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INTRODUCTION

Fiber-optic communication systems (Figure 
1) have formed the backbone of global telecom-
munications over the past decade, providing
more than 97% of data transmission [1, 2]. These
systems offer advantages such as high bandwidth
capacity (10 Tbps and above), low latency (≤ 5
ms), and a reliability level of 99.99%. Howev-
er, their fiber-optic components are sensitive to

various external factors when operating in harsh 
environmental conditions.

Environmental stresses affect fiber-optic 
communication systems through several distinct 
physical mechanisms. Temperature variations in-
duce thermal drift in laser diodes and expansion 
of optical fibers, leading to wavelength instabil-
ity and coupling losses. Humidity contributes to 
moisture-assisted corrosion and increases optical 
attenuation due to changes in refractive index and 
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coating permeability. EM fields generate induced 
currents and polarization noise, resulting in deg-
radation of signal-to-noise ratio and crosstalk in 
transceiver circuits. Mechanical vibration produc-
es micro-bending and connector misalignment, 
which cause fluctuations in insertion loss and re-
duce system reliability. These mechanisms have 
been individually investigated in previous studies 
[3–11], but their combined impact on component 
reliability remains insufficiently explored.

In Figure 1, the operating principle of a fiber-
optic communication system is illustrated. Here, 
light signals are transmitted through fiber-optic 
cables to deliver data at high speeds. The figure 
also depicts the main components of the com-
munication network - computer, router, and tele-
phone device - interconnected via optical cables.

Studies have shown that when the tempera-
ture rises by 15 °C, the frequency stability of 
laser diodes decreases by 3.1% [3, 4]. Further-
more, when ambient humidity exceeds 80%, the 
performance of optical modulators can drop by 
up to 12% [5 – 7]. The influence of EM fields 
may cause signal distortion of up to 18% [8, 9]. 
Additionally, mechanical vibrations and shocks 
increase the probability of failure in electronic 
circuits by 27% [10, 11].

Currently, more than 5.4 billion subscribers 
worldwide use fiber-optic communication sys-
tems [12–14], while global internet traffic grows 
at an average annual rate of 30%. This growth 
dynamic demands improved resilience of system 
components to external factors in order to main-
tain reliability. However, most existing models 
consider only a single factor (e.g., temperature) 
and fail to account for the combined impact of 
multiple external influences.

Applied mathematical modeling methods 
play a critical role in addressing this issue. Recent 
studies have demonstrated that using multifacto-
rial models can reduce the probability of system 
failure by 25% and increase predictive accuracy to 
94% [15, 16]. These results enable more effective 
management of external influences in the design 
and operation of telecommunication systems.

The novelty of this work lies in the develop-
ment of a unified multifactor modeling frame-
work that integrates thermal, humidity, electro-
magnetic, and mechanical influences within a sin-
gle computational workflow. Unlike conventional 
single-factor approaches, this study captures 
combined stressor interactions and introduces a 
decision rule for reliability-based maintenance, 
linking environmental monitoring directly with 
predictive diagnostics.

Based on these findings, investigating the 
impact of external factors on the fiber-optic com-
ponents of fiber-optic systems through applied 
mathematical modeling is a scientifically and 
practically significant task today.

THEORETICAL BACKGROUND 		
AND PROBLEM DEFINITION

In [17, 18], the influence of environmen-
tal factors such as temperature (T) and relative 
humidity (H) on the performance of fiber-optic 
communication systems was studied. The authors 
demonstrated that fluctuations in temperature sig-
nificantly affect the frequency stability of laser 
diodes. To describe this effect, a multifactor re-
gression model was proposed:

Figure 1. Schematic representation of a fiber-optic communication system
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	 (1)

where:	 fout is the output frequency (GHz), β0, β1, 
β2, β3  are the regression coefficients, T 
is the temperature  (°C), H is the relative 
humidity (%), T ∙ H represents the interac-
tion term between the factors, and ε is the 
random error.

Additionally, a system of differential equa-
tions was proposed to account for the combined 
influence of temperature and humidity on overall 
system performance:
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where:	 P is the signal power transmitted through 
the fiber (W), L is the fiber length (km),  
α(T, H) is the attenuation coefficient de-
pendent on temperature and humidity (dB/
km), f is the laser diode frequency (GHz), 
and kT, kTH are coefficients representing the 
temperature effect and its interaction with 
humidity on frequency variations. 

However, the issue of simultaneously con-
sidering the effects of multiple environmen-
tal factors in a comprehensive manner remains 
unresolved in the study. This difficulty may be 
attributed to objective challenges in collecting 
multi-variable environmental data and modeling 
their complex interactions.

In [19, 20], the authors proposed an applied 
mathematical model to analyze the influence of 
relative humidity (H) on optical modulators. This 
model describes the exponential decrease in the 
modulator’s transmission capacity (C_mod) as a 
function of humidity using the following equation:
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where:	C0 is the transmission capacity under 
normal (dry) conditions (Gb/s), γ is the 
coefficient representing the impact of 
humidity on performance, and H is the 
relative humidity (%).

The results demonstrated that high humid-
ity levels (H ˃ 80%) could reduce the modula-
tor’s performance by up to 12%. However, the 

proposed model did not account for the combined 
effects of electromagnetic (E) and mechanical (M) 
influences. To incorporate these factors, a multi-
variable dynamic system equation is suggested:
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where:	P is the signal power transmitted through 
the modulator (W), α(H, E, M) is the at-
tenuation coefficient dependent on hu-
midity, electromagnetic, and vibrations, 
and η represents a random noise factor.

Integrating machine learning algorithms into 
traditional physical models is considered a prom-
ising approach to overcoming such challenges. 
Although this method was partially applied in 
[21], it has not yet been fully implemented.

