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INTRODUCTION

The advent of Industry 4.0 has further revo-
lutionized the manufacturing landscape, ushering 
in a new era characterised by automation, data 
exchange, and the internet of things (IoT) [1]. 
These technological advancements have the po-
tential to enhance manufacturing efficiency and 
to bring about significant improvements in prod-
uct quality as well as production flexibility. The 
integration of digital and physical systems that is 
characteristic of Industry 4.0 allows for dynamic 
responses to manufacturing challenges and the 
real-time monitoring of processes. The concept of 

Quality 4.0 emerged from the principles of Indus-
try 4.0, representing a strategic approach to qual-
ity management that incorporates advanced digi-
tal technologies to enhance the efficacy of qual-
ity control measures [2]. Quality 4.0 utilises big 
data, predictive analytics, artificial intelligence, 
and machine learning to detect, predict, as well as 
prevent defects in manufacturing processes. This 
novel paradigm shift in quality assurance ensures 
that quality is integrated into the product from the 
initial stages of manufacturing, transitioning from 
a reactive to a proactive stance. 

The integration of artificial intelligence 
(AI) with advanced manufacturing frameworks 
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demonstrates the potential for significant transfor-
mation, particularly in addressing persistent chal-
lenges, such as porosity in the aluminium castings 
produced by HPDC [3]. Porosity, characterised 
by microscopic voids or larger cavities embedded 
within the metal matrix, poses a critical quality 
issue [4]. These defects can arise from several 
sources, among all gases, hydrogen is identified 
as a major source of porosity in aluminium al-
loys due to its solubility in liquid aluminium de-
creasing with temperature [5–6]. The tendency to 
form porosity in the studied castings is difficult 
to specify universally, as porosity can manifest in 
various forms depending on the location within 
the casting and its geometry. In thicker sections, 
shrinkage and mixed poverty are most common, 
while gas porosity may occur throughout, de-
pending on the process. Such porosities give rise 
to a non-uniform internal structure, which has a 
profound effect on the mechanical and chemical 
properties of a material. In the context of critical 
applications, where even minor deviations from 
ideal material properties can result in substantial 
performance issues, the necessity of meticulous 
quality assurance becomes indisputable [7]. En-
hanced diagnostic techniques not only facilitate 
the early detection of porosity but also enable the 
development of corrective measures during the 
manufacturing process. This comprehensive ap-
proach, integrating advanced materials science 
with state-of-the-art inspection technologies, is 
poised to ensure that aluminium castings meet 
the stringent standards demanded by today’s en-
gineering landscape, thereby preserving the deli-
cate balance between innovative design and op-
erational safety. 

AI technologies [8–9] play a pivotal role in 
this context, with the capacity to automate com-
plex defect detection tasks, enhance decision-
making processes, and provide deeper insights 
into the root causes of defects such as porosity. 
By facilitating early detection and comprehen-
sive analysis of defects, AI optimises the manu-
facturing process, minimises material waste, and 
enhances product reliability. This is particularly 
crucial in high-pressure die casting, where the 
precise control of casting conditions and the 
reduction of porosity are essential for produc-
ing high-quality components. Consequently, the 
utilisation of AI in High-tech manufacturing [10], 
especially in HPDC processes, addresses criti-
cal quality control challenges and contributes to 
more sustainable manufacturing practices. This 

alignment with the objectives of reducing envi-
ronmental impact while maintaining high stan-
dards of product quality exemplifies how modern 
technology can drive the future of manufacturing 
towards greater efficiency and responsibility. As 
the role of AI in industrial applications continues 
to expand, the integration of intelligent systems 
into traditional manufacturing processes is not 
merely an enhancement; it is a complete redefi-
nition of how quality is assured in sophisticated 
production environments. This transformative in-
tegration underscores the core themes of materi-
als—innovation in material science and its appli-
cations in industry—and emphasizes the pivotal 
role of AI in advancing material properties and 
manufacturing processes. This transformation 
portends a future in which technological progress 
and industrial imperatives are in perfect align-
ment, resulting in manufacturing outcomes that 
are more sustainable and efficient.

