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INTRODUCTION

Classical set theory is deeply rooted in well-
defined mathematical concepts. However, model-
ling processes occurring in society or describing 
human decision-making is practically impossible 
using Boolean logic. Łukasiewicz’s introduction 
of three-valued logic was a key advance, opening 
the possibility of a better description of observed 
reasoning.

It aimed to solve the problem of statements 
the truth value of which cannot yet be determined, 
such as statements about future events [1]. It is 
worth emphasizing that this approach is currently 

used in the programming branches of computer 
science, including through the use of values such 
as NULL, NILL, or “undefined.”

Later, fuzzy sets, introduced by Zadeh in 1965 
[2], proved to be an effective way to describe un-
certain and ambiguous reality. However, the in-
terpretation of negation in fuzzy logic remains 
ambiguous, at least not in all applications. Does 
complementation truly indicate falsity or uncer-
tainty? Modern balanced fuzzy sets extend this 
approach by introducing a separate non-member-
ship function [3]. In this model, the values (0, 1) 
denote membership, [-1, 0) non-membership, and 
0 denotes neutrality or lack of information. This 
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distinction is particularly important in domains 
where positive and negative evaluations coexist, 
for example, in medical or psychological diag-
nostics, financial risk assessment, and sentiment 
analysis.

Example. Consider a set A representing indi-
viduals with a very high IQ. Membership can be 
modelled as μhIQ in fuzzy sets and as ηhIQ in bal-
anced fuzzy sets:

	

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

where: x is the IQ score.

In summary, balanced fuzzy sets allow for 
better modelling and interpretation of real-world 
processes, encompassing concepts such as excess 
and deficiency, satisfaction and dissatisfaction, 
as well as presence and absence. They also play 
an important role in describing the processes by 
which people evaluate observed states.

The article is divided into the following or-
der: first, the basic concepts of classical, fuzzy, 
and balanced sets were reviewed, highlighting 
their structural differences and the motivations 
for their extension. The concept of balanced 
fuzzy negation was then introduced, along with 
its formal definition, properties, and illustrative 
examples. Methods for generating balanced fuzzy 
negations from classical negations were then pre-
sented. Finally, the concepts of complement and 
complementation in balanced fuzzy sets were ex-
amined, followed by conclusions and directions 
for further research.

OVERVIEW OF THE BASIC CONCEPT OF 
SETS

This article presents some insights into the 
fundamental principles of balanced fuzzy sets. 
A crisp set membership is defined by a character-
istic function, which assigns each element in the 

universal set X either 1 (indicating the element is 
in the set A) or 0 (if not in A).

In the construction of standard fuzzy sets, 
fundamental set operations such as union, prod-
uct, and complement are defined as:
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However, it should be added that while crisp 
sets provide only a binary form of membership, 
fuzzy sets allow the use of values from the inter-
val [0,1] [2]. A fuzzy set A is defined by a mem-
bership function μA:X → [0,1], which assigns to 
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where: S is a t-conorm and T is a t-norm. 

Fuzzy negation is defined as a function 
n : [0,1] → [0,1] that satisfies the following 
conditions: boundary conditions (n(0) = 1 and 
n(1) = 0 and monotonicity (n(x)≤n(y) for x ≥ y). 
Moreover, strict negations also require involu-
tion (n(n(x)) = x).

However, the classical fuzzy set operations 
do not fully consider all aspects of uncertainty. 
For this reason, balanced fuzzy sets extend fuzzy 
sets by introducing both membership and non-
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𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

This distinction between positive and nega-
tive membership allows for a better representa-
tion of uncertainty than standard fuzzy sets. Op-
erations on balanced fuzzy sets are defined using 
balanced t-conorms SB and t-norms TB (see [6]):

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

As was presented in [7] in these operations can 
be generated by using nullnorms and uninorms.

Theorem 1. ([7], Theorem 4) If U is a repre-
sentable uninorm with the additive generator 

	

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  
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where: t–[0,1]→[0,+∞] and s(x) = t(1–x) are ad-
ditive generators of t-norm T, and is dual 
t-conorm S (respectively), and e = 0.5, 
then operations SBr: [-1,1]2→[–1,1] de-
fined by

	

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

are balanced t-conorms and r ∈{–1,1}.
Theorem 2. ([7], Theorem 6) If V is a 

nullnorm on [0,1] with zero element z ∈ [0,1] and 
dual operations T and S, then TB : [–1,1]2→[–1,1] 
defined by

	

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

Example. Let us demonstrate the use of these 
logical connectives in a Petri Net (PN). Recall 
that PN is a mathematical model for describing 
processes in which various events occur in par-
allel, in a specific order, or depending on condi-
tions. It is used to simulate industrial processes or 
information flow. Let us use the example of the 
rules presented in the work [8] using the balanced 
operators SBTanH and TBTanH [6, 7].
Let us see the following rule: 

	

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 

𝜇𝜇ℎ𝐼𝐼𝐼𝐼(x) =

{ 
 
  

0 𝑥𝑥 < 110
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝜂𝜂ℎ𝐼𝐼𝐼𝐼(x) =

{
 
 

 
 min(−1,0.0004𝑥𝑥2 − 3.24) 𝑥𝑥 < 90

0 𝑥𝑥 ∈ [90, 110)
0.01𝑥𝑥 − 1.1 𝑥𝑥 ∈ [110,120)

0.1 ⋅ (10
𝑥𝑥
120 − 9) 𝑥𝑥 ∈ [120, 130)

min(0.009𝑥𝑥 − 0.85, 1) 𝑥𝑥 ≥ 130

 

𝑓𝑓𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴∩𝐵𝐵(𝑥𝑥) = 
=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐵𝐵(𝑥𝑥)), 𝑓𝑓𝐴𝐴𝐶𝐶(𝑥𝑥) =  1 − 𝑓𝑓𝐴𝐴(𝑥𝑥). 
𝜇𝜇𝐴𝐴∪𝐵𝐵(𝑥𝑥) =  𝑆𝑆(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 𝜇𝜇𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇(𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)), 

𝜂𝜂𝐴𝐴(𝑥𝑥) = {
μ A1 (x) 𝑥𝑥 is in A

0 is neutral
μ A2 (x) 𝑥𝑥 is not in A

, 

where: 𝜇𝜇𝐴𝐴1(𝑥𝑥) ∈ (0,1] and 𝜇𝜇𝐴𝐴2(𝑥𝑥) ∈ [−1,0) (see [6]). 