In [22, 23], a modeling framework was de-
veloped to assess the impact of electromagnetic 
interferences on fiber-optic components. This 
framework employed Maxwell’s equations to 
compute the EM field distribution:

	 𝛻𝛻 ∙ 𝐸𝐸 = −∂B
∂𝑡𝑡 , 𝛻𝛻 ∙ 𝐻𝐻 = J + ∂D

∂t  	 (5)

where:	E is the electric field intensity (V/m), B 
= μH is the magnetic flux density (T), 
H is the magnetic field intensity (A/m), 
J = σE represents the current density in 
a conductive medium (A/m2), D = εE is 
the electric displacement field (C/m2), μ is 
the magnetic permeability (H/m),  ε is the 
dielectric permittivity (F/m), and σ is the 
electrical conductivity (S/m).

Additionally, the Poynting vector was used to 
evaluate the energy flux within the fiber:

	 S = E ∙ H	 (6)

where:	S denotes the power flow density (W/
m2), characterizing the direction and 
magnitude of electromagnetic energy 
propagation.

Although the study provided valuable insights 
into the susceptibility of fiber-optic systems to 
electromagnetic disturbances, the high compu-
tational complexity (O(n3)) and significant hard-
ware costs posed challenges for the practical de-
ployment of such models in large-scale networks.

In [24, 25], it was determined that mechani-
cal vibrations and shocks can increase the failure 
probability of electronic circuits in fiber-optic 
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systems by up to 27%. However, since this study 
was mainly based on theoretical assumptions 
and lacked sufficient experimental evidence, it is 
considered insufficient for practical application. 
Table 1 presents the impact of vibrations (vibra-
tions and shocks) on the reliability of electronic 
circuits in fiber-optic systems.

This Table 1 describes the effect of mechani-
cal vibrations and shocks on the failure probabil-
ity of electronic circuits in fiber-optic systems. 
The quantitative data show that these factors can 
increase the failure probability by up to 27%; 
however, the results are primarily based on theo-
retical assumptions and are not supported by suf-
ficient experimental evidence.

In [26], the authors proposed a multifactorial 
modeling approach that integrates environmental 
and operational parameters to predict system re-
liability. The core of this approach relies on the 
reliability function: 
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where:	R(t) is the system reliability at time t and  
λ(u) represents the time-dependent failure 
rate, which is influenced by environmen-
tal factors such as temperature T, humid-
ity H, and vibration intensity V.

To account for the combined effects of these 
parameters, the failure rate is expressed as: 

	

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 

+ 𝛽𝛽2𝐻𝐻 + 𝛽𝛽3𝑇𝑇 ∙ 𝐻𝐻 ∙ 𝜀𝜀 
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𝑑𝑑𝑑𝑑
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𝑑𝑑𝑑𝑑
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𝛻𝛻 ∙ 𝐻𝐻 = J + ∂D
∂t  

 

𝑆𝑆 = 𝐸𝐸 ∙ 𝐻𝐻 

 

R(t) = 𝑒𝑒−∫ λ(u)du𝑡𝑡
0  

 

λ(u) = λ0 ∙ 

∙ 𝑒𝑒β1T(u)+β2H(u)+β3V(u) 
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where:	 λ0 is the baseline failure rate, and β1, β2, 
β3 are sensitivity coefficients for tempera-
ture, humidity, and vibration, respective-
ly. While this methodology demonstrated 
success in controlled environments, its 
adaptability to real-world field conditions 
remains uncertain.

In [27], a review of achievements in applied 
mathematical modeling for fiber-optic systems 
over the past decade was conducted. The authors 
highlighted the necessity of developing models that 
integrate real-time environmental data. However, 

achieving predictive accuracy above 90% under 
various external influence conditions remains an 
unresolved challenge. Table 2 presents the predic-
tive accuracy and computational characteristics of 
models that integrate environmental data.

This Table 2 describes the quantitative indica-
tors of applied mathematical models for fiber-op-
tic systems. The models show an environmental 
data integration level ranging from 60% to 72%, 
with predictive accuracy reaching 85–90%, while 
the average computation time varies between 95 
and 150 s. 

In [28, 29], deep learning methods were applied 
to predict the degradation of optical components 
under the influence of external factors. The studies 
showed that deep neural networks achieved up to 
87% accuracy in predicting degradation when tem-
perature varied between 15–45 °C, and 83% ac-
curacy under relative humidity levels of 30–80%. 
However, the integration of these methods with 
classical mathematical models has not been fully 
implemented, resulting in overall predictive sys-
tem reliability remaining below 90%.

All of this highlights the scientific and prac-
tical relevance of developing and implementing 
applied mathematical models for the comprehen-
sive assessment of external factors on fiber-optic 
components in fiber-optic systems. Such research 
can help address existing gaps and enhance the 
resilience of telecommunication infrastructures.

The aim and objectives of the study

The aim of the study is to develop applied 
mathematical models for assessing the impact 
of external factors on the fiber-optic components 
of fiber-optic communication systems and to en-
hance their reliability. To achieve this aim, the 
following objectives are set:
	• to analyze the key environmental factors (tem-

perature, humidity, electromagnetic and vibra-
tions) influencing the components of fiber-
optic systems;

	• to develop and improve multifactorial math-
ematical models that describe the combined 
effects of these factors;

Table 1. Numerical assessment of mechanical impacts on electronic circuits in fiber-optic systems

Factor Failure 
probability (%)

Validation 
level

Availability of 
experimental data

Impact duration 
(s)

Energy impact 
(Joules)

System impact 
level

Mechanical 
vibrations 27 Theoretical 

assumption No
5 15.2 High

Shocks 3 9.8 Medium
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	• to validate the predictive accuracy of the mod-
els and evaluate their effectiveness for appli-
cation in telecommunication systems.

