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INTRODUCTION

The concept of energy harvesting from am-
bient sources first emerged in the second half of 
the 20th century, while its rapid development has 
been particularly evident over the past three dec-
ades. Initially, the research relied on fundamen-
tal physical effects discovered in the early 19th 
century, such as photoelectric, thermoelectric, 
and electromagnetic phenomena. A more recent 
principle, the piezoelectric effect – discovered in 
the late 19th century – has also become a corner-
stone of energy harvesting technologies. These 
discoveries quickly inspired the development of 
technical devices, with Faraday’s electromagnet-
ic generator of 1831 being a notable example. 
The idea of miniaturizing such devices to cap-
ture mechanical energy from the environment 
and convert it into electrical energy suitable for 
powering small-scale electronic systems did not 

emerge until the late 20th century. One of the 
earliest studies in this field [1] presented a linear 
damped oscillator whose damping depended on 
the load resistance, influencing the force exerted 
by a coil on a magnet moving within it. This work 
highlighted the intrinsic limitations of systems 
with linear characteristics. In [2], the necessity 
of analysing the vibration spectrum of the envi-
ronment prior to designing energy harvesters was 
emphasized. By 2006, one of the first comprehen-
sive review papers had appeared [3], discussing 
various electromechanical solutions for powering 
microsystems from ambient vibrations. Systems 
based on piezoelectric, electrostatic, and electro-
magnetic transduction mechanisms were com-
pared, and particular attention was paid to ener-
gy dissipation mechanisms. Subsequent research 
focused on extending the operational bandwidth 
of harvesters. One promising approach involved 
bistable systems [4, 5], where the specific form 
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of the potential well enabled efficient energy con-
version across a wider frequency range and under 
stochastic excitation. It was later demonstrated 
[6] that double-well potential systems can gener-
ate significantly higher power levels compared to 
linear counterparts, due to the presence of chaotic 
responses. Nonlinearity was also introduced in 
alternative designs, such as the levitating mag-
net harvester described in [7], where the moving 
magnet was suspended between two repelling 
magnets instead of being supported by a spring. 
Both numerical modelling and experimental 
validation confirmed effective energy conver-
sion across a broad frequency spectrum. In this 
context, the strong influence of both mechanical 
and electrical damping on system performance 
was highlighted. Among mechanical damping 
mechanisms, friction plays a crucial role and can 
substantially reduce harvesting efficiency. Some 
studies incorporate Coulomb’s dry friction model 
[8, 9], while others attempt to capture more com-
plex dependencies, such as friction varying with 
sliding velocity [10] or with magnet displacement 
inside the tube [11]. The combined dependence 
on displacement and velocity leads to strongly 
nonlinear friction models. Friction is also a ma-
jor contributor to hysteretic behaviour in energy 
harvesting systems. Additional hysteresis effects 
may arise from nonlinear magnetic interactions 
[12, 13]. The impact of friction-induced hystere-
sis was analysed in [14], which showed how the 
shape of the hysteresis loop influences the sys-
tem’s dynamic response, including resonance 
shift and power generation efficiency. A review 
of the literature [12–15] indicates that hysteresis 
phenomena can actually be beneficial, broaden-
ing the operational bandwidth and improving 
energy generation under variable environmental 
conditions. The amount of harvested energy is 
closely linked to the harvester dimensions. The 
maximum kinetic energy of a moving magnet can 
be increased either by raising its mass or veloci-
ty. To enhance velocity while keeping the device 
compact, auxiliary springs have been proposed 
[16, 17], as they can store part of the magnet en-
ergy once it exceeds a certain displacement range. 

The present study extends the theoretical 
framework developed in [17]. Based on these 
assumptions, a prototype harvester was con-
structed, and its physical parameters were ex-
perimentally identified. These parameters were 
then incorporated into a refined numerical model, 
which accounts for the nonlinear dependence of 

coil inductance on magnet position, replaces the 
previously assumed infinitely stiff springs [17] 
with deformable ones, and incorporates friction 
between the magnet and tube walls. A series of 
experiments was conducted for various excitation 
amplitudes and frequencies, including random 
excitations. Finally, the numerical predictions of 
the proposed model were compared with exper-
imental results, demonstrating good agreement 
and validating the adopted approach.