𝜂𝜂𝐴𝐴∪𝐵𝐵(𝑥𝑥) = 𝑆𝑆𝑆𝑆(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)), 𝜂𝜂𝐴𝐴∩𝐵𝐵(𝑥𝑥) =  𝑇𝑇𝑇𝑇(𝜂𝜂𝐴𝐴(𝑥𝑥), 𝜂𝜂𝐵𝐵(𝑥𝑥)). 

𝑢𝑢(𝑥𝑥) = { −t(2x) x ∈ [0, e]
s(2x − 1) = t(2 − 2x) x ∈ (e, 1], 

where: 𝑡𝑡 − [0,1] → [0, +∞] and 𝑠𝑠(𝑥𝑥) = 𝑡𝑡(1 − 𝑥𝑥) are additive generators of t-norm T, and is dual t-

conorm S (respectively), and 𝑒𝑒 = 0.5, then operations 𝑆𝑆𝐵𝐵𝑟𝑟: [−1,1]2 → [−1,1] defined by 

𝑆𝑆𝐵𝐵𝑟𝑟 (𝑥𝑥, 𝑦𝑦) = {
r (x, y) ∈ {(−1,1), (1, −1)}

f−1 ( u−1 (u(f(x)) + u(f(y)))) otherwise , 

are balanced t-conorms and 𝑟𝑟 ∈ {−1, 1}. 

Theorem 2. ([7], Theorem 6) If V is a nullnorm on [0,1] with zero element 𝑧𝑧 ∈ [0,1] and dual operations 

T and S, then 𝑇𝑇𝑇𝑇: [−1,1]2 → [−1,1] defined by 

𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑦𝑦) = {
S(x + 1, y + 1) − 1 x, y ∈ [−1,0]

T(x, y) x, y ∈ [0,1]
0 others

. 

𝐼𝐼𝐼𝐼[(𝑑𝑑1 = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑2 = 0.5) 𝑂𝑂𝑂𝑂 𝑑𝑑3 = −0.6] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑4 (𝐶𝐶𝐶𝐶 =  0.9),  

 given three input states and calculating the ex-
pected output state, with a given certainty factor 
to the rule CF (Figure 1).

The example shows how the knowledge about 
resources or their lack (with a given rule) will 

affect the final result. The implementation of this 
rule shows that the result will be some shortage.

To sum up, owing to such operations, it is 
possible to integrate multiple sources of informa-
tion, e.g. sensors in an autonomous system, where 
some data are positive, others negative. In this 
sense, as an example of the application of these 
operations, the autonomous car system combines 
the data from cameras (positive – visibility sig-
nals) and radars (negative – threat signals) to cal-
culate a balanced safety state.

Another, but equally interesting, issue is the 
modelling of decision-making processes where 
some options are partially exclusive and others 
are neutral. This situation is observed in a recom-
mendation system that combines user opinions – 
positive, negative, and neutral – to determine the 
final product rating.

However, it should be noted, that in order to 
generate rules corresponding to real processes, 
negation is still needed.

MOTIVATIONS

In artificial intelligence, and especially in 
neural networks, activation functions that return 
only positive values are used, but also those that 
can take on negative values. This allows the neu-
ron to respond both positively and negatively to 
the input signal - allowing the network to better 
distinguish between positive and negative influ-
ences. Examples of such functions include tanh, 
Leaky ReLU, and ELU (see [9, 10]). This allows 
the network not only to amplify signals, but also 
to attenuate or “invert” certain aspects of infor-
mation. Therefore, one might consider using the 
concept of balanced fuzzy negation in the design 

Figure 1. An example of rule in balanced fuzzy Petri Net using balanced operators
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of such processes, so that the model can account 
for the gradual rejection or inversion of the signal.

However, in order to justify that the BFS con-
sideration has a mathematical justification, let us 
start with the discussion of set complement and 
review one of aspect of classical crisp set theory, 
i.e., the “Axiom of Extensionality” [11]:

“Two sets are equal (i.e., the same set) if they 
contain exactly the same elements. This states 
that sets are defined by their elements”. Exten-
sional characterisation using characteristic func-
tions with values {0,1} is not transferable to 
fuzzy sets; that is, with partial membership, a set 
and its complement do not provide an exclusive-
exhaustive classification of the elements.

Example. Let us consider a space in which all 
elements belong to a set with membership degree 
0.5 – applying classical fuzzy negation, defined 
as n(x) = 1 – x, we obtain a situation in which the 
set and its complement are indistinguishable. The 
concept of complement, therefore, differs from 
the classical notion, in which an element must be-
long to a set or its complement. This highlights 
the fundamental distinction between comple-
ment in classical set theory and fuzzy comple-
ment. The lack of a clear distinction between 
membership and non-membership in fuzzy sets 
challenges traditional assumptions and requires a 
reconsideration of the basic principles of such set 
representation.

In classical fuzzy logic, negation changes 
the degree of truth but does not lead to a qualita-
tive change in interpretation. In other words, the 
negation of an element with partial membership 
merely becomes another form of the same partial 
membership. As a result, the set and its comple-
ment differ only in value, not in the direction 

(sign) of information (i.e.: partial positive stay 
partial positive). Therefore, low membership and 
high non-membership can be represented in es-
sentially the same way, i.e., as numbers close to 
zero. This blurs the intuitive meaning of negation 
as an opposite.

