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ABSTRACT

Systematic monitoring of defects in the castings produced by high-pressure die casting (HPDC) is essential to
ensure the production of high-quality components, particularly given their growing prevalence in safety-critical
automotive applications. However, conventional analysis techniques may not fully capture the complex dynamics
of the process, resulting in limited effectiveness and an impossibility of continuous improvement. Therefore, this
study proposed an innovative methodology that autonomously performs pre-processing by transforming tabular
data into images using the REFINED (representation of features as images with neighbourhood dependencies)
approach. This transformation enables convolutional neural networks (CNNs) to recognise hidden patterns and
dependencies in the data. Additionally, explainable artificial intelligence (XAI) principles were employed to elu-
cidate the influence of process parameters on defect formation, by the local interpretable model-agnostic expla-
nations (LIME) method application. The proposed model achieved high predictive accuracy of 99% and a low
RMSE of 0.07, effectively capturing nonlinear interdependencies also revealed ‘maximum pressure’ as the main
significant factor influencing defect formation. By combining proposed methods, the approach enhances process
transparency and enables autonomous, data-driven decision-making in HPDC quality control, advancing the vi-
sion of intelligent manufacturing and Quality 4.0 within the Industry 4.0 paradigm.

Keywords: XAI in foundry, black-box interpretability, deep learning in casting quality 4.0, autonomous prepro-
cessing with REFINED.

INTRODUCTION

The advent of Industry 4.0 has further revo-
lutionized the manufacturing landscape, ushering
in a new era characterised by automation, data
exchange, and the internet of things (IoT) [1].
These technological advancements have the po-
tential to enhance manufacturing efficiency and
to bring about significant improvements in prod-
uct quality as well as production flexibility. The
integration of digital and physical systems that is
characteristic of Industry 4.0 allows for dynamic
responses to manufacturing challenges and the
real-time monitoring of processes. The concept of

Quality 4.0 emerged from the principles of Indus-
try 4.0, representing a strategic approach to qual-
ity management that incorporates advanced digi-
tal technologies to enhance the efficacy of qual-
ity control measures [2]. Quality 4.0 utilises big
data, predictive analytics, artificial intelligence,
and machine learning to detect, predict, as well as
prevent defects in manufacturing processes. This
novel paradigm shift in quality assurance ensures
that quality is integrated into the product from the
initial stages of manufacturing, transitioning from
a reactive to a proactive stance.

The integration of artificial intelligence
(AI) with advanced manufacturing frameworks
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demonstrates the potential for significant transfor-
mation, particularly in addressing persistent chal-
lenges, such as porosity in the aluminium castings
produced by HPDC [3]. Porosity, characterised
by microscopic voids or larger cavities embedded
within the metal matrix, poses a critical quality
issue [4]. These defects can arise from several
sources, among all gases, hydrogen is identified
as a major source of porosity in aluminium al-
loys due to its solubility in liquid aluminium de-
creasing with temperature [5—6]. The tendency to
form porosity in the studied castings is difficult
to specify universally, as porosity can manifest in
various forms depending on the location within
the casting and its geometry. In thicker sections,
shrinkage and mixed poverty are most common,
while gas porosity may occur throughout, de-
pending on the process. Such porosities give rise
to a non-uniform internal structure, which has a
profound effect on the mechanical and chemical
properties of a material. In the context of critical
applications, where even minor deviations from
ideal material properties can result in substantial
performance issues, the necessity of meticulous
quality assurance becomes indisputable [7]. En-
hanced diagnostic techniques not only facilitate
the early detection of porosity but also enable the
development of corrective measures during the
manufacturing process. This comprehensive ap-
proach, integrating advanced materials science
with state-of-the-art inspection technologies, is
poised to ensure that aluminium castings meet
the stringent standards demanded by today’s en-
gineering landscape, thereby preserving the deli-
cate balance between innovative design and op-
erational safety.