The application of computer vision to HPDC 
process data involves converting typically tabu-
lar data, such as sensor readings, operational 
parameters, and material characteristics, into 
visual formats like heatmaps. This transforma-
tion allows for the use of CNN to detect subtle 
anomalies in the process and predict product 
quality metrics more accurately than traditional 
methods. Moreover, addressing the shortage of 
real-world HPDC data involves challenges re-
lated to proprietary information concerns, lim-
ited data collection capabilities, and significant 
experimental costs. Synthetic data generation 
techniques, such as CTGAN [11], are utilised to 
tackle these issues effectively. These techniques 
produce synthetic datasets that maintain the sta-
tistical properties of the original data, enabling 
thorough model training and evaluation, and 
thereby enhancing research reproducibility and 
scalability despite the limitations of small or in-
complete datasets. To effectively analyse tabular 
data using CNNs, it is essential to employ specific 
methods that transform this data into a suitable 
format for image-based analysis [12]. Techniques 
such as REFINED among others are pivotal for 
this transformation. REFINED uses Bayesian 
multidimensional scaling to minimise distortion 
while projecting features into a 2D space, which 
is then visualised as image pixels [13–14]. This 
approach, along with others like DeepInsight, 
which utilises t-SNE to project feature vectors 
into a 2D space, and Image Generator for Tabu-
lar Data (IGTB) [15], which assigns features to 
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pixels based on minimising the difference in rank-
ings of pairwise feature distances, allows the data 
to be processed effectively using CNNs [16]. In 
order to enhance the interpretability of the CNN, 
the models utilised in this study incorporated the 
LIME technique. LIME provides explanations for 
the pre-dictions of any classifier in an intelligible 
manner by approximating it locally with an inter-
pretable model [17]. This incorporation is pivotal, 
as it enables researchers and practitioners to dis-
cern which features exert a substantial influence 
on the model’s decisions, so which process values 
influence porosity creation, thereby illuminating 
the opaque, “black box” nature of deep learning 
and cultivating enhanced confidence and trans-
parency in AI-driven systems. 

Despite significant progress in applying AI to 
manufacturing, existing methods rarely address 
the need for explainable, autonomous models that 
can handle complex, multivariate HPDC process 
data. Conventional approaches often rely on ex-
tensive manual preprocessing and provide partial 
interpretability regarding how process parameters 
influence defect formation. This study bridged 
this gap, enhancing this autonomy, automating 
pattern recognition and identifying key defect-
driving parameters. It also provides transparent 
decision support, advancing intelligent quality 
control in alignment with Industry 4.0 and Qual-
ity 4.0 principles.

RESEARCH METHODOLOGY

Generation of HPDC process data and 
transformation tabular data into images

In the present study, the CTGAN model has 
been employed to generate synthetic data based 
on the knowledge described in referenced litera-
ture sources [18–20] about benchmark HPDC 
process. The model has been implemented in 
Python, and its primary objective has been to 

accurately replicate the statistical distributions 
and relationships found within the tabular data. 
Replicating these distributions has proven to be 
a prerequisite to the generation of synthetic sam-
ples which maintain the characteristics of the real 
process. The model was trained with sufficient 
epochs to enable the generator and discriminator 
to effectively minimise the loss function through 
a competitive iterative process. Post-training, the 
model was tasked with generating synthetic data. 
Table 1 provides a comprehensive overview of 
the model’s parameters, which are of paramount 
importance to its functionality and outcomes.

The resultant database encompasses a wide 
range of features pertinent to the casting analy-
sis. The dependent variable, ‘leakage in the high-
pressure circuit,’ has been identified as a directly 
connected with porosity, which is an essential 
quality factor in casting described in [18–20]. 
This, in conjunction with the other independent 
variables pertaining to process parameters, forms 
the foundation for more profound analytical 
evaluations to ascertain the elements influenc-
ing casting quality. A set of statistical and visual 
analyses was performed to verify the reliability 
and representativeness of the generated synthetic 
data. Descriptive statistics, including measures of 
central tendency and dispersion, were calculated 
to evaluate the distribution and consistency of the 
data. Then, the overall quality of the synthetic 
dataset was quantified using statistical metrics, 
which confirmed a high degree of alignment with 
the intended characteristics and validated its suit-
ability for subsequent modelling and analysis.

