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INTRODUCTION

Over the years of operation of various engi-
neering structures, a phenomenon of their destruc-
tion under stresses with values significantly lower 
than the strength limit of the material from which 
they were manufactured has been observed. Re-
sults of laboratory tests or analyses using compu-
tational methods confirmed the occurrence of this 
phenomenon in structural components of building 
objects, industrial machines, means of transporta-
tion, and pressure equipment. It was discovered that 
such failures arise as a result of a cracking process 
occurring without the presence of plastic deforma-
tions [1] or with their participation, but limited to 
small areas [2]. The described damage was associ-
ated with cyclic loads. Their consequence was a 
significant reduction in the service life of struc-
tures.The pursuit of determining the life of struc-
tural elements subjected to loads characterized by 

variability in magnitude and/or direction of applied 
forces has led to the development of a new research 
area related to the problem of material fatigue. This 
discipline takes into account, among other things, 
the influence of cyclic loads on the service life, 
which is defined as fatigue life.

In order to determine fatigue life, computa-
tional analyses of structural components are car-
ried out using methodologies based on theories 
such as continuum mechanics, plasticity theory, 
and fracture mechanics. These methodologies are 
developed based on theoretical research, results 
of laboratory experiments, and operational experi-
ence of various technical objects, covering areas 
such as high-cycle fatigue strength, low-cycle 
fatigue strength, and crack propagation kinetics. 
Issues related to fatigue calculations have been 
presented in numerous dedicated publications, in-
cluding book monographs e.g. [3-5]. Additionally, 
they also appear in works devoted to structural 
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mechanics, materials strength science, or the de-
sign of machines, pressure vessels, construction 
products, and other engineering structures [1, 6].

Fatigue-type loads are a frequent cause of 
failure in numerous structures. This phenomenon 
is the subject of research, among other reasons, 
due to its impact on the safety of operated struc-
tures, equipment, and technical installations. Fa-
tigue characteristics of materials are commonly 
expressed through fatigue life and fatigue limit 
determined based on a graph showing stress 
amplitude as a function of the number of cycles 
leading to failure. This is the most often present-
ed in the form of a Wöhler curve (S-N). Struc-
tural damage as a result of fatigue phenomena is 
caused, among other things, by degradation of the 
material from which they are made. Fatigue fail-
ure process of slow growth of cracks is initiated 
in existing microstructural defects. This process 
can be accelerated by local stress concentrations 
[7] or chemically assisted stress corrosion [8]. In 
materials with elastic-plastic properties, the con-
dition for the occurrence of this type of damage 
is the appearance, growth, and coalescence of 
microcracks and voids occurring in them [9]. Fa-
tigue damage to structural elements is influenced 
not only by forces and force moments, surface 
condition, or detail dimensions, but also by ex-
ternal operating conditions, such as the medium 
surrounding the structure, temperature, amplitude 
of interactions, and their character [10–12].

Measurements of fatigue crack growth kinet-
ics are commonly performed on specimens con-
taining notches. Fatigue tests are characterized by 
long duration, and their results are influenced by 
many factors, often independent of the adopted 
research methodology. This means that fatigue 
research requires the involvement of experienced 
specialists who should use specialized equip-
ment. The preparation and implementation of fa-
tigue research takes significantly longer time than 
quasi-static tests, such as tensile strength tests. 

For elements subjected to fatigue, the actual 
(real) safety factor is determined, whose value 
depends on many factors. The most important of 
these are: geometry, presence of stress concentra-
tors, element dimensions, surface layer condition, 
environmental characteristics of the detail such as 
temperature or corrosion effects, as well as sever-
al others. In this work, only selected factors from 
those mentioned will be discussed in detail.

Notches, also called stress concentra-
tors, constitute various types of material 

dis-continuities occurring in cross-sections of 
the analyzed structural element, which cause 
local stress increase in their immediate vicin-
ity. Stress concentration means local increase in 
stress values appearing in the vicinity of holes, 
constrictions, cracks, and sharp shape disconti-
nuities of the cross-section [13].

The mechanism of action of stress concen-
trators consists in disrupting the natural flow of 
stresses in the material structure, which results in 
local increase of their values exceeding the level 
of nominal stresses. Detailed analyses indicate 
that in areas of stress concentration, stresses can 
reach magnitudes several times greater than those 
calculated for the zone outside this area. In places 
where stress concentrations occur, the material 
structure becomes weakened and susceptible to 
the formation of cracks and fractures leading to 
local damage, particularly under dynamic or vari-
able loading conditions [14].