In BFS, this problem is eliminated by intro-
ducing a bipolar representation of information. 
The sign of the value has a specific meaning; 
that is, the positive part describes positive argu-
ments “for” and the negative part describes argu-
ments “against.” Negation is therefore not sim-
ply a scaling inversion, but a transformation that 
changes the nature of the information. In summa-
ry, what was given as positive becomes negative, 
and vice versa. This makes BFN a true opposite, 
consistent with the common understanding of the 
principle “A becomes not A.”

The balanced fuzzy supplement operator and 
the balanced fuzzy negation of the set from Fig-
ure 2 are presented in Figures 3a and 3b. They 
illustrate that the supplement operator reflects 
various forms of uncertainty about the full mem-
bership or non-membership of an element in the 
set. The negation operator, on the other hand, 
illustrates the process of negating membership 
– defined on the basis of a given, appropriately 
selected form of negation appropriate to the phe-
nomenon being analysed.

It should be emphasised that the concepts 
of BFS and BFN are relatively new. Although 
the observation that negative information must 
also be represented and analysed also appears 
in intuitionistic fuzzy sets (IFS) [12]. There, in-
formation is expressed in a dual manner (con-
taining both positive and negative information 

Figure 2. Figure of a sample balanced fuzzy set A



469

Advances in Science and Technology Research Journal 2026, 20(3), 465–478

Figure 3. Figures of a samples a) balanced fuzzy supplements and b) balanced fuzzy negation of A

Table 1. Main comparison of negations of fuzzy sets, Atanassov IFS and BFS
Properties of set with proper 

negations Fuzzy sets Intuitionistic fuzzy sets Balanced fuzzy sets

Meaning
Numeric kind of inversion. 
Negation does not represent true 
opposition in common sense.

Switches membership and non-
membership, in 2D. Suitable for 
data that has a dual form.

True semantic opposition.

Representation of negative 
information

None (the whole negative 
information is in 0). Explicit via v(x). Directly encoded as  

Ƞ(x) ˂ 0.
Uncertainty Not modelled. Π(x) remains unchanged. Values near 0.

simultaneously). Table 1 provides a concise sum-
mary of the relational properties in all three sets.

The BFS approach is much closer to natural 
human reasoning, in which positive and negative 
factors are treated as two complementary but in-
dependent sources of information [13] Psycho-
logical research on decision-making shows that 
people interpret negation not as a weakened con-
firmation, but as the emergence of a qualitatively 
different premise.

Example. Economic research [13] shows that 
people react to losses and gains as two different 

types of information. A loss is not interpreted as 
a “negative gain,” but as a clear negative signal. 
This behaviour is closely related to the bipolar-
ity of the BFS, in which positive and negative 
values represent two different types of arguments 
(“for” and “against”). Thus, BFN reflects a psy-
chological mechanism that is well documented 
empirically.

To sum up, BFS restores negation to a mean-
ing that is both mathematically unambiguous and 
consistent with the intuitive logic of situational 
judgment, which is bipolar in nature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BALANCED FUZZY NEGATIONS  

The fuzzy negation can be interpreted as quantifying the extent to which an element does not belong 
fully to a set. In this sense, fuzzy negation is a method for computing the supplementary or deficit value 
required to reach complete membership. Extending this concept to balanced fuzzy sets, the 
corresponding operator was introduced. The supplement operator in balanced fuzzy sets, denoted as 𝐼𝐼, 
works analogously to fuzzy negation concept. Specifically: 

• For values in the range (0,1], it computes the supplement of full membership in the set. 
• For values in the range [−1,0), it determines the supplement to full non-membership.  

Therefore, to formalise the fuzzy balanced supplementary operator, let us first recall the reversal 
operation 𝑁𝑁(𝑥𝑥) =  −𝑥𝑥 (see [3]), so 

𝐼𝐼(𝑥𝑥) = {
n(x) 𝑥𝑥 > 0

0 𝑥𝑥 = 0
N (n(N(x))) 𝑥𝑥 < 0

, (1) 

where 𝑛𝑛 is a fuzzy negation.  
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On the basis of Eq. (1) the operator 𝐼𝐼 is odd. Hence, it retains the properties known for fuzzy negation, 
on each interval: [0,1] and [−1, 0].  

Some properties: 
• 𝐼𝐼 is a non-increasing function 
• if 𝑛𝑛 is continuous, then 𝐼𝐼 is continuous 
• if 𝑛𝑛 is an involution, then  𝐼𝐼 is an involution 

in each interval (0, 1) and (−1, 0), but not on the whole interval [−1,1]. Let us note that 𝑛𝑛|(0,1)  =
 𝐼𝐼(0,1), but 𝑛𝑛 ≠  𝐼𝐼|[0,1], because 𝑛𝑛(0) = 1, and 𝐼𝐼(0) = 0. 

Example. Let us present some examples of supplementary operators generated directly from fuzzy 
negation (see Tab. 2 and Fig. 4a)- Fig. 4c)). 

Table 2. The example of balanced fuzzy supplements 

Name of supplementary operator Fuzzy negation Supplementary operator 

Classical supplement 𝑛𝑛(𝑥𝑥) = 1 − 𝑥𝑥 𝐼𝐼(𝑥𝑥) = {
1 − 𝑥𝑥 𝑥𝑥 > 0
−1 − 𝑥𝑥 𝑥𝑥 < 0
0 𝑥𝑥 = 0

 

Even power supplement 𝑛𝑛(𝑥𝑥) = 1 − 𝑥𝑥𝑝𝑝 𝐼𝐼(𝑥𝑥) = {
1 − 𝑥𝑥𝑝𝑝 𝑥𝑥 > 0
−1 + 𝑥𝑥𝑝𝑝 𝑥𝑥 < 0

