning that the negation of values representing
the information that something is partially positive becomes the fact that something is partially negative. In other
words, the negation in BFS reflects the transition from positive information to its opposite, in a manner observed
in natural processes. This negation determines how fuzzy membership in a given set translates into the uncertainty
of membership in its complement. Balanced fuzzy negation was presented, demonstrating the construction of BNF
from classical negations and generating functions. Its various properties and the differences between supplement
and complement in BFS were discussed. Fundamental relationships with operators in classical fuzzy sets were pre-
sented. Properties and examples (including Yager, power, and trigonometric operators) were provided. The results
clarify the concepts of negation and complement in BFS and suggest directions for further research on balanced
fuzzy operations in [-1,1]. This enables more informed decision-making, risk analysis, sentiment assessment, and
other engineering tasks that require considering positive and negative ratings, as well as neutral or no information.
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INTRODUCTION

Classical set theory is deeply rooted in well-
defined mathematical concepts. However, model-
ling processes occurring in society or describing
human decision-making is practically impossible
using Boolean logic. Lukasiewicz’s introduction
of three-valued logic was a key advance, opening
the possibility of a better description of observed
reasoning.

It aimed to solve the problem of statements
the truth value of which cannot yet be determined,
such as statements about future events [1]. It is
worth emphasizing that this approach is currently

used in the programming branches of computer
science, including through the use of values such
as NULL, NILL, or “undefined.”

Later, fuzzy sets, introduced by Zadeh in 1965
[2], proved to be an effective way to describe un-
certain and ambiguous reality. However, the in-
terpretation of negation in fuzzy logic remains
ambiguous, at least not in all applications. Does
complementation truly indicate falsity or uncer-
tainty? Modern balanced fuzzy sets extend this
approach by introducing a separate non-member-
ship function [3]. In this model, the values (0, 1)
denote membership, [-1, 0) non-membership, and
0 denotes neutrality or lack of information. This
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distinction is particularly important in domains
where positive and negative evaluations coexist,
for example, in medical or psychological diag-
nostics, financial risk assessment, and sentiment
analysis.

Example. Consider a set 4 representing indi-
viduals with a very high 1Q. Membership can be
modelled as Huso in fuzzy sets and as Mo in bal-
anced fuzzy sets:

0 x <110
0.01x — 1.1 x €[110,120)

X
0.1 (10120 - 9) x € [120,130)
min(0.009x — 0.85,1)  x =130

Hnig (x) =1

min(—1,0.0004x% — 3.24) x <90
0 x €[90,110)
0.01x— 1.1 x € [110,120)
X
0.1 (10?0 - 9) x € [120,130)
min(0.009x — 0.85,1) x> 130

Nhiq x) =

where: x is the IQ score.

In summary, balanced fuzzy sets allow for
better modelling and interpretation of real-world
processes, encompassing concepts such as excess
and deficiency, satisfaction and dissatisfaction,
as well as presence and absence. They also play
an important role in describing the processes by
which people evaluate observed states.

The article is divided into the following or-
der: first, the basic concepts of classical, fuzzy,
and balanced sets were reviewed, highlighting
their structural differences and the motivations
for their extension. The concept of balanced
fuzzy negation was then introduced, along with
its formal definition, properties, and illustrative
examples. Methods for generating balanced fuzzy
negations from classical negations were then pre-
sented. Finally, the concepts of complement and
complementation in balanced fuzzy sets were ex-
amined, followed by conclusions and directions
for further research.

OVERVIEW OF THE BASIC CONCEPT OF
SETS

This article presents some insights into the
fundamental principles of balanced fuzzy sets.
A crisp set membership is defined by a character-
istic function, which assigns each element in the
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universal set X either 1 (indicating the element is
in the set 4) or 0 (if not in A4).

In the construction of standard fuzzy sets,
fundamental set operations such as union, prod-
uct, and complement are defined as:

faup(x) = max(fA(x):fB(x)):fAnB(x) =
= min(fA(x):fB(x)):fAC(x) =1 — fu(x).