Formulation of the problem

The studied model of energy harvester is shown 
in Figure 1. The device is made of a non-magnet-
ic tube, locked on a rail. Inside the tube there are 
mounted two springs (k1 and k2). A moving magnet 
of mass m is mounted between these two springs. 
Each spring has two different stiffness coefficients 
while exerting or stretching. This phenomenon 
is caused by friction between the magnet and the 
tube and also between the spring and the tube. The 
laboratory stand is provided for test and to obtain 
the characteristics during loading and unloading 
cycles of the several selected springs A, B and C 
(see Figure 2a). The measurements revealed sud-
den changes of force in the system, as well as sig-
nificantly different stiffness depending on the di-
rection of the magnet’s movement inside the tube 
(Figure 2b). Based on the actual characteristics 
of the spring interacting with the magnet and the 
tube, a linear approximation of the spring stiffness 
was created, represented by two straight lines with 
different slopes (Figure 3a). Next from the ob-
tained stiffness characteristics, the stiffness values 
of applied spring were calculated k1=335 N/m at 
compression and k2=225 N/m at release. Assum-
ing an initial compression of the springs (called 
d) and the use of two springs, one on each side of 
the moving magnet, a hysteresis characteristic was 
obtained, as shown in Figure 3b. As can be seen, 
the value of the initial compression d affects the 
width of the feedback loop. In the paper the results 
are presented and discussed for distance d=10 cm.

The system is equipped with two addition-
al springs with stiffness k3, which play a role as 
bumpers. The length of these spring bumpers is 
small but their stiffness k3 is much higher than the 
main springs (k1, k2). They work when the rela-
tive output amplitude of magnet vibration crosses 
the distance to them, then contact occurs. Note, 
in the numerical model the impact is not assumed 
as a resilient collision. It is modelled the higher 
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stiffness springs consume the kinetic energy for 
potential up to moving magnet changes the veloc-
ity sign and then potential energy is releasing to 
kinetic one. 

The subsystem of energy harvesting part 
consists of an electromagnetic coil attached to 
the tube as is schematically is shown in Figure 4. 
It includes a modified inductance L(x) by posi-
tioning of the magnet against the coil (see Figure 
5) and has the coil resistance Rc. While the me-
chanical system is vibrating, the electromotive 
force εB(t) appears in the coil turns due to mag-
netic flux φ changes according the Faraday’s law 
(Equation 1):

	 𝜖𝜖𝐵𝐵(𝑡𝑡) = − 𝑑𝑑
𝑑𝑑𝑑𝑑 Φ(𝑥𝑥(𝑡𝑡))( 

 

𝐹𝐹𝑒𝑒𝑒𝑒 =
𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 

 

𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 =∑𝐴𝐴𝑛𝑛 sin (
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1
 

𝐹𝐹𝑟𝑟(𝑥𝑥, 𝑞̇𝑞) =
1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑞̇𝑞

2 
 

𝜀𝜀𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑥̇𝑥,𝑞̇𝑞) =
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The mechanical result of the magnetic flux 
gradient is the electrodynamic force done on elec-
trical part of the system:
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chanical coupling, which is described by a 
series of trigonometric functions (Eq. (3) 

Figure 1. The oscillator with applied pre-compressed springs

Figure 2. The laboratory stand of the springs stiffness estimation (a)
the measured characteristics of the selected springs (b)
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Figure 3. The characteristic of the springs k1, k2 with applied pre-compression (a), and the force characteristic (b) 
at different initial compression d 

Figure 4. The schematic model of the energy harvesting oscillator

fitted to points obtained according to Bi-
ot-Savart law, as in [17].
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In this study, the above equation is replaced by 
a fitted polynomial to facilitate simulation in the 
Simulink software. The value of electromechani-
cal coupling varies due to the position of magnet 
within its motion length lx=0.24 m according the 
curve as shown in Figure 5. For sufficient descrip-
tion of the curve, it has been calculated by 10 har-
monics coefficients An. given in Table 1.