0 𝑥𝑥 = 0
 

𝑝𝑝 – even number 

Odd power supplement 𝑛𝑛(𝑥𝑥) = 1 − 𝑥𝑥𝑝𝑝 𝐼𝐼(𝑥𝑥) = {
1 − 𝑥𝑥 𝑥𝑥 > 0
−1 − 𝑥𝑥𝑝𝑝 𝑥𝑥 < 0

0 𝑥𝑥 = 0
 

𝑝𝑝 – odd number 

Square root supplement 𝑛𝑛(𝑥𝑥) = 1 − √𝑥𝑥 𝐼𝐼(𝑥𝑥) = {
1 − √𝑥𝑥 𝑥𝑥 > 0
−1 + √𝑥𝑥 𝑥𝑥 < 0

0 𝑥𝑥 = 0
 

Cosine supplement 𝑛𝑛(𝑥𝑥) = 12 ⋅ (1 + cos (𝜋𝜋𝜋𝜋)) 𝐼𝐼(𝑥𝑥) =

{ 
 
  
1
2 ⋅ (1 + cos (𝜋𝜋𝜋𝜋)) 𝑥𝑥 > 0

−12 ⋅ (1 + cos (𝜋𝜋𝜋𝜋)) 𝑥𝑥 < 0
0 𝑥𝑥 = 0

 

Sugeno supplement 

𝑛𝑛(𝑥𝑥) = 1 − 𝑥𝑥
1 + 𝜆𝜆𝜆𝜆 𝐼𝐼(𝑥𝑥) = {

1−𝑥𝑥
1+𝜆𝜆𝜆𝜆 𝑥𝑥 > 0
−1−𝑥𝑥
1−𝜆𝜆𝜆𝜆 𝑥𝑥 < 0
0 𝑥𝑥 = 0

, 𝜆𝜆 > −1 

 
 

a) Classical supplement 
 

 
 

b) Cosine supplement 
 

 

c) Sugeno supplement, 
𝜆𝜆 = 10 

 

Figure 4. Figures of balanced fuzzy supplements 
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Definition 1. [[6], Definition IV.3.] A decreasing function 𝑁𝑁𝑁𝑁: [−1,1] → [−1,1]  that satisfies the 
following conditions: 𝑁𝑁𝑁𝑁(0) = 0, 𝑥𝑥 ⋅  𝑁𝑁𝑁𝑁(𝑥𝑥) ≤  0, for all 𝑥𝑥 ∈ [−1,1] is called a balanced fuzzy negation 
(BFN). 𝑁𝑁𝑁𝑁 is a strict balanced fuzzy negation when it is a bijection, a strong negation when 𝑁𝑁𝑁𝑁 is an 
involution. When 𝑁𝑁𝑁𝑁 is an involution on (−1, 0) ∪ (0,1) then 𝑁𝑁𝑁𝑁 is called a narrowed involution. 

Corollary. The balanced negation 𝑁𝑁𝑁𝑁 has exactly one equilibrium, namely 𝑥𝑥 = 0. 

Corollary. If 𝑛𝑛: [0,1] → [0,1] is fuzzy negation then, fuzzy balanced negation can be generated based on: 

𝑁𝑁𝐼𝐼𝐼𝐼 = {
n(x) − 1, x ∈ (0,1]
1 −  n(−x), x ∈ [−1,0)

0, 𝑥𝑥 = 0
 (2) 

Example. It should be emphasised that it is not sufficient to change the sign before the negation of n in 
the interval [0, 1], because the resulting function is not decreasing: 

neqn(x) =  {
−n(x), x ∈  (0,1],
n(−x), x ∈ [−1,0)
0 0

. 

Example. Using the example of fuzzy Yager negation 𝑛𝑛(𝑥𝑥) = (1 − 𝑥𝑥𝜆𝜆)1/𝜆𝜆 , the corresponding 
supplementary operator 𝐼𝐼 and balanced fuzzy negation 𝑁𝑁𝑁𝑁 can be seen (see Fig. 5a) – 5b)).  

a)  

 

b)  

 
Figure 5. a) Supplementary Yager operators 𝐼𝐼 and b) Yager balanced fuzzy negation 𝑁𝑁𝑁𝑁 

𝐼𝐼(𝑥𝑥) =
{
 

 (1 − xλ)
1
𝜆𝜆 x ∈ (0,1]

−(1 − (−x)λ)
1
𝜆𝜆 x ∈ [−1,0)

0 𝑥𝑥 = 0

,  𝑁𝑁𝑁𝑁(𝑥𝑥) =
{
 

 −1 + (1 − xλ)
1
𝜆𝜆 x ∈ (0,1]

1 − (1 − (−x)λ)
1
𝜆𝜆 x ∈ [−1,0)

0 𝑥𝑥 = 0

. 

However, 𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛 is increasing on both intervals and has the following form (see Fig. 6): 

𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛(𝑥𝑥) =
{
 

 −(1 − xλ)
1
𝜆𝜆 x ∈ (0,1]

(1 − (−x)λ)
1
𝜆𝜆 x ∈ [−1,0)

0 𝑥𝑥 = 0

, 
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Figure 6. Operation 𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛 – example of not balanced fuzzy negation 

Corollary. The simplest extension of the left part of rule Eq. (2) to obtain a fuzzy balanced negation is 
to change the sign of the function  𝐼𝐼, e.i.: 𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥)  =  𝐼𝐼(𝑁𝑁(𝑥𝑥))  =  𝑁𝑁(𝐼𝐼(𝑥𝑥)).  

Extending fuzzy negations to balanced domains ensures that neutral values (0) remain stable 
reference points. For example, in a patient health monitoring system, a balanced assessment allows for 
a clear distinction between a patient with normal vitality (0) and those with improvement or 
deterioration, while maintaining interpretive neutrality. 