Al technologies [8-9] play a pivotal role in
this context, with the capacity to automate com-
plex defect detection tasks, enhance decision-
making processes, and provide deeper insights
into the root causes of defects such as porosity.
By facilitating early detection and comprehen-
sive analysis of defects, Al optimises the manu-
facturing process, minimises material waste, and
enhances product reliability. This is particularly
crucial in high-pressure die casting, where the
precise control of casting conditions and the
reduction of porosity are essential for produc-
ing high-quality components. Consequently, the
utilisation of Al in High-tech manufacturing [10],
especially in HPDC processes, addresses criti-
cal quality control challenges and contributes to
more sustainable manufacturing practices. This
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alignment with the objectives of reducing envi-
ronmental impact while maintaining high stan-
dards of product quality exemplifies how modern
technology can drive the future of manufacturing
towards greater efficiency and responsibility. As
the role of Al in industrial applications continues
to expand, the integration of intelligent systems
into traditional manufacturing processes is not
merely an enhancement; it is a complete redefi-
nition of how quality is assured in sophisticated
production environments. This transformative in-
tegration underscores the core themes of materi-
als—innovation in material science and its appli-
cations in industry—and emphasizes the pivotal
role of Al in advancing material properties and
manufacturing processes. This transformation
portends a future in which technological progress
and industrial imperatives are in perfect align-
ment, resulting in manufacturing outcomes that
are more sustainable and efficient.

The application of computer vision to HPDC
process data involves converting typically tabu-
lar data, such as sensor readings, operational
parameters, and material characteristics, into
visual formats like heatmaps. This transforma-
tion allows for the use of CNN to detect subtle
anomalies in the process and predict product
quality metrics more accurately than traditional
methods. Moreover, addressing the shortage of
real-world HPDC data involves challenges re-
lated to proprietary information concerns, lim-
ited data collection capabilities, and significant
experimental costs. Synthetic data generation
techniques, such as CTGAN [11], are utilised to
tackle these issues effectively. These techniques
produce synthetic datasets that maintain the sta-
tistical properties of the original data, enabling
thorough model training and evaluation, and
thereby enhancing research reproducibility and
scalability despite the limitations of small or in-
complete datasets. To effectively analyse tabular
data using CNNESs, it is essential to employ specific
methods that transform this data into a suitable
format for image-based analysis [12]. Techniques
such as REFINED among others are pivotal for
this transformation. REFINED uses Bayesian
multidimensional scaling to minimise distortion
while projecting features into a 2D space, which
is then visualised as image pixels [13—14]. This
approach, along with others like Deeplnsight,
which utilises t-SNE to project feature vectors
into a 2D space, and Image Generator for Tabu-
lar Data (IGTB) [15], which assigns features to
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pixels based on minimising the difference in rank-
ings of pairwise feature distances, allows the data
to be processed effectively using CNNs [16]. In
order to enhance the interpretability of the CNN,
the models utilised in this study incorporated the
LIME technique. LIME provides explanations for
the pre-dictions of any classifier in an intelligible
manner by approximating it locally with an inter-
pretable model [17]. This incorporation is pivotal,
as it enables researchers and practitioners to dis-
cern which features exert a substantial influence
on the model’s decisions, so which process values
influence porosity creation, thereby illuminating
the opaque, “black box” nature of deep learning
and cultivating enhanced confidence and trans-
parency in Al-driven systems.

Despite significant progress in applying Al to
manufacturing, existing methods rarely address
the need for explainable, autonomous models that
can handle complex, multivariate HPDC process
data. Conventional approaches often rely on ex-
tensive manual preprocessing and provide partial
interpretability regarding how process parameters
influence defect formation. This study bridged
this gap, enhancing this autonomy, automating
pattern recognition and identifying key defect-
driving parameters. It also provides transparent
decision support, advancing intelligent quality
control in alignment with Industry 4.0 and Qual-
ity 4.0 principles.