Additionally, due to possible significant mag-
net displacements, the reluctance force Fr on the 
mechanical side and the voltage varepsilon_(Lx) 

on the electrical side are taken into account. Both 
terms are described by corresponding terms:
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Both the reluctance force Fr and voltage εLx 
depend on the inductance in relation to x. The in-
ductance of the coil at a given position x of the 
magnet relative to the coil L(x) is expressed by 
Equation:

	

𝜖𝜖𝐵𝐵(𝑡𝑡) = − 𝑑𝑑
𝑑𝑑𝑑𝑑 Φ(𝑥𝑥(𝑡𝑡))( 

 

𝐹𝐹𝑒𝑒𝑒𝑒 =
𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 

 

𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 =∑𝐴𝐴𝑛𝑛 sin (

2𝜋𝜋𝜋𝜋
𝑙𝑙𝑥𝑥

𝑥𝑥)
10

1
 

𝐹𝐹𝑟𝑟(𝑥𝑥, 𝑞̇𝑞) =
1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑞̇𝑞

2 
 

𝜀𝜀𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑥̇𝑥,𝑞̇𝑞) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥̇𝑥𝑞̇𝑞 

 
 

𝐿𝐿(𝑥𝑥) = 𝐿𝐿𝑎𝑎 + 𝜅𝜅𝐿𝐿 exp (−(𝑥𝑥/𝜎𝜎𝐿𝐿)2) 
 

𝕃𝕃 = 𝑇𝑇 +𝑀𝑀 − Π− 𝐸𝐸 = 1
2𝑚𝑚(𝑥̇𝑥2 + 𝑥̇𝑥1)

2 

+12𝐿𝐿(𝑥𝑥)𝑞̇𝑞
2 + 𝜙𝜙(𝑥𝑥)𝑞̇𝑞 − 12𝑘𝑘𝑥𝑥

2 
 

{
 

 𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

 

 

𝔻𝔻 = 12 𝑐𝑐𝑥̇𝑥
2 + 12𝑅𝑅𝑐𝑐𝑞̇𝑞

2 

	 (6)

where	 La=1.63 H is coil inductance (without 
magnet inside), κL = 2.2838 H is the am-
plitude of the inductance variation caused 
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by the presence of the magnet and σL = 
0.0245 m describes the “width parameter” 
of the Gaussian curve, which determines 
how rapidly the inductance decreases as 
the magnet moves away. The magnet po-
sition for coil inductance is presented in 
Figure 6. Function of inductance L(x) (6) 
is used in equations of motion (10), which 
is easily differentiable, decreases with 
displacement of the magnet and achieves 
zero in infinity. 

The energy harvesting system was analysed 
in both numerical and experimental ways. To 
simulate the model, the differential equations of 
motion were provided by Lagrange approach:
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In the Equation 7, T and M mean kinetic and 
magnetic energies, respectively but Π and E cor-
respond to mechanical and electrical potential 
energies. Here, the electrical potential energy is 
zero. The energy exchange between electrical and 
mechanical parts of the system due to magnetic 
field of the vibrating magnet is expressed by term 
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 in magnetic energy and relates to the me-
chanical work of the force Fel.

According the schematic presented in Figure 
4, the mechanical part is a one degree of freedom 
where the generalized coordinate is the displace-
ment x between the magnet (x2) and the tube (x1). 
The second degree of freedom comes from the 
electrical part and it is an electric charge q(t).  
Finally in the Euler–Lagrange equations with in-
cluded the conservative and dissipative forces are 
the form:
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where:	 dissipation function 

𝜖𝜖𝐵𝐵(𝑡𝑡) = − 𝑑𝑑
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2 + 𝜙𝜙(𝑥𝑥)𝑞̇𝑞 − 12𝑘𝑘𝑥𝑥

2 
 

{
 

 𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

 

 

𝔻𝔻 = 12 𝑐𝑐𝑥̇𝑥
2 + 12𝑅𝑅𝑐𝑐𝑞̇𝑞

2  contains the power 
of the energy losses in the system:

	

𝜖𝜖𝐵𝐵(𝑡𝑡) = − 𝑑𝑑
𝑑𝑑𝑑𝑑 Φ(𝑥𝑥(𝑡𝑡))( 

 