The dataset was then segmented into five dis-
tinct subsets, with each subset representing dif-
ferent levels of defect severity based on leakage 
metrics. The organisation of the subsets was set as 
follows: the first subset, full dataset, encompasses 
the complete synthetic dataset generated by the 
CTGAN model, comprising 10094 observations 
without the application of any filters to differenti-
ate by defect severity. The second dataset with high 
leakage values, consisted of 90 observations and 
included the cases that exhibited higher leakage 
levels, with the dependent variable values being 
≥8. The third dataset with low leakage also con-
tained 10,094 observations, but was focused on the 
cases exhibiting lower leakage levels, where the 
dependent variable was less than 8. The fourth da-
taset with mixed high leakage values amalgamated 
all data from the second one with an additional 90 
observations selected from the upper range of the 

Table 1. Parameters of the CTGAN model
Starting parameters Value

Learning rate (generator) 0.002

Learning rate (discriminator) 0.002

Dimensions of the hidden layers 128

Training epochs 300

Number of generated samples 10094

Number of generated variables 57
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third one, thus yielding a total of 180 observations. 
The fifth dataset, the equally distributed mixed, 
was formed by integrating data from the second 
one with 90 equally spaced records from the third 
one, thus forming a set of 160 observations. The 
rationale behind the creation of these subsets was 
to facilitate a detailed analysis of the effects of 
leakage levels on casting quality, thereby enabling 
a more nuanced understanding of how varying de-
fect severities impact the overall integrity of cast-
ings. To address the primary research objective of 
accurately predicting leakage values in the casting 
process, the datasets were categorised based on 
leakage severity. This categorisation is of crucial 
importance, as the levels of leakage determine 
the extent of additional processing required, such 
as machining, leak testing, cast repairs and retest-
ing. These additional processes can contribute to 
40–50% of the casting cost, thereby emphasising 
the importance of accurate leakage prediction. The 
leakage values were divided into three categories: 
1 - correct (with leakage values in the range of 
<0–8)), indicating no need for repairs, 2 – accept-
able (with leakage values in the range of <8–75)), 
indicates moderate leakage where castings can be 
repaired and 3 – not acceptable (with leakage val-
ues <75–222.27), represents castings with severe 
defects, typically considered scrap. To facilitate the 
analysis, a categorical framework was applied to 
each subset, with the aim of reflecting the catego-
ries as presented in Table 2. It is important to note 
that 3rd dataset exclusively encompasses only one 
category. will therefore not be subject to this pre-
dictive analysis; however, this dataset is mentioned 
in the context of connected studies for the purpose 
of contextual enhancement.

The subsequent stage in the study entailed 
the utilisation of the REFINED approach for the 
conversion of tabular data into image format. This 
transformation is of paramount importance, as it 
enables CNNs, which demonstrate proficiency 
in image data analysis, to process and effectively 
learn from tabular data. The REFINED method 
calculates the feature mapping to positions in an 
image in three steps. Firstly, the process of embed-
ding feature vectors is initiated. In this procedure, 
each feature (column) of the dataset is embedded 
in a two-dimensional space by means of multidi-
mensional scaling (MDS) [21]. This step results in 
the reduction of the dimensionality of each feature 
to two dimensions, thereby preserving the rela-
tive distances and, consequently, the relationships 
among features. Secondly, the process of normali-
sation of embeddings is initiated. Following the 
embedding of features into two dimensions, the 
resulting embeddings are subjected to a process 
of normalisation. This is undertaken to ensure that 
they conform to the dimensions of a predefined 
square grid. The purpose of this normalization is 
to adjust the scale of the embeddings, thereby en-
suring that they correspond to the grid size. This 
guarantees that all potential positions on the grid 
are utilised effectively. Thirdly, the Hungarian 
algorithm is employed for assignment [22]. This 
algorithm assigns a unique position on the grid to 
each feature. It does so by minimising the Euclid-
ean distance between the position of the feature in 
the normalised embedding and the available grid 
positions. The purpose of this is to ensure that fea-
tures that are similar or have strong relationships 
are placed close to each other on the grid. This fa-
cilitates the CNN ability to detect and utilise these 

Table 2. Defects classification details
Dataset Dependent value range Category number Quality classes

