AST Advances in Science and Technology

\MRJ Research Journal

Advances in Science and Technology Research Journal, 2026, 20(3), 318-335

https://doi.org/10.12913/22998624/214373
ISSN 2299-8624, License CC-BY 4.0

Received: 2025.09.25
Accepted: 2025.11.17
Published: 2026.02.01

3D visualization of code smells: A scalable multi-level
metaphoric approach for software developers

Chathuranga Hasantha', Thenuri Sandara Hettiarachchi?,

Chaman Wijesiriwardana'®

! Faculty of Information Technology, University of Moratuwa, Sri Lanka
2 School of Computing, University of Staffordshire, London, United Kingdom

* Corresponding author’s e-mail: thenurih@apiit.lk

ABSTRACT

Code smells are indicators of poor software design or implementation choices that hinder software maintain-
ability, performance, and overall software quality. Manual identification of code smells is time-consuming and
resource intensive. Detection tools have their own drawbacks, including false positives, scalability issues, a lack
of context, inadequate coverage, and poor usability. Furthermore, existing code smell visualization models are
limited by abstraction levels, scalability issues, reliance on manual processes, and lack of empirical studies, which
limit developers’ ability to make informed decisions efficiently. To fill this gap, this paper introduces a novel 3D
visualization model that combines static analysis with “island’ and city’ metaphors to represent classes, methods,
and their relationships, along with associated code smells. The model was applied to a software project, and the
usability of the model was evaluated in a pilot study. The findings from this study demonstrate that the proposed
model provides an intuitive visualization of code smells than traditional tools, thereby supporting developers’
decision-making and improving program comprehension.

Keywords: code smell, code smell detection, detection approaches, current trends.

INTRODUCTION

Code smells are symptoms of poor design and
implementation decisions that have a direct impact
on the overall quality of the software [1,2]. These
bad decisions lead to issues such as maintainabil-
ity, performance, and overall software quality [3],
which can have significant long-term consequences
[4,5]. Code smells, such as complex classes and
methods [6,7], compromise both the readability and
efficiency of the code, which ultimately reduces
sustainability and increases the maintenance burden
[8]. The presence of code smells is almost unavoid-
able in software development due to several factors,
such as time constraints, lack of experience, and the
growing complexity of modern software systems.
Developers often face tight deadlines, leaving little
room to address these underlying issues during the
development process. Despite the development of
various code smell detection tools, developers still

318

face challenges in understanding, maintaining, and
evolving complex software systems, which has
led to a growing interest in visualization-based ap-
proaches [9]. Although several 3D visualization
models have been proposed, they still fall short
of meeting developer needs. In particular, current
models do not provide the ability to customize and
visualize code smells across multiple abstraction
levels, including class, method, and inside-method
views. Moreover, these tools often lack interactiv-
ity, limiting developers’ ability to navigate, zoom,
rotate, and explore the visualized structures, there-
by reducing their effectiveness in supporting flex-
ible and intuitive code comprehension [10,11].

Motivation scenario

Rob, a programmer working on an account-
ing system, has been assigned tasks to add new
features, including generating a customer details

https://orcid.org/0000-0002-1124-425X

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

summary and formatting phone numbers. Before
implementing these features, Rob needs to go
through the existing code, read comments, and
consult software documentation. If the issues
are unresolved, he must seek help from a senior
programmer to resolve the code-related difficul-
ties. When adding the new features, Rob can fol-
low Fowler’s 22 code smells [12]. As a guide to
identify issues during coding, but this can lead to
errors. Even though Current tools like JDeodor-
ant [9,10], iPlasma, InFusion [9,11], have been
introduced to identify and refactor code smells.
These tools are limited in their ability to detect
only a few smells and do not support visualiza-
tion, which enables to visualize the smells in a
flexible manner. This often leads to false positives
and a lack of real-time feedback [9]. To address
these challenges, a 3D visualization model can
offer a more intuitive, real-time way to detect is-
sues across different abstraction levels.

As a solution, this paper presents a novel in-
teractive 3D visualization model designed to im-
prove code smell visualization at different abstrac-
tion levels. The proposed model integrates island
and city metaphors to visualize code smells at
different levels of abstraction, aiming to enhance
program comprehension and assist developers in
identifying problematic code efficiently. Unlike
existing tools, this model also provides evolution-
ary context, helping developers understand the
historical development of code smells, which sup-
ports better refactoring decisions. The approach
addresses limitations of current tools, such as
visualizing smells in different abstraction levels,
false positives, and a lack of interactivity [13].

RELATED WORK

This literature review offers a comprehensive
overview of code-smell visualizations, explor-
ing their applications in software development,
the methodologies used to implement them, and
the potential limitations that may affect their ef-
fectiveness in real-world scenarios. By synthesiz-
ing insights from prior work, this section clarifies
where current approaches fall short and positions
the need for richer, multi-level visualizations such
as the one proposed in this study.

Code smells visualization approaches

Today’s software systems are increasingly
large and complex, and many people collaborate
in their development and maintenance [14]. This
makes it more and more difficult to program, un-
derstand, and modify the software tasks, espe-
cially when working on the code of other people.
Therefore, tools for supporting these tasks have
become essential [15].

An approach for the automatic detection pre-
sented and visualization of code smells, and dis-
cuss how this approach can be used in the design
of a software inspection tool [16]. There is an il-
lustration of the feasibility of their approach with
the development of jJCOSMO, a prototype code
smell browser that detects and visualizes code
smells in JAVA source code. While this tool con-
tributes a valuable idea, it typically supports lim-
ited structural levels (methods, classes, packages)
and lacks richer abstractions for architectural or
system-level analysis.

Murphy [17] presents the value of versatility,
expressivity, and context-sensitivity when show-
casing smells, and proposes a mock-up model of
a detection tool using the above properties. Vari-
ous tools have been developed to help developers
inspect the quality of source code. A code smell
detector that uses an interactive ambient visual-
ization to make programmers aware of smells and
make informed, confident refactoring judgments.
This paper suggests that such tools have a place in
the software developer’s toolkit. Although code
visualization tools are increasingly applied to
support code smell detection, they have limited
module structures, such as methods, classes, and
packages.

Researches used multiple visualizations to de-
tect bad smells [18]. They present four views with
concern properties: package-class method struc-
ture, inheritance structure, dependency graph,
and dependencies-weighted graph, and study to
assess the extent to which visual views support
code smell detection. These work showcases the
importance of multi-perspective views when vi-
sualizing bad smells, but still fall short of offering
unified, intuitive metaphors for smell visualiza-
tion across abstraction levels.

Developed a semi-automatic detection ap-
proach that combines automatic pre-process-
ing and visual representation and analysis of
data [19]. It is complementary to automatic ap-
proaches for anomalies whose detection requires

319

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

knowledge that cannot be easily extracted from
the code directly. The detection is seen as an in-
spection activity supported by a visualization tool
that displays large programs (thousands of class-
es) and allows the analyst to navigate at different
levels of the code. In this approach, they specifi-
cally target anomalies that are difficult to detect
automatically.

