
318

INTRODUCTION

Code smells are symptoms of poor design and 
implementation decisions that have a direct impact 
on the overall quality of the software [1,2]. These 
bad decisions lead to issues such as maintainabil-
ity, performance, and overall software quality [3], 
which can have significant long-term consequences 
[4,5]. Code smells, such as complex classes and 
methods [6,7], compromise both the readability and 
efficiency of the code, which ultimately reduces 
sustainability and increases the maintenance burden 
[8]. The presence of code smells is almost unavoid-
able in software development due to several factors, 
such as time constraints, lack of experience, and the 
growing complexity of modern software systems. 
Developers often face tight deadlines, leaving little 
room to address these underlying issues during the 
development process. Despite the development of 
various code smell detection tools, developers still 

face challenges in understanding, maintaining, and 
evolving complex software systems, which has 
led to a growing interest in visualization-based ap-
proaches [9]. Although several 3D visualization 
models have been proposed, they still fall short 
of meeting developer needs. In particular, current 
models do not provide the ability to customize and 
visualize code smells across multiple abstraction 
levels, including class, method, and inside-method 
views. Moreover, these tools often lack interactiv-
ity, limiting developers’ ability to navigate, zoom, 
rotate, and explore the visualized structures, there-
by reducing their effectiveness in supporting flex-
ible and intuitive code comprehension [10,11].

Motivation scenario

Rob, a programmer working on an account-
ing system, has been assigned tasks to add new 
features, including generating a customer details 

3D visualization of code smells: A scalable multi-level 
metaphoric approach for software developers 

Chathuranga Hasantha1, Thenuri Sandara Hettiarachchi2*,
Chaman Wijesiriwardana1

1	 Faculty of Information Technology, University of Moratuwa, Sri Lanka
2	 School of Computing, University of Staffordshire, London, United Kingdom
* Corresponding author’s e-mail: thenurih@apiit.lk

ABSTRACT 
Code smells are indicators of poor software design or implementation choices that hinder software maintain-
ability, performance, and overall software quality. Manual identification of code smells is time-consuming and 
resource intensive. Detection tools have their own drawbacks, including false positives, scalability issues, a lack 
of context, inadequate coverage, and poor usability. Furthermore, existing code smell visualization models are 
limited by abstraction levels, scalability issues, reliance on manual processes, and lack of empirical studies, which 
limit developers’ ability to make informed decisions efficiently. To fill this gap, this paper introduces a novel 3D 
visualization model that combines static analysis with `island` and `city` metaphors to represent classes, methods, 
and their relationships, along with associated code smells. The model was applied to a software project, and the 
usability of the model was evaluated in a pilot study. The findings from this study demonstrate that the proposed 
model provides an intuitive visualization of code smells than traditional tools, thereby supporting developers’ 
decision-making and improving program comprehension.

Keywords: code smell, code smell detection, detection approaches, current trends.

Received: 2025.09.25
Accepted: 2025.11.17
Published: 2026.02.01

Advances in Science and Technology Research Journal, 2026, 20(3), 318–335
https://doi.org/10.12913/22998624/214373
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal

https://orcid.org/0000-0002-1124-425X


319

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

summary and formatting phone numbers. Before 
implementing these features, Rob needs to go 
through the existing code, read comments, and 
consult software documentation. If the issues 
are unresolved, he must seek help from a senior 
programmer to resolve the code-related difficul-
ties. When adding the new features, Rob can fol-
low Fowler’s 22 code smells [12]. As a guide to 
identify issues during coding, but this can lead to 
errors. Even though Current tools like JDeodor-
ant [9,10], iPlasma, InFusion [9,11], have been 
introduced to identify and refactor code smells. 
These tools are limited in their ability to detect 
only a few smells and do not support visualiza-
tion, which enables to visualize the smells in a 
flexible manner. This often leads to false positives 
and a lack of real-time feedback [9]. To address 
these challenges, a 3D visualization model can 
offer a more intuitive, real-time way to detect is-
sues across different abstraction levels.

As a solution, this paper presents a novel in-
teractive 3D visualization model designed to im-
prove code smell visualization at different abstrac-
tion levels. The proposed model integrates island 
and city metaphors to visualize code smells at 
different levels of abstraction, aiming to enhance 
program comprehension and assist developers in 
identifying problematic code efficiently. Unlike 
existing tools, this model also provides evolution-
ary context, helping developers understand the 
historical development of code smells, which sup-
ports better refactoring decisions. The approach 
addresses limitations of current tools, such as 
visualizing smells in different abstraction levels, 
false positives, and a lack of interactivity [13]. 

RELATED WORK

This literature review offers a comprehensive 
overview of code-smell visualizations, explor-
ing their applications in software development, 
the methodologies used to implement them, and 
the potential limitations that may affect their ef-
fectiveness in real-world scenarios. By synthesiz-
ing insights from prior work, this section clarifies 
where current approaches fall short and positions 
the need for richer, multi-level visualizations such 
as the one proposed in this study.

Code smells visualization approaches

Today’s software systems are increasingly 
large and complex, and many people collaborate 
in their development and maintenance [14]. This 
makes it more and more difficult to program, un-
derstand, and modify the software tasks, espe-
cially when working on the code of other people. 
Therefore, tools for supporting these tasks have 
become essential [15].

An approach for the automatic detection pre-
sented and visualization of code smells, and dis-
cuss how this approach can be used in the design 
of a software inspection tool [16]. There is an il-
lustration of the feasibility of their approach with 
the development of jCOSMO, a prototype code 
smell browser that detects and visualizes code 
smells in JAVA source code. While this tool con-
tributes a valuable idea, it typically supports lim-
ited structural levels (methods, classes, packages) 
and lacks richer abstractions for architectural or 
system-level analysis.

Murphy [17] presents the value of versatility, 
expressivity, and context-sensitivity when show-
casing smells, and proposes a mock-up model of 
a detection tool using the above properties. Vari-
ous tools have been developed to help developers 
inspect the quality of source code. A code smell 
detector that uses an interactive ambient visual-
ization to make programmers aware of smells and 
make informed, confident refactoring judgments. 
This paper suggests that such tools have a place in 
the software developer’s toolkit. Although code 
visualization tools are increasingly applied to 
support code smell detection, they have limited 
module structures, such as methods, classes, and 
packages. 

Researches used multiple visualizations to de-
tect bad smells [18]. They present four views with 
concern properties: package-class method struc-
ture, inheritance structure, dependency graph, 
and dependencies-weighted graph, and study to 
assess the extent to which visual views support 
code smell detection. These work showcases the 
importance of multi-perspective views when vi-
sualizing bad smells, but still fall short of offering 
unified, intuitive metaphors for smell visualiza-
tion across abstraction levels.