RESEARCH METHODOLOGY

Generation of HPDC process data and
transformation tabular data into images

In the present study, the CTGAN model has
been employed to generate synthetic data based
on the knowledge described in referenced litera-
ture sources [18-20] about benchmark HPDC
process. The model has been implemented in
Python, and its primary objective has been to

Table 1. Parameters of the CTGAN model

Starting parameters Value
Learning rate (generator) 0.002
Learning rate (discriminator) 0.002
Dimensions of the hidden layers 128
Training epochs 300
Number of generated samples 10094
Number of generated variables 57

accurately replicate the statistical distributions
and relationships found within the tabular data.
Replicating these distributions has proven to be
a prerequisite to the generation of synthetic sam-
ples which maintain the characteristics of the real
process. The model was trained with sufficient
epochs to enable the generator and discriminator
to effectively minimise the loss function through
a competitive iterative process. Post-training, the
model was tasked with generating synthetic data.
Table 1 provides a comprehensive overview of
the model’s parameters, which are of paramount
importance to its functionality and outcomes.
The resultant database encompasses a wide
range of features pertinent to the casting analy-
sis. The dependent variable, ‘leakage in the high-
pressure circuit,” has been identified as a directly
connected with porosity, which is an essential
quality factor in casting described in [18-20].
This, in conjunction with the other independent
variables pertaining to process parameters, forms
the foundation for more profound analytical
evaluations to ascertain the elements influenc-
ing casting quality. A set of statistical and visual
analyses was performed to verify the reliability
and representativeness of the generated synthetic
data. Descriptive statistics, including measures of
central tendency and dispersion, were calculated
to evaluate the distribution and consistency of the
data. Then, the overall quality of the synthetic
dataset was quantified using statistical metrics,
which confirmed a high degree of alignment with
the intended characteristics and validated its suit-
ability for subsequent modelling and analysis.
The dataset was then segmented into five dis-
tinct subsets, with each subset representing dif-
ferent levels of defect severity based on leakage
metrics. The organisation of the subsets was set as
follows: the first subset, full dataset, encompasses
the complete synthetic dataset generated by the
CTGAN model, comprising 10094 observations
without the application of any filters to differenti-
ate by defect severity. The second dataset with high
leakage values, consisted of 90 observations and
included the cases that exhibited higher leakage
levels, with the dependent variable values being
>8. The third dataset with low leakage also con-
tained 10,094 observations, but was focused on the
cases exhibiting lower leakage levels, where the
dependent variable was less than 8. The fourth da-
taset with mixed high leakage values amalgamated
all data from the second one with an additional 90
observations selected from the upper range of the
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third one, thus yielding a total of 180 observations.
The fifth dataset, the equally distributed mixed,
was formed by integrating data from the second
one with 90 equally spaced records from the third
one, thus forming a set of 160 observations. The
rationale behind the creation of these subsets was
to facilitate a detailed analysis of the effects of
leakage levels on casting quality, thereby enabling
a more nuanced understanding of how varying de-
fect severities impact the overall integrity of cast-
ings. To address the primary research objective of
accurately predicting leakage values in the casting
process, the datasets were categorised based on
leakage severity. This categorisation is of crucial
importance, as the levels of leakage determine
the extent of additional processing required, such
as machining, leak testing, cast repairs and retest-
ing. These additional processes can contribute to
40-50% of the casting cost, thereby emphasising
the importance of accurate leakage prediction. The
leakage values were divided into three categories:
1 - correct (with leakage values in the range of
<0-8)), indicating no need for repairs, 2 — accept-
able (with leakage values in the range of <8-75)),
indicates moderate leakage where castings can be
repaired and 3 — not acceptable (with leakage val-
ues <75-222.27), represents castings with severe
defects, typically considered scrap. To facilitate the
analysis, a categorical framework was applied to
each subset, with the aim of reflecting the catego-
ries as presented in Table 2. It is important to note
that 3rd dataset exclusively encompasses only one
category. will therefore not be subject to this pre-
dictive analysis; however, this dataset is mentioned
in the context of connected studies for the purpose
of contextual enhancement.