1st

<0–8) 1 Correct

<8–75) 2 Acceptable

<75–222.27) 3 Not acceptable

2nd
<8–75) 2 Acceptable

<75–222.27) 3 Not acceptable

3rd <0–8) 1 Correct

4th

<0–8) 1 Correct

<8–75) 2 Acceptable

<75–222.27) 3 Not acceptable

5th

<0–8) 1 Correct

<8–75) 2 Acceptable

<75–222.27) 3 Not acceptable
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relationships. This process facilitates the effective 
use of CNNs by transforming tabular data into a 
format analogous to image data, thereby circum-
venting the need for extensive preprocessing steps 
that are typically employed to identify significant 
variables. Conventional methods, such as ANO-
VA or Kruskal-Wallis tests are utilised to identify 
key variables relevant to the dependent variable. 
However, with REFINED [23], all features are 
retained, and their importance is intrinsically ana-
lysed through their spatial arrangement and sub-
sequent pattern recognition by CNNs. This com-
prehensive embedding and assignment method 
enhances the efficiency of the modelling process, 
allowing for a more nuanced and integrated ap-
proach to understanding and predicting outcomes 
based on the full spectrum of data available. The 
applied REFINED approach is presented on the 
flowchart (in Figure 1).  The analysis resulted in 
the identification of several relationships between 
variables. For instance, parameter number 10, or 

the variable ‘Solidification time’, was found to be 
associated with parameters number 28, or the vari-
able ‘Flow in cooling circuit’, and number 50, or 
the variable ‘Temperature in cooling circuit’. The 
significance of this association is noteworthy, as it 
reflects an implicit relationship with the data. The 
interaction between solidification time and cool-
ing temperature is direct, suggesting that changes 
in cooling temperature can significantly affect the 
solidification rate of a material. This phenomenon 
subsequently impacts porosity, thereby influenc-
ing the expulsion or retention of gases entrapped 
within the material. The flow rate of the cooling 
medium exerts a direct influence on the cooling 
rate, with variations in flow rate giving rise to 
uneven cooling. Faster or slower flow rates can 
generate temperature gradients within the casting 
material, consequently resulting in non-uniform 
material properties. The REFINED algorithm has 
demonstrated to elucidate the relationships be-
tween these variables (Figure 2).

Figure 1. Flowchart of the tabular data transformation into REFINED approach visualisations
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Advanced process analysis based on 
computer vision and explicitly of casting 
porosity causes

This chapter explores the utilisation of CNN 
and LIME for the prediction and analysis of po-
rosity in casting processes. This approach facili-
tates the prediction of the categorical value of the 
dependent variable associated with the presence 
of porosity, and the identification of specific pro-
cess parameters that influence its formation. The 
employment of CNNs has been determined by 
their proven proficiency in the processing of spa-
tially hierarchical data, such as images, through 
the implementation of multiple layers of splicing 
operations that facilitate the capture of patterns at 
varying levels of abstraction. The flowchart (pre-
sented in Figure 3).

The architecture (presented in Figure 4) con-
sists of multiple layers designed to extract and 
process spatial features, culminating in categorical 
classification [24–29]. The network commences 
with a Conv2D layer, which incorporates 32 filters 
of size 3 × 3. This layer is instrumental in the ex-
traction of low-level features, such as edges and 
gradients, from images. The utilisation of 32 filters 
enables the network to acquire a diverse set of fea-
tures during its initial phase. It is imperative to note 
that, in the immediate sequence following each 
convolutional layer, a rectified linear unit (ReLU) 
activation function is applied. The implementation 
of this function serves to introduce non-linearity to 
the learning process, thereby enabling the network 
to acquire the capacity to discern complex patterns. 

The ReLU function is favoured on account of its 
computational efficiency and its ability to assist in 
the mitigation of the vanishing gradient problem, a 
predicament which is prevalent in deep neural net-
works. Following the ReLU activation, the archi-
tecture incorporates a MaxPooling2D layer with a 
pool size of 2 × 2. This layer serves to reduce the 
spatial dimensions of the feature maps, thereby de-
creasing the amount of computation required and 
helping to prevent over-fitting by providing an ab-
stracted form of the representation. Following the 
processes of convolution and pooling, the feature 
maps are converted into a flattened format via a 
Flatten layer. This transition from a two-dimension-
al to a one-dimensional format is imperative for the 
progression from feature extraction to classifica-
tion. After the flattening process, architecture em-
ploys a Dense layer comprising 64 neurons, which 
further processes the information through an addi-
tional ReLU activation. The purpose of this layer is 
to integrate the features learned by previous layers 
across the entire image. The final layer is a Dense 
output layer tailored to the number of classes. This 
layer uses a ‘SoftMax’ activation function, which 
is appropriate for multi-class classification prob-
lems, and makes the output sum up to 1, so the out-
put can be interpreted as probabilities. The model 
was compiled with the Adam optimiser and used 
the sparse categorical cross-entropy loss function, 
suitable for multiclass classification tasks. To eval-
uate the performance of the CNN model, the fol-
lowing metrics were measured: root mean square 
error (RMSE), F1-score and accuracy (Table 3). In 