MATERIALS AND METHODS

This study was conducted based on a com-
bination of theoretical and numerical methods 
aimed at developing applied mathematical models 
and assessing their applicability under real-world 
conditions. The theoretical part of the research 
involved analyzing physical laws and systems of 
multifactor regression and differential equations 
describing the effects of external factors on fiber-
optic communication systems. The main vari-
ables used in model development included tem-
perature (T), relative humidity (H), EM field (E), 
and vibrations (M). In general, Figure 2 presents a 
structural diagram of the theoretical modeling of 
the impact of external environmental factors on 
fiber-optic communication systems.

This structural diagram illustrates the theoret-
ical analysis conducted to evaluate the impact of 
external factors (temperature, relative humidity, 
EM field, and vibrations) on the fiber-optic com-
munication system. It presents a regression model 
fout describing the influence on the system’s output 
parameters and a differential equation character-
izing the variation of power.

The mathematical models were implemented 
in the Python environment using the NumPy and 
SciPy libraries for computations. To describe the 
output parameters of the fiber-optic communica-
tion system, an advanced multifactor regression 
model was applied:

	

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 

+ 𝛽𝛽2𝐻𝐻 + 𝛽𝛽3𝑇𝑇 ∙ 𝐻𝐻 ∙ 𝜀𝜀 

 

{
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝛼𝛼(𝑇𝑇,𝐻𝐻) ∙ 𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑇𝑇 + 𝑘𝑘𝑇𝑇𝑇𝑇 ∙ 𝐻𝐻
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −α(H, E, M) ⋅ P + η 

 

𝛻𝛻 ∙ 𝐸𝐸 = −∂B
∂𝑡𝑡 ,  

𝛻𝛻 ∙ 𝐻𝐻 = J + ∂D
∂t  

 

𝑆𝑆 = 𝐸𝐸 ∙ 𝐻𝐻 

 

R(t) = 𝑒𝑒−∫ λ(u)du𝑡𝑡
0  

 

λ(u) = λ0 ∙ 

∙ 𝑒𝑒β1T(u)+β2H(u)+β3V(u) 
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= 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸,𝑀𝑀) + 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔 
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where:	 Pout(t) is the output power over time, T(t),  
H(t), E(t), M(t) represent the time-depen-
dent external factors, γi are the model coef-
ficients, and ε(t) is the random error term. 

Additionally, to characterize the system’s en-
ergy balance, a heat-energy differential equation 
was employed:

	

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 
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∙ 𝑒𝑒β1T(u)+β2H(u)+β3V(u) 
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where:	C is the thermal capacity of the system,  
hA(T – Tenv) represents heat exchange 
with the environment, Qloss accounts for 
power losses due to electromagnetic and 
vibrations, and Qgen denotes the internally 
generated power. 

The adequacy of the models was verified us-
ing the Monte Carlo method and statistical error 
analysis, enabling a comprehensive assessment of 
both individual and combined effects of external 
factors.

To perform the evaluation, model data ob-
tained based on the functions of signal power, 
frequency stability, and reliability, all dependent 
on external factors, were utilized. These functions 
were represented as:

	 𝑅𝑅(𝑡𝑡) = 𝑓𝑓 (
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇, 𝐻𝐻, 𝐸𝐸,𝑀𝑀),

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇, 𝐻𝐻), 𝛷𝛷𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸,𝑀𝑀)
) 

 

𝜎𝜎 = |𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚|
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

× 100% 

 

𝑆𝑆𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑖𝑖

× 𝑋𝑋𝑖𝑖
𝑌𝑌  

 

 

 

	 (11)

where:	R(t) denotes the system reliability func-
tion over time, Psig is the signal power,  
Sfred is the frequency stability, and ϕrel 
represents reliability parameters, while 
T,H,E,M correspond to temperature, rela-
tive humidity, EM field, and vibrations, 
respectively. Additionally, data from pre-
viously published experimental studies 
and laboratory test results were consid-
ered as supplementary comparisons. 

The combined influence of stressors is mod-
eled using interaction terms in the regression 
equation, for example βTH and βEM . This weighted-
interaction approach captures synergistic effects 
between temperature–humidity and electromag-
netic–vibration coupling. Non-linear cross-terms 
of higher order (e.g., T2H or EM2) were tested but 

Table 2. Predictive accuracy and computational characteristics of models integrating environmental data 

№ Number of models Integration of 
environmental data (%)

Predictive accuracy 
(%)

Number of considered 
factors

Average computation 
time (sec)

1 15 65 90 5 120

2 18 72 88 7 150

3 12 60 85 4 95
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yielded < 1% improvement in accuracy and were 
therefore neglected to preserve model simplicity.

To verify the adequacy of the models, their 
predictive accuracy, stability, and computational 
time were analyzed. Each model was tested un-
der conditions considering both individual factors 
and their combinations.

Experimental validation setup

To validate the proposed multifactor mathe-
matical models, a simulation-based experimental 
setup was developed. Since full-scale physical ex-
periments were beyond the current project scope, 
the validation was conducted in a hardware-in-
the-loop (HIL) simulation environment, where 
environmental stress factors were emulated under 
controlled conditions.

The validation covered four main parameters 
affecting fiber-optic system reliability:
	• Temperature (T): 20–50 °C
	• Relative humidity (H): 60–90%
	• EM field (E): 1–5 V/m (generated by a cali-

brated EM-field simulator)
	• Mechanical vibration (M): 0.1–1.0 g at 10–200 

Hz (generated by a virtual vibration platform)

The developed models use a unified set of in-
put and output parameters summarized in Table 
3. Each variable is presented with its symbol, 
physical meaning, range, unit, and corresponding 
boundary condition.

The model was executed in Python (NumPy, 
SciPy) and synchronized with simulated environ-
mental data to replicate real operational scenari-
os. Each validation test lasted 60 s, with data sam-
pling at 0.1 s intervals for output optical power 
Pout(t), temperature deviation, and reliability R(t) .