Visualization tools

The manual code smell detection has sev-
eral drawbacks, such as being time-consuming,
non-repeatable, and does not scale and the ap-
proach that code smells are detected by humans
has not been thoroughly explored yet [20]. And
also, detection in large systems is a very time and
resource-consuming, and error-prone activity [4]
because smells cut across classes and methods,
and their descriptions leave much room for inter-
pretation. Therefore, the software industry needs
effective and practical tools to scaffold the pro-
cess of maintaining quality software.

The relationship between the class error prob-
ability and bad smells based on three versions of
the Eclipse project, and the result showed that
classes that are infected with the code smell Shot-
gun Surgery, God Class, or God Methods have
a higher class error probability than non-infected
classes [21].

The manual detection of design flaws showed
more familiar with a software system, their abil-
ity to objectively evaluate it and spot design flaws
decreases [22].

Dhambri et al [23] developed a 3D software
visualization model to detect design abnormali-
ties. The model uses both quantitative data based
on metrics and structural data based on connec-
tions among modules. There is an improvement
needed in performance variability to reduce this
variability. This approach is a manual process and
needs to be combined with an automatic one in
another direction in their investigations.

An interactive ambient visualization novel
smell detector implemented for programmers. This
model is used to help programmers identify code
smells and refactoring judgments [24]. This is dis-
cussed, has been tested with limited code smells.

A multiple views approach based on concern-
driven software visualization resources to ef-
fectively spot code smells. The approach relies
on interactive visual abstractions of source code
to support a concern-sensitive analysis based on

320

different views [25]. Evaluation of this approach
is made for small criteria, and it is not sufficient
for large projects. The visual analysis could be a
more detailed and effective analysis of the pro-
posed approach, depending on the appropriate
assignment of concerns to source code. Despite
these advancements, these tools rarely integrate
multiple abstraction levels into a single coherent
metaphor.

Silva et al. [26] developed an interactive visu-
alization to help developers identify Code Smells
called VISMELLS. The survey’s data concluded
that VISMELLS can facilitate the discovery of
Code Smells. Visualization of values from soft-
ware metrics used to detect Code Smells is also
enabled in VISMELLS.

Mumtaz [18] demonstrated an approach to
analyze multivariate object-oriented software
metrics to detect outliers, which could be con-
nected to bad smells in the context of software
quality. As a result, this approach helps visually
identify the data elements as bad smells, which
are also perceived as outliers in the linked vi-
sualizations. The automatic detection of bad
smells is dependent on the published detection
rules, and this approach is not yet tested by users
other than the authors.

Software visualization is used to visualize
the code smells in the program. Hammad, et al
[16] proposed a visualization approach and shows
classes as buildings and bad smells as letter ava-
tars based on the initials of the names of bad
smells. These avatars are shown as warning signs
on the buildings. A framework is proposed to au-
tomatically analyze code to identify bad smells
and to generate the proposed visualizations. The
evaluation of the proposed visualizations showed
that they reduce the comprehension time needed
to understand bad smells.

Island metaphor visualization technique is
used to emphasize the modular aspects of OSGi,
and an interaction technique is implemented to
preserve user comfort while inspecting large soft-
ware systems. This approach is used for exploring
OSGi-based software systems in virtual reality.
This approach needs to be applied for practicabil-
ity in aiding software comprehension tasks [16].

Evaluation of the impact of the medium on
the effectiveness of 3D software visualizations is
the most important fact. They experimented on
the 3D city visualization technique that has prov-
en effective for software comprehension tasks.
Currently, they have applied this to a standard

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

computer screen (SCS), an immersive 3D envi-
ronment (I3D), and a physical 3D printed model
(P3D). Further, they want to investigate the im-
pact of media used for collaborative visualization,
such as wall displays, multi-touch tables, etc.

While current tools show the utility of visu-
alization, there are no integrated, scalable, and
multi-level visualizations that allow developers
to study code smells in their entirety rather than
fragmented perspectives.

Limitations

Although significant progress has been made
in developing visualization approaches for code
smell detection, several key limitations remain.
First, many tools restrict their analysis to lim-
ited abstraction levels, such as methods, classes,
or packages, thereby overlooking higher-level
architectural smells that impact overall system
design [8,25]. This narrow focus reduces the ap-
plicability of these tools in large-scale, real-world
projects where multi-level analysis is critical.
Second, scalability remains a recurring obstacle.
While some approaches demonstrate promising
results on small or medium-sized systems, few
have been evaluated on large industrial projects
[23,26]. The computational and cognitive load of
analyzing thousands of classes or modules often
overwhelms the visualization techniques, limiting
their utility for practitioners. Third, most studies
rely heavily on manual or semi-automatic pro-
cesses. Even when automated metrics support
detection, the interpretation of results is often left
to developers, reintroducing the same subjectivity
and inconsistency that visualization was intend-
ed to mitigate [20]. This lack of full automation
means that many tools are not yet mature enough
for integration into standard development pipe-
lines. Finally, empirical evaluations of visualiza-
tion approaches remain limited. Many studies are
restricted to small case studies, controlled experi-
ments, or academic prototypes, which undermines
generalizability [18,27]. Taken together, these
gaps indicate a clear need for more comprehen-
sive visualization techniques that combine auto-
mation with multi-level, scalable, and interactive
representations. Addressing these challenges will
not only enhance code comprehension but also
improve the reliability of refactoring decisions,
making visualization a critical research direction
in software engineering.

Proposed approach

This section proposes a novel visualiza-
tion model designed to detect and analyze code
smells using two intuitive metaphors: the Island
Metaphor [28,29] and the City Metaphor [30,31].
These metaphors provide a structured way to ex-
plore large software systems [32], depicting code
structures and potential smells at both the class
and method levels. The model itself does not
directly detect code smells but integrates Sonar-
Qube’s output, which identifies code smells like
Long Method, Feature Envy, God Class, Large
Class, Duplicate code, Long Parameter List [33].
By using SonarQube’s capabilities, this model
provides an interactive 3D representation of these
code smells. This approach enables developers to
gain deeper insights into the code base through
visually augmented models.

Class level view

A novel approach to visualize code smells at
the class level is introduced through the Island
Metaphor. This metaphor represents decoupled en-
tities [34] in a software system, enabling a simpli-
fied way to visualize the complex code structures
[28,29]. In this metaphor, each software system is
represented as an ocean, while individual classes
within the packages are represented as islands.

Method level view

At the method level, the model employs the
city metaphor, which provides a deeper insight into
the internal structure of each island [31,32]. Which
means this visualization technique is used to de-
scribe the methods and the attributes. In the city
metaphor, methods are represented as buildings,
variables are depicted as people, and input param-
eters are shown as small squares (windows) on the
block. The number and height of the buildings re-
flect the content of the methods, such as the number
of lines or the complexity of the code. In this view,
the code smells are also highlighted in red.