Developed a semi-automatic detection ap-
proach that combines automatic pre-process-
ing and visual representation and analysis of 
data [19]. It is complementary to automatic ap-
proaches for anomalies whose detection requires 



320

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

knowledge that cannot be easily extracted from 
the code directly. The detection is seen as an in-
spection activity supported by a visualization tool 
that displays large programs (thousands of class-
es) and allows the analyst to navigate at different 
levels of the code. In this approach, they specifi-
cally target anomalies that are difficult to detect 
automatically.

Visualization tools

The manual code smell detection has sev-
eral drawbacks, such as being time-consuming, 
non-repeatable, and does not scale and the ap-
proach that code smells are detected by humans 
has not been thoroughly explored yet [20]. And 
also, detection in large systems is a very time and 
resource-consuming, and error-prone activity [4] 
because smells cut across classes and methods, 
and their descriptions leave much room for inter-
pretation. Therefore, the software industry needs 
effective and practical tools to scaffold the pro-
cess of maintaining quality software.

The relationship between the class error prob-
ability and bad smells based on three versions of 
the Eclipse project, and the result showed that 
classes that are infected with the code smell Shot-
gun Surgery, God Class, or God Methods have 
a higher class error probability than non-infected 
classes [21].

The manual detection of design flaws showed 
more familiar with a software system, their abil-
ity to objectively evaluate it and spot design flaws 
decreases [22].

Dhambri et al [23] developed a 3D software 
visualization model to detect design abnormali-
ties. The model uses both quantitative data based 
on metrics and structural data based on connec-
tions among modules. There is an improvement 
needed in performance variability to reduce this 
variability. This approach is a manual process and 
needs to be combined with an automatic one in 
another direction in their investigations.

An interactive ambient visualization novel 
smell detector implemented for programmers. This 
model is used to help programmers identify code 
smells and refactoring judgments [24]. This is dis-
cussed, has been tested with limited code smells.

A multiple views approach based on concern-
driven software visualization resources to ef-
fectively spot code smells. The approach relies 
on interactive visual abstractions of source code 
to support a concern-sensitive analysis based on 

different views [25]. Evaluation of this approach 
is made for small criteria, and it is not sufficient 
for large projects. The visual analysis could be a 
more detailed and effective analysis of the pro-
posed approach, depending on the appropriate 
assignment of concerns to source code. Despite 
these advancements, these tools rarely integrate 
multiple abstraction levels into a single coherent 
metaphor.

Silva et al. [26] developed an interactive visu-
alization to help developers identify Code Smells 
called VISMELLS. The survey’s data concluded 
that VISMELLS can facilitate the discovery of 
Code Smells. Visualization of values from soft-
ware metrics used to detect Code Smells is also 
enabled in VISMELLS.

Mumtaz [18] demonstrated an approach to 
analyze multivariate object-oriented software 
metrics to detect outliers, which could be con-
nected to bad smells in the context of software 
quality. As a result, this approach helps visually 
identify the data elements as bad smells, which 
are also perceived as outliers in the linked vi-
sualizations. The automatic detection of bad 
smells is dependent on the published detection 
rules, and this approach is not yet tested by users 
other than the authors.

Software visualization is used to visualize 
the code smells in the program. Hammad, et al 
[16] proposed a visualization approach and shows 
classes as buildings and bad smells as letter ava-
tars based on the initials of the names of bad 
smells. These avatars are shown as warning signs 
on the buildings. A framework is proposed to au-
tomatically analyze code to identify bad smells 
and to generate the proposed visualizations. The 
evaluation of the proposed visualizations showed 
that they reduce the comprehension time needed 
to understand bad smells.

Island metaphor visualization technique is 
used to emphasize the modular aspects of OSGi, 
and an interaction technique is implemented to 
preserve user comfort while inspecting large soft-
ware systems. This approach is used for exploring 
OSGi-based software systems in virtual reality. 
This approach needs to be applied for practicabil-
ity in aiding software comprehension tasks [16].

Evaluation of the impact of the medium on 
the effectiveness of 3D software visualizations is 
the most important fact. They experimented on 
the 3D city visualization technique that has prov-
en effective for software comprehension tasks. 
Currently, they have applied this to a standard 



321

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

computer screen (SCS), an immersive 3D envi-
ronment (I3D), and a physical 3D printed model 
(P3D). Further, they want to investigate the im-
pact of media used for collaborative visualization, 
such as wall displays, multi-touch tables, etc. 

While current tools show the utility of visu-
alization, there are no integrated, scalable, and 
multi-level visualizations that allow developers 
to study code smells in their entirety rather than 
fragmented perspectives.

Limitations

Although significant progress has been made 
in developing visualization approaches for code 
smell detection, several key limitations remain. 
First, many tools restrict their analysis to lim-
ited abstraction levels, such as methods, classes, 
or packages, thereby overlooking higher-level 
architectural smells that impact overall system 
design [8,25]. This narrow focus reduces the ap-
plicability of these tools in large-scale, real-world 
projects where multi-level analysis is critical. 
Second, scalability remains a recurring obstacle. 
While some approaches demonstrate promising 
results on small or medium-sized systems, few 
have been evaluated on large industrial projects 
[23,26]. The computational and cognitive load of 
analyzing thousands of classes or modules often 
overwhelms the visualization techniques, limiting 
their utility for practitioners. Third, most studies 
rely heavily on manual or semi-automatic pro-
cesses. Even when automated metrics support 
detection, the interpretation of results is often left 
to developers, reintroducing the same subjectivity 
and inconsistency that visualization was intend-
ed to mitigate [20]. This lack of full automation 
means that many tools are not yet mature enough 
for integration into standard development pipe-
lines. Finally, empirical evaluations of visualiza-
tion approaches remain limited. Many studies are 
restricted to small case studies, controlled experi-
ments, or academic prototypes, which undermines 
generalizability [18,27]. Taken together, these 
gaps indicate a clear need for more comprehen-
sive visualization techniques that combine auto-
mation with multi-level, scalable, and interactive 
representations. Addressing these challenges will 
not only enhance code comprehension but also 
improve the reliability of refactoring decisions, 
making visualization a critical research direction 
in software engineering.

Proposed approach

This section proposes a novel visualiza-
tion model designed to detect and analyze code 
smells using two intuitive metaphors: the Island 
Metaphor [28,29] and the City Metaphor [30,31]. 
These metaphors provide a structured way to ex-
plore large software systems [32], depicting code 
structures and potential smells at both the class 
and method levels. The model itself does not 
directly detect code smells but integrates Sonar-
Qube’s output, which identifies code smells like 
Long Method, Feature Envy, God Class, Large 
Class, Duplicate code, Long Parameter List [33]. 
By using SonarQube’s capabilities, this model 
provides an interactive 3D representation of these 
code smells. This approach enables developers to 
gain deeper insights into the code base through 
visually augmented models.

