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ABSTRACT

This article uses machine learning tools to analyze mechanical field parameters for their impact on the fatigue
strength of a structural component. After selecting the geometry, characteristic dimensions were varied to obtain
different values of the theoretical notch shape factor. These values were determined using formulas. Finite ele-
ment simulations were performed for each set of changed dimensions to obtain mechanical field parameters. After
establishing a database of mechanical field parameters, their impact on the high-cycle fatigue strength of structural
components was determined. It turned out that an important parameter from a fatigue strength point of view is
stress triaxiality. The results indicate that for the selected geometry the model explains as much as 97.84% of the
variance of the target variable (shape factor), which is a very good result and encourages further analyses for other
geometries. The described machine learning application has not been used in the way presented so far, and a posi-
tive result will allow replacing the geometry-dependent formulas used to determine the shape factor with a new
unified approach based on the stress triaxiality.

Keywords: high-cycle fatigue, fatigue strength, stress triaxiality, machine learning, finite element method, actual

safety factor.

INTRODUCTION

Over the years of operation of various engi-
neering structures, a phenomenon of their destruc-
tion under stresses with values significantly lower
than the strength limit of the material from which
they were manufactured has been observed. Re-
sults of laboratory tests or analyses using compu-
tational methods confirmed the occurrence of this
phenomenon in structural components of building
objects, industrial machines, means of transporta-
tion, and pressure equipment. It was discovered that
such failures arise as a result of a cracking process
occurring without the presence of plastic deforma-
tions [1] or with their participation, but limited to
small areas [2]. The described damage was associ-
ated with cyclic loads. Their consequence was a
significant reduction in the service life of struc-
tures.The pursuit of determining the life of struc-
tural elements subjected to loads characterized by

variability in magnitude and/or direction of applied
forces has led to the development of a new research
area related to the problem of material fatigue. This
discipline takes into account, among other things,
the influence of cyclic loads on the service life,
which is defined as fatigue life.

In order to determine fatigue life, computa-
tional analyses of structural components are car-
ried out using methodologies based on theories
such as continuum mechanics, plasticity theory,
and fracture mechanics. These methodologies are
developed based on theoretical research, results
of laboratory experiments, and operational experi-
ence of various technical objects, covering areas
such as high-cycle fatigue strength, low-cycle
fatigue strength, and crack propagation kinetics.
Issues related to fatigue calculations have been
presented in numerous dedicated publications, in-
cluding book monographs e.g. [3-5]. Additionally,
they also appear in works devoted to structural
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mechanics, materials strength science, or the de-
sign of machines, pressure vessels, construction
products, and other engineering structures [1, 6].
Fatigue-type loads are a frequent cause of
failure in numerous structures. This phenomenon
is the subject of research, among other reasons,
due to its impact on the safety of operated struc-
tures, equipment, and technical installations. Fa-
tigue characteristics of materials are commonly
expressed through fatigue life and fatigue limit
determined based on a graph showing stress
amplitude as a function of the number of cycles
leading to failure. This is the most often present-
ed in the form of a Wohler curve (S-N). Struc-
tural damage as a result of fatigue phenomena is
caused, among other things, by degradation of the
material from which they are made. Fatigue fail-
ure process of slow growth of cracks is initiated
in existing microstructural defects. This process
can be accelerated by local stress concentrations
[7] or chemically assisted stress corrosion [8]. In
materials with elastic-plastic properties, the con-
dition for the occurrence of this type of damage
is the appearance, growth, and coalescence of
microcracks and voids occurring in them [9]. Fa-
tigue damage to structural elements is influenced
not only by forces and force moments, surface
condition, or detail dimensions, but also by ex-
ternal operating conditions, such as the medium
surrounding the structure, temperature, amplitude
of interactions, and their character [10—12].
Measurements of fatigue crack growth kinet-
ics are commonly performed on specimens con-
taining notches. Fatigue tests are characterized by
long duration, and their results are influenced by
many factors, often independent of the adopted
research methodology. This means that fatigue
research requires the involvement of experienced
specialists who should use specialized equip-
ment. The preparation and implementation of fa-
tigue research takes significantly longer time than
quasi-static tests, such as tensile strength tests.
For elements subjected to fatigue, the actual
(real) safety factor is determined, whose value
depends on many factors. The most important of
these are: geometry, presence of stress concentra-
tors, element dimensions, surface layer condition,
environmental characteristics of the detail such as
temperature or corrosion effects, as well as sever-
al others. In this work, only selected factors from
those mentioned will be discussed in detail.
Notches, also called stress concentra-
tors, constitute various types of material
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dis-continuities occurring in cross-sections of
the analyzed structural element, which cause
local stress increase in their immediate vicin-
ity. Stress concentration means local increase in
stress values appearing in the vicinity of holes,
constrictions, cracks, and sharp shape disconti-
nuities of the cross-section [13].