Table 2. Defects classification details

The subsequent stage in the study entailed
the utilisation of the REFINED approach for the
conversion of tabular data into image format. This
transformation is of paramount importance, as it
enables CNNs, which demonstrate proficiency
in image data analysis, to process and effectively
learn from tabular data. The REFINED method
calculates the feature mapping to positions in an
image in three steps. Firstly, the process of embed-
ding feature vectors is initiated. In this procedure,
each feature (column) of the dataset is embedded
in a two-dimensional space by means of multidi-
mensional scaling (MDS) [21]. This step results in
the reduction of the dimensionality of each feature
to two dimensions, thereby preserving the rela-
tive distances and, consequently, the relationships
among features. Secondly, the process of normali-
sation of embeddings is initiated. Following the
embedding of features into two dimensions, the
resulting embeddings are subjected to a process
of normalisation. This is undertaken to ensure that
they conform to the dimensions of a predefined
square grid. The purpose of this normalization is
to adjust the scale of the embeddings, thereby en-
suring that they correspond to the grid size. This
guarantees that all potential positions on the grid
are utilised effectively. Thirdly, the Hungarian
algorithm is employed for assignment [22]. This
algorithm assigns a unique position on the grid to
each feature. It does so by minimising the Euclid-
ean distance between the position of the feature in
the normalised embedding and the available grid
positions. The purpose of this is to ensure that fea-
tures that are similar or have strong relationships
are placed close to each other on the grid. This fa-
cilitates the CNN ability to detect and utilise these

Dataset Dependent value range Category number Quality classes
<0-8) 1 Correct
1st <8-75) 2 Acceptable
<75-222.27) 3 Not acceptable
ond <8-75) 2 Acceptable
<75-222.27) 3 Not acceptable
3rd <0-8) 1 Correct
<0-8) 1 Correct
4th <8-75) 2 Acceptable
<75-222.27) 3 Not acceptable
<0-8) 1 Correct
5th <8-75) 2 Acceptable
<75-222.27) 3 Not acceptable
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relationships. This process facilitates the effective
use of CNNs by transforming tabular data into a
format analogous to image data, thereby circum-
venting the need for extensive preprocessing steps
that are typically employed to identify significant
variables. Conventional methods, such as ANO-
VA or Kruskal-Wallis tests are utilised to identify
key variables relevant to the dependent variable.
However, with REFINED [23], all features are
retained, and their importance is intrinsically ana-
lysed through their spatial arrangement and sub-
sequent pattern recognition by CNNs. This com-
prehensive embedding and assignment method
enhances the efficiency of the modelling process,
allowing for a more nuanced and integrated ap-
proach to understanding and predicting outcomes
based on the full spectrum of data available. The
applied REFINED approach is presented on the
flowchart (in Figure 1). The analysis resulted in
the identification of several relationships between
variables. For instance, parameter number 10, or

the variable ‘Solidification time’, was found to be
associated with parameters number 28, or the vari-
able ‘Flow in cooling circuit’, and number 50, or
the variable ‘Temperature in cooling circuit’. The
significance of this association is noteworthy, as it
reflects an implicit relationship with the data. The
interaction between solidification time and cool-
ing temperature is direct, suggesting that changes
in cooling temperature can significantly affect the
solidification rate of a material. This phenomenon
subsequently impacts porosity, thereby influenc-
ing the expulsion or retention of gases entrapped
within the material. The flow rate of the cooling
medium exerts a direct influence on the cooling
rate, with variations in flow rate giving rise to
uneven cooling. Faster or slower flow rates can
generate temperature gradients within the casting
material, consequently resulting in non-uniform
material properties. The REFINED algorithm has
demonstrated to elucidate the relationships be-
tween these variables (Figure 2).
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Figure 1. Flowchart of the tabular data transformation into REFINED approach visualisations
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(b)

Figure 2. Results of conversion of one tabular observation from 4th research set to: (a) 8 X 8 image; (b) number
of features in assigned grid position in the image array

Advanced process analysis based on
computer vision and explicitly of casting
porosity causes

This chapter explores the utilisation of CNN
and LIME for the prediction and analysis of po-
rosity in casting processes. This approach facili-
tates the prediction of the categorical value of the
dependent variable associated with the presence
of porosity, and the identification of specific pro-
cess parameters that influence its formation. The
employment of CNNs has been determined by
their proven proficiency in the processing of spa-
tially hierarchical data, such as images, through
the implementation of multiple layers of splicing
operations that facilitate the capture of patterns at
varying levels of abstraction. The flowchart (pre-
sented in Figure 3).