However, it should be added that while crisp
sets provide only a binary form of membership,
fuzzy sets allow the use of values from the inter-
val [0,1] [2]. A fuzzy set 4 is defined by a mem-
bership function g ,: X — [0,1], which assigns to
each element its membership degree. On the ba-
sis of the properties of crisp sets, operations for
fuzzy sets are constructed. The intersection and
union of fuzzy sets are defined as follows (com-
pare with [4] and [5]):

Hayp(x) = 5(#A(x),ll3(x));li,4n3(x) = T(MA(X),#B(JC)),
where: S is a t-conorm and 7'is a t-norm.

Fuzzy negation is defined as a function
n:[0,1] — [0,1] that satisfies the following
conditions: boundary conditions (n(0)=1 and
n(1)=0 and monotonicity (n(x)<n(y) for x >y).
Moreover, strict negations also require involu-
tion (n(n(x)) = x).

However, the classical fuzzy set operations
do not fully consider all aspects of uncertainty.
For this reason, balanced fuzzy sets extend fuzzy
sets by introducing both membership and non-
membership degrees [3]. The characteristic func-
tion for a balanced fuzzy set A is defined as:

ui® xisinA
Na(x) = 0 is neutral ,
uz(x) xisnotinA

where: u}(x) € (0,1] and p3(x) € [—1,0) (see [6]).

This distinction between positive and nega-
tive membership allows for a better representa-
tion of uncertainty than standard fuzzy sets. Op-
erations on balanced fuzzy sets are defined using
balanced t-conorms SB and t-norms 7B (see [6]):

Naup(x) = SB(’?A(X)’UB(X))' Nanp(x) = TB(UA(X),UB(X))-

As was presented in [ 7] in these operations can
be generated by using nullnorms and uninorms.
Theorem 1. ([7], Theorem 4) If U is a repre-
sentable uninorm with the additive generator
_ —t(2x) X € [0,¢e]
u(x) = {S(ZX -1)=t(2-2x) x€(e1]
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where: t—[0,1]—[0,+o0] and s(x) = #(1-x) are ad-
ditive generators of t-norm T, and is dual
t-conorm S (respectively), and e = 0.5,
then operations SB_:[-1,1]*—[-1,1] de-
fined by
r

SBy (x,y) = {f‘l ( u?! (u(f(x)) + u(f(Y))))
(X, Y) € {(_1)1)r (lr _1)}

otherwise

b

are balanced t-conorms and r € {—1,1}.

Theorem 2. ([7], Theorem 6) If V is a
nullnorm on [0,1] with zero element z € [0,1] and
dual operations T and S, then TB:[-1,1]*—[-1,1]
defined by

Sx+1Ly+1) -1 xye[-10]

T(X, Y) X;Y € [0'1] °
0 others

TB(x,y) =

Example. Let us demonstrate the use of these
logical connectives in a Petri Net (PN). Recall
that PN is a mathematical model for describing
processes in which various events occur in par-
allel, in a specific order, or depending on condi-
tions. It is used to simulate industrial processes or
information flow. Let us use the example of the
rules presented in the work [8] using the balanced
operators SB, and 7B, . [6,7].

Let us see the following rule:

IF[(d; = 0.8 AND d, = 0.5) OR d5 = —0.6] THENd,
(CF = 0.9),

given three input states and calculating the ex-
pected output state, with a given certainty factor
to the rule CF (Figure 1).

The example shows how the knowledge about
resources or their lack (with a given rule) will

o} TBtann (0.8, 0.5) = 0.36
0.80 \
th |—s
\ -0.60 )

affect the final result. The implementation of this
rule shows that the result will be some shortage.

To sum up, owing to such operations, it is
possible to integrate multiple sources of informa-
tion, e.g. sensors in an autonomous system, where
some data are positive, others negative. In this
sense, as an example of the application of these
operations, the autonomous car system combines
the data from cameras (positive — visibility sig-
nals) and radars (negative — threat signals) to cal-
culate a balanced safety state.

Another, but equally interesting, issue is the
modelling of decision-making processes where
some options are partially exclusive and others
are neutral. This situation is observed in a recom-
mendation system that combines user opinions —
positive, negative, and neutral — to determine the
final product rating.

However, it should be noted, that in order to
generate rules corresponding to real processes,
negation is still needed.