Stress concentrators have a fundamental im-
pact on the formation of non-uniform stress dis-
tribution within the cross-section in which they 
are located [15]. The occurrence of a result of 
which the maximum actual stress at the notch root 
significantly exceeds the nominal stress of the el-
ement, and the fatigue failure process most often 
begins precisely at this location. A series of pa-
rameters are used for their characterization. The 
first of these, which should be discussed, is the 
theoretical stress concentration factor for normal 
stresses (tension, bending), defined as follows:
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where:	σmax is the maximum stress caused by the 
notch, and σnom is the nominal stress. 

This coefficient is sometimes referred to as 
the notch shape factor. Another one is the effec-
tive stress concentration factor or notch action 
factor defined as:
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where:	Zgl is the fatigue limit of a smooth speci-
men, and Zk is the fatigue limit of a 
notched specimen. 

Both coefficients, i.e., the notch shape fac-
tor and the notch action factor, are related by the 
material sensitivity factor to notch action ηk (3), 
introduced several decades ago [16]:
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hence:
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The coefficient ηk is most often determined 
from graphs depending on tensile strength Rm 
and notch radius ρ [17]. Fatigue strength usually 
decreases with increasing element dimensions. 
However, there is a lack of complete theoretical 
explanation of this phenomenon. In practice, met-
allurgical and technological factors have a strong 
influence, regardless of the element’s shape or 
size. The relationship between object size and its 
fatigue life is often described in a probabilistic 
way, referring to the weakest link theory. It is de-
fined using the object size coefficient e:
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where:	Zd is the strength of a specimen with any 
diameter d, and Z is the strength of a spec-
imen made from the same material with a 
diameter of 7 to 10 mm [18].

Every type and method of surface treatment 
affects the fatigue life of the material. This results 
both, from the surface shape and from a set of 
complex physical processes occurring in the sur-
face layer during treatment, e.g., plastic treatment 
or machining. Treatment residues usually form 
regular, repeating micro-notches. The action of 
these notches is additionally reinforced by the 
occurrence of residual stresses resulting mainly 
from plastic deformation of the layer, which can 
lead to its local hardening or weakening. The sur-
face condition coefficient βp is defined as:
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where:	Z0 is the strength of a polished specimen, 
and Zp is the strength of a specimen made 
from the same material after various treat-
ments [19].

In 1904, a Polish scientist from Lwów Univer-
sity of Technology, Tytus Huber, first proposed the 
hypothesis that material strength is a function of 
on the energy stored in the deformed material. This 
energy is proportional to the second invariant of 
the stress deviator, according to the formula:
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which, in turn, can be represented using equiva-
lent stress, as follows:

where:	s and t are stress tensor components. In 
the principal stress space, the equivalent 
stress has the following form:
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Using contemporary terminology, we would 
say that material failure occurs when the reduced 
stress reaches a critical value. The parameter de-
fining the stress triaxiality appeared in the mid-
20th century. Two scientists, Davies and Connel-
ly, published a work in 1959 in which they used 
this parameter [20]. The authors defined the stress 
triaxiality as the ratio of the first invariant of the 
stress tensor to the reduced stress as follows:
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where:	σm is the hydrostatic stress and is σe the 
equivalent stress according to the Huber-
Mises-Hencky hypothesis (HMH). 

The motivation for introducing the stress tri-
axiality parameter was their conviction, support-
ed by experimental results, that the hydrostatic 
stress has a strong influence on the loss of plastic-
ity in metals. At the beginning of the 21st century, 
the stress triaxiality was used in the description 
of metal plasticity [21–23]. Many articles have 
evaluated critical stress using stress triaxiality. It 
turned out that this quantity could be used to pre-
dict fatigue crack initiation [15] and fatigue crack 
growth [24], however, the number of observa-
tions is not convincing. 

In recent years, the use of machine learning 
to discover relationships that are difficult to de-
tect traditionally has become increasingly popu-
lar. While these techniques require a significant 
amount of data and computational power, the re-
sults are significant. In [25], a neural network was 
trained to determine the peak shape factor values 
with very high accuracy in a complex welded joint 
subjected to complex loads, and in [26], again us-
ing a neural network, formulas for the shape fac-
tor for a tubular T-joint were obtained. Besides 
solving computational problems, machine learn-
ing techniques can also be used in more practical 
ways, for example, for crack localization [27].