Class level view

A novel approach to visualize code smells at 
the class level is introduced through the Island 
Metaphor. This metaphor represents decoupled en-
tities [34] in a software system, enabling a simpli-
fied way to visualize the complex code structures 
[28,29]. In this metaphor, each software system is 
represented as an ocean, while individual classes 
within the packages are represented as islands.

Method level view

At the method level, the model employs the 
city metaphor, which provides a deeper insight into 
the internal structure of each island [31,32]. Which 
means this visualization technique is used to de-
scribe the methods and the attributes. In the city 
metaphor, methods are represented as buildings, 
variables are depicted as people, and input param-
eters are shown as small squares (windows) on the 
block. The number and height of the buildings re-
flect the content of the methods, such as the number 
of lines or the complexity of the code. In this view, 
the code smells are also highlighted in red. 

Figure 1 depicts a detailed visualization of 
the city metaphor, offering a better understand-
ing of the content described above. This meta-
phor is interactive and can be navigated using the 
keyboard, allowing developers to extract a large 
number of methods inside a single class. By iso-
lating these elements as building blocks, the city 
metaphor helps highlight areas that may require 



322

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

more attention. As a result, the proposed model 
offers a visual view that depicts the overall evo-
lutionary characteristics of packages, classes, and 
methods, including the identified code smells 
(Figure 2).

Identification and analysis of code smells

Beyond the basic visualization, the model 
provides a detailed analysis to help developers 
understand the nature of code smells. If a devel-
oper clicks on a selected class or method object at 
the abstraction level, a summary message window 
appears, displaying key metrics such as the class 
name, number of attributes, number of lines of 
code, number of methods, and affected methods. 

Whiteboard view and visual feedback

In addition to the massage window, the mod-
el provides an inside view of a building, which 
includes an interactive whiteboard and analyti-
cal charts for a selected method. The whiteboard 
displays a summary of each detected smell type, 
such as long parameter lists, feature envy, and du-
plicate methods. Furthermore, this includes attri-
butes, analytical data of the code smells through 
charts, and a summary of the suspicious code 

snippets. The analytical data that are represented 
in these charts are based on the information col-
lected throughout the visualization process, offer-
ing a complete view of the code quality.

Figure 4 illustrates the whiteboard view, 
where identified code smells are listed. This gives 
the developers an idea of the code base that needs 
to be improved.

Final code snippets and refactoring 
suggestions

Once the code smells are identified, develop-
ers can view the actual code snippets that are af-
fected by code smells. The final step bridges the 
gap between the visual representation and action-
able code refactoring.

Data extraction and object mapping

To generate these visualizations, numerous 
metrics need to be abstracted from the source 
code. These metrics help to determine the size of 
the visual element. Table 1 summarizes the object 
mapping of the corresponding visualization tech-
niques: island view and city view. Showing how 
each software component is displayed within the 
visualization model. 

Figure 1. Visual representation of city metaphor



323

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

Figure 2. Visual representation of Island metaphor

PROOF-OF-CONCEPT IMPLEMENTATION

This section showcases the proof-of-concept 
implementation of the 3D visualization model. The 
goal here is to transform the abstract code smell 
information into dynamic, multi-tiered visualiza-
tions that support developers in identifying and an-
alyzing design issues. Before the implementation 
process, a detailed model overview is provided to 
help readers understand the main components of 
the model and how they interact. The implemen-
tation stage is divided into three sections: (i) ex-
tracting a dataset from a selected software project, 
(ii) visualizing code smells across three abstraction 
levels (class, method, and inside-method), and (iii) 
applying an algorithm to avoid object overlapping 
for a clear and meaningful layout (Figure 3).

System design and model overview

The tool is designed based on established vi-
sualization techniques and code smell detection 
approaches. The key purpose of this model is to 
automatically visualize the source code, high-
lighting areas affected by code smells, and visu-
alize it in a 3D environment. This approach has 
been achieved by importing semantically struc-
tured JSON data generated from the static analy-
sis of the chosen software project.

The proposed tool’s function is based on 
a set of rules; these rules handle specific code 
constructs. The tool checks if these rules are 
being violated during the analysis process, and 
any violations are flagged as code smells. This 
approach is beneficial for developers when 
identifying potential design issues that might 
have been missed or ignored. Using this tool, 
they can receive early warnings, even for smells 
introduced intentionally.

The tool is implemented using PHP (Co-
deIgniter) for server-side logic, the Babylon.js 
JavaScript library for interactive 3D rendering, 
and MySQL for database management. This 
makes the platform independent and deployable 
on any web hosting platform without any third-
party dependencies.
	• PHP (CodeIgniter) was selected for its light-

weight, secure, and scalable server-side 
framework, providing an efficient backend for 
handling large datasets generated during static 
code analysis.

	• Babylon.js enables the creation of interactive 
3D environments that support real-time naviga-
tion and manipulation of visualized code smells, 
which aligns to provide an intuitive and dynam-
ic visualization experience for developers.

	• MySQL was chosen for database management 
due to its reliability and efficient querying 



324

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

Table 1. Object mapping 3D visualization model
Attribute Mapping object

Classes Island

Lines of code in class Perimeter of a cylinder

Packages Sea
Pie chart view in the island 
metaphor Numerical proportion of code smell considering the source code

Left sidebar navigation Classes and methods included in the generated model

Right sidebar Details of the number of issues, severity, time, and effort needed to fix the issue

Methods / functions Building block

Attributes / variables Left whiteboard inside building

Input parameters Blocks on the floor, classroom

Lines of code Building Height

Inside of method Classroom

Pie chart Illustrates the numerical proportion of code smells by considering the source code

Bar chart Types of code smells found in the source code

Whiteboard Suggestions to fix code smells

View graph button Illustrate the numerical proportion of code smell by considering the source code in the method

Figure 3. Implementation cycle

Figure 4. Object moving to avoid overlapping



325

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

capabilities, allowing for smooth handling of 
large-scale software project data and ensuring 
scalability for future applications. 

The output is an interactive, browser-based 
3D visualization model, allowing developers to 
inspect code smells at multiple abstraction levels. 
The systems interactive nature allows developers 
to navigate through the visualized code structures, 
facilitating a deep understanding of the code base 
and supporting better decision-making. 

Dataset extraction from selected 		
software project

The process of preparing the input dataset con-
sists of two steps: The first step is selecting or im-
porting a project found through search engines, on-
line communities, and software repositories. The 
second step is formatting the raw analysis data into 
a predefined JSON format that serves as input for 
the visualization engines. The extracted, formatted 
data are stored as a JSON meta-model. The meta-
model consists of class names, line counts, meth-
ods, parameters, code smell types, and other meta-
data. This is useful for meaningful visualizations.