MOTIVATIONS

In artificial intelligence, and especially in
neural networks, activation functions that return
only positive values are used, but also those that
can take on negative values. This allows the neu-
ron to respond both positively and negatively to
the input signal - allowing the network to better
distinguish between positive and negative influ-
ences. Examples of such functions include tanh,
Leaky ReL.U, and ELU (see [9, 10]). This allows
the network not only to amplify signals, but also
to attenuate or “invert” certain aspects of infor-
mation. Therefore, one might consider using the
concept of balanced fuzzy negation in the design

0.9+({—-0.31)= —0.28

\ t ,:""y;/ﬂ d4
2

— A 088

\
\

CF=0.9

Figure 1. An example of rule in balanced fuzzy Petri Net using balanced operators
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of such processes, so that the model can account
for the gradual rejection or inversion of the signal.

However, in order to justify that the BFS con-
sideration has a mathematical justification, let us
start with the discussion of set complement and
review one of aspect of classical crisp set theory,
i.e., the “Axiom of Extensionality” [11]:

“Two sets are equal (i.e., the same set) if they
contain exactly the same elements. This states
that sets are defined by their elements”. Exten-
sional characterisation using characteristic func-
tions with values {0,1} is not transferable to
fuzzy sets; that is, with partial membership, a set
and its complement do not provide an exclusive-
exhaustive classification of the elements.

Example. Let us consider a space in which all
elements belong to a set with membership degree
0.5 — applying classical fuzzy negation, defined
as n(x) = 1 — x, we obtain a situation in which the
set and its complement are indistinguishable. The
concept of complement, therefore, differs from
the classical notion, in which an element must be-
long to a set or its complement. This highlights
the fundamental distinction between comple-
ment in classical set theory and fuzzy comple-
ment. The lack of a clear distinction between
membership and non-membership in fuzzy sets
challenges traditional assumptions and requires a
reconsideration of the basic principles of such set
representation.

In classical fuzzy logic, negation changes
the degree of truth but does not lead to a qualita-
tive change in interpretation. In other words, the
negation of an element with partial membership
merely becomes another form of the same partial
membership. As a result, the set and its comple-
ment differ only in value, not in the direction

(sign) of information (i.e.: partial positive stay
partial positive). Therefore, low membership and
high non-membership can be represented in es-
sentially the same way, i.e., as numbers close to
zero. This blurs the intuitive meaning of negation
as an opposite.

In BFS, this problem is eliminated by intro-
ducing a bipolar representation of information.
The sign of the value has a specific meaning;
that is, the positive part describes positive argu-
ments “for” and the negative part describes argu-
ments “against.” Negation is therefore not sim-
ply a scaling inversion, but a transformation that
changes the nature of the information. In summa-
ry, what was given as positive becomes negative,
and vice versa. This makes BFN a true opposite,
consistent with the common understanding of the
principle “A becomes not A.”

The balanced fuzzy supplement operator and
the balanced fuzzy negation of the set from Fig-
ure 2 are presented in Figures 3a and 3b. They
illustrate that the supplement operator reflects
various forms of uncertainty about the full mem-
bership or non-membership of an element in the
set. The negation operator, on the other hand,
illustrates the process of negating membership
— defined on the basis of a given, appropriately
selected form of negation appropriate to the phe-
nomenon being analysed.

It should be emphasised that the concepts
of BFS and BFN are relatively new. Although
the observation that negative information must
also be represented and analysed also appears
in intuitionistic fuzzy sets (IFS) [12]. There, in-
formation is expressed in a dual manner (con-
taining both positive and negative information

0.6 1

0.4 1

N /\
00

S

0 1 2

3 4 5 6

Figure 2. Figure of a sample balanced fuzzy set 4
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Figure 3. Figures of a samples a) balanced fuzzy supplements and b) balanced fuzzy negation of 4

simultaneously). Table 1 provides a concise sum-
mary of the relational properties in all three sets.

types of information. A loss is not interpreted as
a “negative gain,” but as a clear negative signal.

The BFS approach is much closer to natural
human reasoning, in which positive and negative
factors are treated as two complementary but in-
dependent sources of information [13] Psycho-
logical research on decision-making shows that
people interpret negation not as a weakened con-
firmation, but as the emergence of a qualitatively

different premise.

Example. Economic research [13] shows that
people react to losses and gains as two different

This behaviour is closely related to the bipolar-
ity of the BFS, in which positive and negative
values represent two different types of arguments
(“for” and ““against”). Thus, BFN reflects a psy-
chological mechanism that is well documented
empirically.