In the presented work, the application of the 
scalar field distribution of stress state triaxiality 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = √1
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in the analysis of fatigue strength of a selected 
structural element related to real safety factor was 
presented. Analysis of stress triaxiality can con-
tribute to simplifying and shortening laboratory 
tests used in everyday engineering practice. For 
this purpose, modeling and numerical calcula-
tions were used, as well as machine learning for 
inferring the fatigue strength of selected structural 
components. Within the framework of achieving 
this goal, it was decided to:
	• select a working environment equipped with 

appropriate computational tools,
	• select a structural element subjected to further 

analysis and evaluation,
	• determine the variability of geometric parame-

ters of the structural element and the variability 
of the theoretical stress concentration factor α,

	• implement modeling of the geometry of the 
selected structural element,

	• select boundary conditions for the element, in-
cluding displacement constraints and force loads,

	• perform numerical calculations of the struc-
tural element using the finite element method,

	• subject the obtained calculation results to 
preliminary analysis in order to prepare train-
ing and testing datasets for machine learning 
algorithms,

	• implement the machine learning process using 
the linear regression method,

	• perform verification of the obtained data,
	• perform validation of the obtained results in 

relation to the actual (real) safety factor under 
fatigue conditions of the selected structural 
element.

MATERIALS AND METHODS

Machine learning is a data processing tech-
nique that automates the creation of analytical 
models. It belongs to the field of artificial intel-
ligence and is based on the assumption that sys-
tems can learn independently from data, recog-
nize patterns, and make decisions with minimal 
human involvement. The most important feature 
of machine learning is the abandonment of man-
ual programming of specific tasks. Instead, algo-
rithms construct a mathematical model based on 
example data, called the training set, to predict 
outcomes or make decisions. One of the frequent-
ly used tasks in machine learning is regression.

Regression

The regression task involves predicting a con-
tinuous variable by learning a function or algo-
rithm that most faithfully reproduces the training 
data. After the training phase, the model creates 
its own representation space. New observations 
are projected into it, enabling their analysis and 
forecasting based on patterns acquired during 
training. Regression serves to predict numerical 
values of real-world processes based on previ-
ous data. It enables detection of dependencies 
between variables, which is essential in making 
data-driven decisions.

In machine learning, various types of regres-
sion are distinguished, adapted to the type of data 
and degree of problem complexity:
	• linear regression assumes a simple, linear rela-

tionship between variables. It is fast and easy 
to interpret;

	• polynomial regression introduces polynomials 
into the fitting function, allowing modeling of 
non-linearity. However, it requires caution to 
avoid over-fitting;

	• isotonic regression enforces monotonic in-
crease or decrease in the predicted value. It 
is used in fields such as biology, economics, 
medicine, and psychology;

	• logistic regression serves classification pur-
poses. It predicts the probability of belonging 
to a given class. It is common in medicine, 
marketing, and social research.

Through the application of various algorithms, 
regression forms the foundation of data analysis 
and machine learning. It allows not only forecast-
ing but also better understanding of complex rela-
tionships in data and supports accurate decisions in 
various fields of science, business, and daily life.

Evaluation metrics

In assessing the effectiveness of machine 
learning models for regression tasks, four metrics 
are commonly used. Each measures prediction er-
rors in a different way and provides slightly dif-
ferent perspectives on the model’s fit quality to 
the data. These metrics include:
	• mean absolute error (MAE);
	• mean squared error (MSE);
	• root mean squared error (RMSE);
	• coefficient of determination R², which, in the 

case of linear regression, equals the square of 
the Pearson correlation coefficient.
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Numerical calculations

The research on the influence of the stress-tri-
axiality field distribution was carried out in sev-
eral stages, with the results of each stage serving 
as input for the next. Within this framework, the 
tasks were performed:
	• a structural component was selected and the 

range of its geometric variations was defined;
	• for each specimen, depending on its shape and 

loading conditions, the theoretical notch-shape 
factor α was calculated using Python programs 
(Spyder environment), and the components 
were modeled in the Salome platform (Geom-
etry module) with parametric modeling;

	• a Python (Spyder) tool was created to generate 
the mesh in Salome’s Smesh module. Finite-
element analyses were then performed and 
the data were prepared for post-processing in 
Code_Aster;

	• the results were verified in the ParaView 
post-processor

	• a Python (Spyder) application was developed 
to organize and prepare the post-processing 
data for machine-learning purposes;

	• a supervised linear-regression model for ma-
chine learning was implemented in Python 
(Spyder);

	• final verification and validation of the ob-
tained results were carried out in the Spyder 
environment.