Figure 2. Results of conversion of one tabular observation from 4th research set to: (a) 8 × 8 image; (b) number 
of features in assigned grid position in the image array
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the context of explicating the causes of casting po-
rosity, LIME (presented on Figure 5) is employed 
to provide insights into the specific image features 
that influence the CNNs predictions. By perturbing 
the input image data and observing the variations 
in model output, LIME highlights regions and 
features within the images that are critical for pre-
dicting the presence and severity of leakages. This 
process facilitates a more profound comprehension 
of how specific image elements, likely correspond-
ing to physical properties or defects in the casting 
process, influence the model’s assessments. LIME 
generates 1000 versions of the original image, each 
perturbed in a distinct manner, thus establishing a 
comprehensive dataset that is subsequently utilised 
to train a local surrogate model.

RESULTS

The training and testing of the model were 
conducted across four distinct datasets, with var-
ied train/test splits to evaluate the effect of the 
quantity of training data on the model’s efficacy 
and avoid overfitting thereby enabling model’s 
generalisation. The results (presented in Table 
4.) demonstrate the exceptional performance of 
the model in both the 100/0 and 80/20 train/test 
splits for Datasets 1 and 2. The F1-scores were 
consistently high, reaching up to 0.99, indicating 
almost perfect precision and recall. The RMSE 
values were found to be minimal (0.07 for Da-
taset 1 and 0.06 for Dataset 2 in the 100/0 split), 
thereby suggesting excellent model accuracy in 

Figure 3. Flowchart of CNN-based methodology for prediction values of dependent variable
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Table 3. Parameters of the CNN model
Parameter Description

Input shape RGB 400 × 400 pixels

Optimiser Adam

Train/Test split [%] 100/0 and 80/20

Loss function Sparse Categorical Cross 
entropy

Metrics Accuracy, Fi-score, RMSE

Batch size 32 for 1st and 8 for 
2nd,4th,5th dataset

Epochs 10

Early stopping Patience 5

Figure 4. Architecture of the CNN for predicting ‘leakage in the high-pressure circuit’ from image 
representations

Figure 5. Example LIME analysis results (a) original image from 4th dataset; (b) identified significant features

predicting leakage values that closely mirror the 
true data. The findings of Dataset 2 demonstrate 
a marginal decline in performance when the da-
taset is divided into an 80/20 split (F1-score of 
0.95 and RMSE of 0.17). This decline can be as-
cribed to the diminished quantity of training data, 
yet it continues to emphasise the model’s robust 
predictive capacity. Dataset 4 demonstrated a di-
vergence in performance metrics across various 

splits. The F1-score exhibited a notable decline 
to 0.80 in the 100/0 split, and further to 0.89 in 
the 80/20 split. Concurrently, the RMSE values 
underwent an increase, signifying the complexi-
ties associated with dataset 4 concerning model 
training and generalisation. Dataset 5 exhibited 
the poorest performance of all the datasets in the 
100/0 split, with an F1-score of 0.62. However, 
there was a substantial improvement in perfor-
mance in the 80/20 split, achieving a score of 
0.90. These findings indicate that while the model 
demonstrates challenges with insufficient training 
data, it demonstrates a notable advantage when 
utilising even a modest proportion of test data for 
the purpose of testing during the training process. 
To assess the statistical robustness of the pro-
posed approach, 95% confidence intervals were 
computed for the RMSE of the best-performing 
configuration obtained within the first dataset un-
der 100/0 data split. The mean RMSE obtained 
across five independent runs under 100/0 data 
split was 0.084, with a 95% confidence interval 
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of (0.065–0.103), indicating a consistent and sta-
tistically reliable performance of the proposed 
model and provide additional quantitative sup-
port for its generalisation capability.

An analysis of the learning curves was con-
ducted to assess model convergence and detect 
potential overfitting. The plot (Figure 6) demon-
strates stable convergence of the model, with the 
training loss decreasing and accuracy remaining 
consistent throughout the training process. The 
absence of divergence between these curves in-
dicates that the model learned effectively without 
signs of overfitting.