The generated synthetic data were calibrated 
against published reliability datasets [15, 16, 25], 

ensuring that simulated values remained within 
realistic physical limits. This approach allows 
practical assessment of the model performance 
under combined stress conditions without requir-
ing physical prototypes.

Simulation model of the experimental setup

To represent the logical structure of the ex-
periment, a Simulink-style simulation model was 
developed (Figure X). This model demonstrates 
the sequential processing of environmental fac-
tors – temperature (T), humidity (H), EM field 
(E), and mechanical vibration (M) – through three 
main computational subsystems corresponding to 
the mathematical formulations introduced earlier 
(Equations 9–11).

Multifactor Regression Model (Equation 9): 
Calculates the instantaneous optical power  Pout(t) 
as a function of all environmental inputs and their 
interaction terms.

Thermo-Energetic Model (Equation 10): De-
scribes the dynamic thermal behavior and energy 
exchange between the system and its environ-
ment over time.

Reliability Function Model (Equation 11): 
Determines the time-dependent reliability R(t) 
based on the stress-adjusted failure rate derived 
from the preceding models.

The outputs from the regression and thermo-
energetic subsystems feed into the reliability 
block, enabling simultaneous estimation of per-
formance and durability. This structure mirrors 
the logic of the experimental validation by link-
ing simulated environmental stresses to system-
level responses.

The Figure 3 illustrates how environmen-
tal inputs (T,H,E,M) are processed through the 
multifactor regression, thermo-energetic, and 

Figure 2. Theoretical model of external environmental factors impact on fiber-optic communication systems
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reliability models to produce output parameters 
Pout(t), ΔTs(t), and R(t).

SCIENTIFIC RESEARCH RESULTS

The scientific research titled “Development 
and Implementation of Applied Mathematical 
Models to Assess External Factors Impact on 
Fiber-optic components in Fiber-Optic Systems” 
was conducted at the research laboratories of 
Satbayev University and Almaty University of 
Power Engineering and Telecommunications 
named after G. Daukeev. The study comprehen-
sively analyzed the influence of environmental 
factors on the performance of fiber-optic com-
ponents in fiber-optic communication systems. 
Based on experimental and theoretical investiga-
tions, applied mathematical models were devel-
oped to enhance the reliability of these systems 
under varying external conditions.

Analysis of environmental factors 	
affecting fiber-optic system components

The analysis identified temperature (T), rela-
tive humidity (H), EM field (E), and vibrations 
(M) as the main environmental factors influencing 

fiber – optic communication systems. Model sim-
ulations demonstrated that increasing the temper-
ature from 20 °C to 50 °C reduces the frequency 
stability of laser diodes by 3.1% (this result can 
be seen in Figure 3) [3, 4]. In addition, when rela-
tive humidity exceeds 80%, the modulator perfor-
mance decreases by up to 12% (as illustrated in 
Figure 4)[5 – 7].

Figure 4 illustrates that an increase in temper-
ature from 20 °C to 50 °C negatively affects the 
frequency stability of laser diodes in fiber-optic 
systems. Specifically, when the temperature is 
20 °C, the stability is at 100%, but as the tempera-
ture rises to 50 °C, it decreases by 3.1%, reaching 
a level of 96.9%.

Figure 5 shows that an increase in relative 
humidity leads to a decrease in modulator perfor-
mance: as humidity rises from 60% to 90%, the 
performance drops from 100% to 88%. Specifi-
cally, at 80% humidity, the modulator’s perfor-
mance decreases to 90% and at 90% humidity, it 
further declines by 2% to reach 88%.

According to Maxwell’s equations (the five 
equations above), EM field simulations revealed 
power losses of up to 18% in interference zones, 
while the energy flux density (S) peaked at 2.3 
W/m2 in the highest intensity area. Mechanical 
vibration analysis (Table 1) confirmed that the 

Table 3. Input and output parameters of the multifactor model

Type Parameter Symbol Range Unit Boundary / Initial 
Condition

Input Temperature (T) 20–50 °C (T(0)=25) °C

Input Relative humidity (H) 60–90 % (H(0)=65%)

Input EM field strength (E) 1–5 V/m Sinusoidal exposure

Input Mechanical vibration 
amplitude (M) 0.1–1.0 g Random broadband 

(0–2 kHz)
Output Optical power Pout(t) 90–100 W –

Output Temperature deviation ΔTs(t) 0–1 °C –

Output Reliability function R(t) 0–1 Dimensionless (R(0)=1)

Figure 3. Simulation model of experimental setup
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probability of electronic circuit failure increased 
by 27%. These results underscore the importance 
of developing models that consider the combined 
effects of these factors. Overall, Figure 6 provides 
a representation of the influence of electromag-
netic and mechanical factors.

This figure illustrates the effects of electro-
magnetic and mechanical factors: power losses 
reached up to 18% in interference zones, while 
the energy flux density peaked at 2.3 W/m2. Ad-
ditionally, mechanical vibrations increased the 
failure probability of electronic circuits by 27%.

Simulation-based experimental results

Three representative simulation cases were 
analyzed to evaluate the model’s predictive 
accuracy under combined environmental stresses. 
Each case corresponds to realistic operating 
conditions of fiber-optic communication systems.

The results are summarized in Table 4, 
which compares the modeled and simulated 
“measured” optical power values for different 
environmental conditions.

Data sources and validation approach

The numerical parameters used for modeling 
and validation were derived from a combination 
of manufacturer datasheets, international 
standards, and previous experimental studies. 
Specifically, the baseline values of optical power, 
refractive index, and failure rate were taken from 
Corning SMF-28 fiber specifications, IEC 61753 

performance standards, and Telcordia GR-468-
CORE reliability guidelines [30, 31].

The validation dataset was organized into 
two groups:
	• Baseline conditions: nominal operating regime 

at T = 25 °C, H = 65, E = 0 V/m, M = 0 g.
	• Stress scenarios: combined loading with 

variable T, H, E and M parameters within the 
ranges specified in Table 5.