Visualization models for three abstraction 
levels

The 3D visualization model is developed us-
ing open-source technologies, offering interactive 
zooming, rotation, and navigation capabilities 
[34]. The model uses a one-to-one mapping ap-
proach and employs unit visualizations at each 
level of abstraction.

The main visual representation of the proposed 
approach consists of islands, buildings, and interior 
spaces. Islands have emerged from the sea and are 
represented by gray-colored surfaces, while a blue-
colored background represents a package. Build-
ing blocks represent methods, and the gray-colored 
ground surface represents the base class. Parame-
ters are mapped to small boxes on the floor, and the 
whiteboard represents code smell types, snippets, 
suggestions, and local variables inside the method.

The perimeter of the cylinder and the height 
of a building block correspond to the number of 
lines of code. The colors of each object – dark 
red, light red, yellow, and green – represent the 
severity of the code smells. The small green 
boxes on the floor inside the building represent 
the parameters declared in the method, while the 

whiteboard on the wall inside the building rep-
resents the code snippet, code smell types, local 
variables, and suggestions.

Algorithms to avoid overlapping objects

Object placement on the canvas is crucial for 
generating the visualizations. This process aims 
to provide a more convenient solution for plac-
ing objects on the canvas without overlapping. An 
algorithm was applied to avoid the overlapping 
of visual objects at all abstraction levels. The al-
gorithm works as follows: First, retrieve the class 
array from the JSON request, pick the first class, 
and place it on the canvas. After detecting the first 
x and y coordinates and the size of the class, cal-
culate the next coordinates using the first-class 
object and a constant value. Iterate this process 
while considering the canvas width. After the first 
row on the canvas ends, the visual object’s coor-
dinates need to move to the next row.

According to this process, take the first meth-
od/class block and check whether there is enough 
space to place it on the root. If there is enough 
space, the object is placed in the upper-left corner. 
Then, the space in the root will be divided into 
two parts: the right node and the left node. When 
the second block is processed, it starts from the 
root to check for available spaces. Since the up-
per-left corner is utilized, check the spaces to its 
right and below. If that block is placed, the space 
is split into two. This process continues until ev-
ery block is placed inside the canvas.

The root canvas has to be grown based on 
the method/class size. First, we equalize the root 
size to the size of the largest method. Then, the 
algorithm starts as before. The first block will be 
placed without any issue since the root is equal to 
its size. From the second block onward, the root 
has to be resized.

Code smells visualization using a Novel 3D 
model

The final stage of the tool generates 3D visu-
alizations for buildings, islands, and inside-build-
ing views according to this dataset. Zooming, 
localization, and browsing are essential features 
that are under consideration. Developers will 
have the ability to search for and locate a specific 
building that corresponds to a specific class. They 
will also be able to zoom in or out of the build-
ings. The tips, navigation, and summary graphs 



326

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

feature helps developers navigate through build-
ings in the 3D environment and easily understand 
large-scale systems with many classes.

In the proposed approach, individual island 
groups can form archipelagos, providing the first 
abstraction level and the user interface of the is-
land-view prototype. Figure 4 illustrates the auto-
matically generated class-level model created us-
ing the imported JSON request. The perimeter of 
the cylinder island view varies based on the num-
ber of code lines included in the class. Perimeters 
highlighted using dark red are meant to include 
code smells in the classes or any other lower-level 
member that contains code smells.

Figure 5 shows the message box appearing after 
clicking on each class. It includes details such as the 
class name, the number of code lines in the class, 
the code smells present in the class or lower mem-
ber levels, and a link to the next abstraction level.

Figure 6 illustrates the next abstraction 
level using the city metaphor. The method level 
shows the building block visual objects related 
to the methods inside the class. The height of 
the building blocks varies based on dynamic 
values updated in the database. This height is 
calculated based on the number of code lines in 

the method. Each block is shown in a different 
dark color on the ground to represent the class 
if it has a bad smell related to the method. The 
severity of the bad smell determines the color, 
with darker colors indicating higher severity. 
The severity levels are critical, major, minor, 
and informational (info).

Figure 7 shows the message box that appears 
after clicking on each method. It includes details 
such as the type of code smell, a code snippet, 
a detailed severity level, and a link to the next 
abstraction level. The building shown in Figure 
8 represents the model. It consists of three walls, 
each with more details. The number of boxes on 
the floor represents the number of parameters for 
each method. The type of code smell and error 
code is shown on the whiteboard on the main 
wall, while the right-side wall provides sugges-
tions and tips to solve these code smell issues.

We adapted the pie chart visual paradigm, us-
ing colors and portions to represent code smells 
and clean code that are affected by a specific con-
cern. Figure 9 illustrates how concerns are repre-
sented in the pie chart. The portion colored in dark 
red corresponds to the percentage of code smells 
in methods that are affected by a specific concern.

Figure 5. 3D model for island metaphor 

Figure 6. Message box with details of the class in the island metaphor



327

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

In this figure, we can see supportive links (red 
color links), issue status (critical, major, minor, 
or info), the method you selected, and its parent 
class (left sidebar in Figure 9).

The Figures 4–9 illustrate the navigation 
of the entire process of the proposed model’s 
implementation.

Visualizing evolutionary aspects 		
of code smells

The above images (Figures 11 and 12) illustrate 
how the model visualizes the evolution of code 
smells across abstraction levels. In Version 1 (Fig-
ure 11), multiple methods exhibit severe smells, 
represented by tall red blocks, while in Version 2 
(Figure 12), after refactoring, these smells are vis-
ibly reduced in severity and complexity. Each 3D 
element dynamically mirrors these changes over 
time, making it easy for developers to track grow-
ing or diminishing code smells. By showcasing 
these trends visually, the model helps developers 
prioritize refactoring based on historical patterns 
rather than relying on textual descriptions or static 
snapshots. This leads to more informed and proac-
tive maintenance decisions.

Limitations of the proposed approach

Despite the strong performance of the pro-
posed model, several limitations exist. The ap-
proach focuses mainly on class, method, and 
inside-method levels, without addressing high-
er-level architectural relationships such as de-
pendencies between packages or modules. The 
model’s industrial-scale systems have yet to be 
empirically validated due to the high number of 
classes. Table 2 provides evidential support for 
this statement. The table illustrates the scalability 

of the proposed model across various sizes of soft-
ware projects: small, medium, and large-scale. 
The performance of the model shows successful 
visualizations for the small and medium-sized 
projects, but unsuccessful visualizations for the 
large-scale project with over 1.6 million lines of 
code. Moreover, the visualization relies on Sonar-
Qube outputs for code smell detection, making it 
dependent on external tools rather than perform-
ing intrinsic analysis. Finally, the evaluation was 
limited to a pilot study with eleven participants, 
indicating the need for broader empirical valida-
tion using larger datasets and diverse practitioner 
groups to enhance generalizability. 