Humans interpret gradual changes, inconsistencies, and uncertainty. Their practical counterparts 
emerge in AI-based decision-making systems, which require symmetrical and evaluative responses to 
positive and negative factors. This also corresponds to human perception of gradually changing 
sentiments. For example, in opinion mining, when a post is re-evaluated using multiple models (context, 
tone, sarcasm), the final result remains directionally consistent – negativity does not randomly change 
to positivity through repeated processing. Certain properties that allow for modelling negation 
generation processes follow from the following propositions: 

Proposition 1. Let 𝑛𝑛1, 𝑛𝑛2: [0,1] → [0,1] be the fuzzy negations, then  

NI(x) = {
n1(x) − 1 x ∈ (0,1]

1 − n2(−x) x ∈ [−1,0)
0 𝑥𝑥 = 0

 

is the balanced fuzzy negation. 

Proposition 2. Let 𝑓𝑓: [−1,1] → [−1,1] be a strictly decreasing bijection with 𝑓𝑓(1) = −1, 𝑓𝑓(0) = 0 
and 𝑓𝑓(−1) = 1. Then  𝑁𝑁𝑁𝑁 =  𝑓𝑓|[−1,1] is a balanced fuzzy negation.  

Proposition 3. Let 𝑓𝑓: [−1,1] → [−1,1] be a strictly decreasing bijection with 𝑓𝑓(1) = −𝜆𝜆, 𝑓𝑓(0) = 0 
and 𝑓𝑓(−1) = 𝜆𝜆. Then 𝑁𝑁𝑁𝑁 = 1

𝜆𝜆 𝑓𝑓|[−1,1], where 𝜆𝜆 ∈  ℝ −  { 0} is a balanced fuzzy negation.  

Proposition 4. Let 𝑁𝑁𝑁𝑁 be the bijection. If 𝑁𝑁𝑁𝑁 is a balanced fuzzy negation, then 𝑁𝑁𝐼𝐼−1 is balanced 
fuzzy negation.  

Proposition 5. Let 𝑘𝑘 ∈ ℕ, 𝑘𝑘 ≥  3. If 𝑁𝑁𝐼𝐼𝑘𝑘 are balanced fuzzy negations, then the composition of an odd 
number of balanced fuzzy negations is balanced negations.  

Example. To illustrate Proposition 5, let us consider negations  



473

Advances in Science and Technology Research Journal 2026, 20(3), 465–478

𝑁𝑁𝐼𝐼1(𝑥𝑥) = {
−1 + √1 − 𝑥𝑥 𝑥𝑥 ∈ [0,1]
1 − √1 + 𝑥𝑥 𝑥𝑥 ∈ [−1,0]

, 

𝑁𝑁𝐼𝐼2(𝑥𝑥) = − sin (𝜋𝜋 ⋅
𝑥𝑥
2 + 2𝑡𝑡 ⋅ 𝜋𝜋) , 𝑁𝑁𝐼𝐼3(𝑥𝑥) = −𝑥𝑥

2⋅ 𝑠𝑠+1. 
Thus, we have: 

𝑁𝑁𝐼𝐼1 ∘  𝑁𝑁𝐼𝐼2−1 ∘  𝑁𝑁𝐼𝐼3(𝑥𝑥) =  

{
 
 

 
 −1 + √1 − 2πarc sin(x

2s+1) 𝑥𝑥 ∈ [0,1]

1 − √1 − 2πarc sin(x
2s+1) 𝑥𝑥 ∈ [−1,0]

. 

Of course, multiple composition of the same negation is also negation 

(𝑁𝑁𝐼𝐼1 ∘ 𝑁𝑁𝐼𝐼1 ∘ 𝑁𝑁𝐼𝐼1)(𝑥𝑥) = {
−1 + √1 − 𝑥𝑥8 𝑥𝑥 ∈ [0,1]
1 − √1 + 𝑥𝑥8 𝑥𝑥 ∈ [−1,0]

. 

GENERATION OF BALANCED FUZZY NEGATIONS 

Following the properties of the function 𝑛𝑛, the following results are obtained. 

Theorem 3. If fuzzy negation 𝑛𝑛 is a function, which can be extended to even function 𝑛𝑛: [−1,1] →
[0,1], then can be generated as 

𝑁𝑁𝑁𝑁(𝑥𝑥)  = {−1 +  𝑛𝑛(𝑥𝑥) 𝑥𝑥 ≥ 0
1 − 𝑛𝑛(𝑥𝑥) 𝑥𝑥 < 0.  

Moreover, if 𝑛𝑛 is a strict fuzzy negation, then 𝑁𝑁 is a strict balanced fuzzy negation.   

Proof. Since 𝑛𝑛(𝑥𝑥) =  𝑛𝑛(−𝑥𝑥) ∈ [0,1] , so we have −1+  𝑛𝑛(𝑥𝑥) ∈ [−1,0] , 1 −  𝑛𝑛(𝑥𝑥) ∈ [0,1]  and 
𝑁𝑁𝑁𝑁(0) =  −1 + 𝑛𝑛(0)  = −1 + 1 = 0 . Moreover, if 𝑛𝑛  is a strict fuzzy negation, then because of 
extension of 𝑛𝑛: [−1,1] → [0,1]  we obtain 𝑁𝑁𝑁𝑁(−1) = 1 − 𝑛𝑛(−1)  =  1 − 𝑛𝑛(1) = 1  and 𝑁𝑁𝑁𝑁(1) =
𝑛𝑛(1) − 1 =  0 − 1 = −1 . Because 𝑛𝑛  is decreasing function in [0,1] , then 𝑁𝑁(𝑥𝑥) = 𝑛𝑛(𝑥𝑥) − 1  is 
decreasing. Also, extended even function 𝑛𝑛 in [−1,0] is increasing, so 𝑁𝑁(𝑥𝑥) = 1 − 𝑛𝑛(𝑥𝑥) is decreasing. 