The architecture (presented in Figure 4) con-
sists of multiple layers designed to extract and
process spatial features, culminating in categorical
classification [24-29]. The network commences
with a Conv2D layer, which incorporates 32 filters
of size 3 x 3. This layer is instrumental in the ex-
traction of low-level features, such as edges and
gradients, from images. The utilisation of 32 filters
enables the network to acquire a diverse set of fea-
tures during its initial phase. It is imperative to note
that, in the immediate sequence following each
convolutional layer, a rectified linear unit (ReL.U)
activation function is applied. The implementation
of this function serves to introduce non-linearity to
the learning process, thereby enabling the network
to acquire the capacity to discern complex patterns.
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The ReLU function is favoured on account of its
computational efficiency and its ability to assist in
the mitigation of the vanishing gradient problem, a
predicament which is prevalent in deep neural net-
works. Following the ReLU activation, the archi-
tecture incorporates a MaxPooling2D layer with a
pool size of 2 x 2. This layer serves to reduce the
spatial dimensions of the feature maps, thereby de-
creasing the amount of computation required and
helping to prevent over-fitting by providing an ab-
stracted form of the representation. Following the
processes of convolution and pooling, the feature
maps are converted into a flattened format via a
Flatten layer. This transition from a two-dimension-
al to a one-dimensional format is imperative for the
progression from feature extraction to classifica-
tion. After the flattening process, architecture em-
ploys a Dense layer comprising 64 neurons, which
further processes the information through an addi-
tional ReLU activation. The purpose of this layer is
to integrate the features learned by previous layers
across the entire image. The final layer is a Dense
output layer tailored to the number of classes. This
layer uses a ‘SoftMax’ activation function, which
is appropriate for multi-class classification prob-
lems, and makes the output sum up to 1, so the out-
put can be interpreted as probabilities. The model
was compiled with the Adam optimiser and used
the sparse categorical cross-entropy loss function,
suitable for multiclass classification tasks. To eval-
uate the performance of the CNN model, the fol-
lowing metrics were measured: root mean square
error (RMSE), F1-score and accuracy (Table 3). In
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the context of explicating the causes of casting po-
rosity, LIME (presented on Figure 5) is employed
to provide insights into the specific image features
that influence the CNNs predictions. By perturbing
the input image data and observing the variations
in model output, LIME highlights regions and
features within the images that are critical for pre-
dicting the presence and severity of leakages. This
process facilitates a more profound comprehension
of how specific image elements, likely correspond-
ing to physical properties or defects in the casting
process, influence the model’s assessments. LIME
generates 1000 versions of the original image, each
perturbed in a distinct manner, thus establishing a
comprehensive dataset that is subsequently utilised
to train a local surrogate model.

RESULTS

The training and testing of the model were
conducted across four distinct datasets, with var-
ied train/test splits to evaluate the effect of the
quantity of training data on the model’s efficacy
and avoid overfitting thereby enabling model’s
generalisation. The results (presented in Table
4.) demonstrate the exceptional performance of
the model in both the 100/0 and 80/20 train/test
splits for Datasets 1 and 2. The F1-scores were
consistently high, reaching up to 0.99, indicating
almost perfect precision and recall. The RMSE
values were found to be minimal (0.07 for Da-
taset 1 and 0.06 for Dataset 2 in the 100/0 split),
thereby suggesting excellent model accuracy in