EVALUATION

Comprehensive evaluation of the proposed 
model

The primary objective of this evaluation is to 
assess the usability and effectiveness of the pro-
posed 3D visualisation model by determining 
whether it facilitates developers in identifying and 
understanding code smells in software projects. 
The evaluation was conducted through a pilot ex-
periment, which involved researchers and experts 
in the software field (software engineers, senior 
software engineers, tech leads, QA, and database 
administrators). The group of participants consist-
ed of thirteen practitioners with up to 4 years of 
experience, four with up to 7 years of experience, 
and four with more than 8 years of professional ex-
perience. The primary objective is to assess how 
effectively the visualisation model can identify and 
facilitate understanding of bad smells in code.

For this evaluation, the model was tested 
using a sample software project selected from 
SonalCloud. The projects were pre-analyzed to 

Figure 7. 3D model for city metaphor



328

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

identify code smells. The selected GitHub project 
results were formatted into a JSON input request 
and uploaded to the model. The model generated 
3D visualizations for the relevant project, includ-
ing different abstraction levels: the island meta-
phor (for class-level view), city metaphor (for 
method-level view), and detailed internal views 
(such as classroom and whiteboard views).

The evaluation was designed with the fol-
lowing objectives:
	• Ability to identify and visualize the software 

project in proper, understandable, and four 

abstraction levels, i.e., Island metaphor view, 
city metaphor view, classroom view, and 
whiteboard illustration with code smells.

	• Ability to identify, categorize, and visualize 
the code smells in the software project

To orient practitioners with code smells, detec-
tion approaches, and evolutionary characteristics, 
the following steps will be carried out. First, all 
participants will be introduced to code smells and 
visualizations of code smells. Second, a detailed 
description of the proposed visualization model 

Figure 8. Message box with details of the method in the city metaphor

Figure 9. 3D model for inside building

Figure 10. Code smells percentage included in the method



329

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

will be given to the participants. The participants 
will be given time to go through the proposed visu-
alization tool provided. Next, all participants will 
be asked to raise any questions to clarify any ambi-
guity before proceeding with the actual evaluation. 
After ensuring that all participants are familiar with 
the concept of code smells and their visualizations, 
the actual experiment phase will begin.

The experiment was organized as follows: As 
the first step, Google Forms were created with 
several questions for all levels, covering the pro-
cess of code smell visualization. As the second 
step, the target code smells (duplicate blocks, 
long parameter lists, replace all(), extract T/Catch 

block) were extracted from the projects analyzed 
in SonarQube. This process had already been 
completed as part of the case study. The third 
step involves asking the participants to identify 
the objects using software solutions and answer 
the questions, along with the time consumed for 
each level. In the fourth step, feedback was col-
lected from the participants to analyze whether 
the visualization helped them in detecting code 
smells and whether they were comfortable using 
the visualization tool. Finally, the duration that 
each respondent required to answer the questions 
at each level and the whole process of the tour 
was screen-recorded.

Table 2. Model’s scalability for small, medium, and large-scale projects
Project Small Medium Large

Name Calculator app created with Java 
Swing

Java SE Inventory Management 
System

A scalable, large-scale 
eCommerce framework

GitHub Link https://github.com/HouariZegai/
Calculator

https://github.com/sajxraj/
InventoryManagementSystem/

tree/master

https://github.com/ilscipio/
scipio-erp/tree/master

LOC 735 6568 1.6 million lines

No of classes 6 25 9,500

No of methods 25 205 60,000
Visualization using 
the proposed model Successful Successful Unsuccessful

Figure 11. Version 1 of the SplashScreen.java class

Figure 12. Version 2 of the SplashScreen.java class



330

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

Participants were asked the following ques-
tions to evaluate their ability to detect code smells 
at each level.
Class Level Questions (CQ):
	• CQ1: What are the classes in this Java project?
	• CQ2: What are the code smell classes in the 

island metaphor (first view)?
	• CQ3: How is the maximum NOC (Number of 

Code Lines) class identified?
	• CQ4: What is the NOM (Number of Methods) 

in each class?

Method Level Questions (MQ):
	• MQ1: What are the classes and their method 

names that include code smells?
	• MQ2: What are the methods given priority to 

fix?
	• MQ3: How is the minimum NOC (Number of 

Code Lines) method identified?
	• MQ4: What is the percentage of code smell 

(%) in your existing class?

Inside the Method (IMQ):
	• IMQ1: What is the type of code smell found in 

this method?
	• IMQ2: What are the local variables and 

the number of attributes (NOA) within this 
method?

	• IMQ3: What is the clean code percentage (%) 
in this method?

	• IMQ4: Does this method include long param-
eter code smell? How did you identify it?

	• IMQ5: What are the parameters in this 
method?

General Questions (GQ):
	• GQ1: How do you find the method that in-

cludes code smells (critical)?
	• GQ2: What is the shape of the class? What is 

the shape of the method?
	• GQ3: Where can you find the code snippet in-

cluding the code smells?

Evaluation of precision 

The precision of the proposed model was 
evaluated based on the number of correct an-
swers provided by participants when identify-
ing code smells at various levels. Figures 13, 
14, 15 and 16 show the number of correct an-
swers submitted by participants for different 
code smells across levels. The results indicate 
that participants were generally able to identify 
code smells accurately, with some individuals 

performing better than others. For example, the 
first participant, a QA specialist, correctly an-
swered 14 out of 17 questions, while another 
participant provided 16 correct answers. This 
demonstrates that the visualization model is ef-
fective in helping developers understand and 
identify code smells at different abstraction 
levels using the visual tools.

Evaluation of recall

Recall, or the ability to remember and iden-
tify code smells after an initial interaction with 
the model, was also assessed. Figure 17 shows 
the time taken by the participants to complete the 
tasks at the common level. This was designed to 
test the user’s memorability of the novel model. 
Overall, the participants took 4.49 minutes to 
complete the tasks at the fourth level, showcas-
ing their ability to recall and identify code smells 
efficiently (Figure 18). This demonstrates that the 
model is not only easy to learn but also supports 
identifying code smells.

Comparison of method-level 			 
and class-level detection

To assess how well users identify code smells 
at different abstraction levels, different sets of 
questions were used. The evaluation included 
questions related to specific code smells visual-
ized using the model.

Figure 19 illustrates the correct answers pro-
vided by the eleven participants to the class-level 
questions. The group that used code smells visu-
alization for the class-level questions answered 
57.1% of all questions correctly.