Based on the literature [2, 13, 28], the se-
lected structural element is a flat specimen with a 
central hole, for which the values of notch shape 
factors are known. This type of element is com-
monly used in machines, pressure vessels, and 
construction products.

The decision to use a flat specimen with 
a hole resulted from the need to reproduce real 

operating conditions and analyze the influence of 
various notch shape factors (stress concentrators) 
on fatigue life.

The geometry of the specimen with a hole 
enables simple observation of initiation and de-
velopment of fatigue cracks around the hole. 
Research proves that the fatigue life of such 
specimens is approximately 3–4 times lower than 
specimens without a hole, which highlights the 
significant role of stress concentrators in the fa-
tigue resistance of the material [2]. Easy manu-
facturing and testing of this type of specimen 
allows for increasing the number of tests while 
maintaining repeatability of results.

The flat element (flat specimen) was shown 
in Figure 1. A constant thickness pt = 10 mm was 
adopted for the tests. The circular hole was po-
sitioned centrally. Its radius hr (circular hole di-
ameter) varied from 2 mm to 23 mm with a step 
equal to 1 mm. The width of the elements pw used 
for testing ranged from 50 mm to 165 mm with a 
step equal to 5 mm.

Based on the selected specimen, the boundary 
conditions, the supports and applied loads were 
defined. The flat element with a centrally located 
circular hole was subjected exclusively to an ax-
ial tensile force Fx. The global coordinate system 
was placed on one of the specimen’s faces, with 
its origin at the midpoint of the thickness along 
the z-axis and at half the width along the Y-axis. 
Each coordinate axis was parallel to one of the 
element’s edges. A view of the global coordinate 
system and the boundary conditions for this ele-
ment is shown in Figure 2.

Boundary conditions in the form of kine-
matic constraints were imposed according to the 
scheme given in Table 1. The load in the form of 
a force was applied along the axis and on the sur-
face opposite the plane YZ at distance of 100 mm.

Figure 1. Flat element with a circular hole. 
Description in the text

Figure 2. Flat element with a circular hole. Boundary 
conditions
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According to [28], the relationship for the 
theoretical notch shape factor in the case of an 
axial tensile force applied along the element’s 
longitudinal axis is given by Equation 11. The 
notation in the formula corresponds to Figure 1 
and Table 2.
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A surface plot of the notch shape factor for 
the flat specimen with a circular hole is shown in 
the Figure 3, as a function of the specimen width 
and the hole radius.

Table 2 presents all relevant geometric pa-
rameters of the flat element with a centrally lo-
cated circular hole. Additionally, it indicates the 
quantities of specimens in relation to significant 
parameters, namely width and hole radius, as well 
as the range of variability of the theoretical notch 
shape factor a.

After selecting various element variants, a 
comprehensive Python application was developed, 
leveraging the advanced parametric solid-model-
ing capabilities of Salome platform’s Geometry 
module. By implementing this application, it was 
possible to automatically generate 528 distinct 
specimens of the structural element under study.

Numerical calculations were carried out using 
a Python application run in the Spyder scientific 
environment. Mesh generation with refinement 
was performed in Salome. The Smesh module was 
used. After meshing, the application conducted 
FEM (finite element method) analyses in Code_
Aster and prepared the data for the post-processor.