The mechanism of action of stress concen-
trators consists in disrupting the natural flow of
stresses in the material structure, which results in
local increase of their values exceeding the level
of nominal stresses. Detailed analyses indicate
that in areas of stress concentration, stresses can
reach magnitudes several times greater than those
calculated for the zone outside this area. In places
where stress concentrations occur, the material
structure becomes weakened and susceptible to
the formation of cracks and fractures leading to
local damage, particularly under dynamic or vari-
able loading conditions [14].

Stress concentrators have a fundamental im-
pact on the formation of non-uniform stress dis-
tribution within the cross-section in which they
are located [15]. The occurrence of a result of
which the maximum actual stress at the notch root
significantly exceeds the nominal stress of the el-
ement, and the fatigue failure process most often
begins precisely at this location. A series of pa-
rameters are used for their characterization. The
first of these, which should be discussed, is the
theoretical stress concentration factor for normal
stresses (tension, bending), defined as follows:

@ = gne (1)

Onom

where: ¢ _is the maximum stress caused by the
notch, and ¢, is the nominal stress.

This coefficient is sometimes referred to as
the notch shape factor. Another one is the effec-
tive stress concentration factor or notch action
factor defined as:

z
B =2 2)
Zk
where: Z, is the fatigue limit of a smooth speci-
men, and Z is the fatigue limit of a
notched specimen.

Both coefficients, i.e., the notch shape fac-
tor and the notch action factor, are related by the
material sensitivity factor to notch action 7, (3),
introduced several decades ago [16]:

i = B2 (3)
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hence:
Br=1+n(a,—1) 4)

The coefficient #, is most often determined
from graphs depending on tensile strength R
and notch radius p [17]. Fatigue strength usually
decreases with increasing element dimensions.
However, there is a lack of complete theoretical
explanation of this phenomenon. In practice, met-
allurgical and technological factors have a strong
influence, regardless of the element’s shape or
size. The relationship between object size and its
fatigue life is often described in a probabilistic
way, referring to the weakest link theory. It is de-
fined using the object size coefficient €:

Zd
€= (5)
where: Z, is the strength of a specimen with any
diameter d, and Z is the strength of a spec-
imen made from the same material with a
diameter of 7 to 10 mm [18].

Every type and method of surface treatment
affects the fatigue life of the material. This results
both, from the surface shape and from a set of
complex physical processes occurring in the sur-
face layer during treatment, e.g., plastic treatment
or machining. Treatment residues usually form
regular, repeating micro-notches. The action of
these notches is additionally reinforced by the
occurrence of residual stresses resulting mainly
from plastic deformation of the layer, which can
lead to its local hardening or weakening. The sur-
face condition coefficient ﬂp is defined as:

Po=72, (6)

where: Z is the strength of a polished specimen,
and Z, is the strength of a specimen made
from the same material after various treat-
ments [19].

In 1904, a Polish scientist from Lwow Univer-
sity of Technology, Tytus Huber, first proposed the
hypothesis that material strength is a function of
on the energy stored in the deformed material. This
energy is proportional to the second invariant of
the stress deviator, according to the formula:

Ey ~ ]2 (7

which, in turn, can be represented using equiva-
lent stress, as follows:

where: ¢ and 1 are stress tensor components. In
the principal stress space, the equivalent
stress has the following form:

Gonsan = £ 101 — 0040, = 0340 — 2] (9)

Using contemporary terminology, we would
say that material failure occurs when the reduced
stress reaches a critical value. The parameter de-
fining the stress triaxiality appeared in the mid-
20th century. Two scientists, Davies and Connel-
ly, published a work in 1959 in which they used
this parameter [20]. The authors defined the stress
triaxiality as the ratio of the first invariant of the
stress tensor to the reduced stress as follows:

Npc = O, m (10)

where: o is the hydrostatic stress and is o, the
equivalent stress according to the Huber-
Mises-Hencky hypothesis (HMH).