Each scenario was simulated for 60 s with a 
0.1 s sampling rate to generate time-series data 
of optical power Pout(t), temperature deviation  
ΔTs(t), and reliability R(t). Model performance 
was evaluated by comparing predicted and 
simulated “measured” values of optical power 
using the mean squared error (MSE) and mean 
absolute percentage error (MAPE) metrics.

To demonstrate the added value of the 
multifactor approach, results were compared 
against a single-factor regression model that 
considered only the temperature parameter. 
The single-factor model produced an average 
prediction error of 6.8%, while the proposed 
multifactor model reduced this error to 1.6% 
under identical test conditions, confirming the 
importance of combined-stressor modeling in 
reliability estimation.

Development and improvement of 
multivariable mathematical models

Multifactor models integrating temperature, 
humidity, electromagnetic, and vibrations were 
implemented in Python using the NumPy and 

Figure 4. Temperature dependence of laser diode frequency stability
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SciPy libraries. The regression model (Equation 
9) achieved a mean squared error (MSE) of 0.024 
W2 when predicting the output power (Pout(t)) on 
test data. Overall, Figure 7 illustrates the influ-
ence of the multifactor model on output power.

Figure 7 shows that, according to the multifac-
tor model, an increase in temperature has a negative 
effect on the output power (Pout): as the temperature 
rises from 20 °C to 50 °C, Pout decreases from ap-
proximately 100 W to 94 W. In addition, humidity, 

EM fields, and vibrations significantly contribute to 
the further reduction of the output power.

To describe dynamic processes, a thermo-
energetic differential model (Equation 10) was 
introduced. This model showed high consistency 
with experimental data, achieving a coefficient of 
determination (R2) of 0.91 in predicting system 
temperature deviations. Overall, Figure 8 pres-
ents the results of the thermo-energetic model de-
scribing changes in system temperature.

Figure 5. Graph illustrating the effect of relative humidity on modulator performance 

Figure 6. Representation of electromagnetic and mechanical factors impact

Table 4. Simulation-based experimental validation results of the multifactor mathematical model

Scenario Temperature 
(°C) Humidity (%) EM Field (V/m) Vibration (g) Modeled Pout 

(W)
Simulated Pout 

(W) Error (%)

Case 1 25 70 2 0.2 98.4 99.0 0.6

Case 2 40 85 4 0.5 94.3 95.2 0.9

Case 3 50 90 5 0.8 91.0 92.6 1.6
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This figure illustrates the time-dependent vari-
ation of system temperature predicted by the ther-
mo-energetic differential model: the initial tem-
perature deviation of 5 °C decreases to 0 V within 
10 s. The model demonstrates high accuracy with 
a coefficient of determination (R²) of 0.91. 

The reliability function (Equation 11) was also 
compared with historical failure data. As a result, 
under average environmental load conditions, the 
predicted system reliability over 12 months was 
determined to be R(t) = 94%. Overall, Figure 9 
presents the time-dependent system reliability 
under average environmental load conditions.

 A maintenance-trigger decision threshold was 
introduced for practical reliability assessment. The 

criterion is defined as R(t) = 0.9, corresponding to a 
10% probability of component degradation. When 
the predicted reliability drops below this threshold, 
the system automatically generates a maintenance 
alert, prompting inspection or recalibration.

This threshold value aligns with industrial 
reliability engineering standards and ensures that 
corrective actions are taken before the failure 
probability exceeds acceptable limits, thus 
minimizing unexpected downtime and optimizing 
preventive maintenance schedules.

This figure shows that the system reliability 
initially starts at 100% and decreases by 6% over 
12 months, reaching 94%. Specifically, the reli-
ability drops to approximately 97% at 6 months 

Figure 8. Time-dependent temperature deviation based on the thermo-energetic model

Figure 7. Characterization of output power dependence on environmental factors in fiber-optic systems
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and further to 94% at 12 months, indicating suf-
ficient stability of the system under average envi-
ronmental load. 

Direct comparison between modeled and 
simulated results

The comparative data presented in Table 
3 provide a quantitative basis for evaluating 
the accuracy of the proposed multifactor 
mathematical model. Each scenario represents a 
distinct combination of environmental stressors, 
allowing a comprehensive assessment of model 
performance under moderate, elevated, and 
extreme operating conditions.

The deviation between modeled and simu-
lated outputs was determined using Equation 12:

	

𝑅𝑅(𝑡𝑡) = 𝑓𝑓 (
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇, 𝐻𝐻, 𝐸𝐸,𝑀𝑀),

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇, 𝐻𝐻), 𝛷𝛷𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸,𝑀𝑀)
) 

 

𝜎𝜎 = |𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚|
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

× 100% 

 

𝑆𝑆𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑖𝑖

× 𝑋𝑋𝑖𝑖
𝑌𝑌  

 

 

 

	 (12)

Across all three test cases, the relative error 
remained within the 0.6–1.6% range. Such low 
discrepancies confirm that the deterministic 
predictions of the mathematical model align 
closely with the stochastic behavior of the 
simulated system within the hardware-in-the-loop 
environment. This indicates that the regression 
and thermo-energetic formulations (Equations 
9–10) effectively capture the real physical 
dependencies between environmental parameters 
and the optical power response.

Moreover, the reliability function model 
(Equation 11) demonstrated consistent 

convergence across all stress combinations, 
validating its ability to predict long-term 
degradation trends. 

Overall, the strong correlation between 
modeled and simulated results confirms the 
predictive adequacy and numerical stability of the 
developed framework, supporting its suitability 
for reliability assessment and design optimization 
of fiber-optic communication systems operating 
under multifactor environmental influence.