In Figures 4–7 the specimens with their mesh-
es and the field of stress triaxiality are shown. On 
these figures, the triaxiality scale is labeled as res-
lin_SIEQ_NOEU. In Code_Aster, this defines re-
duced stress fields averaged over all elements adja-
cent to a given mesh node. They form continuous, 
smoothed stress fields at the nodes–facilitating vi-
sualization of the overall stress distribution at the 

Figure 3. Theoretical notch shape factor α variety

Table 1. Boundary conditions of flat specimen with circular hole
Location Condition Value

XY plane constraints coordinates z 0 mm

XZ plane constraints coordinates y 0 mm

YZ plane constraints coordinates x 0 mm
Force perpendicular to the surface opposite to YZ, at a 

distance of 100 mm, according to Figure 2. Fx 1000 N
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Table 2. Flat element with circular hole parameters
Parameter Symbol Value Variety

Thickness pt 10 mm constant

Length pl 100 mm constant

Width pw
50 mm – 165 mm

interval 5 mm 22 samples

Circular hole hr
2 mm – 23 mm
interval 1 mm 24 samples

Theoretical notch shape 
factor,
tension

a

2.02 at hr=23 and pw=50
2.37 at hr=23 and pw=165

2.77 at hr=2 and pw=50
2.92 at hr=2 and pw=165

528 samples

Figure 5. FEM analysis results, 23_165

expense of partial loss of extreme‐value accuracy. 
The term TRIAX denotes stress-state triaxiality.

All finite-element computations employed the 
linear static analysis operator MECA_STATIQUE. 
MECA_STATIQUE is Code_Aster’s main operator 

for performing linear static analyses of solid-me-
chanics problems. It solves the equilibrium equa-
tions under static loads, optionally accounting for 
temperature-dependent material properties. In this 
work, temperature effects on the stress field were 

Figure 4. FEM analysis results, 23_50
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not considered. MECA_STATIQUE computes dis-
placements, stresses, and strains in structures under 
the assumptions of small deformations and linear 
material elasticity. This operator allows the appli-
cation of multiple boundary conditions and various 
load types, such as forces, pressures, and prescribed 
displacements in a single calculation run. Its output 
is an object containing the nodal displacement field 
for the zero step. MECA_STATIQUE is optimized 
for linear analyses, offering rapid convergence for 
small-deformation problems. It assumes linear ma-
terial behavior and omits iterative load steps. Stress 
and strain fields require the subsequent operator 
CALC_CHAMP, which transforms the primary 
FEM results (i.e., displacements) into useful quan-
tities such as stresses (including reduced stresses), 
strains, and reactions. CALC_CHAMP is essential 

in virtually every structural analysis where assess-
ment of element strength or stress state is needed.

RESULTS

In this subsection, the results of the analysis 
of flat structural elements with a centrally located 
circular hole, one case are presented. A three-di-
mensional, polyhedral mesh was used. The domi-
nant type chosen was eight-node hexahedra. These 
were complemented by six-node triangular-prism 
elements. In regions where stress concentrations 
were expected, the mesh was refined by halving 
the element size relative to the global minimum 
size. The graphical results of the analyses include 
the four extreme stress triaxiality distributions 

Figure 7. FEM analysis results, 2_165

Figure 6. FEM analysis results, 2_50
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Table 3. Parameters of the flat element with a circular hole
File Hole radius hr Specimen width pw Notch shape factor a Figure

23_50 23 50 2.02 4

23_165 23 165 2.37 5

2_50 2 50 2.77 6

2_165 2 165 2.92 7

corresponding to the notch shape factor α. These 
are shown in the same view and on the same scale 
for easier comparison. The Table 3 provides in-
formation on the specimen parameters, the notch 
shape factor α, and the figures of the elements. 
A Python application was prepared for the nu-
merical calculations, which generated text files 
for each element as output. These files contained 
the principal values of spatial stress tensor. Addi-
tionally, HMH equivalent stress values (Equation 
8) were computed, enabling the determination of 
stress‐state triaxiality for all finite‐element sam-
ple elements. The resulting files formed the basis 
for subsequent work. After the numerical calcula-
tions, a text file was obtained containing, for all 
specimens and their finite elements:
	• the principal stress values of the stress tensor.
	• the reduced stress values according to the 

HMH hypothesis,
	• the stress-state triaxiality values.

This file was used by a Python application 
to generate histograms of the stress-state triaxi-
ality for each specimen. In the remainder of this 

subsection, for those specimens whose notch shape 
factors a assumed extreme values, the aforemen-
tioned triaxiality histograms are plotted. These are 
hereafter also referred to simply as triaxiality his-
tograms. The histograms of the stress-state triaxi-
ality distributions are presented for the structural 
elements with a centrally located circular hole in 
Figures 8–11. Table 4 presents all statistical mea-
sures for the specimens with a hole for which the 
notch shape factor a assumed extreme values. The 
statistical analysis shown includes a comprehen-
sive set of descriptive parameters, enabling a de-
tailed description of the distribution of stress‐state 
triaxiality in the investigated structural element.