The motivation for introducing the stress tri-
axiality parameter was their conviction, support-
ed by experimental results, that the hydrostatic
stress has a strong influence on the loss of plastic-
ity in metals. At the beginning of the 21st century,
the stress triaxiality was used in the description
of metal plasticity [21-23]. Many articles have
evaluated critical stress using stress triaxiality. It
turned out that this quantity could be used to pre-
dict fatigue crack initiation [15] and fatigue crack
growth [24], however, the number of observa-
tions is not convincing.

In recent years, the use of machine learning
to discover relationships that are difficult to de-
tect traditionally has become increasingly popu-
lar. While these techniques require a significant
amount of data and computational power, the re-
sults are significant. In [25], a neural network was
trained to determine the peak shape factor values
with very high accuracy in a complex welded joint
subjected to complex loads, and in [26], again us-
ing a neural network, formulas for the shape fac-
tor for a tubular T-joint were obtained. Besides
solving computational problems, machine learn-
ing techniques can also be used in more practical
ways, for example, for crack localization [27].

In the presented work, the application of the
scalar field distribution of stress state triaxiality

1
OcHMH = \/5 [(011 = 022)2+(022 — 033)*+(033 — 011)2[+3(t{, T 755+751) (&)
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in the analysis of fatigue strength of a selected
structural element related to real safety factor was
presented. Analysis of stress triaxiality can con-
tribute to simplifying and shortening laboratory
tests used in everyday engineering practice. For
this purpose, modeling and numerical calcula-
tions were used, as well as machine learning for
inferring the fatigue strength of selected structural
components. Within the framework of achieving
this goal, it was decided to:

e select a working environment equipped with
appropriate computational tools,

e select a structural element subjected to further
analysis and evaluation,

e determine the variability of geometric parame-
ters of the structural element and the variability
of the theoretical stress concentration factor o,

e implement modeling of the geometry of the
selected structural element,

e sclect boundary conditions for the element, in-
cluding displacement constraints and force loads,

e perform numerical calculations of the struc-
tural element using the finite element method,

e subject the obtained calculation results to
preliminary analysis in order to prepare train-
ing and testing datasets for machine learning
algorithms,

e implement the machine learning process using
the linear regression method,

e perform verification of the obtained data,

e perform validation of the obtained results in
relation to the actual (real) safety factor under
fatigue conditions of the selected structural
element.

MATERIALS AND METHODS

Machine learning is a data processing tech-
nique that automates the creation of analytical
models. It belongs to the field of artificial intel-
ligence and is based on the assumption that sys-
tems can learn independently from data, recog-
nize patterns, and make decisions with minimal
human involvement. The most important feature
of machine learning is the abandonment of man-
ual programming of specific tasks. Instead, algo-
rithms construct a mathematical model based on
example data, called the training set, to predict
outcomes or make decisions. One of the frequent-
ly used tasks in machine learning is regression.
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Regression

The regression task involves predicting a con-
tinuous variable by learning a function or algo-
rithm that most faithfully reproduces the training
data. After the training phase, the model creates
its own representation space. New observations
are projected into it, enabling their analysis and
forecasting based on patterns acquired during
training. Regression serves to predict numerical
values of real-world processes based on previ-
ous data. It enables detection of dependencies
between variables, which is essential in making
data-driven decisions.

In machine learning, various types of regres-
sion are distinguished, adapted to the type of data
and degree of problem complexity:

e linear regression assumes a simple, linear rela-
tionship between variables. It is fast and easy
to interpret;

e polynomial regression introduces polynomials
into the fitting function, allowing modeling of
non-linearity. However, it requires caution to
avoid over-fitting;

e isotonic regression enforces monotonic in-
crease or decrease in the predicted value. It
is used in fields such as biology, economics,
medicine, and psychology;

e logistic regression serves classification pur-
poses. It predicts the probability of belonging
to a given class. It is common in medicine,
marketing, and social research.

Through the application of various algorithms,
regression forms the foundation of data analysis
and machine learning. It allows not only forecast-
ing but also better understanding of complex rela-
tionships in data and supports accurate decisions in
various fields of science, business, and daily life.