Figure 1 depicts a detailed visualization of
the city metaphor, offering a better understand-
ing of the content described above. This meta-
phor is interactive and can be navigated using the
keyboard, allowing developers to extract a large
number of methods inside a single class. By iso-
lating these elements as building blocks, the city
metaphor helps highlight areas that may require

321

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

more attention. As a result, the proposed model
offers a visual view that depicts the overall evo-
lutionary characteristics of packages, classes, and
methods, including the identified code smells
(Figure 2).

Identification and analysis of code smells

Beyond the basic visualization, the model
provides a detailed analysis to help developers
understand the nature of code smells. If a devel-
oper clicks on a selected class or method object at
the abstraction level, a summary message window
appears, displaying key metrics such as the class
name, number of attributes, number of lines of
code, number of methods, and affected methods.

Whiteboard view and visual feedback

In addition to the massage window, the mod-
el provides an inside view of a building, which
includes an interactive whiteboard and analyti-
cal charts for a selected method. The whiteboard
displays a summary of each detected smell type,
such as long parameter lists, feature envy, and du-
plicate methods. Furthermore, this includes attri-
butes, analytical data of the code smells through
charts, and a summary of the suspicious code

Clock Tower
Constructor

Helicopter ’“

Object Call
Methods

Methods including
code smells

snippets. The analytical data that are represented
in these charts are based on the information col-
lected throughout the visualization process, offer-
ing a complete view of the code quality.

Figure 4 illustrates the whiteboard view,
where identified code smells are listed. This gives
the developers an idea of the code base that needs
to be improved.

Final code snippets and refactoring
suggestions

Once the code smells are identified, develop-
ers can view the actual code snippets that are af-
fected by code smells. The final step bridges the
gap between the visual representation and action-
able code refactoring.

Data extraction and object mapping

To generate these visualizations, numerous
metrics need to be abstracted from the source
code. These metrics help to determine the size of
the visual element. Table 1 summarizes the object
mapping of the corresponding visualization tech-
niques: island view and city view. Showing how
each software component is displayed within the
visualization model.

Humans : Variables
Windows : Input Paramters

Methods including

Security code smells

Encapsulation

Lift
Loop
Reusability

Methods including
code smells

Figure 1. Visual representation of city metaphor

322

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

£

Category Class

User Class
include
Code Smell

ShoppingCart Class

Product Class
include Code Smells

Sea

Package : com.chathas.onlinestore

Customer Details
Class

Product Order
Class

Figure 2. Visual representation of Island metaphor

PROOF-OF-CONCEPT IMPLEMENTATION

This section showcases the proof-of-concept
implementation of the 3D visualization model. The
goal here is to transform the abstract code smell
information into dynamic, multi-tiered visualiza-
tions that support developers in identifying and an-
alyzing design issues. Before the implementation
process, a detailed model overview is provided to
help readers understand the main components of
the model and how they interact. The implemen-
tation stage is divided into three sections: (i) ex-
tracting a dataset from a selected software project,
(i1) visualizing code smells across three abstraction
levels (class, method, and inside-method), and (iii)
applying an algorithm to avoid object overlapping
for a clear and meaningful layout (Figure 3).

System design and model overview

The tool is designed based on established vi-
sualization techniques and code smell detection
approaches. The key purpose of this model is to
automatically visualize the source code, high-
lighting areas affected by code smells, and visu-
alize it in a 3D environment. This approach has
been achieved by importing semantically struc-
tured JSON data generated from the static analy-
sis of the chosen software project.

The proposed tool’s function is based on
a set of rules; these rules handle specific code
constructs. The tool checks if these rules are
being violated during the analysis process, and
any violations are flagged as code smells. This
approach is beneficial for developers when
identifying potential design issues that might
have been missed or ignored. Using this tool,
they can receive early warnings, even for smells
introduced intentionally.

The tool is implemented using PHP (Co-
delgniter) for server-side logic, the Babylon.js
JavaScript library for interactive 3D rendering,
and MySQL for database management. This
makes the platform independent and deployable
on any web hosting platform without any third-
party dependencies.

e PHP (Codelgniter) was selected for its light-
weight, secure, and scalable server-side
framework, providing an efficient backend for
handling large datasets generated during static
code analysis.

e Babylon.js enables the creation of interactive
3D environments that support real-time naviga-
tion and manipulation of visualized code smells,
which aligns to provide an intuitive and dynam-
ic visualization experience for developers.

e MySQL was chosen for database management
due to its reliability and efficient querying

323

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

Table 1. Object mapping 3D visualization model

Attribute Mapping object
Classes Island
Lines of code in class Perimeter of a cylinder
Packages Sea
?Ztggﬁ:rwew in the island Numerical proportion of code smell considering the source code
Left sidebar navigation Classes and methods included in the generated model
Right sidebar Details of the number of issues, severity, time, and effort needed to fix the issue
Methods / functions Building block
Attributes / variables Left whiteboard inside building
Input parameters Blocks on the floor, classroom
Lines of code Building Height
Inside of method Classroom
Pie chart lllustrates the numerical proportion of code smells by considering the source code
Bar chart Types of code smells found in the source code
Whiteboard Suggestions to fix code smells
View graph button lllustrate the numerical proportion of code smell by considering the source code in the method

Link Fileration

—'@ED—

e

&

Link Collection Visualization Model ln;‘t),:,c:t(:?:e
from GitHub
Generate Island Metaphor
A
<= Fa
T
,:. s
i £
Generate City Inside the Dl:z:)l(llllg ceosde
Metaphor Bullding yp
Figure 3. Implementation cycle
X W-Width
H-Height
X=0;Y=0 D-Deep

—p Node
Node l

Figure 4. Object moving to avoid overlapping

324

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

capabilities, allowing for smooth handling of
large-scale software project data and ensuring
scalability for future applications.

The output is an interactive, browser-based
3D visualization model, allowing developers to
inspect code smells at multiple abstraction levels.
The systems interactive nature allows developers
to navigate through the visualized code structures,
facilitating a deep understanding of the code base
and supporting better decision-making.

Dataset extraction from selected
software project

The process of preparing the input dataset con-
sists of two steps: The first step is selecting or im-
porting a project found through search engines, on-
line communities, and software repositories. The
second step is formatting the raw analysis data into
a predefined JSON format that serves as input for
the visualization engines. The extracted, formatted
data are stored as a JSON meta-model. The meta-
model consists of class names, line counts, meth-
ods, parameters, code smell types, and other meta-
data. This is useful for meaningful visualizations.

Visualization models for three abstraction
levels

The 3D visualization model is developed us-
ing open-source technologies, offering interactive
zooming, rotation, and navigation capabilities
[34]. The model uses a one-to-one mapping ap-
proach and employs unit visualizations at each
level of abstraction.

The main visual representation of the proposed
approach consists of islands, buildings, and interior
spaces. Islands have emerged from the sea and are
represented by gray-colored surfaces, while a blue-
colored background represents a package. Build-
ing blocks represent methods, and the gray-colored
ground surface represents the base class. Parame-
ters are mapped to small boxes on the floor, and the
whiteboard represents code smell types, snippets,
suggestions, and local variables inside the method.