During numerical calculation analysis, the 
statistical measures of stress state triaxiality for 
the specimen were obtained. These measures 
include the mean, mode, median, standard de-
viation, skewness, and kurtosis. This enabled the 
generation of training and validation datasets for 
machine learning.

Histograms are a fundamental tool for ex-
tracting and presenting data distribution in 

Table 4. Statistical measures of triaxiality for circular hole specimens
Sample Hole radius hr Width pw Notch factor a Mean

23_50 23 50 2.026 0.010

Mode Median Deviation Skewness Kurtosis

0.308 0.122 0.355 -0.028 -1.656

Sample Hole radius hr Width pw Notch factor a Mean

23_165 23 165 2.378 0.240

Mode Median Deviation Skewness Kurtosis

0.334 0.309 0.205 -1.585 2.048

Sample Hole radius hr Width pw Notch factor a Mean

2_50 2 50 2.772 0.327

Mode Median Deviation Skewness Kurtosis

0.349 0.333 0.047 -9.929 149.530

Sample Hole radius hr Width pw Notch factor a Mean

2_165 2 165 2.926 0.330

Mode Median Deviation Skewness Kurtosis

0.333 0.333 0.036 -14.537 302.586
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Figure 8. Flat specimen triaxiality histogram, 23_50

Figure 9. Flat specimen triaxiality histogram, 23_165

Figure 10. Flat specimen triaxiality histogram, 2_50
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Figure 11. Flat specimen triaxiality histogram, 2_165

statistical analysis, enabling graphical visualiza-
tion of the frequency of occurrence of individual 
values in the analyzed dataset. In the case of 
stress-state triaxiality studies, histograms enable 
the detection of characteristic stress distribu-
tion patterns in different parts of the specimen 
and estimation of how notch shape affects local 
stress states.

The obtained histograms of stress triaxiality 
distribution show clear variability related to the 
notch shape factor value, which demonstrates 
the complex nature of the relationship between 
notch geometry and local stress state. This diver-
sity of distributions reflects different stress con-
centration mechanisms characteristic of various 
geometric configurations, with each notch form 
determining its own specific distribution of stress 
triaxiality values. Linear regression was selected 
for the machine learning task. The regression 
task involves predicting the value of a continu-
ous variable based on a machine learning algo-
rithm. A regression model can determine how the 
predicted quantity changes depending on the se-
lected features describing the data. Regression is 
particularly useful in the analysis and evaluation 
of continuous variables.

This basic type of task was chosen because it 
enables obtaining key information about the struc-
ture of training data already at an early stage of 
the project. Through simple regression experi-
ments, it can be quickly verified whether there are 

dependencies between input features and the target 
that can be captured by linear or non-linear models.

Training datasets were created by dividing the 
data of the specimen. For the regression task, a 
3:1 split was applied, meaning 0.75 of the dataset 
constituted the training set and 0.25 of the dataset 
the test set. Table 5 presents the adopted divisions 
in relation to each of the two tasks. 

At the beginning of the machine learning pro-
cess, the capability of plotting heatmaps of data-
sets containing statistical measures of stress-state 
triaxiality was utilized. These were:
	• mean (mean triaxiality),
	• mode (triaxiality mode),
	• median (triaxiality median),
	• standard deviation (triaxiality standard 

deviation),
	• skewness (triaxiality skew),
	• kurtosis (triaxiality kurtosis),
	• normalized skewness (triaxiality skew scaler),
	• normalized kurtosis (triaxiality kurtosis scaler).

Heatmaps are available in the Seaborn library. 
They constitute one of the most powerful visual-
ization tools in machine learning. They serve to 
understand relationships between features and la-
bels. The heatmap function in the Seaborn library 
provides an intuitive way to visualize complex 
data matrices through color-coded representation. 
Correlation values in heatmaps range -1 to 1:
	• a value of 1 indicates perfect positive correlation,

Table 5. Data set divisions according to task
Task Dataset quantity Training dataset Testing dataset

Regression 528 396 (0.75 × 528) 132 (0.25 × 528)
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	• a value of 0 indicates no linear correlation be-
tween variables,

	• a value of -1 indicates perfect negative correlation.