Results interpretation and practical example

Quantitative analysis of the simulation results 
demonstrates that the developed models maintain 
high accuracy within the tested environmental 
ranges. Under moderate conditions (T = 25 °C, 
H = 70), the modeled optical power was 98.4 W, 
compared to the simulated “measured” value of 
99.0 W, yielding an absolute deviation of 0.6 W 
(0.6%). Under extreme combined stress (T = 50 
°C, H = 90), the modeled value decreased to 91 
W versus the simulated 92.6 W, corresponding to 
a deviation of 1.6 W (1.6%).

These differences confirm that the model’s 
deterministic outputs remain consistent with the 
stochastic behavior of the virtual experimental 
system. Observed effects (temperature-induced 
thermal drift, humidity-related attenuation) were 
validated directly from simulation results, while 
secondary trends – such as electromagnetic–
vibration coupling – were obtained through model 
extrapolation and therefore should be interpreted 
as predictive estimates.

Figure 9. Functional representation of system reliability over time
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To illustrate the model’s practical application, 
consider a fiber-optic transceiver operating in a 
semi-controlled environment: when ambient tem-
perature rises from 30 °C to 45 °C and humidity 
increases to 85, the model predicts a drop in opti-
cal power from 96.2 W to 93.5 W and a reliability 
decrease from R(t) = 0.95 R(t) = 0.91 to. Once R(t) 
approaches the 0.9 threshold, a maintenance alert is 
triggered, recommending recalibration or connector 
inspection. This example demonstrates how the de-
veloped framework can be directly integrated into 
real-time monitoring systems for predictive mainte-
nance of optical communication infrastructure.

Sensitivity and uncertainty analysis

Following the direct comparison between 
modeled and simulated outputs, an additional 
sensitivity and uncertainty analysis was 
conducted to evaluate the relative influence of 
individual environmental factors in the model 
response and the overall stability of the proposed 
multifactor system.

The normalized sensitivity coefficient for 
each parameter was calculated according to 
Equation 13:

	

𝑅𝑅(𝑡𝑡) = 𝑓𝑓 (
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇, 𝐻𝐻, 𝐸𝐸,𝑀𝑀),

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇, 𝐻𝐻), 𝛷𝛷𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸,𝑀𝑀)
) 

 

𝜎𝜎 = |𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚|
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

× 100% 

 

𝑆𝑆𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑖𝑖

× 𝑋𝑋𝑖𝑖
𝑌𝑌  

 

 

 

	 (13)

where:	Y = Pout(t) and Xi ∈ {T,H,E,M}.

Here, Si quantifies the relative contribution of 
each environmental variable to the total variation 
of the output signal.

A one-at-a-time (OAT) approach was 
applied: each parameter was varied within 
its operating range, while the others were 
kept constant. The results are summarized in 
Table 5, which shows the relative sensitivity 
contribution and the physical interpretation of 
each environmental factor.

The analysis indicates that temperature and 
humidity jointly contribute approximately 60% 
to the total output variability, confirming their 

dominant effect on optical power fluctuations and 
long-term reliability degradation.

EM field and vibration factors together 
account for the remaining 40%, which primarily 
influence short-term stability and signal-to-noise 
behavior.

To further verify the robustness of the 
developed model, Monte Carlo simulations 
(10.000 iterations) were performed by randomly 
sampling the input parameters within their 
physical ranges.

The resulting standard deviation of the 
predicted optical power was ±2.3%, demonstrating 
that the model exhibits high numerical stability 
and low sensitivity to parameter perturbations.

These findings confirm that the multifactor 
mathematical model maintains predictive 
consistency across its entire input domain and can 
reliably estimate the performance and reliability 
of fiber-optic components under simultaneous 
environmental stresses.

Validation of predictive accuracy and 
assessment of model application efficiency

To verify the adequacy of the models, the 
Monte Carlo method (10.000 iterations) was ap-
plied. The predictive accuracy averaged 92% 
when considering individual factors and 89% un-
der the combined effect of factors. Overall, Ta-
ble 6 presents the indicators of the Monte Carlo 
method in assessing model accuracy.

This table presents the results of predictive ac-
curacy assessment using the Monte Carlo method 
(10.000 iterations): the accuracy for individual 
factors reached 92%, while under combined fac-
tor effects it decreased to 89%. The accuracy dif-
ference of 3% indicates a slight reduction in mod-
el performance under multivariable conditions.

As a result of the computational performance 
analysis, the average execution time per simu-
lation was determined to be 135 s, which cor-
responds to the indicators presented in Table 2. 
The stability analysis showed that deviations in 

Table 5. Sensitivity and uncertainty analysis results for the multifactor model

Parameter Symbol Range Sensitivity 
contribution (%) Dominant physical effect

Temperature (T) 20–50 °C 35 Thermal drift and wavelength shift in laser diode

Humidity (H) 60–90% 25 Changes in optical attenuation and absorption losses

EM Field (E) 1–5 V/m 20 Electromagnetic interference and polarization noise

Vibration (M) 0.1–1.0 g 20 Mechanical deformation and connector micro-shifts
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repeated tests did not exceed 2%. Overall, Figure 
10 illustrates the dynamics of the models’ compu-
tational performance and stability metrics.

This figure illustrates the computational per-
formance and stability of the models: the average 
execution time per simulation was approximately 
135 s, varying between 132 and 138 s across all 
simulations. Additionally, the stability deviation 
did not exceed 2% in repeated tests, confirming 
the reliability of the models.

The scientific study, through comparison with 
previously published experimental and labora-
tory data, confirmed that the models are suitable 
for practical applications. These models demon-
strated the potential to enhance the durability of 
system components and reduce the failure prob-
ability by up to 25%. (Figure 11).

The diagram summarizes the complete mod-
eling and validation workflow. It begins with en-
vironmental inputs (Temperature, Humidity, EM 
Field, Vibration), which are fed into the multifac-
tor regression and thermo-energetic differential 
models. Outputs (Optical Power Pout(t), Tempera-
ture Deviation, Reliability R(t) are then processed 
by the decision block, applying the threshold R(t) 
= 0.9. If this condition is met, the system issues 
a maintenance alert or triggers recalibration. The 
closed feedback loop highlights real-time moni-
toring, predictive analysis, and adaptive control 
within fiber-optic infrastructures.