Evaluation metrics

In assessing the effectiveness of machine
learning models for regression tasks, four metrics
are commonly used. Each measures prediction er-
rors in a different way and provides slightly dif-
ferent perspectives on the model’s fit quality to
the data. These metrics include:

e mean absolute error (MAE);

e mean squared error (MSE);

e root mean squared error (RMSE);

e coefficient of determination R2, which, in the
case of linear regression, equals the square of
the Pearson correlation coefficient.
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Numerical calculations

The research on the influence of the stress-tri-
axiality field distribution was carried out in sev-
eral stages, with the results of each stage serving
as input for the next. Within this framework, the
tasks were performed:

e a structural component was selected and the
range of its geometric variations was defined,

e for each specimen, depending on its shape and
loading conditions, the theoretical notch-shape
factor a was calculated using Python programs
(Spyder environment), and the components
were modeled in the Salome platform (Geom-
etry module) with parametric modeling;

e aPython (Spyder) tool was created to generate
the mesh in Salome’s Smesh module. Finite-
element analyses were then performed and
the data were prepared for post-processing in
Code Aster;

e the results were verified in the ParaView
post-processor

e a Python (Spyder) application was developed
to organize and prepare the post-processing
data for machine-learning purposes;

e a supervised linear-regression model for ma-
chine learning was implemented in Python
(Spyder);

e final verification and validation of the ob-
tained results were carried out in the Spyder
environment.

Based on the literature [2, 13, 28], the se-
lected structural element is a flat specimen with a
central hole, for which the values of notch shape
factors are known. This type of element is com-
monly used in machines, pressure vessels, and
construction products.

The decision to use a flat specimen with
a hole resulted from the need to reproduce real

operating conditions and analyze the influence of
various notch shape factors (stress concentrators)
on fatigue life.

The geometry of the specimen with a hole
enables simple observation of initiation and de-
velopment of fatigue cracks around the hole.
Research proves that the fatigue life of such
specimens is approximately 3—4 times lower than
specimens without a hole, which highlights the
significant role of stress concentrators in the fa-
tigue resistance of the material [2]. Easy manu-
facturing and testing of this type of specimen
allows for increasing the number of tests while
maintaining repeatability of results.

The flat element (flat specimen) was shown
in Figure 1. A constant thickness p, = 10 mm was
adopted for the tests. The circular hole was po-
sitioned centrally. Its radius h_(circular hole di-
ameter) varied from 2 mm to 23 mm with a step
equal to I mm. The width of the elements p_ used
for testing ranged from 50 mm to 165 mm with a
step equal to 5 mm.

Based on the selected specimen, the boundary
conditions, the supports and applied loads were
defined. The flat element with a centrally located
circular hole was subjected exclusively to an ax-
ial tensile force F . The global coordinate system
was placed on one of the specimen’s faces, with
its origin at the midpoint of the thickness along
the z-axis and at half the width along the Y-axis.
Each coordinate axis was parallel to one of the
element’s edges. A view of the global coordinate
system and the boundary conditions for this ele-
ment is shown in Figure 2.

Boundary conditions in the form of kine-
matic constraints were imposed according to the
scheme given in Table 1. The load in the form of
a force was applied along the axis and on the sur-
face opposite the plane YZ at distance of 100 mm.

Figure 1. Flat element with a circular hole.
Description in the text

Figure 2. Flat element with a circular hole. Boundary
conditions
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Table 1. Boundary conditions of flat specimen with circular hole

Location Condition Value

XY plane constraints coordinates z 0 mm

XZ plane constraints coordinates y 0 mm

YZ plane constraints coordinates x 0 mm

Force p_erpendicular to the suﬁacg oppos_ite toYZ, ata Fx 1000 N
distance of 100 mm, according to Figure 2.

According to [28], the relationship for the
theoretical notch shape factor in the case of an
axial tensile force applied along the element’s
longitudinal axis is given by Equation 11. The
notation in the formula corresponds to Figure 1
and Table 2.

2h,
a=300—313< )+

w

2h,\* 2h\°
+366< ) —153( )
Pw Pw

(11)

A surface plot of the notch shape factor for
the flat specimen with a circular hole is shown in
the Figure 3, as a function of the specimen width
and the hole radius.

Table 2 presents all relevant geometric pa-
rameters of the flat element with a centrally lo-
cated circular hole. Additionally, it indicates the
quantities of specimens in relation to significant
parameters, namely width and hole radius, as well
as the range of variability of the theoretical notch
shape factor o.