To sum up, BFS restores negation to a mean-
ing that is both mathematically unambiguous and
consistent with the intuitive logic of situational
judgment, which is bipolar in nature.

Table 1. Main comparison of negations of fuzzy sets, Atanassov IFS and BFS

Properties of set with proper
negations

Fuzzy sets

Intuitionistic fuzzy sets Balanced fuzzy sets

Meaning

Numeric kind of inversion.
Negation does not represent true
opposition in common sense.

Switches membership and non-
membership, in 2D. Suitable for
data that has a dual form.

True semantic opposition.

Representation of negative
information

None (the whole negative
information is in 0).

Directly encoded as

Explicit via v(x). n(x) <0

Uncertainty

Not modelled.

M(x) remains unchanged. Values near 0.

BALANCED FUZZY NEGATIONS

The fuzzy negation can be interpreted as quantifying the extent to which an element does not belong
fully to a set. In this sense, fuzzy negation is a method for computing the supplementary or deficit value
required to reach complete membership. Extending this concept to balanced fuzzy sets, the
corresponding operator was introduced. The supplement operator in balanced fuzzy sets, denoted as I,
works analogously to fuzzy negation concept. Specifically:

e For values in the range (0,1], it computes the supplement of full membership in the set.
e For values in the range [—1,0), it determines the supplement to full non-membership.

Therefore, to formalise the fuzzy balanced supplementary operator, let us first recall the reversal
operation N(x) = —x (see [3]), so

n(x) x>0

I(x) = 0 x=0

N (n(N(X))) x<0 W

where n is a fuzzy negation.
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On the basis of Eq. (1) the operator I is odd. Hence, it retains the properties known for fuzzy negation,
on each interval: [0,1] and [—1, 0].

Some properties:
e [ is anon-increasing function
e if n is continuous, then I is continuous
e ifnis an involution, then I is an involution

in each interval (0,1) and (—1,0), but not on the whole interval [—1,1]. Let us note that n| ;) =
Io,1), but n # I|[g 4}, because n(0) = 1, and I(0) = 0.

Example. Let us present some examples of supplementary operators generated directly from fuzzy
negation (see Tab. 2 and Fig. 4a)- Fig. 4¢)).

Table 2. The example of balanced fuzzy supplements

Name of supplementary operator Fuzzy negation Supplementary operator
1—-x x>0
Classical supplement nx)=1-—x Ix)=3-1—-x x<0
0 x=0
1-xP x>0
— —_— p
Even power supplement nkx)=1-—x? 1) 1 8‘ x ’; f 8
p — even number
1-x x>0
— —_— —_— p
Odd power supplement nkx)=1-—x? 1G) 1 0 x ’; f 8
p — odd number
1-vVx x>0
Square root supplement n(x) =1-+x I(x) =41 + VI x<0
x=0
( 1
E (1+cos(nmx)) x>0
1
Cosine supplement =Z.(1+ I(x) =
PP n() 2 (1 + cos (mx) 2 —-= (1 +cos (mx)) x<0
x=0
Sugeno supplement x>0
1-x 1) PlrM A>—1
= X) =4 -1-x S A> =
n(x) 14 Ax o *<0
0 x=0
a) Classical supplement b) Cosine supplement ¢) Sugeno supplement,
A=10
1.00 1.004 1.00
0.75 4 0.75 0.754
0.50 4 0.50 0.504
0.254 0.251 0.254
0.00 0.00 0.00
0.25 0.25 —0.251
—0.50 4 —0.50 —0.501
—0.75 4 —0.75 1 —0.751
1.004 -1.004 —1.004
~1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 4. Figures of balanced fuzzy supplements
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Definition 1. [[6], Definition IV.3.] A decreasing function NI:[—1,1] - [—1,1] that satisfies the
following conditions: NI(0) = 0, x - NI(x) < 0, forall x € [—1,1] is called a balanced fuzzy negation
(BFN). NI is a strict balanced fuzzy negation when it is a bijection, a strong negation when NI is an
involution. When NI is an involution on (—1,0) U (0,1) then NI is called a narrowed involution.

Corollary. The balanced negation NI has exactly one equilibrium, namely x = 0.