The perimeter of the cylinder and the height
of a building block correspond to the number of
lines of code. The colors of each object — dark
red, light red, yellow, and green — represent the
severity of the code smells. The small green
boxes on the floor inside the building represent
the parameters declared in the method, while the

whiteboard on the wall inside the building rep-
resents the code snippet, code smell types, local
variables, and suggestions.

Algorithms to avoid overlapping objects

Object placement on the canvas is crucial for
generating the visualizations. This process aims
to provide a more convenient solution for plac-
ing objects on the canvas without overlapping. An
algorithm was applied to avoid the overlapping
of visual objects at all abstraction levels. The al-
gorithm works as follows: First, retrieve the class
array from the JSON request, pick the first class,
and place it on the canvas. After detecting the first
x and y coordinates and the size of the class, cal-
culate the next coordinates using the first-class
object and a constant value. Iterate this process
while considering the canvas width. After the first
row on the canvas ends, the visual object’s coor-
dinates need to move to the next row.

According to this process, take the first meth-
od/class block and check whether there is enough
space to place it on the root. If there is enough
space, the object is placed in the upper-left corner.
Then, the space in the root will be divided into
two parts: the right node and the left node. When
the second block is processed, it starts from the
root to check for available spaces. Since the up-
per-left corner is utilized, check the spaces to its
right and below. If that block is placed, the space
is split into two. This process continues until ev-
ery block is placed inside the canvas.

The root canvas has to be grown based on
the method/class size. First, we equalize the root
size to the size of the largest method. Then, the
algorithm starts as before. The first block will be
placed without any issue since the root is equal to
its size. From the second block onward, the root
has to be resized.

Code smells visualization using a Novel 3D
model

The final stage of the tool generates 3D visu-
alizations for buildings, islands, and inside-build-
ing views according to this dataset. Zooming,
localization, and browsing are essential features
that are under consideration. Developers will
have the ability to search for and locate a specific
building that corresponds to a specific class. They
will also be able to zoom in or out of the build-
ings. The tips, navigation, and summary graphs

325

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

feature helps developers navigate through build-
ings in the 3D environment and easily understand
large-scale systems with many classes.

In the proposed approach, individual island
groups can form archipelagos, providing the first
abstraction level and the user interface of the is-
land-view prototype. Figure 4 illustrates the auto-
matically generated class-level model created us-
ing the imported JSON request. The perimeter of
the cylinder island view varies based on the num-
ber of code lines included in the class. Perimeters
highlighted using dark red are meant to include
code smells in the classes or any other lower-level
member that contains code smells.

Figure 5 shows the message box appearing after
clicking on each class. It includes details such as the
class name, the number of code lines in the class,
the code smells present in the class or lower mem-
ber levels, and a link to the next abstraction level.

Figure 6 illustrates the next abstraction
level using the city metaphor. The method level
shows the building block visual objects related
to the methods inside the class. The height of
the building blocks varies based on dynamic
values updated in the database. This height is
calculated based on the number of code lines in

the method. Each block is shown in a different
dark color on the ground to represent the class
if it has a bad smell related to the method. The
severity of the bad smell determines the color,
with darker colors indicating higher severity.
The severity levels are critical, major, minor,
and informational (info).

Figure 7 shows the message box that appears
after clicking on each method. It includes details
such as the type of code smell, a code snippet,
a detailed severity level, and a link to the next
abstraction level. The building shown in Figure
8 represents the model. It consists of three walls,
each with more details. The number of boxes on
the floor represents the number of parameters for
each method. The type of code smell and error
code is shown on the whiteboard on the main
wall, while the right-side wall provides sugges-
tions and tips to solve these code smell issues.

We adapted the pie chart visual paradigm, us-
ing colors and portions to represent code smells
and clean code that are affected by a specific con-
cern. Figure 9 illustrates how concerns are repre-
sented in the pie chart. The portion colored in dark
red corresponds to the percentage of code smells
in methods that are affected by a specific concern.

Final - 3 Dimensional Visualization of Code Smells

Navigation

Product Class.

- getTransferData

- AttachmentSerializer
- wiiteTo
comvertToBufieredimage
~ showBinary

BundlesAction Class

- readFully
- loadClass

- cresteAdd TypeCreatar
- StartProcess.

ImageCompression Class

= Intest

Summery
20166606466566T hrs
effrot

Critical: 2
Major: 3
2

nfo :1

¢ 3

CODE SMELLS SUNMERY

Figure 5. 3D model for island metaphor

Final = 3 Dimensional Visualization of Co

Product Class
i Lines - 123
Includes Code Smells

Figure 6. Message box with details of the class in the island metaphor

326

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

In this figure, we can see supportive links (red
color links), issue status (critical, major, minor,
or info), the method you selected, and its parent
class (left sidebar in Figure 9).

The Figures 4-9 illustrate the navigation
of the entire process of the proposed model’s
implementation.

Visualizing evolutionary aspects
of code smells

The above images (Figures 11 and 12) illustrate
how the model visualizes the evolution of code
smells across abstraction levels. In Version 1 (Fig-
ure 11), multiple methods exhibit severe smells,
represented by tall red blocks, while in Version 2
(Figure 12), after refactoring, these smells are vis-
ibly reduced in severity and complexity. Each 3D
element dynamically mirrors these changes over
time, making it easy for developers to track grow-
ing or diminishing code smells. By showcasing
these trends visually, the model helps developers
prioritize refactoring based on historical patterns
rather than relying on textual descriptions or static
snapshots. This leads to more informed and proac-
tive maintenance decisions.

Limitations of the proposed approach

Despite the strong performance of the pro-
posed model, several limitations exist. The ap-
proach focuses mainly on class, method, and
inside-method levels, without addressing high-
er-level architectural relationships such as de-
pendencies between packages or modules. The
model’s industrial-scale systems have yet to be
empirically validated due to the high number of
classes. Table 2 provides evidential support for
this statement. The table illustrates the scalability

of the proposed model across various sizes of soft-
ware projects: small, medium, and large-scale.
The performance of the model shows successful
visualizations for the small and medium-sized
projects, but unsuccessful visualizations for the
large-scale project with over 1.6 million lines of
code. Moreover, the visualization relies on Sonar-
Qube outputs for code smell detection, making it
dependent on external tools rather than perform-
ing intrinsic analysis. Finally, the evaluation was
limited to a pilot study with eleven participants,
indicating the need for broader empirical valida-
tion using larger datasets and diverse practitioner
groups to enhance generalizability.