2.9
2.8
2.7
2.6
245
2.4
2.3
2.2
2.1

Stress concentrator factor gy

80
100
SamD/e

7120
W/dthp

Wﬁ?m

140,I

After selecting various element variants, a
comprehensive Python application was developed,
leveraging the advanced parametric solid-model-
ing capabilities of Salome platform’s Geometry
module. By implementing this application, it was
possible to automatically generate 528 distinct
specimens of the structural element under study.

Numerical calculations were carried out using
a Python application run in the Spyder scientific
environment. Mesh generation with refinement
was performed in Salome. The Smesh module was
used. After meshing, the application conducted
FEM (finite element method) analyses in Code
Aster and prepared the data for the post-processor.

In Figures 4—7 the specimens with their mesh-
es and the field of stress triaxiality are shown. On
these figures, the triaxiality scale is labeled as res-
lin_ SIEQ NOEU. In Code_Aster, this defines re-
duced stress fields averaged over all elements adja-
cent to a given mesh node. They form continuous,
smoothed stress fields at the nodes—facilitating vi-
sualization of the overall stress distribution at the

60

Figure 3. Theoretical notch shape factor a variety
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Table 2. Flat element with circular hole parameters

Parameter Symbol Value Variety
Thickness P, 10 mm constant
Length P, 100 mm constant
: 50 mm — 165 mm
Width P, interval 5 mm 22 samples
Circular hole h 2 mm — 23 mm 24 samples
r interval 1 mm
. 2.02 ath =23 and p =50
Theoretlcfi:?c?rmh shepe o 237 ath=23 and p =165 528 samples
ronsion 2.77 ath=2 and p_ =50 P
2.92 ath=2 and p =165

Q_NOEU TRIAX

——
S o <
© o
reslin__SIE

-1.1e+00

Figure 4. FEM analysis results, 23 50
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Figure 5. FEM analysis results, 23 165

expense of partial loss of extreme-value accuracy.
The term TRIAX denotes stress-state triaxiality.
All finite-element computations employed the
linear static analysis operator MECA STATIQUE.
MECA STATIQUEisCode Aster’s main operator

for performing linear static analyses of solid-me-
chanics problems. It solves the equilibrium equa-
tions under static loads, optionally accounting for
temperature-dependent material properties. In this
work, temperature effects on the stress field were
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Figure 6. FEM analysis results, 2 50
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Figure 7. FEM analysis results, 2 165

not considered. MECA STATIQUE computes dis-
placements, stresses, and strains in structures under
the assumptions of small deformations and linear
material elasticity. This operator allows the appli-
cation of multiple boundary conditions and various
load types, such as forces, pressures, and prescribed
displacements in a single calculation run. Its output
is an object containing the nodal displacement field
for the zero step. MECA_STATIQUE is optimized
for linear analyses, offering rapid convergence for
small-deformation problems. It assumes linear ma-
terial behavior and omits iterative load steps. Stress
and strain fields require the subsequent operator
CALC_CHAMP, which transforms the primary
FEM results (i.e., displacements) into useful quan-
tities such as stresses (including reduced stresses),
strains, and reactions. CALC_CHAMP is essential
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in virtually every structural analysis where assess-
ment of element strength or stress state is needed.

RESULTS

In this subsection, the results of the analysis
of flat structural elements with a centrally located
circular hole, one case are presented. A three-di-
mensional, polyhedral mesh was used. The domi-
nant type chosen was eight-node hexahedra. These
were complemented by six-node triangular-prism
elements. In regions where stress concentrations
were expected, the mesh was refined by halving
the element size relative to the global minimum
size. The graphical results of the analyses include
the four extreme stress triaxiality distributions
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corresponding to the notch shape factor a. These
are shown in the same view and on the same scale
for easier comparison. The Table 3 provides in-
formation on the specimen parameters, the notch
shape factor a, and the figures of the elements.
A Python application was prepared for the nu-
merical calculations, which generated text files
for each element as output. These files contained
the principal values of spatial stress tensor. Addi-
tionally, HMH equivalent stress values (Equation
8) were computed, enabling the determination of
stress-state triaxiality for all finite-element sam-
ple elements. The resulting files formed the basis
for subsequent work. After the numerical calcula-
tions, a text file was obtained containing, for all
specimens and their finite elements:

e the principal stress values of the stress tensor.

e the reduced stress values according to the

HMH hypothesis,
e the stress-state triaxiality values.