The presented heatmap visualizes Pearson 
correlation coefficients between multiple features 
in the dataset. This enables analysis of input data 
for machine learning. Figure 12 shows the heat-
map containing all parameters of the flat speci-
men with a circular hole.

DISCUSSION

The correlation coefficients of the notch 
shape factor a with other parameters range from 
weak 0.32 to very strong 0.95. Hole radius. The 

relationship between hole radius and the notch 
shape factor a shows a strong inverse correlation 
of 0.85, which explains 72.2% of the variabil-
ity. This seemingly counter-intuitive relationship 
suggests that larger holes may cause lower stress 
concentration factors, which can be explained by 
geometric scaling effects and the ratio of hole di-
ameter to plate width.

Plate width. Plate width shows a moderate 
positive correlation 0.48 with stress concentra-
tion, explaining 23% of the variability. This rela-
tionship aligns with FEM analysis results, which 
show that narrower plates experience higher 
stress concentrations due to edge effects and lim-
ited capacity for load and stress redistribution.

Mean triaxiality. The mean triaxiality param-
eter shows the second-largest correlation of 0.91. 

Figure 12. Heatmap of flat specimen with circular hole (in each field, the numerical value of the obtained 
correlation coefficient and the corresponding color according to the color scale on the right are entered)
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Table 6. Stress-state triaxiality measures for all specimens
Sample Load Mean Mode Median Std. dev. Skewness Kurtosis

Flat specimen with a 
central hole Tension 0.91 -0.32 0.86 -0.95 -0.83 0.67

Table 7. Linear regression coefficients
Variable Hole radius Width Mean Mode Median Deviation Kurtosis Skewness

Symbol x1 x2 x3 x4 x5 x6 x7 x8

Parameter a1 a2 a3 a4 a5 a6 a7 a8

Value -9.2e-04 0.002 -5.01 -0.032 3.92 -5.27 -0.052 -0.069

This constitutes a very strong positive relation-
ship, which explains 82.8% of the variability in 
stress concentration values. This relationship sug-
gests that stress concentrations fundamentally al-
ter the hydrostatic component of the stress state, 
leading to higher triaxiality values in areas of in-
creased concentration.

Triaxiality mode. The triaxiality mode is 
characterized by only a weak negative correlation 
of -0.32, suggesting a lesser influence of the mode 
on the notch shape factor a value.

Triaxiality median. The triaxiality median 
shows a very strong positive correlation with the 
notch shape factor of 0.88, confirming conclu-
sions of mean triaxiality.

Triaxiality standard deviation. The triaxiality 
standard deviation shows the strongest relationship 
with the notch shape factor a, reaching a value of 
-0.95 which explains 90.2% of the coefficient’s be-
havioral variability. Such an exceptionally strong 
inverse relationship indicates that higher stress 
concentrations are associated with a more uniform 
triaxiality distribution in the stress field.

Triaxiality skewness. Triaxiality skewness 
shows a very strong inverse correlation with the 
notch shape factor a of -0.83, indicating that lower 
values are associated with a more left-skewed dis-
tribution. Triaxiality kurtosis. Triaxiality kurtosis, in 
turn, shows a positive correlation of 0.67, meaning 
that stress concentrations generate more “peaked” 
distributions for higher notch shape factor a values.

After preliminary analysis using heatmaps, its 
summary was compiled in Table 6. Strong cor-
relations between stress concentrators and triaxi-
ality parameters have significant implications for 
failure prediction methods. Contemporary crite-
ria, such as Johnson-Cook fracture model [29] or 
Rice-Tracey void growth model [30], extensively 
utilize triaxiality as a key parameter.

The presented results of linear regression 
analysis indicate high quality of the notch shape 
factor prediction model. The model uses 8 fea-
tures characterizing geometry and triaxiality dis-
tribution to predict the notch shape factor α val-
ues. The coefficient of determination value is R² 
= 0.9784 (97.84%), meaning that the model ex-
plains almost the entire variance in the target vari-
able. This is an exceptionally high result, indicat-
ing excellent model fit to the data. Only 2.16% of 
the variance remains unexplained, suggesting that 
the selected features very well describe the stress 
concentration phenomenon.
Error metrics:
	• MAE = 0.0192: The mean absolute error is 

very low, meaning that the model’s predic-
tions deviate on average from actual values by 
±0.0192 units;

	• MSE = 0.0011: The very low mean squared er-
ror value confirms the model’s high accuracy;

	• RMSE = 0.0324: The root mean squared error 
in original units is minimal, indicating precise 
predictions.