Note that Theorem 3 applies, among other things, to the analysis of emotional signals, where 
reactions can be both positive and negative, and various events can cause mood reversals. Therefore, it 
is useful in sentiment analysis, for example, in social media. There, the system interprets the tone of a 
statement, assigning a positive value to positive emotions and a negative value to negative emotions. 
The situation is somewhat different in diagnostic systems that analyse both positive and negative 
symptoms. Here, for example, a medical system considers both signs of health (positive) and symptoms 
of disease (negative), thus generating a balanced picture of the patient's condition. 

Theorem 4. Let an odd function 𝑓𝑓: [0,1] → [0,1] be given. If the fuzzy negation 𝑛𝑛: [0,1] → [0,1] is a 
function of the form 𝑛𝑛(𝑥𝑥) = 1 − 𝑓𝑓(𝑥𝑥), then 𝑁𝑁𝑁𝑁(𝑥𝑥) = −𝑓𝑓(𝑥𝑥) is a balanced fuzzy negation. Moreover, if 
𝑛𝑛 is a strict fuzzy negation, then 𝑁𝑁𝑁𝑁 is a strict balanced fuzzy negation.  

Proof. Because 𝑛𝑛(𝑥𝑥) ∈ [0,1], we have that 1 − 𝑓𝑓(𝑥𝑥) ∈  [0,1], so 𝑓𝑓(𝑥𝑥) ∈ [0, 1] for all 𝑥𝑥 ∈ [0,1]. From 
assumption that 𝑓𝑓 is an odd function we know, that 𝑓𝑓(−𝑥𝑥) ∈ [−1,0] for all 𝑥𝑥 ∈ [0,1]. Since 𝑁𝑁(𝑥𝑥) =
𝑛𝑛(𝑥𝑥) − 1 = −𝑓𝑓(𝑥𝑥)  and translation does not change monotonicity so 𝑁𝑁  is a decreasing function. 
Moreover, because 𝑓𝑓 is an odd function and because 𝑛𝑛 is fuzzy negation, which give us that 𝑛𝑛(1) = 0 
and 𝑛𝑛(0) = 1, then 𝑁𝑁𝑁𝑁(1) = −1, 𝑁𝑁𝑁𝑁(−1) = 1 and 𝑁𝑁𝑁𝑁(0) = 0. 

However, not all negations operate the same way. In the case of modelling adaptive behaviour, where a 
negative response is likely to occur, a negation that is the proportional opposite of a positive response is 
more likely to be used. 
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Theorem 5. Let an even function 𝑓𝑓: [0,1] →  [0,1] be given. If the fuzzy negation 𝑛𝑛: [0,1] →  [0,1] is a 
function of the form n(x)=1 − 𝑓𝑓(𝑥𝑥), then  

𝑁𝑁𝑁𝑁(𝑥𝑥) = {−𝑓𝑓(𝑥𝑥) 𝑥𝑥 ≥ 0 
𝑓𝑓(𝑥𝑥) 𝑥𝑥 < 0  

is a balanced fuzzy negation. Moreover, if 𝑛𝑛 is a strict fuzzy negation, then 𝑁𝑁 in a strict balanced fuzzy 
negation.   

Proposition 6. If domain of the function 𝑓𝑓 is the set of 𝑥𝑥 ≥ 0  and the fuzzy negation 𝑛𝑛: [0,1] → [0,1] 
is a function of the form 𝑛𝑛(𝑥𝑥) = 1 − 𝑓𝑓(𝑥𝑥), then  

𝑁𝑁𝑁𝑁(𝑥𝑥) =  {−f(x) x ≥ 0
f(−x) x < 0 

is a balanced fuzzy negation. Moreover, if 𝑛𝑛 is a strict fuzzy negation, then 𝑁𝑁 in a strict balanced fuzzy 
negation.   

Example. Similarly, as we have given the basic families of fuzzy balanced supplements, let us give the 
corresponding fuzzy balanced negations (see Tab. 3 and Fig. 7a) – 7c)) 

Table 3. The example of fuzzy balanced negation 

Name of BFN Name of supplementary operator Supplementary operator 
Reversal operator classical supplement 𝑁𝑁(𝑥𝑥) =  𝑁𝑁𝑁𝑁(𝑥𝑥) = −𝑥𝑥 
Even power negation even power supplement 𝑁𝑁𝑁𝑁(𝑥𝑥) = {−𝑥𝑥

𝑝𝑝 𝑥𝑥 > 0
𝑥𝑥𝑝𝑝 𝑥𝑥 < 0 

𝑝𝑝 – even number 
Odd power negation odd power supplement 𝑁𝑁𝑁𝑁(𝑥𝑥) = −𝑥𝑥𝑝𝑝 

𝑝𝑝 – odd number 
Square root negation square root supplement I(𝑥𝑥) = { 1 − √𝑥𝑥 𝑥𝑥 > 0

−1 + √𝑥𝑥 𝑥𝑥 < 0
 

Cosine negation cosine supplement 

𝑁𝑁𝑁𝑁(𝑥𝑥) =

{ 
 
  
1
2 ⋅ (−1 + cos (𝜋𝜋𝜋𝜋)) 𝑥𝑥 > 0
1
2 ⋅ (1 − cos (𝜋𝜋𝜋𝜋)) 𝑥𝑥 < 0

0 𝑥𝑥 = 0

 

Sugeno negation Sugeno supplement 
𝑁𝑁𝑁𝑁(𝑥𝑥) = {

1−𝑥𝑥
1+λ𝑥𝑥 − 1 𝑥𝑥 > 0
1 − 1+𝑥𝑥

1−λ𝑥𝑥 𝑥𝑥 < 0
, 

𝜆𝜆 > −1 

 

a) Reversal operator 
 

 

b) cosine negation 
 

 

c) Sugeno negation,  
𝜆𝜆 = 10 

 
Figure 7. Figures of balanced fuzzy negation 
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On the basis of these considerations, it is generalised as follows: 

Theorem 6. If there exists a strictly increasing and continuous function 𝑔𝑔: [−1,1] → ℝ  such that 
𝑔𝑔(−1) + 𝑔𝑔(1)  =  2𝑔𝑔(0), then 

𝑁𝑁𝑁𝑁(𝑥𝑥) = 𝑔𝑔−1(𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥)), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ [−1,1] (3) 

𝑁𝑁𝑁𝑁 is a balanced fuzzy negation. 