This file was used by a Python application
to generate histograms of the stress-state triaxi-
ality for each specimen. In the remainder of this

subsection, for those specimens whose notch shape
factors o assumed extreme values, the aforemen-
tioned triaxiality histograms are plotted. These are
hereafter also referred to simply as triaxiality his-
tograms. The histograms of the stress-state triaxi-
ality distributions are presented for the structural
elements with a centrally located circular hole in
Figures 8—11. Table 4 presents all statistical mea-
sures for the specimens with a hole for which the
notch shape factor o assumed extreme values. The
statistical analysis shown includes a comprehen-
sive set of descriptive parameters, enabling a de-
tailed description of the distribution of stress-state
triaxiality in the investigated structural element.

During numerical calculation analysis, the
statistical measures of stress state triaxiality for
the specimen were obtained. These measures
include the mean, mode, median, standard de-
viation, skewness, and kurtosis. This enabled the
generation of training and validation datasets for
machine learning.

Histograms are a fundamental tool for ex-
tracting and presenting data distribution in

Table 3. Parameters of the flat element with a circular hole

File Hole radius hr Specimen width pw Notch shape factor o Figure
23_50 23 50 2.02 4
23_165 23 165 2.37 5

2_50 50 277 6
2_165 165 2.92 7
Table 4. Statistical measures of triaxiality for circular hole specimens
Sample Hole radius h, Width p,, Notch factor a Mean
23_50 23 50 2.026 0.010
Mode Median Deviation Skewness Kurtosis
0.308 0.122 0.355 -0.028 -1.656
Sample Hole radius h, Width p,, Notch factor o Mean
23_165 23 165 2.378 0.240
Mode Median Deviation Skewness Kurtosis
0.334 0.309 0.205 -1.585 2.048
Sample Hole radius h, Width p,, Notch factor o Mean
250 2 50 2.772 0.327
Mode Median Deviation Skewness Kurtosis
0.349 0.333 0.047 -9.929 149.530
Sample Hole radius h, Width p,, Notch factor o Mean
2_165 2 165 2.926 0.330
Mode Median Deviation Skewness Kurtosis
0.333 0.333 0.036 -14.537 302.586
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Figure 8. Flat specimen triaxiality histogram, 23 50
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Figure 11. Flat specimen triaxiality histogram, 2 165

statistical analysis, enabling graphical visualiza-
tion of the frequency of occurrence of individual
values in the analyzed dataset. In the case of
stress-state triaxiality studies, histograms enable
the detection of characteristic stress distribu-
tion patterns in different parts of the specimen
and estimation of how notch shape affects local
stress states.

The obtained histograms of stress triaxiality
distribution show clear variability related to the
notch shape factor value, which demonstrates
the complex nature of the relationship between
notch geometry and local stress state. This diver-
sity of distributions reflects different stress con-
centration mechanisms characteristic of various
geometric configurations, with each notch form
determining its own specific distribution of stress
triaxiality values. Linear regression was selected
for the machine learning task. The regression
task involves predicting the value of a continu-
ous variable based on a machine learning algo-
rithm. A regression model can determine how the
predicted quantity changes depending on the se-
lected features describing the data. Regression is
particularly useful in the analysis and evaluation
of continuous variables.

This basic type of task was chosen because it
enables obtaining key information about the struc-
ture of training data already at an early stage of
the project. Through simple regression experi-
ments, it can be quickly verified whether there are

Table 5. Data set divisions according to task

dependencies between input features and the target
that can be captured by linear or non-linear models.

Training datasets were created by dividing the
data of the specimen. For the regression task, a
3:1 split was applied, meaning 0.75 of the dataset
constituted the training set and 0.25 of the dataset
the test set. Table 5 presents the adopted divisions
in relation to each of the two tasks.