EVALUATION

Comprehensive evaluation of the proposed
model

The primary objective of this evaluation is to
assess the usability and effectiveness of the pro-
posed 3D visualisation model by determining
whether it facilitates developers in identifying and
understanding code smells in software projects.
The evaluation was conducted through a pilot ex-
periment, which involved researchers and experts
in the software field (software engineers, senior
software engineers, tech leads, QA, and database
administrators). The group of participants consist-
ed of thirteen practitioners with up to 4 years of
experience, four with up to 7 years of experience,
and four with more than 8 years of professional ex-
perience. The primary objective is to assess how
effectively the visualisation model can identify and
facilitate understanding of bad smells in code.

For this evaluation, the model was tested
using a sample software project selected from
SonalCloud. The projects were pre-analyzed to

Final - 3 Dimensional Visualization of Code Smells

Navigation
Product Class
- getTransfarData

= AttachmentSerializer
writzlo

convertToBufferedimage
= showBinary

Summery
L1hrs effrot

Critical: 0
o Major:1

1

‘l

CODE SMELLS SUMMERY

Figure 7. 3D model for city metaphor

327

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

AttachmentSerializer
Cosa Unes:-3

Includes Code Smells

Type: Dup
Snippet

GO TO CLASS ROOM

Figure 8. Message box with details of the method in the city metaphor

Final - 3 Dimensional Visualization of Code Smells

Navigation

b LA 1

Figure 9. 3D model for inside building

Groph - Code 5malls %

Product Class | AttachmentSerializer

Mathod

Code Emals Percantigs (4

- Cotn

\

Figure 10. Code smells percentage included in the method

identify code smells. The selected GitHub project
results were formatted into a JSON input request
and uploaded to the model. The model generated
3D visualizations for the relevant project, includ-
ing different abstraction levels: the island meta-
phor (for class-level view), city metaphor (for
method-level view), and detailed internal views
(such as classroom and whiteboard views).
The evaluation was designed with the fol-
lowing objectives:
e Ability to identify and visualize the software
project in proper, understandable, and four

328

abstraction levels, i.e., Island metaphor view,
city metaphor view, classroom view, and
whiteboard illustration with code smells.

e Ability to identify, categorize, and visualize
the code smells in the software project

To orient practitioners with code smells, detec-
tion approaches, and evolutionary characteristics,
the following steps will be carried out. First, all
participants will be introduced to code smells and
visualizations of code smells. Second, a detailed
description of the proposed visualization model

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

Table 2. Model’s scalability for small, medium, and large-scale projects

Project Small Medium Large
Calculator app created with Java | Java SE Inventory Management A scalable, large-scale
Name)
Swing System eCommerce framework
. . . https://github.com/sajxraj/ . S
GitHub Link https://github.com/HouariZegai/ InventoryManagementSystem/ https_./_/glthub.com/llsmplo/
Calculator scipio-erp/tree/master
tree/master
LOC 735 6568 1.6 million lines
No of classes 6 25 9,500
No of methods 25 205 60,000
Visualization using Successful Successful Unsuccessful
the proposed model

Final - 3 Dimensional Visualization of Code Smells

Navigation

SalsshScresnjons

— thowSplashandStan)

=~ SOSHUFIRT ¥}

ShowtetsagRInAnotharaayt

= doFverythingint a, int

b, String name)
leadfakeSragrmaall

Summery

1433333333333 s
#ffroc

Critical: C

Major: 3

o

‘.

Figure 11. Version 1 of the SplashScreen.java class

Final - 3 Dimensional Visualization of Code Smells

Navigation

~ showspiashanastart)
dostufflint)

shewMessageinAnctherVayil
- dolverythingfinta, int

b, Striog narme}

~ loadFakeProgress)|

- createSplashFrame()

~ showrbregresastops]]

~ pause(int millic)

Summery

2.2666666666667 hry
affrot

Critical : ¢

Major 2

Figure 12. Version 2 of the SplashScreen.java class

will be given to the participants. The participants
will be given time to go through the proposed visu-
alization tool provided. Next, all participants will
be asked to raise any questions to clarify any ambi-
guity before proceeding with the actual evaluation.
After ensuring that all participants are familiar with
the concept of code smells and their visualizations,
the actual experiment phase will begin.

The experiment was organized as follows: As
the first step, Google Forms were created with
several questions for all levels, covering the pro-
cess of code smell visualization. As the second
step, the target code smells (duplicate blocks,
long parameter lists, replace all(), extract T/Catch

block) were extracted from the projects analyzed
in SonarQube. This process had already been
completed as part of the case study. The third
step involves asking the participants to identify
the objects using software solutions and answer
the questions, along with the time consumed for
each level. In the fourth step, feedback was col-
lected from the participants to analyze whether
the visualization helped them in detecting code
smells and whether they were comfortable using
the visualization tool. Finally, the duration that
each respondent required to answer the questions
at each level and the whole process of the tour
was screen-recorded.

329

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

Participants were asked the following ques-
tions to evaluate their ability to detect code smells
at each level.

Class Level Questions (CQ):

e CQI: What are the classes in this Java project?

e (CQ2: What are the code smell classes in the
island metaphor (first view)?

e (CQ3: How is the maximum NOC (Number of
Code Lines) class identified?

e (CQ4: What is the NOM (Number of Methods)
in each class?

Method Level Questions (MQ):

e MQI: What are the classes and their method
names that include code smells?

e MQ2: What are the methods given priority to
fix?

e MQ3: How is the minimum NOC (Number of
Code Lines) method identified?

e MQ4: What is the percentage of code smell
(%) in your existing class?

Inside the Method (IMQ):

e IMQI1: What is the type of code smell found in
this method?

e IMQ2: What are the local variables and
the number of attributes (NOA) within this
method?

e IMQ3: What is the clean code percentage (%)
in this method?

e IMQ4: Does this method include long param-
eter code smell? How did you identify it?

e IMQS5: What are the parameters in this
method?

General Questions (GQ):

e GQI1: How do you find the method that in-
cludes code smells (critical)?

e GQ2: What is the shape of the class? What is
the shape of the method?

e (GQ3: Where can you find the code snippet in-
cluding the code smells?

Evaluation of precision

The precision of the proposed model was
evaluated based on the number of correct an-
swers provided by participants when identify-
ing code smells at various levels. Figures 13,
14, 15 and 16 show the number of correct an-
swers submitted by participants for different
code smells across levels. The results indicate
that participants were generally able to identify
code smells accurately, with some individuals

330

performing better than others. For example, the
first participant, a QA specialist, correctly an-
swered 14 out of 17 questions, while another
participant provided 16 correct answers. This
demonstrates that the visualization model is ef-
fective in helping developers understand and
identify code smells at different abstraction
levels using the visual tools.

Evaluation of recall

Recall, or the ability to remember and iden-
tify code smells after an initial interaction with
the model, was also assessed. Figure 17 shows
the time taken by the participants to complete the
tasks at the common level. This was designed to
test the user’s memorability of the novel model.
Overall, the participants took 4.49 minutes to
complete the tasks at the fourth level, showcas-
ing their ability to recall and identify code smells
efficiently (Figure 18). This demonstrates that the
model is not only easy to learn but also supports
identifying code smells.