Proof. Firstly, we prove that 𝑁𝑁𝑁𝑁 is a balanced fuzzy negation. We need to check that it is a decreasing 
function. From assumption, that 𝑔𝑔 is increasing function, for 𝑥𝑥1, 𝑥𝑥2 ∈ [−1, 1] and 𝑥𝑥1 ≤ 𝑥𝑥2 we get that 
function 𝑓𝑓(𝑥𝑥)  =  𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥) is decreasing function, i.e.:  

𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥1) ≤  𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥2). 

Now, based on fact that the inverse function for an increasing function is increasing so 𝑔𝑔−1  is 
increasing. On the other hand, the composition of an increasing and a decreasing function is a decreasing 
function therefore 𝑔𝑔−1(𝑓𝑓)  is a decreasing function, which proves that 𝑁𝑁𝑁𝑁  is decreasing. From 
assumption 𝑔𝑔(−1) + 𝑔𝑔(1) = 2𝑔𝑔(0)  we get 𝑁𝑁(0) = 𝑔𝑔−1(2𝑔𝑔(0) − 𝑔𝑔(0))  =  𝑔𝑔−1(𝑔𝑔(0)) = 0 . Now, 
we prove that 𝑥𝑥 ⋅  𝑁𝑁(𝑥𝑥) ≤ 0. Because for 𝑥𝑥 = 0 it obvious case. Let us consider two cases. First, if 𝑥𝑥 >
0, so then from monotonicity, we have 𝑔𝑔(𝑥𝑥) > 𝑔𝑔(0). Then, 𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥) =  2𝑔𝑔(0) − 𝑔𝑔(𝑥𝑥) ≤
𝑔𝑔(0). Since, 𝑔𝑔−1 is increasing then 

𝑔𝑔−1(𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥)) ≤ 𝑔𝑔−1(𝑔𝑔(0)) = 0 . Therefore, 𝑥𝑥 ⋅  𝑔𝑔−1(𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥))  ≤ 0 . 
Similarly, for 𝑥𝑥 < 0, then from monotonicity, we get 𝑔𝑔(𝑥𝑥) < 𝑔𝑔(0), 𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥) =  2𝑔𝑔(0) −
𝑔𝑔(𝑥𝑥) ≥ 𝑔𝑔(0). Since, 𝑔𝑔−1  is increasing then 𝑔𝑔−1(𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥)) ≥ 𝑔𝑔−1(𝑔𝑔(0)) = 0. So, 𝑥𝑥 ⋅
 𝑔𝑔−1(𝑔𝑔(1) + 𝑔𝑔(−1) − 𝑔𝑔(𝑥𝑥))  ≤ 0. 

Example. Let be given the function  

𝑔𝑔(𝑥𝑥) = {
𝑥𝑥 x ∈ [0,1] 

√𝑥𝑥3 x ∈ [−1,0) , 𝑔𝑔−1(𝑥𝑥)  = {x3 x ∈ [−1,0)
𝑥𝑥 𝑥𝑥 ∈ [0,1]  

fulfils the assumption of Theorem 6. On the basis on Eq. (3) we get  

𝑁𝑁𝑁𝑁(𝑥𝑥) = { −𝑥𝑥3 x ∈ [0,1]
−√𝑥𝑥3 x ∈ [−1,0). 

Hence, such theorems are important in modelling decisions under uncertainty, where signal reversal 
has prognostic significance. This theorem has implications for decision modelling under uncertainty, 
where signal reversals have predictive value. From another perspective, this approach recognises that 
machine learning systems that adapt to changing input conditions need. 

Theorem 7. If there exists a strictly increasing and continuous function 𝑔𝑔: [−1,1] → ℝ such that 
𝑔𝑔(0) = 0, then 

𝑁𝑁𝑁𝑁(𝑥𝑥) =  𝑔𝑔−1(−𝑔𝑔(𝑥𝑥)), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ [−1,1].  
 

Proof. From assumption we get 𝑁𝑁𝑁𝑁(0)  =  𝑔𝑔−1(−𝑔𝑔(0)) = 0. Since 𝑔𝑔 is a strictly increasing function, 
the function −𝑔𝑔 is strictly decreasing. The inverse function 𝑔𝑔−1 is strictly increasing. Therefore, the 
composition of strictly decreasing and increasing functions give us a strictly decreasing function. So, 
𝑁𝑁𝑁𝑁(𝑥𝑥)  =  𝑔𝑔−1(−𝑔𝑔(𝑥𝑥)) is a strictly decreasing function. 

Now, let us check the condition 𝑥𝑥 ⋅ 𝑁𝑁𝑁𝑁(𝑥𝑥) ≤ 0. Firstly, if 𝑥𝑥 > 0, then monotonicity we get 

0 <  𝑥𝑥 ⇒  (0 =  𝑔𝑔−1(−𝑔𝑔(0))  >  𝑔𝑔−1(−𝑔𝑔(𝑥𝑥))). 
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Secondly, if 𝑥𝑥 < 0, then monotonicity we get 𝑥𝑥 <  0 ⇒  (𝑔𝑔−1(−𝑔𝑔(𝑥𝑥))  >  𝑔𝑔−1(−𝑔𝑔(0))  =  0). 
Consequently, 𝑁𝑁𝑁𝑁(𝑥𝑥)  <  0. 