Figure 20 shows the correct answers provided 
by the eleven participants to the method-level 
code smells visualization questions. The par-
ticipants who used visualization questions at the 
method level completed the task with 81% of all 
questions answered correctly.

The data demonstrates that the method-lev-
el (81% accuracy) code smell detection outper-
forms class-level (57.1% accuracy) detection in 
terms of accuracy. This difference can happen 
because of the granularity of abstraction at each 
level. The City Metaphor, which represents 
methods as buildings, provides more detailed 
information, allowing developers to focus on 
specific code smells within methods, such as 
long parameter lists or feature envy. These 



331

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

smells are more difficult to detect at the broader 
class level, where the island metaphor groups 
entire classes together. According to Cognitive 
Load Theory, visualizing more granular details 
at the method level reduces cognitive load by 
presenting developers with smaller chunks of 
information, making it easier to spot and ad-
dress specific code smells [35].

Time analysis across levels

This study relies on three consecutive abstract 
levels of process that class level, method level, 
and inside method level. Participants answered 

with the prepared questions by identifying the ob-
ject and the bad smells visualization in this tool. 
In this context, Figure 18 depicts the analysis of 
the time participants took to complete each level.

Hence, the analysis clearly provides sufficient 
information about the total time taken for each 
level and the time taken to complete all the lev-
els. Therefore, the average time to complete the 
whole process is 18.87 minutes for each user.

Table 3 shows the average time taken by all 
participants to complete all levels and each level 
separately. The class level tool is the longest, as it 
involves a broad scope of code visualization. The 

Figure 13. Number of correct answers submitted
at class level

Figure 14. Number of correct answers submitted
on the method level

Figure 15. Number of correct answers submitted
at the inside method level

Figure 16. Number of correct answers submitted
in the common level

Figure 17. Total time taken to complete
the common level

Figure 18. Time to complete each level



332

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

island metaphor at this point required developers to 
process large, less specific chunks of information, 
which is more cognitively demanding. In contrast, 
the method level (4.55 minutes) focused on more 
granular details (methods), which were easier to 
navigate and interpret, aligning with Cognitive 
Load Theory that suggests smaller, more specific 
information chunks are easier to process. 

The inside method level took 4.12 minutes, 
showing that once developers focused on indi-
vidual methods, the task became quicker and 
more efficient. This suggests that method-level 
and inside-method visualizations help developers 
identify specific code smells more efficiently, re-
ducing cognitive load.

In total, the average time of 18.87 minutes 
reflects the model’s efficiency across each level, 
where granular abstraction levels (method and in-
side-method) led to faster detection of code smells.

Model comparison

Table 4 shows a detailed comparison of 
several existing smell detection tools and visu-
alization tools alongside the proposed model, 
highlighting key features such as visual meth-
od, interactivity, scalability, abstraction levels, 
code smells detected, and refactoring sugges-
tions. This set of attributes was chosen because 
together, they cover fundamental aspects to as-
sess how effective tools are at visualizing code 
smells. This assessment encompasses visualiza-
tion tools of both 2D and 3D, providing insight 
on how different dimensions affect developer 
perception, scalability, and usability.

When comparing the proposed model with 
the existing models, the proposed model dem-
onstrates high interactivity, allowing users to ex-
plore code structures by zooming, localizing and 
browsing across multiple levels of details. Its scal-
ability is categorized as medium, as visualizing 
3D visualizations for large scale projects is hard 
because of its complexity. In terms of abstraction, 
the model not only supports class level, but also 
extends to method level. Moreover, it goes further 
to visualize code smells in Inside Methods, allow-
ing developers to trace code smells form high-
level structures down to behavioural interactions 
within methods.

Threats to validity

1.	Internal validity 
Internal validity relates to the correctness of 

the evaluation procedure and whether confound-
ing factors may have influenced the outcome. 
One threat arises from the lack of a control group 
using conventional tools (e.g., SonarQube UI) for 
comparison. As a result, it is difficult to isolate 
whether improvements in performance stemmed 
from the 3D visualization model itself or from the 
novelty of the task. In addition, while all partici-
pants received the same training and instructions, 
variation in familiarity with code smell concepts 
or experience with 3D environments could have 
affected their performance. To reduce this risk, 
the evaluation included a standardized orientation 
session and task walkthroughs for all participants.
2.	External validity 

External validity concerns whether the results 
of this experiment can be generalized to more gen-
eral contexts. First, the evaluation was conducted 
using reasonably simple and moderately sized 

Figure 19. Class level code smell identification

Figure 20. Method level code smell identification



333

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

software projects, which may not fully represent 
the complexity and scale of large-scale software 
systems. Though the intention is to test usability 
in a controlled setting, the evaluation results may 
vary for real-world software projects. Second, the 
participant group, though diverse in professional 
roles (developers, QA engineers, tech leads), con-
sisted of only 11 individuals, which may not re-
flect the full spectrum of developer experience or 
industry practices.
3.	Conclusion validity

Conclusion validity refers to the strength of the 
inferences drawn from the data. The relatively 
small number of participants presents a threat to 
statistical reliability. Since no statistical hypoth-
esis testing was applied (e.g., t-tests, MWU), 
conclusions are based on descriptive metrics only 
(e.g., accuracy percentages, task duration). This 
limits the ability to generalize the findings beyond 
this study. However, as proof-of-concept, the eval-
uation offers useful initial evidence of the model’s 
practical usage and lays the foundation for more 
rigorous empirical studies in future work.

CONCLUSIONS

This paper introduces a novel 3D visualiza-
tion model to effectively visualize code smells by 
integrating island and city metaphors to represent 
classes, methods, and their relationships. The 
code smells identified through SonarQube are 
mapped into visual objects, allowing developers 
to understand software systems across multiple 
abstraction levels. Consequently, this visualiza-
tion enhances program comprehension, supports 

the refactoring of problematic code, and ulti-
mately contributes to improving the overall qual-
ity of software projects. The evaluation results 
revealed its effectiveness in recognizing code 
smells and their underlying reasons in an efficient 
way. Based on the results, it is evident that the 
metaphor-based visualization supports develop-
ers’ understanding by leveraging spatial memory 
and helping form intuitive mental models of code. 
Mapping abstract code structures to familiar real-
world structures reduces cognitive load and aids 
in comprehension and decision-making.

Future work will focus on visualizing ad-
ditional elements, such as class relationships, 
method interactions, data type dependencies, and 
attribute invocations. Furthermore, integration of 
this model with state-of-the-art tools used in the 
software industry would streamline the decision-
making process by providing higher-level in-
sights into software quality.

Acknowledgements

The authors of this paper gratefully acknow-
ledge the financial support provided by the Senate 
Research Grant (Grant No – SCR/ST/2025/78) of 
the University of Moratuwa. Also, authors would 
like to thank the School of Computing at Asia Pa-
cific Institute of Information Technology (APIIT).