/ Obtain input images and labels /

l

| Resize images t{m 400x400 pixels |

+*

| Normalize; the dataset |

il

| Convert imaées and labels l

ves

v

Split data into training
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architecture b
ves
no ‘
Set batch size = § Set batch size =32
hd
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Generate LIME
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|

Figure 3. Flowchart of CNN-based methodology for prediction values of dependent variable
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Table 3. Parameters of the CNN model

Parameter Description
Input shape RGB 400 x 400 pixels
Optimiser Adam

Train/Test split [%] 100/0 and 80/20

Sparse Categorical Cross

Loss function

entropy
Metrics Accuracy, Fi-score, RMSE
Batch size 32 for 1st and 8 for
2nd,4th,5th dataset
Epochs 10
Early stopping Patience 5

predicting leakage values that closely mirror the
true data. The findings of Dataset 2 demonstrate
a marginal decline in performance when the da-
taset is divided into an 80/20 split (F1-score of
0.95 and RMSE of 0.17). This decline can be as-
cribed to the diminished quantity of training data,
yet it continues to emphasise the model’s robust
predictive capacity. Dataset 4 demonstrated a di-
vergence in performance metrics across various

Image representation
of HPDC process
tabular data

400x400 pixels RGB
images, normalized to
the range <0,1>

Convolution layer (Conv2D)
with 32 3x3 kernels
ReLU activation layer

2x2 MaxPooling?D layser

splits. The Fl-score exhibited a notable decline
to 0.80 in the 100/0 split, and further to 0.89 in
the 80/20 split. Concurrently, the RMSE values
underwent an increase, signifying the complexi-
ties associated with dataset 4 concerning model
training and generalisation. Dataset 5 exhibited
the poorest performance of all the datasets in the
100/0 split, with an Fl-score of 0.62. However,
there was a substantial improvement in perfor-
mance in the 80/20 split, achieving a score of
0.90. These findings indicate that while the model
demonstrates challenges with insufficient training
data, it demonstrates a notable advantage when
utilising even a modest proportion of test data for
the purpose of testing during the training process.
To assess the statistical robustness of the pro-
posed approach, 95% confidence intervals were
computed for the RMSE of the best-performing
configuration obtained within the first dataset un-
der 100/0 data split. The mean RMSE obtained
across five independent runs under 100/0 data
split was 0.084, with a 95% confidence interval

Flatten layer
SoftMax activation.

Dense layer with 64 nodes
ReLU activation function
class-matching nodes and

Prediction outcome with
categorical values

Dense output layer with

Figure 4. Architecture of the CNN for predicting ‘leakage in the high-pressure circuit’ from image
representations

(@)
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Figure 5. Example LIME analysis results (a) original image from 4th dataset; (b) identified significant features
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Table 4. Results of CNN-based modelling

Dataset Train/Test split [%] Best F1-score Best RMSE Best accuracy Best processing time [s]
4 100/0 0.99 0.07 0.99 3792.67
80/20 0.99 0.07 0.98 2962.34
one 100/0 0.98 0.06 0.98 761.76
80/20 0.95 0.17 0.88 665.34
4t 100/0 0.80 0.41 0.82 917.98
80/20 0.89 0.32 0.70 1190.72
- 100/0 0.62 0.42 0.71 1163.51
80/20 0.90 0.31 0.82 1038.59

of (0.065-0.103), indicating a consistent and sta-
tistically reliable performance of the proposed
model and provide additional quantitative sup-
port for its generalisation capability.

An analysis of the learning curves was con-
ducted to assess model convergence and detect
potential overfitting. The plot (Figure 6) demon-
strates stable convergence of the model, with the
training loss decreasing and accuracy remaining
consistent throughout the training process. The
absence of divergence between these curves in-
dicates that the model learned effectively without
signs of overfitting.

To additionally minimise the risk of overfit-
ting, the network architecture incorporated di-
mensionality-reduction and pooling layers that
enforced feature abstraction. The model was
trained and evaluated using multiple datasets with
varied train—test splits to verify its generalisation
capability. Continuous monitoring of losses con-
firmed the absence of significant divergence be-
tween training and testing performance.