Corollary. 1f n: [0,1] — [0,1] is fuzzy negation then, fuzzy balanced negation can be generated based on:

n(x) —1, x € (0,1]
NI; =41 — n(—x), x€[-1,0) (2)
0, x=0

Example. It should be emphasised that it is not sufficient to change the sign before the negation of n in
the interval [0, 1], because the resulting function is not decreasing:
-n(x), x€ (0,1],

neq,(x) = {n(—x), X € [—1,0)-
0 0

. . A .
Example. Using the example of fuzzy Yager negation n(x) = (1 —xl)l/ , the corresponding
supplementary operator I and balanced fuzzy negation NI can be seen (see Fig. 5a) — 5b)).

a) b)

1.00 1 1.00 1

0.75 0.75
0.50 1 0.50 1

0.25 0.25

0.00 0.00 1

0.25 0.25
—0.50 1 —0.50 1

-0.75 -0.75

—=1.00 1 —=1.00 1

-1.0 0.5 0.0 0.5 10 -1.0 0.5 0.0 0.5 10

Figure 5. a) Supplementary Yager operators I and b) Yager balanced fuzzy negation NI

(1- x}‘)% x € (0,1] -1+ (1- x}‘)% x € (0,1]
1) = (1 (") xe[-10) NIGY =14, _ (1= (=0 xe[-1,0)
0 x=0 0 x=0

However, neq, is increasing on both intervals and has the following form (see Fig. 6):

(—(1-x)  xe©1
neqn(x) = (1 _ (—X)}L)% X E [—1,0),
0 x=0
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1.00 1

0.75

0.50 1

0.25

0.00

0.25

—0.50 1

-0.75

—=1.00 1

10 05 0.0 05 10
Figure 6. Operation neq, — example of not balanced fuzzy negation

Corollary. The simplest extension of the left part of rule Eq. (2) to obtain a fuzzy balanced negation is
to change the sign of the function I, e.i.: NI;(x) = I(N(x)) = N((x)).

Extending fuzzy negations to balanced domains ensures that neutral values (0) remain stable
reference points. For example, in a patient health monitoring system, a balanced assessment allows for
a clear distinction between a patient with normal vitality (0) and those with improvement or
deterioration, while maintaining interpretive neutrality.

Humans interpret gradual changes, inconsistencies, and uncertainty. Their practical counterparts
emerge in Al-based decision-making systems, which require symmetrical and evaluative responses to
positive and negative factors. This also corresponds to human perception of gradually changing
sentiments. For example, in opinion mining, when a post is re-evaluated using multiple models (context,
tone, sarcasm), the final result remains directionally consistent — negativity does not randomly change
to positivity through repeated processing. Certain properties that allow for modelling negation
generation processes follow from the following propositions:

Proposition 1. Let ny,n,: [0,1] - [0,1] be the fuzzy negations, then

n;(x)—1 x € (0,1]
NIx) =41 — ny(—x) x€[-1,0)
0 x=0

is the balanced fuzzy negation.

Proposition 2. Let f: [—1,1] = [—1,1] be a strictly decreasing bijection with f(1) = —1,f(0) =0
and f(—1) = 1. Then NI = f |[_1,1] is a balanced fuzzy negation.

Proposition 3. Let f: [—1,1] - [—1,1] be a strictly decreasing bijection with f(1) = —A4, f(0) =0
and f(—1) = A. Then NI = %f|[-1,1], where A € R — {0} is a balanced fuzzy negation.

Proposition 4. Let NI be the bijection. If NI is a balanced fuzzy negation, then NI~ is balanced
fuzzy negation.

Proposition 5. Let k € N, k > 3. If NI, are balanced fuzzy negations, then the composition of an odd
number of balanced fuzzy negations is balanced negations.

Example. To illustrate Proposition 5, let us consider negations
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Nll(x):{_1+‘/1—x x€[01]
1-vV1+x xe€[-1,0]
NIp(x) = —sin (-3 + 2t - 1), NIy (x) = =22 5+1.