Comparison of method-level
and class-level detection

To assess how well users identify code smells
at different abstraction levels, different sets of
questions were used. The evaluation included
questions related to specific code smells visual-
ized using the model.

Figure 19 illustrates the correct answers pro-
vided by the eleven participants to the class-level
questions. The group that used code smells visu-
alization for the class-level questions answered
57.1% of all questions correctly.

Figure 20 shows the correct answers provided
by the eleven participants to the method-level
code smells visualization questions. The par-
ticipants who used visualization questions at the
method level completed the task with 81% of all
questions answered correctly.

The data demonstrates that the method-lev-
el (81% accuracy) code smell detection outper-
forms class-level (57.1% accuracy) detection in
terms of accuracy. This difference can happen
because of the granularity of abstraction at each
level. The City Metaphor, which represents
methods as buildings, provides more detailed
information, allowing developers to focus on
specific code smells within methods, such as
long parameter lists or feature envy. These

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

No of Correct Answers
2R e e
H O ® © N B O
L

N

Question 1 Question 2 Question 3 Question 4
Questions

(=]

Figure 13. Number of correct answers submitted
at class level

I

Question 1 Question 2 Question 3 Question 4 Question 5
Questions

No of Correct Answers
S o @

N

o

Figure 15. Number of correct answers submitted
at the inside method level

o N
8 & 3

Time (Minutes)
aoa s
[]

N
2
8

375

‘\\ ‘:\ Q” Q‘ 0‘7 Qb o’\ (‘% cﬁ R SR LA <A I] .‘b .;\ .\‘% R o >

& & S S &S S S S S PNEPNIPNGPSEPLIIN

FEEEEEEEEL LS
Participants

Figure 17. Total time taken to complete
the common level

smells are more difficult to detect at the broader
class level, where the island metaphor groups
entire classes together. According to Cognitive
Load Theory, visualizing more granular details
at the method level reduces cognitive load by
presenting developers with smaller chunks of
information, making it easier to spot and ad-
dress specific code smells [35].

Time analysis across levels

This study relies on three consecutive abstract
levels of process that class level, method level,
and inside method level. Participants answered

No of Correct Answers
£ ® 5 5

s

~

Question 3
Questions

Question 1 Question 4

Question 2

Figure 14. Number of correct answers submitted
on the method level

2I I I
o

Question 1 Question 2 Question 3
Questions

= =
o © 5] [N

No of Correct Answers
£

Figure 16. Number of correct answers submitted

in the common level
“olllballl &o‘.II o‘o‘o“I

PO KRR
Figure 18. Time to complete each level

Time (minutes)

Participants

with the prepared questions by identifying the ob-
ject and the bad smells visualization in this tool.
In this context, Figure 18 depicts the analysis of
the time participants took to complete each level.
Hence, the analysis clearly provides sufficient
information about the total time taken for each
level and the time taken to complete all the lev-
els. Therefore, the average time to complete the
whole process is 18.87 minutes for each user.
Table 3 shows the average time taken by all
participants to complete all levels and each level
separately. The class level tool is the longest, as it
involves a broad scope of code visualization. The

331

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

(Total Questions - 21)

Wrong Answers

Correct Answers

Figure 19. Class level code smell identification

(Total Questions - 21)

Wrong Answers

Correct Answers

Figure 20. Method level code smell identification

island metaphor at this point required developers to
process large, less specific chunks of information,
which is more cognitively demanding. In contrast,
the method level (4.55 minutes) focused on more
granular details (methods), which were easier to
navigate and interpret, aligning with Cognitive
Load Theory that suggests smaller, more specific
information chunks are easier to process.

The inside method level took 4.12 minutes,
showing that once developers focused on indi-
vidual methods, the task became quicker and
more efficient. This suggests that method-level
and inside-method visualizations help developers
identify specific code smells more efficiently, re-
ducing cognitive load.

In total, the average time of 18.87 minutes
reflects the model’s efficiency across each level,
where granular abstraction levels (method and in-
side-method) led to faster detection of code smells.

332

Model comparison

Table 4 shows a detailed comparison of
several existing smell detection tools and visu-
alization tools alongside the proposed model,
highlighting key features such as visual meth-
od, interactivity, scalability, abstraction levels,
code smells detected, and refactoring sugges-
tions. This set of attributes was chosen because
together, they cover fundamental aspects to as-
sess how effective tools are at visualizing code
smells. This assessment encompasses visualiza-
tion tools of both 2D and 3D, providing insight
on how different dimensions affect developer
perception, scalability, and usability.

When comparing the proposed model with
the existing models, the proposed model dem-
onstrates high interactivity, allowing users to ex-
plore code structures by zooming, localizing and
browsing across multiple levels of details. Its scal-
ability is categorized as medium, as visualizing
3D visualizations for large scale projects is hard
because of its complexity. In terms of abstraction,
the model not only supports class level, but also
extends to method level. Moreover, it goes further
to visualize code smells in Inside Methods, allow-
ing developers to trace code smells form high-
level structures down to behavioural interactions
within methods.

Threats to validity

1. Internal validity

Internal validity relates to the correctness of
the evaluation procedure and whether confound-
ing factors may have influenced the outcome.
One threat arises from the lack of a control group
using conventional tools (e.g., SonarQube UI) for
comparison. As a result, it is difficult to isolate
whether improvements in performance stemmed
from the 3D visualization model itself or from the
novelty of the task. In addition, while all partici-
pants received the same training and instructions,
variation in familiarity with code smell concepts
or experience with 3D environments could have
affected their performance. To reduce this risk,
the evaluation included a standardized orientation
session and task walkthroughs for all participants.
2. External validity

External validity concerns whether the results
of'this experiment can be generalized to more gen-
eral contexts. First, the evaluation was conducted
using reasonably simple and moderately sized

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

Table 3. Average time to complete the whole process and each level

- Class

Method

Inside Common

Avg time (min) 5.68

4.55

4.12 4.48

Table 4. Model comparison between existing models and the proposed model

Tool Visualization Interactivity Scalability Abstraction levels
JDeodorant [10] None Limited Limited Class and method level
InFusion [9] None None Medium Class, method and metrics level
VISMELLS [26] 2D Medium Limited Class and method level
CodeCity [36] 3D Limited Medium Class and package levels
CodeCharta 3D Medium Medium File levels
Proposed model 3D High Medium Class level, method level, inside method

Note: CodeCharta [Internet]. CodeCharta. [cited 2025 Oct 10]. https://codecharta.com/

software projects, which may not fully represent
the complexity and scale of large-scale software
systems. Though the intention is to test usability
in a controlled setting, the evaluation results may
vary for real-world software projects. Second, the
participant group, though diverse in professional
roles (developers, QA engineers, tech leads), con-
sisted of only 11 individuals, which may not re-
flect the full spectrum of developer experience or
industry practices.
3. Conclusion validity

Conclusion validity refers to the strength of the
inferences drawn from the data. The relatively
small number of participants presents a threat to
statistical reliability. Since no statistical hypoth-
esis testing was applied (e.g., t-tests, MWU),
conclusions are based on descriptive metrics only
(e.g., accuracy percentages, task duration). This
limits the ability to generalize the findings beyond
this study. However, as proof-of-concept, the eval-
uation offers useful initial evidence of the model’s
practical usage and lays the foundation for more
rigorous empirical studies in future work.