REFERENCES

1.	 Cairo AS, Carneiro G de F, Monteiro MP. The Im-
pact of Code Smells on Software Bugs: A System-
atic Literature Review. Information [Internet]. 2018 
Nov [cited 2025 Sept 23]; 9(11): 273. https://www.
mdpi.com/2078-2489/9/11/273

Table 3. Average time to complete the whole process and each level
- Class Method Inside Common

Avg time (min) 5.68 4.55 4.12 4.48

Table 4. Model comparison between existing models and the proposed model
Tool Visualization Interactivity Scalability Abstraction levels

JDeodorant [10] None Limited Limited Class and method level

InFusion [9] None None Medium Class, method and metrics level

VISMELLS [26] 2D Medium Limited Class and method level

CodeCity [36] 3D Limited Medium Class and package levels

CodeCharta 3D Medium Medium File levels

Proposed model 3D High Medium Class level, method level, inside method

Note: CodeCharta [Internet]. CodeCharta. [cited 2025 Oct 10]. https://codecharta.com/



334

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

2.	 Palomba F, Bavota G, Di Penta M, Fasano F, 
Oliveto R, De Lucia A. On the diffuseness and the 
impact on maintainability of code smells: a large 
scale empirical investigation. In: Proceedings of 
the 40th International Conference on Software 
Engineering [Internet]. New York, NY, USA: As-
sociation for Computing Machinery; 2018 [cit-
ed 2025 Sept 22]. 482. (ICSE ’18). https://doi.
org/10.1145/3180155.3182532

3.	 Sharma T, Spinellis D. A survey on software smells. 
J Syst Softw [Internet]. 2018 Apr 1 [cited 2025 Sept 
23]; 138: 158–73. https://www.sciencedirect.com/
science/article/pii/S0164121217303114

4.	 Hasantha C. A Systematic Review of Code Smell 
Detection Approaches. 2021 May 5 [cited 2025 Sept 
23]; https://zenodo.org/record/4738772

5.	 Rao RS, Dewangan S, Mishra A. An Empirical 
Evaluation of Ensemble Models for Python Code 
Smell Detection. Appl Sci [Internet]. 2025 Jan [cit-
ed 2025 Sept 23]; 15(13): 7472. https://www.mdpi.
com/2076-3417/15/13/7472

6.	 Palomba F, Di Nucci D, Panichella A, Zaidman A, 
De Lucia A. On the impact of code smells on the 
energy consumption of mobile applications. Inf 
Softw Technol [Internet]. 2019 Jan 1 [cited 2025 
Sept 23]; 105: 43–55. https://www.sciencedirect.
com/science/article/pii/S0950584918301678

7.	 Al-Shaaby A, Aljamaan H, Alshayeb M. Bad smell 
detection using machine learning techniques: A sys-
tematic literature review. Arab J Sci Eng [Internet]. 
2020 Apr 1 [cited 2025 Sept 23]; 45(4): 2341–69. 
https://doi.org/10.1007/s13369-019-04311-w

8.	 Steinbeck M. An arc-based approach for visualiza-
tion of code smells. In: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution 
and Reengineering (SANER) [Internet]. 2017 [cited 
2025 Sept 23]. 397–401. https://ieeexplore.ieee.org/
abstract/document/7884641

9.	 Paiva T, Damasceno A, Figueiredo E, Sant’Anna C. 
On the evaluation of code smells and detection tools. 
J Softw Eng Res Dev [Internet]. 2017 Oct 6 [cited 
2025 Sept 23]; 5(1): 7. https://doi.org/10.1186/
s40411-017-0041-1

10.	Tsantalis N, Chaikalis T, Chatzigeorgiou A. JDe-
odorant: Identification and Removal of Type-Check-
ing Bad Smells. In: 2008 12th European Conference 
on Software Maintenance and Reengineering [In-
ternet]. 2008 [cited 2025 Sept 23]. 329–31. https://
ieeexplore.ieee.org/abstract/document/4493342

11.	Imran A, Kosar T, Zola J, Bulut MF. Predicting the Im-
pact of Batch Refactoring Code Smells on Application 
Resource Consumption [Internet]. arXiv; 2023 [cited 
2025 Sept 23]. http://arxiv.org/abs/2306.15763

12.	Biederman I. Recognition-by-components: A theory 
of human image understanding. Psychol Rev. 1987; 
94(2): 115–47. 

13.	Albuquerque D, Guimarães E, Braga A, Perkusich 
M, Almeida H, Perkusich A. Empirical Assessment 
on Interactive Detection of Code Smells. In: 2022 
International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM) 
[Internet]. 2022 [cited 2025 Oct 27]. 1–6. https://
ieeexplore.ieee.org/document/9911317

14.	Wijesiriwardana C, Wimalaratne P. Fostering Re-
al-Time Software Analysis by Leveraging Hetero-
geneous and Autonomous Software Repositories. 
IEICE Trans Inf [Internet]. 2018 Nov 1 [cited 2025 
Sept 23]; E101-D(11): 2730–43. https://globals.
ieice.org/en_transactions/information/10.1587/
transinf.2018EDP7094/#

15.	Bassil S, Keller RK. Software visualization tools: 
survey and analysis. In: Proceedings 9th International 
Workshop on Program Comprehension IWPC 2001 
[Internet]. 2001 [cited 2025 Sept 23]. 7–17. https://
ieeexplore.ieee.org/abstract/document/921708

16.	Katbi A, Hammad M, Elmedany W. Multi-view 
city-based approach for code-smell evolution vi-
sualisation. IET Softw [Internet]. 2020 [cited 2025 
Sept 23]; 14(5): 506–16. https://onlinelibrary.wiley.
com/doi/abs/10.1049/iet-sen.2020.0010

17.	Murphy-Hill E. Scalable, expressive, and context-
sensitive code smell display. In: Companion to the 
23rd ACM SIGPLAN conference on Object-ori-
ented programming systems languages and appli-
cations [Internet]. New York, NY, USA: Association 
for Computing Machinery; 2008 [cited 2025 Sept 
22]. 771–2. (OOPSLA Companion ’08). https://doi.
org/10.1145/1449814.1449854

18.	Mumtaz H, Beck F, Weiskopf D. Detecting Bad 
Smells in Software Systems with Linked Multi-
variate Visualizations. In: 2018 IEEE Working 
Conference on Software Visualization (VISSOFT) 
[Internet]. 2018 [cited 2025 Sept 23]. 12–20. https://
ieeexplore.ieee.org/abstract/document/8530127