𝐹𝐹𝑒𝑒𝑒𝑒 =
𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 

 

𝜕𝜕𝛷𝛷(𝑥𝑥)
𝜕𝜕𝜕𝜕 =∑𝐴𝐴𝑛𝑛 sin (

2𝜋𝜋𝜋𝜋
𝑙𝑙𝑥𝑥

𝑥𝑥)
10

1
 

𝐹𝐹𝑟𝑟(𝑥𝑥, 𝑞̇𝑞) =
1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑞̇𝑞

2 
 

𝜀𝜀𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑥̇𝑥,𝑞̇𝑞) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥̇𝑥𝑞̇𝑞 

 
 

𝐿𝐿(𝑥𝑥) = 𝐿𝐿𝑎𝑎 + 𝜅𝜅𝐿𝐿 exp (−(𝑥𝑥/𝜎𝜎𝐿𝐿)2) 
 

𝕃𝕃 = 𝑇𝑇 +𝑀𝑀 − Π− 𝐸𝐸 = 1
2𝑚𝑚(𝑥̇𝑥2 + 𝑥̇𝑥1)

2 

+12𝐿𝐿(𝑥𝑥)𝑞̇𝑞
2 + 𝜙𝜙(𝑥𝑥)𝑞̇𝑞 − 12𝑘𝑘𝑥𝑥

2 
 

{
 

 𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

 

 

𝔻𝔻 = 12 𝑐𝑐𝑥̇𝑥
2 + 12𝑅𝑅𝑐𝑐𝑞̇𝑞

2 	 (9)

After substitution the equations of Lagrang-
ian (7) and dissipation function (9) into the Euler 
– Lagrange Equations 8, the differential equation 
of motion reached form as below:

	

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 

	 (10)

Because of the excitation x1=xe sin(2πf t) acts 
on the magnet is kinematic only, the right hand 
side of the Equation 10 equal zero. The differen-
tial Equation 10 contain nonlinearities associated 
with the dependence of the inductance and elec-
tromechanical coupling on relative displacement 
of the moving magnet x2, and there are electro-
motive force due to moving magnet (Equation 
1), electrodynamic force (Equation 2), reluctance 
force (Equation 4) and also the derivative of mag-
netic flux linkage induced by the current in the 
coil over the time (Equation 5). Moreover, in the 
mechanical part of differential equation of motion 
one can distinguish three forces. The first force R1 
(Equation 11) corresponds to the two compressed 

Figure 5. The electromechanical coupling
as a function of magnet displacement x

Table 1. The coefficients of series for electromechanical coupling
An [Vm/s] A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Values 31.6332 34.6694 22.4439 8.6255 1.1623 -0.7911 0.2318 1.0248 1.0689 0.3494
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springs of stiffness k1 and k2 working all the vi-
brating time, the second force R2 appears at mov-
ing magnet crossed through the threshold distance 
TR = 0.06 m and activates the spring with high 
stiffness k3 according to the Equation 12. The third 
called friction force Ft depends on the distance d 
which keeps the hysteresis effect of both pre-com-
pressed springs k1 and k2 (Equation 13):

	

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 

	 (11)

	

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 

	 (12)

	

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 

	 (13)

The sum forces expressed by Equation 10, 11, 
13 is plotted in Figure 3b. and denoted by Equa-
tion 14 as below:

		

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 

	 (14)

RESULTS OF THE NUMERICAL MODEL

The results for discussed analytical model 
are provided for parameters listed in Table 2. 
The values of them are taken from the real sys-
tem presented in the next section of experimen-
tal analysis. Based on the differential equation 
of motion, the numerical system are created in 
Simulink software (Figure 7). The simulations 
procedure are provided by integration method 

of Runge-Kutta 4th order at fixed time steps. For 
each input parameters, the final results are taken 
for steady-state response.