At the beginning of the machine learning pro-
cess, the capability of plotting heatmaps of data-
sets containing statistical measures of stress-state
triaxiality was utilized. These were:

e mean (mean triaxiality),

mode (triaxiality mode),

median (triaxiality median),
standard deviation (triaxiality
deviation),

skewness (triaxiality skew),
kurtosis (triaxiality kurtosis),
normalized skewness (triaxiality skew scaler),
normalized kurtosis (triaxiality kurtosis scaler).

standard

Heatmaps are available in the Seaborn library.
They constitute one of the most powerful visual-
ization tools in machine learning. They serve to
understand relationships between features and la-
bels. The heatmap function in the Seaborn library
provides an intuitive way to visualize complex
data matrices through color-coded representation.
Correlation values in heatmaps range -1 to 1:

e avalue of 1 indicates perfect positive correlation,

Task Dataset quantity

Training dataset Testing dataset

Regression 528

396 (0.75 x 528) 132 (0.25 x 528)
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e avalue of 0 indicates no linear correlation be-
tween variables,
e avalueof -1 indicates perfect negative correlation.

The presented heatmap visualizes Pearson
correlation coefficients between multiple features
in the dataset. This enables analysis of input data
for machine learning. Figure 12 shows the heat-
map containing all parameters of the flat speci-
men with a circular hole.

DISCUSSION

The correlation coefficients of the notch
shape factor a with other parameters range from
weak 0.32 to very strong 0.95. Hole radius. The

Hole radius -0.85 -0.85
Plate width

Stress concentrator

Mean triaxiality L ; 1

COGHIN -0.32 -0.12

Triaxiality mode

Triaxiality median

Triaxiality standard deviation

Triaxiality skew

Triaxiality kurtosis

Triaxiality kurtosis scaler

Triaxiality skew scaler

Hole radius
Plate width
Mean triaxiality
Triaxiality mode

Stress concentrator

relationship between hole radius and the notch
shape factor oo shows a strong inverse correlation
of 0.85, which explains 72.2% of the variabil-
ity. This seemingly counter-intuitive relationship
suggests that larger holes may cause lower stress
concentration factors, which can be explained by
geometric scaling effects and the ratio of hole di-
ameter to plate width.

Plate width. Plate width shows a moderate
positive correlation 0.48 with stress concentra-
tion, explaining 23% of the variability. This rela-
tionship aligns with FEM analysis results, which
show that narrower plates experience higher
stress concentrations due to edge effects and lim-
ited capacity for load and stress redistribution.

Mean triaxiality. The mean triaxiality param-
eter shows the second-largest correlation of 0.91.

1.00
0.81 ' -0.64 -0.64 0.81 0.75
-0.50
-0.25
B
&
(=
2 -0.00
L
U
o
&
--0.25
--0.50
-0.75

Triaxiality median

Triaxiality standard deviation
Triaxiality skew

Triaxiality kurtosis

Triaxiality kurtosis scaler
Triaxiality skew scaler

Figure 12. Heatmap of flat specimen with circular hole (in each field, the numerical value of the obtained
correlation coefficient and the corresponding color according to the color scale on the right are entered)
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Table 6. Stress-state triaxiality measures for all specimens

Sample Load Mean Mode Median Std. dev. Skewness Kurtosis
Flat specimen witha | - ¢\ 0.91 -0.32 0.86 -0.95 -0.83 0.67
central hole
Table 7. Linear regression coefficients
Variable Hole radius Width Mean Mode Median Deviation Kurtosis Skewness
Symbol X, X, X, X, X, Xg X, Xq
Parameter a, a, a, a, a, a, a, a,
Value -9.2e-04 0.002 -5.01 -0.032 3.92 -5.27 -0.052 -0.069

This constitutes a very strong positive relation-
ship, which explains 82.8% of the variability in
stress concentration values. This relationship sug-
gests that stress concentrations fundamentally al-
ter the hydrostatic component of the stress state,
leading to higher triaxiality values in areas of in-
creased concentration.

Triaxiality mode. The triaxiality mode is
characterized by only a weak negative correlation
of-0.32, suggesting a lesser influence of the mode
on the notch shape factor a value.

Triaxiality median. The triaxiality median
shows a very strong positive correlation with the
notch shape factor of 0.88, confirming conclu-
sions of mean triaxiality.

Triaxiality standard deviation. The triaxiality
standard deviation shows the strongest relationship
with the notch shape factor a, reaching a value of
-0.95 which explains 90.2% of the coefficient’s be-
havioral variability. Such an exceptionally strong
inverse relationship indicates that higher stress
concentrations are associated with a more uniform
triaxiality distribution in the stress field.