Thus, we have:

2
-1+ Jl ——arc sin(x2s*1)  x € [0,1]
NI o le_l o NI3(x) =

2
1- \/1 — —arcsin(x?s*1)  x € [—1,0]
U

Of course, multiple composition of the same negation is also negation

—1+¥Y1—x x€][0,1]
1-VY1+x x€[-1,0]

(NI e NIy o NI;)(x) ={

GENERATION OF BALANCED FUZZY NEGATIONS

Following the properties of the function n, the following results are obtained.

Theorem 3. If fuzzy negation n is a function, which can be extended to even function n: [—1,1] -
[0,1], then can be generated as

_(-1+nx) x=0
Nl(x)_{l—n(x) x <0

Moreover, if n is a strict fuzzy negation, then N is a strict balanced fuzzy negation.

Proof. Since n(x) = n(—x) € [0,1], so we have —1+ n(x) € [-1,0], 1 — n(x) € [0,1] and
NI(0) = =1+ n(0) =—-1+1=0. Moreover, if n is a strict fuzzy negation, then because of
extension of n:[—1,1] - [0,1] we obtain NI(-1)=1—-n(-1) = 1-n(1) =1 and NI(1) =
n(l)—1 = 0—1=-1. Because n is decreasing function in [0,1], then N(x) =n(x) —1 is
decreasing. Also, extended even function n in [—1,0] is increasing, so N(x) = 1 — n(x) is decreasing.

Note that Theorem 3 applies, among other things, to the analysis of emotional signals, where
reactions can be both positive and negative, and various events can cause mood reversals. Therefore, it
is useful in sentiment analysis, for example, in social media. There, the system interprets the tone of a
statement, assigning a positive value to positive emotions and a negative value to negative emotions.
The situation is somewhat different in diagnostic systems that analyse both positive and negative
symptoms. Here, for example, a medical system considers both signs of health (positive) and symptoms
of disease (negative), thus generating a balanced picture of the patient's condition.

Theorem 4. Let an odd function f:[0,1] — [0,1] be given. If the fuzzy negation n: [0,1] — [0,1] is a
function of the form n(x) = 1 — f(x), then NI(x) = —f(x) is a balanced fuzzy negation. Moreover, if
n is a strict fuzzy negation, then N/ is a strict balanced fuzzy negation.

Proof. Because n(x) € [0,1], we have that 1 — f(x) € [0,1], so f(x) € [0, 1] for all x € [0,1]. From
assumption that f is an odd function we know, that f(—x) € [—1,0] for all x € [0,1]. Since N(x) =
n(x) —1 = —f(x) and translation does not change monotonicity so N is a decreasing function.
Moreover, because f is an odd function and because n is fuzzy negation, which give us that n(1) = 0
andn(0) = 1, then NI(1) = =1, NI(—=1) = 1 and NI(0) = 0.

However, not all negations operate the same way. In the case of modelling adaptive behaviour, where a
negative response is likely to occur, a negation that is the proportional opposite of a positive response is
more likely to be used.
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Theorem 5. Let an even function f: [0,1] — [0,1] be given. If the fuzzy negation n: [0,1] — [0,1] is a
function of the form n(x)=1 — f(x), then

—f(x) x=0
flx) x<0

is a balanced fuzzy negation. Moreover, if n is a strict fuzzy negation, then N in a strict balanced fuzzy
negation.

NI(x) ={

Proposition 6. If domain of the function f is the set of x > 0 and the fuzzy negation n: [0,1] — [0,1]
is a function of the form n(x) = 1 — f(x), then

—f(x) x=0

NIx) = {f(—x) x <0

is a balanced fuzzy negation. Moreover, if nn is a strict fuzzy negation, then N in a strict balanced fuzzy
negation.

Example. Similarly, as we have given the basic families of fuzzy balanced supplements, let us give the
corresponding fuzzy balanced negations (see Tab. 3 and Fig. 7a) — 7¢))

Table 3. The example of fuzzy balanced negation

Name of BFN

Name of supplementary operator

Supplementary operator

Reversal operator

classical supplement

N(x) = NI(x) = —x

Even power negation even power supplement NI(x) = {—xp x>0
xP x<0
p — even number
Odd power negation odd power supplement NI(x) = —xP
p —odd number
Square root negation square root supplement 1) = { 1—+vx x>0
—-1+vx x<0