DISCUSSION OF THE RESULTS 		
OF THE STUDY

The results obtained in this study demonstrate 
the effectiveness of applied mathematical mod-
els in assessing external environmental factors’ 
impact on fiber-optic components in fiber-optic 
systems. The observed trends can be explained 
by analyzing the corresponding objects in the 

article, including formulas (Equations 9–11), 
figures (Figures 3–9), and tables (Tables 1–3). 
For instance, the multifactorial regression model 
(Equation 9) showed a mean squared error (MSE) 
of 0.024 W2 in predicting output power, as depict-
ed in Figure 6. The thermo-energetic differential 
model (Equation 10) achieved a coefficient of de-
termination (R²) of 0.91 when forecasting system 
temperature deviations (Figure 7). Similarly, the 
reliability function (Equation 11) demonstrated 
predicted reliability values (R(t) of 94%) under 
average environmental load conditions over 12 
months (Figure 8), closely aligning with histori-
cal failure data.

The presented conclusions apply strictly 
within the tested environmental ranges defined in 
Table 7: temperature (20–50 °C), humidity (60–
90%), EM field strength (1–5 V/m), and mechani-
cal vibration (0.1 –1.0 g). Within these intervals, 
the model maintains a predictive accuracy above 
97% (±3% error margin) and a stability coeffi-
cient of R2 ˃ 0.91). Extrapolation beyond these 
boundaries – for instance, under extreme temper-
atures above 60 °C or electromagnetic exposure 
exceeding 10 V/m – may introduce additional 
non-linear effects that are not accounted for in the 
current formulation. Therefore, all interpretations 
and predictive conclusions are valid only within 
the experimentally verified domain.

Compared to existing approaches, the pro-
posed models integrate multiple environmental 
factors (temperature, humidity, electromagnetic, 
and vibrations) into a unified framework, which 
is a significant advancement over conventional 
single-factor models. For example, previous stud-
ies such as [21] have partially incorporated ma-
chine learning techniques into physical models 
but lacked full integration, resulting in predictive 
accuracies below 90%. In contrast, our combined 
multifactorial approach achieved predictive accu-
racies of 92% for individual factors and 89% for 
their combined effects (Table 3), thus improving 
system resilience predictions by approximately 
25% relative to traditional methods [4, 6, 15].

However, certain limitations are inherent in 
this research. The applicability of the proposed 
models is currently constrained to environmental 
conditions within the ranges tested (temperature: 
20–50 °C, humidity: 60–90%, EM field intensity: 
1–5 V/m, and mechanical vibrations: 0.1–1.0 g). 
Their reproducibility under extreme conditions 
outside these ranges requires further investiga-
tion. Moreover, while computational performance 

Table 6. Results of predictive accuracy assessment 
using Monte Carlo method

Parameter Value

Verification method Monte Carlo method

Number of Iterations 10.000
Predictive accuracy 
(Individual Factors) 92%

Predictive accuracy 
(Combined Factors) 89%

Accuracy difference 3%
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analysis (Figure 9) showed an average execution 
time of 135 s per simulation, this may present 
challenges for large-scale network deployment 
where real-time computation is critical.

One disadvantage of the current study lies in 
the limited availability of experimental data for 
validating mechanical and electromagnetic ef-
fects (as noted in Table 1), which relied partly on 
theoretical assumptions. To address this, future 
work should include more extensive laboratory 
testing under controlled and field conditions to 
strengthen the empirical basis of the models.

Further development of this research could 
involve integrating real-time environmental data 
acquisition systems with the models to enable 
dynamic adaptation of telecommunication infra-
structure to external influences. Challenges antici-
pated in this process include handling increased 
mathematical complexity in real-time simulations, 

ensuring model stability under fluctuating external 
parameters, and developing scalable algorithms 
for practical deployment. Additionally, advanced 
machine learning techniques (e.g., deep neural 
networks) could be combined with the proposed 
physical models to further enhance predictive ac-
curacy beyond the current 92% threshold.

Applicability ranges of the developed 
mathematical models

To define the operational boundaries of the 
proposed mathematical framework, the appli-
cability ranges of the input parameters were es-
tablished based on the results of simulation and 
model validation. These boundaries ensure that 
the model predictions remain physically mean-
ingful and statistically reliable under real-world 
operating conditions of fiber-optic systems.

Figure 10. Dynamics of model computational performance and stability metrics

Figure 11. Overall workflow of the proposed reliability assessment framework
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The validated input parameters and their 
corresponding operational ranges are summa-
rized in Table 7.

Within these limits, the model demonstrates 
a prediction error of no more than ±3% and 
maintains a correlation coefficient of R2 ≥ 0.97 
compared to experimental simulations. When any 
of the parameters exceed the thresholds presented 
in Table 6, nonlinear thermo-mechanical and 
humidity-induced effects become dominant, and 
the model’s predictive accuracy decreases to 
approximately 85%.

Therefore, the applicability ranges shown in 
Table 6 define the domain in which the proposed 
multifactor regression, thermo-energetic, and 
reliability models provide stable and physically 
consistent results.

Practical implications

The developed multifactor mathematical 
model and its simulation-based validation 
framework have direct practical applications 
in real-time monitoring and diagnostic systems 
for fiber-optic communication infrastructures. 
The model enables quantitative prediction of 
component degradation and reliability loss 
under combined environmental stresses, such 
as temperature, humidity, electromagnetic 
interference, and vibration.