CONCLUSIONS

This paper introduces a novel 3D visualiza-
tion model to effectively visualize code smells by
integrating island and city metaphors to represent
classes, methods, and their relationships. The
code smells identified through SonarQube are
mapped into visual objects, allowing developers
to understand software systems across multiple
abstraction levels. Consequently, this visualiza-
tion enhances program comprehension, supports

the refactoring of problematic code, and ulti-
mately contributes to improving the overall qual-
ity of software projects. The evaluation results
revealed its effectiveness in recognizing code
smells and their underlying reasons in an efficient
way. Based on the results, it is evident that the
metaphor-based visualization supports develop-
ers’ understanding by leveraging spatial memory
and helping form intuitive mental models of code.
Mapping abstract code structures to familiar real-
world structures reduces cognitive load and aids
in comprehension and decision-making.

Future work will focus on visualizing ad-
ditional elements, such as class relationships,
method interactions, data type dependencies, and
attribute invocations. Furthermore, integration of
this model with state-of-the-art tools used in the
software industry would streamline the decision-
making process by providing higher-level in-
sights into software quality.

Acknowledgements

The authors of this paper gratefully acknow-
ledge the financial support provided by the Senate
Research Grant (Grant No — SCR/ST/2025/78) of
the University of Moratuwa. Also, authors would
like to thank the School of Computing at Asia Pa-
cific Institute of Information Technology (APIIT).

REFERENCES

1. Cairo AS, Carneiro G de F, Monteiro MP. The Im-
pact of Code Smells on Software Bugs: A System-
atic Literature Review. Information [Internet]. 2018
Nov [cited 2025 Sept 23]; 9(11): 273. https://www.
mdpi.com/2078-2489/9/11/273

333

Advances in Science and Technology Research Journal 2026, 20(3), 318-335

10.

11.

12.

Palomba F, Bavota G, Di Penta M, Fasano F,
Oliveto R, De Lucia A. On the diffuseness and the
impact on maintainability of code smells: a large
scale empirical investigation. In: Proceedings of
the 40th International Conference on Software
Engineering [Internet]. New York, NY, USA: As-
sociation for Computing Machinery; 2018 [cit-
ed 2025 Sept 22]. 482. (ICSE ’18). https://doi.
org/10.1145/3180155.3182532

. Sharma T, Spinellis D. A survey on software smells.

J Syst Softw [Internet]. 2018 Apr 1 [cited 2025 Sept
23]; 138: 158-73. https://www.sciencedirect.com/
science/article/pii/S0164121217303114

Hasantha C. A Systematic Review of Code Smell
Detection Approaches. 2021 May 5 [cited 2025 Sept
23]; https://zenodo.org/record/4738772

. Rao RS, Dewangan S, Mishra A. An Empirical

Evaluation of Ensemble Models for Python Code
Smell Detection. Appl Sci [Internet]. 2025 Jan [cit-
ed 2025 Sept 23]; 15(13): 7472. https://www.mdpi.
com/2076-3417/15/13/7472

Palomba F, Di Nucci D, Panichella A, Zaidman A,
De Lucia A. On the impact of code smells on the
energy consumption of mobile applications. Inf
Softw Technol [Internet]. 2019 Jan 1 [cited 2025
Sept 23]; 105: 43-55. https://www.sciencedirect.
com/science/article/pii/S0950584918301678

Al-Shaaby A, Aljamaan H, Alshayeb M. Bad smell
detection using machine learning techniques: A sys-
tematic literature review. Arab J Sci Eng [Internet].
2020 Apr 1 [cited 2025 Sept 23]; 45(4): 2341-69.
https://doi.org/10.1007/s13369-019-04311-w

Steinbeck M. An arc-based approach for visualiza-
tion of code smells. In: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution
and Reengineering (SANER) [Internet]. 2017 [cited
2025 Sept 23]. 397-401. https://ieeexplore.ieee.org/
abstract/document/7884641

Paiva T, Damasceno A, Figueiredo E, Sant’ Anna C.
On the evaluation of code smells and detection tools.
J Softw Eng Res Dev [Internet]. 2017 Oct 6 [cited
2025 Sept 23]; 5(1): 7. https://doi.org/10.1186/
s40411-017-0041-1

Tsantalis N, Chaikalis T, Chatzigeorgiou A. JDe-
odorant: Identification and Removal of Type-Check-
ing Bad Smells. In: 2008 12th European Conference
on Software Maintenance and Reengineering [In-
ternet]. 2008 [cited 2025 Sept 23]. 329-31. https://
ieeexplore.ieee.org/abstract/document/4493342

Imran A, Kosar T, Zola J, Bulut MF. Predicting the Im-
pact of Batch Refactoring Code Smells on Application
Resource Consumption [Internet]. arXiv; 2023 [cited
2025 Sept 23]. http://arxiv.org/abs/2306.15763

Biederman I. Recognition-by-components: A theory
of human image understanding. Psychol Rev. 1987;
94(2): 115-47.

334

13.

14.

15.

16.

17.

18.

19.

20.

21.

Albuquerque D, Guimaraes E, Braga A, Perkusich
M, Almeida H, Perkusich A. Empirical Assessment
on Interactive Detection of Code Smells. In: 2022
International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM)
[Internet]. 2022 [cited 2025 Oct 27]. 1-6. https://
ieeexplore.ieee.org/document/9911317

Wijesiriwardana C, Wimalaratne P. Fostering Re-
al-Time Software Analysis by Leveraging Hetero-
geneous and Autonomous Software Repositories.
IEICE Trans Inf [Internet]. 2018 Nov 1 [cited 2025
Sept 23]; E101-D(11): 2730-43. https://globals.
ieice.org/en_transactions/information/10.1587/
transinf.2018EDP7094/#

Bassil S, Keller RK. Software visualization tools:
survey and analysis. In: Proceedings 9th International
Workshop on Program Comprehension IWPC 2001
[Internet]. 2001 [cited 2025 Sept 23]. 7—-17. https://
ieeexplore.ieee.org/abstract/document/921708

Katbi A, Hammad M, Elmedany W. Multi-view
city-based approach for code-smell evolution vi-
sualisation. IET Softw [Internet]. 2020 [cited 2025
Sept 23]; 14(5): 506—16. https://onlinelibrary.wiley.
com/doi/abs/10.1049/iet-sen.2020.0010
Murphy-Hill E. Scalable, expressive, and context-
sensitive code smell display. In: Companion to the
23rd ACM SIGPLAN conference on Object-ori-
ented programming systems languages and appli-
cations [Internet]. New York, NY, USA: Association
for Computing Machinery; 2008 [cited 2025 Sept
22].771-2. (OOPSLA Companion *08). https://doi.
org/10.1145/1449814.1449854