Cosine negation

cosine supplement

@ (=1+4+cos(nmx)) x>0
NI(x) =1 1

5 (1—-cos(mx)) x<0
0 x=0
Sugeno negation Sugeno supplement ™Y 1 x>0
NI(X) _ ) 1+Ax
- 1+x !
1- o X< 0
A>-1

a) Reversal operator

b) cosine negation

¢) Sugeno negation,
A=10

1.0 0.5 0.0 05

1.0 1.0 0.5 0.0 0.5
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On the basis of these considerations, it is generalised as follows:

Theorem 6. If there exists a strictly increasing and continuous function g: [—1,1] —» R such that
g(=1)+g(1) = 2g(0), then

NI(x) = g7 (g(1) + g(-1) — g(x)), for all x € [-1,1] 3)
NI is a balanced fuzzy negation.

Proof. Firstly, we prove that NI is a balanced fuzzy negation. We need to check that it is a decreasing
function. From assumption, that g is increasing function, for x;,x, € [—1,1] and x; < x, we get that
function f(x) = g(1) + g(—1) — g(x) is decreasing function, i.e.:

g +g(=1) —gx) < g(1) + g(=1) — g(x3).

Now, based on fact that the inverse function for an increasing function is increasing so g~ 1 is
increasing. On the other hand, the composition of an increasing and a decreasing function is a decreasing
function therefore g~1(f) is a decreasing function, which proves that NI is decreasing. From
assumption g(—1) + g(1) = 2g(0) we get N(0) = g~*(2g(0) — g(0)) = g~'(g(0)) = 0. Now,
we prove that x - N(x) < 0. Because for x = 0 it obvious case. Let us consider two cases. First, if x >
0, so then from monotonicity, we have g(x) > g(0). Then, g(1) + g(—1) — g(x) = 2g(0) — g(x) <
g(0). Since, g~1 is increasing then

g7 (gM +9(-1) - g(x)) < g7'(g9(0)) =0 . Therefore, x- g~(g(1) + g(-1) — g(x)) <0.
Similarly, for x < 0, then from monotonicity, we get g(x) < g(0), g(1) + g(—1) — g(x) = 2g(0) —

g(x) = g(0). Since, g~1 is increasing then g'l(g(l) +g(-1) - g(x)) > g~1(g(0)) = 0. So, x -
g gD +g9(-1D - g(x) <0.

Example. Let be given the function

_(x x€[01] 1 _(x3 x€[-1,0)
9@) = {i/i ce[-107 9 @ = {x x € [0,1]
fulfils the assumption of Theorem 6. On the basis on Eq. (3) we get
-x3 x€][0,1]
Ni(x) = .
) {—i/? x € [~1,0)

Hence, such theorems are important in modelling decisions under uncertainty, where signal reversal
has prognostic significance. This theorem has implications for decision modelling under uncertainty,
where signal reversals have predictive value. From another perspective, this approach recognises that
machine learning systems that adapt to changing input conditions need.

Theorem 7. If there exists a strictly increasing and continuous function g: [—1,1] — R such that
g(0) = 0, then

NI(x) = g7}(-g(x)),  forallx € [-11].
Proof. From assumption we get NI(0) = g~1(—g(0)) = 0. Since g is a strictly increasing function,
the function —g is strictly decreasing. The inverse function g~1 is strictly increasing. Therefore, the

composition of strictly decreasing and increasing functions give us a strictly decreasing function. So,
NI(x) = g~ 1(—g(x)) is a strictly decreasing function.

Now, let us check the condition x - NI(x) < 0. Firstly, if x > 0, then monotonicity we get

0<x=(0=g"1=g0) > g (=g).
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Secondly, if x < 0, then monotonicity we get x < 0= (g~ 1(—g(x)) > g 1(-g(0)) = 0).
Consequently, NI(x) < 0.

COMPLEMENT OF A FUZZY BALANCED SET

In crisp sets, the complement of a set A is formed by excluding from the space X elements that belong
to A. The distance between the value of belonging to and not belonging to the set 4 is always 1. Thus,
the term says that the set A (thus also its complement A") is determined by the elements that belong to
it. Firstly, let us emphasise the motivation for determining the supplementary set, which shows how
much the elements under study lack to belong or not belong to a given set fully, and we introduce a
definition:

Definition 2. [[6], Definition IV.1] The supplement of the fuzzy balanced set A4 is the set denoted by
AS satisfying the condition:

Nas(x) = 1(Ma(x)).