Comprehensive correlation analysis reveals 
that the notch shape factor exhibits complex re-
lationships with both geometric parameters of 
structural elements and statistical measures of 
stress-state triaxiality. Stronger dependencies re-
late to triaxiality distribution characteristics. The 
obtained results constitute a foundation for de-
veloping more accurate machine learning models 
to achieve optimal design solutions. As a result 
of applying the linear regression task, regression 
model parameters for the notch shape factor α 
given in the Table 7 were obtained. The intercept 
(a0) of the linear regression model is equal to 3.19.

Formula for the notch shape factor a can be 
written as:
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𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎0+ 𝑎𝑎1 ⋅ 𝑥𝑥1+ 𝑎𝑎2 ⋅ 𝑥𝑥2+ 𝑎𝑎3 ⋅ 𝑥𝑥3 + 

+ 𝑎𝑎4 ⋅ 𝑥𝑥4+ 𝑎𝑎5 ⋅ 𝑥𝑥5 + 𝑎𝑎6 ⋅ 𝑥𝑥6 + 𝑎𝑎7 ⋅ 𝑥𝑥7 + 𝑎𝑎8 ⋅ 𝑥𝑥8 
 
  
 

(12) 
 
 

 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟=3.19 − 5.01 ⋅ 𝑎𝑎3+3.92 ⋅ 𝑎𝑎5 − 5.27 ⋅ 𝑎𝑎6 (13) 
 

	(12)

Many of these parameters can be omitted due 
to their negligible impact on the model. There-
fore, it can be written as:
	

 
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎0+ 𝑎𝑎1 ⋅ 𝑥𝑥1+ 𝑎𝑎2 ⋅ 𝑥𝑥2+ 𝑎𝑎3 ⋅ 𝑥𝑥3 + 

+ 𝑎𝑎4 ⋅ 𝑥𝑥4+ 𝑎𝑎5 ⋅ 𝑥𝑥5 + 𝑎𝑎6 ⋅ 𝑥𝑥6 + 𝑎𝑎7 ⋅ 𝑥𝑥7 + 𝑎𝑎8 ⋅ 𝑥𝑥8 
 
  
 

(12) 
 
 

 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟=3.19 − 5.01 ⋅ 𝑎𝑎3+3.92 ⋅ 𝑎𝑎5 − 5.27 ⋅ 𝑎𝑎6 (13) 
 

	(13)

CONCLUSIONS

The model shows very good prediction with 
R² = 97.84%, which indicates very good repre-
sentation of stress concentration mechanisms. 
Low values of MAE, MSE, RMSE errors confirm 
high prediction accuracy. However, such high R² 
may also suggest the need to check whether the 
model is not over-fitted to the training data. Ad-
ditional validation on an independent dataset and 
residual analysis are recommended for complete 
assessment of model quality.

Multiple linear regression proved to be very 
stable and accurate in most of the studied configu-
rations, especially where the relationships between 
features and α were close to linear. Triaxiality sta-
tistics dominate the influence on stress concentra-
tion; the mean triaxiality parameter remains the 
strongest predictor across the entire dataset.

The application of linear regression ultimately 
yielded very low RMSE errors (<0.065), making 
them practically useful for estimating the notch 
shape factor α under engineering conditions. 
However, industrial implementation requires rig-
orous external validation and residual analysis to 
avoid overconfidence in the models.

Future work is recommended to extend the 
dataset with fatigue cases, apply Bayesian meth-
ods, and implement more precise feature scaling, 
especially when triaxiality distribution exhibits 
strong positive kurtosis.

The conducted research confirms that with 
appropriate hyper-parameter configuration and 
proper predictor selection, both analyzed tech-
niques constitute valuable tools for supporting the 
design of structures sensitive to stress concentra-
tors, with the choice of a specific model depend-
ing on the degree of linearity of the phenomenon 
and validation requirements.

In the analyzed model, the largest regression 
coefficients were assigned to central value param-
eters of triaxiality distribution (mean, median), 
while the influence of geometry (radii, dimen-
sions) was significantly smaller or negligible.

Based on the above relationship, it can be 
stated that the actual safety factor under fatigue 
conditions depends on the stress concentration 
coefficient, since the latter depends on triaxiality 
field distribution.
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