To additionally minimise the risk of overfit-
ting, the network architecture incorporated di-
mensionality-reduction and pooling layers that 
enforced feature abstraction. The model was 
trained and evaluated using multiple datasets with 
varied train–test splits to verify its generalisation 
capability. Continuous monitoring of losses con-
firmed the absence of significant divergence be-
tween training and testing performance.

Additional comparison of the RMSE val-
ues obtained using the presented methodology 
with those obtained using three traditional ma-
chine learning methods: support vector machines 
(SVM), regression trees (RT) and artificial neural 
networks (ANN) has been shown in Table 5. The 
results suggest that the proposed method provides 
improved fitting accuracy under the conditions 
examined. The differences between the methods 
confirm that representing tabular process data as 
images can affect the model’s ability to capture 
relationships between parameters. These findings 
provide a quantitative basis for evaluating the im-
pact of the presented methodology on the HPDC 
defect analysis framework.

Subsequently, confusion matrices were ap-
plied. As it was demonstrated in Figure 7, the 
application of the model on all datasets provides 
a representative confusion matrix, which offers a 
deeper insight into the classification accuracy of 
the model across different quality classes. It is a 
highly popular measure employed in the context 

Table 4. Results of CNN-based modelling
Dataset Train/Test split [%] Best F1-score Best RMSE Best accuracy Best processing time [s]

1st
100/0 0.99 0.07 0.99 3792.67

80/20 0.99 0.07 0.98 2962.34

2nd
100/0 0.98 0.06 0.98 761.76

80/20 0.95 0.17 0.88 665.34

4th
100/0 0.80 0.41 0.82 917.98

80/20 0.89 0.32 0.70 1190.72

5th
100/0 0.62 0.42 0.71 1163.51

80/20 0.90 0.31 0.82 1038.59

Figure 6. Training accuracy and loss curves for the CNN model of the 1st dataset
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Table 5. Comparison between obtained results with traditional machine learning methods 

Dataset Best RMSE
Best RMSE for 

benchmark data - 
ANN method

Best RMSE for 
benchmark data - 

RT method

Best RMSE for 
benchmark data - 

SVM method
1st 0.07 1.36 3.40 4.40

2nd 0.12 15.50 7.10 29.20

3rd x 0.86 0.93 1.10

4th 0.37 0.90 10.20 31.30

5th 0.37 3.50 16.00 31.90

of solving classification problems. Its applica-
tion extends to both binary classification and 
multiclass classification problems. For instance, 
the results of this analysis for the 5th dataset 
demonstrate that: a robust true positive rate for 
Class 2, with 81 accurate predictions. Satisfac-
tory predictive performance for Class 1, with 
64 accurate classifications. However, the model 
demonstrated lower accuracy for Class 3, with 
misclassifications occurring in three instances, 
leading to the erroneous categorisation of this 
class as Class 2.

The variables most frequently highlighted 
by LIME are among others “maximum pressure 
[bar], vacuum profile [mbar], flow in cooling cir-
cuit [l] and temperature in cooling circuit [°C].” 
Each of these variables plays a critical role in the 
casting process and. The first variable and the 
most consistently identified as having the stron-
gest influence on porosity formation, is of par-
ticular significance given that elevated pressure 
during the casting process can result in increased 
turbulence within the molten metal as it fills the 

mould. This turbulence has the potential to en-
trap air or other gases, leading to the formation 
of gas porosity. Conversely, insufficient pressure 
may result in incomplete filling, also leading to 
porosity due to gaps and voids in the cast struc-
ture. The second variable linked with vacuum 
level within the mould exerts a direct influence 
on the amount of gas entrapped within the molten 
metal. An enhanced vacuum results in a reduced 
presence of gases within the mould environment, 
thereby decreasing the likelihood of gas poros-
ity. This configuration is of paramount impor-
tance for processes where air entrapment poses 
a significant risk, with the ability to effectively 
mitigate this type of porosity through the precise 
regulation of vacuum levels. The third variable 
linked with the flow rate of the medium used in 
the cooling process within the designated circuit 
has a direct influence on the rate of solidifica-
tion of the metal following its injection into the 
mould. Rapid cooling can result in the develop-
ment of shrinkage porosity, whereby the outer 
layers of the metal solidify more rapidly than the 
inner layers, leading to the creation of internal 
voids. The maintenance of a controlled flow rate 
ensures uniform cooling, thereby minimising the 
likelihood of defects arising from these process-
es. The fourth variable linked with temperature 
of the cooling medium exerts a similar influence 
on the rate of solidification. Optimal cooling 
temperatures preclude the formation of hotspots 
in the cast, which can also lead to shrinkage po-
rosity. Maintaining a consistent and appropriate 
temperature in the cooling circuit is essential for 
achieving a homogeneous structure.