However, we determine the complement of the set by indicating those elements which belong to
the opposite class. On the other hand, the set of those elements that do not belong to either class is left
in the neutral set.

Definition 3. [[6], Definition IV.6] The complement of the fuzzy balanced set A is the set denoted by
AC satisfying the condition

Nac(x) = NI(Ma(x))
forany x € X.

To sum up, in BFS, complement is induced by a balanced negation NI, while supplement is induced
by a fuzzy negation n. Let us recall that a crisp set and a fuzzy set are empty when, for each element
x € X, the membership function is identically equal to 0 and otherwise not empty. Thus, a set is empty
if no element belongs to it. In balanced fuzzy sets, if an element does not belong to a given set, it may
belong to its complement or be a neutral element. Therefore, a set whose all values of 77 belong to the
interval [—1, 0] is called empty and denoted by @. A set is non-empty when at least one element x,
n(x) € (0,1]. If for every n(x) = 0, the set is called full neutral. A set is deeply empty if and only if
its membership function is identically —1. It is denoted by @4. They contribute to the creation of a more
coherent theoretical and practical framework. It is worth noting that new fuzzy trust models can be built
on this basis, although they are no longer rule-based; they typically aggregate [0,1] scores without
explicitly separating trust from distrust. This could improve trust systems such as those described in [14].

Example. Let the membership function 7 describe the degree of profitability of a financial operation.
It takes on positive values for profitable operations, a value of zero for economically neutral operations
and negative values for loss-making operations. If we assume that n(x) < 0 denotes a financially non-
profitable operation, then a value of —1 indicates the most unfavourable process. If the set of these
operations is deeply empty, it means that not all operations are in the class of operations that can
bankrupt the firm. If the set is only empty, it means that there are operations that are more or less
disadvantageous. There may be financially neutral operations for the firm.

Example. Let us consider the following system.

Inputs (already mapped to [-1, 1]):

d,: air dehumidification level read from the device,
d,: humidity level of the outside air supply.
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Output:

d: control level (in [-1, 1])
d3>0: increase intensity,
d3<0: decrease intensity,
d; = 0: no change.

In the rule:

IFd,OR NOTd, THEN ds,

where NOT is used as reversal operator N (see Tab. 3) and as OR is used balanced fuzzy t-conorm MAX
[7]. Therefore, we get three activation indicators: Increase, Decrease, NoChange with an example
activation signal: sig = MAX(d{,N(d;)). For example, assume the following input values: d; =
—0.4,d, = —0.7. Then N(d,) = —(—0.7) = 0.7. The balanced MAX function returns the argument
with the larger absolute value: sig = MAX(d,,N(d,)) = MAX(—0.4,0.7). Because the positive signal
0.7 dominates over the negative signal, the activation corresponds to the rule indicating an increase.

Therefore, the increase rule is activated.

CONCLUSIONS

This study explored the concept of balanced
fuzzy negation as an essential operator in the
framework of balanced fuzzy sets. The proposed
approach extended classical fuzzy negation by in-
troducing symmetry about the origin and distin-
guishing between membership, non-membership,
and neutrality.

Extending fuzzy negations to balanced fuzzy
negations ensures that neutral values (0) remain
stable reference points. For example, in a patient
health monitoring system, a balanced assessment
allows for a clear distinction between a patient
with normal vitality (0) and those with improve-
ment or deterioration, while maintaining interpre-
tive neutrality.

Furthermore, in opinion mining, when opin-
ions are re-evaluated using multiple models, the
final result remains directionally consistent —
negativity does not randomly change to positivity
through repeated processing.

Balanced fuzzy negation is defined by its fun-
damental properties, such as monotonicity, conti-
nuity, and involution. Fundamental construction
theorems are presented, demonstrating that bal-
anced negations can be systematically generated
from classical fuzzy negations. Examples based
on power, trigonometric, and Sugeno functions il-
lustrate the flexibility of this approach.

A clear distinction is made between the
complement and the complement of a balanced
fuzzy set. While complementation measures the

degree to which an element is not a full member,
complementation identifies elements belonging
to the opposite class. This distinction provides
a more sophisticated way to represent and inter-
pret uncertainty and bipolar information in the
interval [—1,1].
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