Triaxiality skewness. Triaxiality skewness
shows a very strong inverse correlation with the
notch shape factor o of -0.83, indicating that lower
values are associated with a more left-skewed dis-
tribution. Triaxiality kurtosis. Triaxiality kurtosis, in
turn, shows a positive correlation of 0.67, meaning
that stress concentrations generate more “peaked”
distributions for higher notch shape factor a values.

After preliminary analysis using heatmaps, its
summary was compiled in Table 6. Strong cor-
relations between stress concentrators and triaxi-
ality parameters have significant implications for
failure prediction methods. Contemporary crite-
ria, such as Johnson-Cook fracture model [29] or
Rice-Tracey void growth model [30], extensively
utilize triaxiality as a key parameter.

The presented results of linear regression
analysis indicate high quality of the notch shape
factor prediction model. The model uses 8§ fea-
tures characterizing geometry and triaxiality dis-
tribution to predict the notch shape factor a val-
ues. The coefficient of determination value is R?
= 0.9784 (97.84%), meaning that the model ex-
plains almost the entire variance in the target vari-
able. This is an exceptionally high result, indicat-
ing excellent model fit to the data. Only 2.16% of
the variance remains unexplained, suggesting that
the selected features very well describe the stress
concentration phenomenon.

Error metrics:

e MAE = 0.0192: The mean absolute error is
very low, meaning that the model’s predic-
tions deviate on average from actual values by
+0.0192 units;

e MSE=0.0011: The very low mean squared er-
ror value confirms the model’s high accuracy;

e RMSE =0.0324: The root mean squared error
in original units is minimal, indicating precise
predictions.

Comprehensive correlation analysis reveals
that the notch shape factor exhibits complex re-
lationships with both geometric parameters of
structural elements and statistical measures of
stress-state triaxiality. Stronger dependencies re-
late to triaxiality distribution characteristics. The
obtained results constitute a foundation for de-
veloping more accurate machine learning models
to achieve optimal design solutions. As a result
of applying the linear regression task, regression
model parameters for the notch shape factor o
given in the Table 7 were obtained. The intercept
(a,) of the linear regression model is equal to 3.19.

Formula for the notch shape factor o can be
written as:
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areg =a0+ aq ~x1+ a -x2+ as '.X'3+ (12)
+a4'X4+a5‘x5+a6'x6+a7'x7+a8'x8

Many of these parameters can be omitted due
to their negligible impact on the model. There-
fore, it can be written as:

Oreg=3.19 — 5.01 - az+3.92 - as — 5.27 - ag(13)

CONCLUSIONS

The model shows very good prediction with
R? = 97.84%, which indicates very good repre-
sentation of stress concentration mechanisms.
Low values of MAE, MSE, RMSE errors confirm
high prediction accuracy. However, such high R?
may also suggest the need to check whether the
model is not over-fitted to the training data. Ad-
ditional validation on an independent dataset and
residual analysis are recommended for complete
assessment of model quality.

Multiple linear regression proved to be very
stable and accurate in most of the studied configu-
rations, especially where the relationships between
features and o were close to linear. Triaxiality sta-
tistics dominate the influence on stress concentra-
tion; the mean triaxiality parameter remains the
strongest predictor across the entire dataset.

The application of linear regression ultimately
yielded very low RMSE errors (<0.065), making
them practically useful for estimating the notch
shape factor o under engineering conditions.
However, industrial implementation requires rig-
orous external validation and residual analysis to
avoid overconfidence in the models.

Future work is recommended to extend the
dataset with fatigue cases, apply Bayesian meth-
ods, and implement more precise feature scaling,
especially when triaxiality distribution exhibits
strong positive kurtosis.

The conducted research confirms that with
appropriate hyper-parameter configuration and
proper predictor selection, both analyzed tech-
niques constitute valuable tools for supporting the
design of structures sensitive to stress concentra-
tors, with the choice of a specific model depend-
ing on the degree of linearity of the phenomenon
and validation requirements.

In the analyzed model, the largest regression
coefficients were assigned to central value param-
eters of triaxiality distribution (mean, median),
while the influence of geometry (radii, dimen-
sions) was significantly smaller or negligible.
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Based on the above relationship, it can be
stated that the actual safety factor under fatigue
conditions depends on the stress concentration
coefficient, since the latter depends on triaxiality
field distribution.
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