0,99
0,99
0,99
0,99
20,99
0,99
0,99
0,99

Accuracy

Traini

1 2 3 4 5
Epoch

— @ - Training Accuracy

Additional comparison of the RMSE val-
ues obtained using the presented methodology
with those obtained using three traditional ma-
chine learning methods: support vector machines
(SVM), regression trees (RT) and artificial neural
networks (ANN) has been shown in Table 5. The
results suggest that the proposed method provides
improved fitting accuracy under the conditions
examined. The differences between the methods
confirm that representing tabular process data as
images can affect the model’s ability to capture
relationships between parameters. These findings
provide a quantitative basis for evaluating the im-
pact of the presented methodology on the HPDC
defect analysis framework.

Subsequently, confusion matrices were ap-
plied. As it was demonstrated in Figure 7, the
application of the model on all datasets provides
a representative confusion matrix, which offers a
deeper insight into the classification accuracy of
the model across different quality classes. It is a
highly popular measure employed in the context

0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,00

Training Loss

6 7 8 9 10

—@— Training Loss

Figure 6. Training accuracy and loss curves for the CNN model of the 1% dataset
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Table 5. Comparison between obtained results with traditional machine learning methods

Best RMSE for Best RMSE for Best RMSE for
Dataset Best RMSE benchmark data - benchmark data - benchmark data -
ANN method RT method SVM method
st 0.07 1.36 3.40 4.40
2nd 0.12 15.50 7.10 29.20
3r X 0.86 0.93 1.10
4t 0.37 0.90 10.20 31.30
5th 0.37 3.50 16.00 31.90

of solving classification problems. Its applica-
tion extends to both binary classification and
multiclass classification problems. For instance,
the results of this analysis for the 5th dataset
demonstrate that: a robust true positive rate for
Class 2, with 81 accurate predictions. Satisfac-
tory predictive performance for Class 1, with
64 accurate classifications. However, the model
demonstrated lower accuracy for Class 3, with
misclassifications occurring in three instances,
leading to the erroneous categorisation of this
class as Class 2.

The variables most frequently highlighted
by LIME are among others “maximum pressure
[bar], vacuum profile [mbar], flow in cooling cir-
cuit [1] and temperature in cooling circuit [°C].”
Each of these variables plays a critical role in the
casting process and. The first variable and the
most consistently identified as having the stron-
gest influence on porosity formation, is of par-
ticular significance given that elevated pressure
during the casting process can result in increased
turbulence within the molten metal as it fills the

Actual

1 2 3
Predicted

Figure 7. Confusion matrix of the classification
accuracy for the 5th dataset with 80/20 split
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mould. This turbulence has the potential to en-
trap air or other gases, leading to the formation
of gas porosity. Conversely, insufficient pressure
may result in incomplete filling, also leading to
porosity due to gaps and voids in the cast struc-
ture. The second variable linked with vacuum
level within the mould exerts a direct influence
on the amount of gas entrapped within the molten
metal. An enhanced vacuum results in a reduced
presence of gases within the mould environment,
thereby decreasing the likelihood of gas poros-
ity. This configuration is of paramount impor-
tance for processes where air entrapment poses
a significant risk, with the ability to effectively
mitigate this type of porosity through the precise
regulation of vacuum levels. The third variable
linked with the flow rate of the medium used in
the cooling process within the designated circuit
has a direct influence on the rate of solidifica-
tion of the metal following its injection into the
mould. Rapid cooling can result in the develop-
ment of shrinkage porosity, whereby the outer
layers of the metal solidify more rapidly than the
inner layers, leading to the creation of internal
voids. The maintenance of a controlled flow rate
ensures uniform cooling, thereby minimising the
likelihood of defects arising from these process-
es. The fourth variable linked with temperature
of the cooling medium exerts a similar influence
on the rate of solidification. Optimal cooling
temperatures preclude the formation of hotspots
in the cast, which can also lead to shrinkage po-
rosity. Maintaining a consistent and appropriate
temperature in the cooling circuit is essential for
achieving a homogeneous structure.