 

COMPLEMENT OF A FUZZY BALANCED SET 

In crisp sets, the complement of a set 𝐴𝐴 is formed by excluding from the space 𝑋𝑋 elements that belong 
to 𝐴𝐴. The distance between the value of belonging to and not belonging to the set 𝐴𝐴 is always 1. Thus, 
the term says that the set 𝐴𝐴 (thus also its complement 𝐴𝐴′) is determined by the elements that belong to 
it. Firstly, let us emphasise the motivation for determining the supplementary set, which shows how 
much the elements under study lack to belong or not belong to a given set fully, and we introduce a 
definition: 

Definition 2. [[6], Definition IV.1] The supplement of the fuzzy balanced set 𝐴𝐴 is the set denoted by 
𝐴𝐴𝑆𝑆 satisfying the condition: 

𝜂𝜂𝐴𝐴𝑆𝑆(𝑥𝑥) =  𝐼𝐼(𝜂𝜂𝐴𝐴(𝑥𝑥)). 

However, we determine the complement of the set by indicating those elements which belong to 
the opposite class. On the other hand, the set of those elements that do not belong to either class is left 
in the neutral set. 

Definition 3. [[6], Definition IV.6] The complement of the fuzzy balanced set 𝐴𝐴 is the set denoted by 
𝐴𝐴𝐶𝐶 satisfying the condition 

𝜂𝜂𝐴𝐴𝐶𝐶(𝑥𝑥)  =  𝑁𝑁𝑁𝑁(𝜂𝜂𝐴𝐴(𝑥𝑥))  

for any 𝑥𝑥 ∈  𝑋𝑋. 

To sum up, in BFS, complement is induced by a balanced negation 𝑁𝑁𝑁𝑁, while supplement is induced 
by a fuzzy negation 𝑛𝑛. Let us recall that a crisp set and a fuzzy set are empty when, for each element 
𝑥𝑥 ∈ 𝑋𝑋, the membership function is identically equal to 0 and otherwise not empty. Thus, a set is empty 
if no element belongs to it. In balanced fuzzy sets, if an element does not belong to a given set, it may 
belong to its complement or be a neutral element. Therefore, a set whose all values of 𝜂𝜂 belong to the 
interval [−1, 0] is called empty and denoted by ∅. A set is non-empty when at least one element 𝑥𝑥, 
𝜂𝜂(𝑥𝑥) ∈ (0, 1]. If for every 𝜂𝜂(𝑥𝑥)  =  0, the set is called full neutral. A set is deeply empty if and only if 
its membership function is identically −1. It is denoted by ∅∅. They contribute to the creation of a more 
coherent theoretical and practical framework. It is worth noting that new fuzzy trust models can be built 
on this basis, although they are no longer rule-based; they typically aggregate [0,1] scores without 
explicitly separating trust from distrust. This could improve trust systems such as those described in [14]. 

Example. Let the membership function 𝜂𝜂 describe the degree of profitability of a financial   operation. 
It takes on positive values for profitable operations, a value of zero for economically neutral operations 
and negative values for loss-making operations. If we assume that 𝜂𝜂(𝑥𝑥) ≤ 0 denotes a financially non-
profitable operation, then a value of −1 indicates the most unfavourable process. If the set of these 
operations is deeply empty, it means that not all operations are in the class of operations that can 
bankrupt the firm. If the set is only empty, it means that there are operations that are more or less 
disadvantageous. There may be financially neutral operations for the firm. 

Example. Let us consider the following system.  

Inputs (already mapped to [-1, 1]): 

𝑑𝑑1: air dehumidification level read from the device, 
𝑑𝑑2: humidity level of the outside air supply. 
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Output: 

𝑑𝑑3: control level (in [-1, 1]) 
𝑑𝑑3>0: increase intensity, 
𝑑𝑑3<0: decrease intensity, 
𝑑𝑑3 = 0: no change. 

In the rule: 

𝐼𝐼𝐼𝐼𝑑𝑑1𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑2 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑3, 

where NOT is used as reversal operator 𝑁𝑁 (see Tab. 3) and as OR is used balanced fuzzy t-conorm MAX 
[7]. Therefore, we get three activation indicators: Increase, Decrease, NoChange with an example 
activation signal: 𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑1, 𝑁𝑁(𝑑𝑑2)). For example, assume the following input values: 𝑑𝑑1 =
−0.4, 𝑑𝑑2 = −0.7. Then 𝑁𝑁(𝑑𝑑2) = −(−0.7) = 0.7. The balanced MAX function returns the argument 
with the larger absolute value: 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑1, 𝑁𝑁(𝑑𝑑2)) = 𝑀𝑀𝑀𝑀𝑀𝑀(−0.4,0.7). Because the positive signal 
0.7 dominates over the negative signal, the activation corresponds to the rule indicating an increase. 
Therefore, the increase rule is activated. 

CONCLUSIONS

This study explored the concept of balanced 
fuzzy negation as an essential operator in the 
framework of balanced fuzzy sets. The proposed 
approach extended classical fuzzy negation by in-
troducing symmetry about the origin and distin-
guishing between membership, non-membership, 
and neutrality.

Extending fuzzy negations to balanced fuzzy 
negations ensures that neutral values (0) remain 
stable reference points. For example, in a patient 
health monitoring system, a balanced assessment 
allows for a clear distinction between a patient 
with normal vitality (0) and those with improve-
ment or deterioration, while maintaining interpre-
tive neutrality.

Furthermore, in opinion mining, when opin-
ions are re-evaluated using multiple models, the 
final result remains directionally consistent – 
negativity does not randomly change to positivity 
through repeated processing.

Balanced fuzzy negation is defined by its fun-
damental properties, such as monotonicity, conti-
nuity, and involution. Fundamental construction 
theorems are presented, demonstrating that bal-
anced negations can be systematically generated 
from classical fuzzy negations. Examples based 
on power, trigonometric, and Sugeno functions il-
lustrate the flexibility of this approach.

A clear distinction is made between the 
complement and the complement of a balanced 
fuzzy set. While complementation measures the 

degree to which an element is not a full member, 
complementation identifies elements belonging 
to the opposite class. This distinction provides 
a more sophisticated way to represent and inter-
pret uncertainty and bipolar information in the 
interval [−1,1].
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