The efficiency of the system strongly de-
pends on the damping coefficient and bumpers 
characteristic. The influence of both inputs pa-
rameter were analysed, bumpers stiffness k3 and 
damping c on the output amplitude and voltage 
are presented in Figures 8(a, b). The range of k3 
and c are taken from 0 to 10000 N/m and from 0 
to 20 Ns/m, respectively. It showed the possible 
relative efficiency of the system for energy har-
vesting. Based on the analysis for system sensi-
tivity onto these parameters, both values for nu-
merical simulations are fixed k3=6000 N/m and 
c=8 Ns/m. For assumed parameters the output 
amplitude and voltage are simulated in the vi-
cinity of the first resonance zone up to 15 Hz as 
shown in Figures 9.

The first resonance is significant for energy 
harvesting device system and the simulated re-
sults provided the voltage increasing at relatively 
high the excitation acceleration. The behaviour 
of the harvester is presented for selected excita-
tion forces ranging from 15 g up to 40 g. Each 
of four excitation level confirms the energy har-
vesting efficiency is focused within the first reso-
nance zone, it exhibits a distinct resonance in the 
10–14 Hz range. Higher excitation values lead to 
greater response amplitudes, which may suggest 
nonlinear system behaviour. Apart from the main 
resonance, the system shows additional smaller 
peaks, suggesting the existence of multiple natu-
ral frequencies or complex dynamic effects. 

In Figure 9a one can easily notice the range 
of both, force and frequency excitation levels, 

Figure 6. The curve of coil inductance L(x) against 
the magnet position

Table 2. The parameters of the system 
Descriptions Values

Magnet material NdFeB (N38)

Magnet height hm = 35 mm

Magnet diameter dm = 30 mm

Magnet mass m = 0.205 kg

Coil wire resistance Rc = 6500 Ω

Electric load Rload = 5600 Ω

Coil inductance (without magnet inside) La = 1.63 H

Number of coil turns N = 8000

Wire diameter dw = 0.06 mm

Axial length of the coil hc = 45 mm

Outer diameter of the coil Dc = 42 mm

Inner diameter of the coil dc = 40 mm

 

{
 
 

 
 𝑚𝑚 𝑥̈𝑥2 + 𝑐𝑐𝑥̇𝑥 + 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡  −

−12
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞2 − 𝜕𝜕𝛷𝛷

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞 = 0

𝐿𝐿(𝑥𝑥)𝑞̈𝑞 + (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑞̇𝑞 +

+𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑞̇𝑞𝑥̇𝑥 + 𝜕𝜕Φ

(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥̇𝑥 = 0

 

 
𝑅𝑅1 = (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 

 

𝑅𝑅2 = {
𝑘𝑘3(𝑥𝑥 + 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 < −𝑇𝑇𝑇𝑇
𝑘𝑘3(𝑥𝑥 − 𝑇𝑇𝑇𝑇) 𝑖𝑖𝑖𝑖 𝑥𝑥 > +𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇 ≤ 𝑥𝑥 ≤ +𝑇𝑇𝑇𝑇

 

 

𝐹𝐹𝑡𝑡 = (𝑘𝑘1 − 𝑘𝑘2)𝑑𝑑 {
+𝐹𝐹𝑡𝑡, 𝑥̇𝑥 ≥ 0
−𝐹𝐹𝑡𝑡, 𝑥̇𝑥 < 0 

 
𝐹𝐹(𝑡𝑡) = 𝑅𝑅1 + 𝑅𝑅2 + 𝐹𝐹𝑡𝑡 

 

 



518

Advances in Science and Technology Research Journal 2026, 20(3), 512–524

beyond which the system enters to the bumpers 
activation. This range is limited in the region 
where the magnet movement exceeds the thresh-
old distance TR. It is the excitation frequency 
 f = 0 Hz – 14 Hz and the excitation accelera-
tion aexc =18 g – 40 g detailed by rectangular area 
in Figures 9a. The bumpers activation causes a 
change in the voltage characteristics (see Figure 
9c, d) and at aexc = 18 g it is visible a gentle jump 
by f = 4.5 Hz which finally leads to double peaks 
at 5 Hz and the within 11.5–13.5 Hz, depending 

on the excitation level. Then, the system with 
active bumpers operates over a wider resonance 
zone, increasing its energy-harvesting efficiency. 