DISCUSSION

A high level of accuracy has been achieved
in the prediction of leakage occurrence (as dem-
onstrated by the CNN model), in the context of
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similar research performed in other fields [30—
40]. This is evidenced by the accuracy, F1-scores
and low RMSE values across multiple datasets.
The methodology has been shown to be capable
of distinguishing between different states of leak-
age in an effective manner, and to provide a reli-
able quantitative assessment of leakage severity
in the castings. In view of the fact that the integri-
ty of cast components is of paramount importance
to safety and functionality in a number of indus-
tries, the presented methodology has considerable
potential in this regard.

The employment of the interpretability
method LIME in the context of deep learning
algorithms has been shown to facilitate the iden-
tification of critical insights into the decision-
making process of CNN [41]. By emphasising
the image features that exert the strongest influ-
ence on the prediction of leakage, LIME has en-
abled the discernment of the potential contribu-
tors to defects in the produced castings. This in-
terpretability is of substantial value, as it enables
metallurgical experts to investigate specific vari-
ables in the process that could be modified to
reduce the occurrence of leakage or variations in
alloy composition.

In view of the encouraging outcomes, sub-
sequent research endeavours may be directed
towards several fronts, namely: development of
hybrid models that integrate CNNs with other
machine learning techniques, such as anomaly
detection algorithms, with a view to offering a
more comprehensive approach to the identifica-
tion and classification of defects or development
of real-time analysis systems that integrate CNN
predictions to provide ongoing feedback during
the casting process, with a view to preemptively
identifying potential defects. A future direction
could also involve the identification of the spe-
cific values of process variables that influence
the formation of defects. For instance, the sen-
sitivity analysis could be employed to system-
atically vary each process variable within its op-
erating range, thereby observing the impact on
the model’s output. This approach could assist
in determining the precise thresholds or critical
levels at which variables significantly influence
defect formation.

This investigation signifies a substantial ad-
vancement in the field of science, establishing a
foundation for the subsequent generation of man-
ufacturing innovations that are poised to enhance
the quality and efficiency of production processes.

CONCLUSIONS

In summary, the present study demonstrates
the potential of explainable deep learning tech-
niques for diagnosing and predicting casting de-
fects in HPDC processes. The novel of this study
contribution is the integration of the REFINED
data transformation with CNN modelling and
LIME method interpretability enables accurate and
transparent identification of defect-driving process
parameters. This combination allows for the au-
tonomous detection of casting defects from com-
plex process data while maintaining interpretabil-
ity. Unlike conventional approaches, the proposed
framework supports relatively expeditious and
autonomous decisions for HPDC quality control.
The model demonstrated a high degree of predic-
tive performance, thereby substantiating its capac-
ity to capture the nonlinear dependencies that are
characteristic of complex metallurgical processes.

The also research supports the transition to-
wards zero-defect manufacturing. Such transition
is achieved by implementing data-driven decision-
making and autonomous process monitoring.
Those two components constitute the foundational
principles of the Industry 4.0 and Quality 4.0 para-
digms. The interpretability offered by LIME meth-
od enhances trust and practical applicability in
industrial environments, where understanding the
physical origins of defects is essential for quality
assurance and safety-critical elements production.

The salient issue is the ongoing challenge
of acquiring comprehensive and consistent real
foundry data. This challenge stems from the com-
plexity of the processes, the heterogeneity of the
data, and the constraints imposed by industrial
confidentiality. Consequently, the utilisation of
synthetic data was instrumental in facilitating the
development and evaluation of models within a
controlled environment. While synthetic data
is not a substitute for real measurements, it can
serve as a foundation for preliminary analysis and
methodological validation. Subsequent endeav-
ours will centre on the assessment of the proposed
framework, leveraging authentic HPDC produc-
tion data to ascertain its reliability and applicabil-
ity in authentic manufacturing environments.
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