By integrating the proposed model into 
existing telecommunication network management 
systems, the reliability of optical components 
can be continuously assessed using real-time 
sensor data. Embedded environmental sensors – 
measuring temperature (T), relative humidity (H), 
EM field strength (E), and mechanical vibration 
(M) – can periodically transmit readings to a 
cloud-based or edge computing platform, where 
the developed Equations 9–11 are automatically 
applied to recalculate the reliability function R(t).

This approach enables adaptive reliability 
forecasting, early failure prediction, and automated 
decision-making regarding maintenance and 

network reconfiguration. For instance, when 
humidity or vibration levels exceed their thresholds 
(as defined in Table 5), the model can trigger 
automatic recalibration of transmission power or 
alert system operators to potential degradation of 
optical connectors or transceivers.

The integration of the mathematical model 
into digital twins of communication infrastructure 
further allows simulation of “what-if” scenarios—
predicting system performance under extreme 
temperature or electromagnetic disturbances. 
Such predictive analytics can significantly reduce 
downtime, improve maintenance scheduling, 
and extend the operational lifetime of fiber-
optic components, ensuring higher reliability of 
modern telecommunication networks operating 
in variable environmental conditions.

Future work

Although the developed multifactor 
mathematical model demonstrates high predictive 
accuracy and robustness, further enhancement 
can be achieved through the integration of data-
driven and machine-learning (ML) approaches.

Future research will focus on developing 
hybrid physical-ML models, which combine the 
interpretability of physics-based equations with the 
adaptive learning capabilities of neural networks.

In particular, long short-term memory (LSTM) 
and gated recurrent unit (GRU) architectures will 
be investigated to capture temporal dependencies 
in environmental parameter variations – such as 
cyclic humidity or temperature fluctuations – that 
cannot be fully described by static regression 
formulations. These recurrent models can 
learn time-series patterns of degradation and 
dynamically adjust the coefficients of Equations 
9–11 to improve prediction accuracy under non-
stationary conditions.

Although the current research focuses on 
fiber-optic transceivers and active components, 
the developed framework can be readily adapt-
ed to passive optical elements (e.g., splitters, 

Table 7. Applicability ranges of input parameters for the developed multifactor models.
Parameter Symbol Valid range Unit Limiting Effect

Temperature (T) 20–50 °C Thermal expansion and laser wavelength drift

Relative humidity (H) 60–90 % Optical attenuation and refractive index variation

EM field strength (E) 1–5 V/m Induced currents and polarization instability

Mechanical vibration (M) 0.1–1.0 g Connector displacement and microbending losses
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couplers, connectors) and field telemetry sys-
tems that rely on similar photonic technologies. 
By recalibrating the regression and thermo-en-
ergetic coefficients for these devices, the model 
can serve as a universal diagnostic tool for as-
sessing reliability degradation in diverse opti-
cal infrastructures. Moreover, when integrated 
with real-time monitoring platforms, the same 
methodology can be used to predict and mitigate 
failures in IoT-based sensor networks and dis-
tributed communication nodes operating under 
variable environmental conditions.

Additionally, Bayesian optimization and 
ensemble learning methods can be applied to 
automatically tune model parameters, quantify 
uncertainty, and enhance generalization for diverse 
operating environments. The integration of these 
ML-based enhancements will pave the way for a 
new class of self-adaptive reliability prediction 
systems, capable of continuous improvement as 
more monitoring data become available from 
deployed fiber-optic infrastructures.

Ultimately, this future work aims to establish 
a hybrid digital twin framework, where the 
physical model provides theoretical constraints, 
and the data-driven component continuously 
refines predictions using live sensor data. 
Such an approach will enable intelligent, real-
time diagnostics and proactive maintenance of 
telecommunication systems operating under 
dynamic environmental stress conditions.

CONCLUSIONS

1.	The analysis of environmental factors influenc-
ing fiber-optic communication system com-
ponents identified temperature (T), relative 
humidity (H), EM field (E), and mechanical 
vibration (M) as the most critical parameters 
affecting system reliability. Quantitative evalu-
ation showed a 3.1% decrease in laser diode 
frequency stability when temperature increased 
from 20 °C to 50 °C (Figure 3) and a 12% drop 
in modulator performance at humidity levels 
above 80% (Figure 4). These findings empha-
size the necessity of addressing multifactor ex-
ternal influences, as opposed to conventional 
single-parameter analyses.

2.	The developed regression and thermo-ener-
getic models (Equations 9–10) accurately de-
scribe the combined influence of environmen-
tal factors on optical power and temperature 

deviation. The regression model achieved a 
mean squared error (MSE) of 0.024 W2 (Fig-
ure 6), while the thermo-energetic differential 
model demonstrated a correlation coefficient 
of R = 0.91 with simulated data (Figure 7). 
Monte Carlo validation (10 000 iterations) 
confirmed an average predictive accuracy 
of 92% for individual stressors and 89% for 
combined effects (Table 3). The predicted 
system reliability reached R(t) = 94% over a 
12-month period under typical environmental 
conditions (Figure 8), confirming the model’s 
robustness and adequacy.

3.	Sensitivity analysis revealed that temperature 
and humidity jointly contribute ≈ 60%. to the 
total model uncertainty, while electromagnet-
ic and mechanical factors account for ≈ 40%. 
The developed models remain valid within the 
ranges summarized in Table 5: T = 20–50 ° C; 
H = 60–90%; E = 1–5 V/m; M = 0.1 –1.0 g, 
maintaining a prediction error below ± 3%. 
When applied in real-time monitoring systems, 
these models enable adaptive reliability predic-
tion and early-warning diagnostics for fiber-
optic infrastructures operating under dynamic 
environmental stress.

4.	Further work will focus on integrating the de-
veloped physics-based models with machine-
learning techniques, such as LSTM and GRU 
networks, to improve long-term prediction of 
component degradation. This hybrid physical 
data-driven approach will form the founda-
tion for digital twin systems in telecommuni-
cation infrastructure, enabling self-adaptive 
reliability forecasting and intelligent mainte-
nance strategies.
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