DISCUSSION

A high level of accuracy has been achieved 
in the prediction of leakage occurrence (as dem-
onstrated by the CNN model), in the context of 

Figure 7. Confusion matrix of the classification 
accuracy for the 5th dataset with 80/20 split
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similar research performed in other fields [30–
40]. This is evidenced by the accuracy, F1-scores 
and low RMSE values across multiple datasets. 
The methodology has been shown to be capable 
of distinguishing between different states of leak-
age in an effective manner, and to provide a reli-
able quantitative assessment of leakage severity 
in the castings. In view of the fact that the integri-
ty of cast components is of paramount importance 
to safety and functionality in a number of indus-
tries, the presented methodology has considerable 
potential in this regard. 

The employment of the interpretability 
method LIME in the context of deep learning 
algorithms has been shown to facilitate the iden-
tification of critical insights into the decision-
making process of CNN [41]. By emphasising 
the image features that exert the strongest influ-
ence on the prediction of leakage, LIME has en-
abled the discernment of the potential contribu-
tors to defects in the produced castings. This in-
terpretability is of substantial value, as it enables 
metallurgical experts to investigate specific vari-
ables in the process that could be modified to 
reduce the occurrence of leakage or variations in 
alloy composition.

In view of the encouraging outcomes, sub-
sequent research endeavours may be directed 
towards several fronts, namely: development of 
hybrid models that integrate CNNs with other 
machine learning techniques, such as anomaly 
detection algorithms, with a view to offering a 
more comprehensive approach to the identifica-
tion and classification of defects or development 
of real-time analysis systems that integrate CNN 
predictions to provide ongoing feedback during 
the casting process, with a view to preemptively 
identifying potential defects. A future direction 
could also involve the identification of the spe-
cific values of process variables that influence 
the formation of defects. For instance, the sen-
sitivity analysis could be employed to system-
atically vary each process variable within its op-
erating range, thereby observing the impact on 
the model’s output. This approach could assist 
in determining the precise thresholds or critical 
levels at which variables significantly influence 
defect formation.

This investigation signifies a substantial ad-
vancement in the field of science, establishing a 
foundation for the subsequent generation of man-
ufacturing innovations that are poised to enhance 
the quality and efficiency of production processes.

CONCLUSIONS

In summary, the present study demonstrates 
the potential of explainable deep learning tech-
niques for diagnosing and predicting casting de-
fects in HPDC processes. The novel of this study 
contribution is the integration of the REFINED 
data transformation with CNN modelling and 
LIME method interpretability enables accurate and 
transparent identification of defect-driving process 
parameters. This combination allows for the au-
tonomous detection of casting defects from com-
plex process data while maintaining interpretabil-
ity. Unlike conventional approaches, the proposed 
framework supports relatively expeditious and 
autonomous decisions for HPDC quality control. 
The model demonstrated a high degree of predic-
tive performance, thereby substantiating its capac-
ity to capture the nonlinear dependencies that are 
characteristic of complex metallurgical processes. 

The also research supports the transition to-
wards zero-defect manufacturing. Such transition 
is achieved by implementing data-driven decision-
making and autonomous process monitoring. 
Those two components constitute the foundational 
principles of the Industry 4.0 and Quality 4.0 para-
digms. The interpretability offered by LIME meth-
od enhances trust and practical applicability in 
industrial environments, where understanding the 
physical origins of defects is essential for quality 
assurance and safety-critical elements production. 

The salient issue is the ongoing challenge 
of acquiring comprehensive and consistent real 
foundry data. This challenge stems from the com-
plexity of the processes, the heterogeneity of the 
data, and the constraints imposed by industrial 
confidentiality. Consequently, the utilisation of 
synthetic data was instrumental in facilitating the 
development and evaluation of models within a 
controlled environment. While synthetic data 
is not a substitute for real measurements, it can 
serve as a foundation for preliminary analysis and 
methodological validation. Subsequent endeav-
ours will centre on the assessment of the proposed 
framework, leveraging authentic HPDC produc-
tion data to ascertain its reliability and applicabil-
ity in authentic manufacturing environments.
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