19.	Langelier G, Sahraoui H, Poulin P. Visualization-
based analysis of quality for large-scale software 
systems. In: Proceedings of the 20th IEEE/ACM 
International Conference on Automated Software 
Engineering [Internet]. New York, NY, USA: As-
sociation for Computing Machinery; 2005 [cited 
2025 Sept 22]. 214–23. (ASE ’05). https://doi.
org/10.1145/1101908.1101941

20.	Schumacher J, Zazworka N, Shull F, Seaman C, 
Shaw M. Building empirical support for automated 
code smell detection. In: Proceedings of the 2010 
ACM-IEEE International Symposium on Empirical 
Software Engineering and Measurement [Internet]. 
New York, NY, USA: Association for Computing 
Machinery; 2010 [cited 2025 Sept 22]. 1–10. (ESEM 
’10). https://doi.org/10.1145/1852786.1852797

21.	Li W, Shatnawi R. An empirical study of the bad 
smells and class error probability in the post-release 



335

Advances in Science and Technology Research Journal 2026, 20(3), 318–335

object-oriented system evolution. J Syst Softw [In-
ternet]. 2007 July 1 [cited 2025 Sept 23]; 80(7): 
1120–8. https://www.sciencedirect.com/science/
article/pii/S0164121206002780

22.	Yamashita A, Moonen L. Do developers care about 
code smells? An exploratory survey. In: 2013 
20th Working Conference on Reverse Engineer-
ing (WCRE) [Internet]. 2013 [cited 2025 Sept 
23]. 242–51. https://ieeexplore.ieee.org/abstract/
document/6671299

23.	Dhambri K, Sahraoui H, Poulin P. Visual Detec-
tion of Design Anomalies. In: 2008 12th Euro-
pean Conference on Software Maintenance and 
Reengineering [Internet]. 2008 [cited 2025 Sept 
23]. 279–83. https://ieeexplore.ieee.org/abstract/
document/4493326

24.	Murphy-Hill E, Black AP. An interactive ambient 
visualization for code smells. In: Proceedings of the 
5th international symposium on Software visual-
ization [Internet]. New York, NY, USA: Associa-
tion for Computing Machinery; 2010 [cited 2025 
Sept 22]. 5–14. (SOFTVIS ’10). https://dl.acm.org/
doi/10.1145/1879211.1879216

25.	Carneiro G de F, Silva M, Mara L, Figueiredo E, 
Sant’Anna C, Garcia A, et al. Identifying Code 
Smells with Multiple Concern Views. In: 2010 Bra-
zilian Symposium on Software Engineering [Inter-
net]. 2010 [cited 2025 Sept 23]. 128–37. https://
ieeexplore.ieee.org/abstract/document/5629742

26.	Silva I de J, Santos MSR, Ramos LL, Carvalho 
LP da S. VISMELLS: An Interactive Visualization 
for Identifying and Evaluating the Effects of Code 
Smells on Software Projects. In: 2018 XLIV Latin 
American Computer Conference (CLEI) [Internet]. 
2018 [cited 2025 Sept 23]. 40–9. https://ieeexplore.
ieee.org/abstract/document/8786346

27.	2Misiak M, Schreiber A, Fuhrmann A, Zur S, Se-
ider D, Nafeie L. IslandViz: A Tool for Visualiz-
ing Modular Software Systems in Virtual Reality. 
In: 2018 IEEE Working Conference on Software 
Visualization (VISSOFT) [Internet]. 2018 [cited 
2025 Sept 23]. 112–6. https://ieeexplore.ieee.org/
abstract/document/8530137

28.	Schreiber A, Misiak M. Visualizing Software Archi-
tectures in Virtual Reality with an Island Metaphor. 
In: Chen JYC, Fragomeni G, editors. Virtual, Aug-
mented and Mixed Reality: Interaction, Navigation, 
Visualization, Embodiment, and Simulation. Cham: 

Springer International Publishing; 2018; 168–82. 
29.	Wijayawardena ASK, Abeysekera R, Maduranga 

MWP. A Systematic Review of 3D Metaphoric In-
formation Visualization. Int J Mod Educ Comput Sci 
[Internet]. [cited 2025 Sept 23]; 15(1): 73. https://www.
mecs-press.org/ijmecs/ijmecs-v15-n1/v15n1-6.html

30.	Wijesiriwardana C, Wimalaratne P, Abeysinghe T, 
Shalika S, Ahmed N, Mufarrij M. Secure CodeCity: 
3-dimensional visualization of software security fac-
ets. Journal of the National Science Foundation of Sri 
Lanka. 2023 Oct 10 [cited 2025 Sept 23]; https://jnsfsl.
sljol.info/articles/10.4038/jnsfsr.v51i3.11201

31.	Moreno-Lumbreras D, Gonzalez-Barahona JM, 
Robles G, Cosentino V. The influence of the city 
metaphor and its derivates in software visualization. 
J Syst Softw [Internet]. 2024 Apr 1 [cited 2025 Sept 
23]; 210: 111985. https://www.sciencedirect.com/
science/article/pii/S0164121224000281

32.	Jeffery CL. The City Metaphor in Software Visu-
alization. In: Computer Science Research Notes 
[Internet]. Západočeská univerzita; 2019 [cited 
2025 Sept 23]. http://wscg.zcu.cz/wscg2019/2019-
papers/!!_CSRN-2801-18.pdf

33.	Lenarduzzi V, Lomio F, Huttunen H, Taibi D. Are 
SonarQube Rules Inducing Bugs? In: 2020 IEEE 
27th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER) [In-
ternet]. 2020 [cited 2025 Oct 10]. 501–11. https://
ieeexplore.ieee.org/document/9054821/

34.	Merino L, Fuchs J, Blumenschein M, Anslow C, 
Ghafari M, Nierstrasz O, et al. On the Impact of the 
Medium in the Effectiveness of 3D Software Visu-
alizations. In: 2017 IEEE Working Conference on 
Software Visualization (VISSOFT) [Internet]. 2017 
[cited 2025 Sept 23]. 11–21. https://ieeexplore.ieee.
org/document/8091182/

35.	Gonçalves PW, Fregnan E, Baum T, Schneider K, 
Bacchelli A. Do explicit review strategies improve 
code review performance? Towards understanding 
the role of cognitive load. Empir Softw Eng [Inter-
net]. 2022 May 7 [cited 2025 Oct 27]; 27(4): 99. 
https://doi.org/10.1007/s10664-022-10123-8

36.	Wettel R, Lanza M. CodeCity: 3D visualization of 
large-scale software. In: Companion of the 30th inter-
national conference on Software engineering [Internet]. 
New York, NY, USA: Association for Computing Ma-
chinery; 2008 [cited 2025 Oct 10]. 921–2. (ICSE Com-
panion ’08). https://doi.org/10.1145/1370175.1370188