Mumtaz H, Beck F, Weiskopf D. Detecting Bad
Smells in Software Systems with Linked Multi-
variate Visualizations. In: 2018 IEEE Working
Conference on Software Visualization (VISSOFT)
[Internet]. 2018 [cited 2025 Sept 23]. 12-20. https://
ieeexplore.ieee.org/abstract/document/8530127

Langelier G, Sahraoui H, Poulin P. Visualization-
based analysis of quality for large-scale software
systems. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software
Engineering [Internet]. New York, NY, USA: As-
sociation for Computing Machinery; 2005 [cited
2025 Sept 22]. 214-23. (ASE ’05). https://doi.
org/10.1145/1101908.1101941

Schumacher J, Zazworka N, Shull F, Seaman C,
Shaw M. Building empirical support for automated
code smell detection. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement [Internet].
New York, NY, USA: Association for Computing
Machinery; 2010 [cited 2025 Sept 22]. 1-10. (ESEM
’10). https://doi.org/10.1145/1852786.1852797

Li W, Shatnawi R. An empirical study of the bad
smells and class error probability in the post-release

Advances in Science and Technology Research Journal 2026, 20(3), 318—-335

22.

23.

24.

25.

26.

27.

28.

object-oriented system evolution. J Syst Softw [In-
ternet]. 2007 July 1 [cited 2025 Sept 23]; 80(7):
1120-8. https://www.sciencedirect.com/science/
article/pii/S0164121206002780

Yamashita A, Moonen L. Do developers care about
code smells? An exploratory survey. In: 2013
20th Working Conference on Reverse Engineer-
ing (WCRE) [Internet]. 2013 [cited 2025 Sept
23]. 242-51. https://ieeexplore.ieee.org/abstract/
document/6671299

Dhambri K, Sahraoui H, Poulin P. Visual Detec-
tion of Design Anomalies. In: 2008 12th Euro-
pean Conference on Software Maintenance and
Reengineering [Internet]. 2008 [cited 2025 Sept
23]. 279-83. https://ieeexplore.icee.org/abstract/
document/4493326

Murphy-Hill E, Black AP. An interactive ambient
visualization for code smells. In: Proceedings of the
Sth international symposium on Software visual-
ization [Internet]. New York, NY, USA: Associa-
tion for Computing Machinery; 2010 [cited 2025
Sept 22]. 5-14. (SOFTVIS ’10). https://dl.acm.org/
doi/10.1145/1879211.1879216

Carneiro G de F, Silva M, Mara L, Figueiredo E,
Sant’Anna C, Garcia A, et al. Identifying Code
Smells with Multiple Concern Views. In: 2010 Bra-
zilian Symposium on Software Engineering [Inter-
net]. 2010 [cited 2025 Sept 23]. 128-37. https://
ieeexplore.ieee.org/abstract/document/5629742

Silva I de J, Santos MSR, Ramos LL, Carvalho
LP da S. VISMELLS: An Interactive Visualization
for Identifying and Evaluating the Effects of Code
Smells on Software Projects. In: 2018 XLIV Latin
American Computer Conference (CLEI) [Internet].
2018 [cited 2025 Sept 23]. 40-9. https://ieeexplore.
icee.org/abstract/document/8786346

2Misiak M, Schreiber A, Fuhrmann A, Zur S, Se-
ider D, Nafeie L. IslandViz: A Tool for Visualiz-
ing Modular Software Systems in Virtual Reality.
In: 2018 IEEE Working Conference on Software
Visualization (VISSOFT) [Internet]. 2018 [cited
2025 Sept 23]. 112-6. https://ieeexplore.ieee.org/
abstract/document/8530137

Schreiber A, Misiak M. Visualizing Software Archi-
tectures in Virtual Reality with an Island Metaphor.
In: Chen JYC, Fragomeni G, editors. Virtual, Aug-
mented and Mixed Reality: Interaction, Navigation,
Visualization, Embodiment, and Simulation. Cham:

29.

30.

31.

32.

33.

Springer International Publishing; 2018; 168-82.

Wijayawardena ASK, Abeysekera R, Maduranga
MWP. A Systematic Review of 3D Metaphoric In-
formation Visualization. Int J Mod Educ Comput Sci
[Internet]. [cited 2025 Sept 23]; 15(1): 73. https://www.
mecs-press.org/ijmecs/ijmecs-v15-n1/v15n1-6.html

Wijesiriwardana C, Wimalaratne P, Abeysinghe T,
Shalika S, Ahmed N, Mufarrij M. Secure CodeCity:
3-dimensional visualization of software security fac-
ets. Journal of the National Science Foundation of Sri
Lanka. 2023 Oct 10 [cited 2025 Sept 23]; https:/jnsfsl.
sljol.info/articles/10.4038/jnsfsr.v51i3.11201

Moreno-Lumbreras D, Gonzalez-Barahona JM,
Robles G, Cosentino V. The influence of the city
metaphor and its derivates in software visualization.
J Syst Softw [Internet]. 2024 Apr 1 [cited 2025 Sept
23]; 210: 111985. https://www.sciencedirect.com/
science/article/pii/S0164121224000281

Jeffery CL. The City Metaphor in Software Visu-
alization. In: Computer Science Research Notes
[Internet]. Zapadoceskd univerzita; 2019 [cited
2025 Sept 23]. http://wscg.zcu.cz/wscg2019/2019-
papers/!! CSRN-2801-18.pdf

Lenarduzzi V, Lomio F, Huttunen H, Taibi D. Are
SonarQube Rules Inducing Bugs? In: 2020 IEEE
27th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER) [In-
ternet]. 2020 [cited 2025 Oct 10]. 501-11. https://
ieeexplore.ieee.org/document/9054821/

34.Merino L, Fuchs J, Blumenschein M, Anslow C,

35.

36.

Ghafari M, Nierstrasz O, et al. On the Impact of the
Medium in the Effectiveness of 3D Software Visu-
alizations. In: 2017 IEEE Working Conference on
Software Visualization (VISSOFT) [Internet]. 2017
[cited 2025 Sept 23]. 11-21. https://iceexplore.icee.
org/document/8091182/

Gongalves PW, Fregnan E, Baum T, Schneider K,
Bacchelli A. Do explicit review strategies improve
code review performance? Towards understanding
the role of cognitive load. Empir Softw Eng [Inter-
net]. 2022 May 7 [cited 2025 Oct 27]; 27(4): 99.
https://doi.org/10.1007/s10664-022-10123-8

Wettel R, Lanza M. CodeCity: 3D visualization of
large-scale software. In: Companion of the 30th inter-
national conference on Software engineering [Internet].
New York, NY, USA: Association for Computing Ma-
chinery; 2008 [cited 2025 Oct 10]. 921-2. (ICSE Com-
panion ’08). https://doi.org/10.1145/1370175.1370188

335