Moreover, the increasing of excitation ampli-
tude from 15 g to 40 g causes the increasing of 
output voltage appeared at higher excitation fre-
quencies (see Figure 9d). It means the higher in-
put amplitude, the more efficient system becomes 
despite the fact that the output amplitude keeps 
relatively constant value in whole range of reso-
nance zone between 2 Hz – 14 Hz. 

Figure 7. The numerical model based on Simulink structure

Figure 8. Influence of the additional spring’s stiffness k3 and the damping C on the system response.
Figure a and b are plotted for aexc=40 g and excitation frequency f=5 Hz, where aexc=xe(2∏f)2
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The visualisation of the system behaviour is 
provided by the time series for chosen three points 
of excitation frequencies 2 Hz, 5 Hz and 14 Hz 
(Figures 9b, 9d). In Figures 10a-f is shown the 
characteristics at two extreme excitation levels 
aexc = 15 g and aexc = 40 g, where the first level 
corresponds to operation without impacts, while 
the second involves bumper activation with im-
pact effects. The series are compared at excitation 
frequencies before the resonance zone f = 2 Hz, 
inside it = 5 Hz, and the above the zone f = 14 
Hz. In each cases the response amplitudes of the 
system are higher at excitation acceleration aexc = 
40 g, what is obvious but the relation differs. For 
the last case at excitation 40 g (Figure 10e) the 
output amplitude is three times higher than at 15 g, 
simultaneously without impacts. It is significantly 
different behaviour from the two previous at 5 
Hz and 2 Hz (Figure 10a, c) where the relation of 
output amplitudes are less than two times in spite 
of the impacts appeared. One can conclude, the 

higher excitation amplitude at frequency above 
the resonance zone, reveals the response system 
at enough small amplitude to avoid the impacts 
what is visible both, in the amplitude and voltage 
time response. From a technical point of view, the 
higher resonance frequencies ensure three times 
higher output voltages in the electrical subsystem.

Experimental investigation

In this section, the numerical results simu-
lated by numeric model are verified. Dynamic 
tests were performed on an experimental model 
designed according to the layout shown in Fig-
ure 1. To verify the effectiveness of the energy 
harvester, two excitation sources were proposed 
to reproduce a wide range of forcing amplitudes. 
The first source was the electromagnetic shaker 
TIRA 50101 (Figure 11a) with an LMS Scadias 
III controller and Test.Lab 14A software, pro-
viding specific environmental conditions for 

Figure 9. The influence of the excitation amplitude g and frequency f on the amplitudes of magnet displacement 
(a) and voltage response (c), and their 2D visualisation for selected amplitudes of excitation (b)

and (d), respectively
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the oscillator. However, due to limitations of 
maximum force and displacement in this exci-
tation source, the excitation amplitudes are not 
able to exceed 15 g within the frequency range, 
moreover it significantly decreased at low fre-
quencies. The second system consists of the 
asynchronous motor with a variable eccentric-
ity, controlled by an electronic inverter (Figure 
11b). This system allowed overcoming the limi-
tations of the electromagnetic shaker, enabling 

higher forcing amplitudes at both low and high 
frequencies. Unfortunately, the excitation devi-
ated slightly from a sinusoidal form due to the 
use of the eccentric.

Additionally, the shaker combined with the 
control system permitted the study of the sys-
tem’s response to random excitations. The sys-
tem response here refers to the time histories of 
the voltage generated across the applied resistive 
load. The noise excitation was used to compare 

Figure 10. The amplitude displacements (a, c, e) and voltage (b, d, f) responses of the system
at chosen excitation frequencies f = 2 Hz, f = 5 Hz and f =14 Hz. The excitation acceleration

chosen for comparison are 15 g and 40 g



521

Advances in Science and Technology Research Journal 2026, 20(3), 512–524

the laboratory response of model with the theo-
retical results presented in the work [17].

In the first stand with applied shaker an exci-
tation with an RMS intensity of 2 g was applied 
over a frequency range from 5 to 120 Hz (Fig-
ure 12a) and the system response is presented in 
Figure 12b. The highest voltages are generated by 
the harvester within the frequency range of 5–35 
Hz. Subsequently, as the frequency increases, the 
values of the generated voltages decrease. The 
wide range of useful excitation frequencies for 
the laboratory model confirms the conclusions 
obtained theoretically in the work [17].

The results of the tests with motor excitation 
showed that the second harmonic plays a signifi-
cant role in the system response, despite the ex-
citation system generating mainly odd harmonics 
(Figures 13). At the excitation frequency 7 Hz, 
where contact between the magnet and the addi-
tional springs had not yet occurred, the contribu-
tion of successive harmonics in the coil voltage 
signal gradually decreases. It reveals the highest 
system efficiency of energy harvesting occurs 
mainly in the vicinity of the first resonance, but 
at higher excitation frequency it gradually disap-
pears. At excitations of 15 Hz and 20 Hz, when 

Figure 11. The laboratory stands of the energy harvesting device jointed to the excitation sources provided by 
electrodynamical shaker (a) and electric motor (b)

Figure 12. The experimental results at random excitations spectrum generated by shaker (a),
and harvester response (b)
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Figure 13. The spectra responses of laboratory tests at AC motor excitation approach,
the acceleration of harvester tube (a) and the voltage generated on the load resistor (b)

Figure 14. The amplitude – frequency results of the escalator system (a) and the time series of
voltage response comparison at excitation inputs for f = 15 Hz, aexc = 30 g (b) and for f = 20 Hz, aaexc = 45 g (c)



523

Advances in Science and Technology Research Journal 2026, 20(3), 512–524

the magnet hits the additional springs, the second 
harmonic clearly dominates over the others, in-
cluding the fundamental frequency. It confirms, 
the activation of the extra springs broaden the 
zone, where the energy harvesting efficiency is 
kept. Finally, as visible in Figure 13 the output 
voltage U is increased in wide range of excitation 
frequency exceeding 20 V and even in some fre-
quency is gone up to 80 V.

In the last Figure 14, the comparison of ex-
perimental and numerical results are plotted. 
There are presented both, amplitude – frequency 
results (Figure 14a) and the time series respons-
es (Figure 14b, 14c) for fixed excitation frequen-
cies 15 Hz, 20 Hz and amplitudes levels at 30 g 
and 45 g, respectively. These correspond to the 
achieved experimental result reached at slight 
above the resonance zone due to the kinemat-
ics of the real system mechanism. The verifica-
tion of the numerical response of voltage time 
series is relatively in accordance to experimental 
output voltage both in qualitative and quantita-
tive point of view. One can see the sinusoidal 
behaviour of the voltage series which reproduce 
the characteristics of excitation force from the 
eccentricity mechanism.

CONCLUSIONS

Summarising, the energy harvester exhibits 
the highest efficiency within the first resonance 
zone, particularly for excitation frequencies in the 
range of 10–14 Hz. In this range, both the dis-
placement amplitude and the output voltage reach 
their maximum values. As far as the influence of 
the spring bumpers in concerned, the activation of 
additional high-stiffness spring bumpers extends 
the resonance zone and increases the generated 
voltage. This occurs when motion of the magnet 
exceeds the threshold distance (TR = 0.06 m), 
causing impacts that enhance the energy harvest-
ing capability of the oscillator. 

Additionally, one can conclude, the system 
shows strongly nonlinear behaviour. Multiple 
peaks in the voltage and amplitude response sug-
gest the presence of additional natural frequen-
cies and complex dynamics. Hysteresis effects 
due to friction and asymmetric spring character-
istics further contribute to the nonlinear response. 

Under motor-driven excitation, the second 
harmonic dominates the response of the system 
at frequencies of 15 Hz and 20 Hz, despite the 

excitation mechanism primarily generating odd 
harmonics. This indicates that the impacts be-
tween the magnet and bumpers play a crucial role 
in shaping the voltage signal. Experimental re-
sults obtained under both random and harmonic 
excitations are in good agreement with numeri-
cal simulations, confirming the validity and pre-
dictive capability of the proposed mathematical 
model. Analysed the dependence on excitation 
amplitude, increasing it from 15 g to 40 g leads to 
higher output voltages, even if the displacement 
amplitude remains nearly constant. This demon-
strates that the system becomes more efficient at 
higher excitation levels, especially at frequencies 
near or above resonance.
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