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INTRODUCTION

Modern technologies for acquiring and pro-
cessing geospatial data enable precise support of 
design processes, particularly for linear structures 
such as roads and railway lines. Remote sensing 
methods make it possible to accurately represent 
both the terrain topography and anthropogenic 
features (such as buildings, infrastructure, or veg-
etation cover), while simultaneously reducing 
the scope of fieldwork. The term remote sensing 
encompasses measurement techniques that allow 
the collection of information about objects, phe-
nomena, and processes without direct physical 
contact with the investigated surface or object. 
Among remote sensing techniques, photogram-
metry and laser scanning (light detection and 
ranging – LiDAR) play a key role [1, 2].

Photogrammetry using unmanned aerial 
vehicles (UAVs) and structure-from-motion 
(SfM) algorithms enables the generation of 

high-resolution geospatial products. The most 
commonly obtained outputs include orthophoto-
maps (terrain surface images free from geometric 
distortions), digital terrain models (DTM – repre-
senting the topography of the ground surface after 
removing above-ground objects) and digital sur-
face models (DSM – which include the elevation 
of all elements such as vegetation and buildings. 
The quality of the results depends on various fac-
tors such as flight altitude, image overlap, sensor 
resolution, camera calibration, and the number 
and distribution of ground control points (GCPs) 
[3–8]. Properly conducted UAV photogrammetry 
can achieve horizontal and vertical accuracies of 
a few centimetres, comparable to GNSS – RTK 
(Global Navigation Satellite System - Real-Time 
Kinematic) measurements, where the error reach-
es approximately 2 cm horizontally and 4 cm 
vertically [9, 10]. Several studies [4, 11–14] have 
confirmed that UAV photogrammetry ensures 
high measurement accuracy even with a limited 
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number of GCPs. For example, a low-cost UAV 
mission achieved RMSE (root mean square error) 
below 5 cm horizontally and 6 cm vertically [11]. 
Such accuracy enables the creation of maps at 
scales up to 1:200 with a contour interval of 30 
cm, suitable for infrastructure design. Other stud-
ies [4, 12] indicated that using only three to seven 
GCPs, alternately placed along both sides of the 
road, provides vertical RMSE values below 6–8 
cm. UAVs equipped with RTK-enabled GNSS 
receivers can even achieve comparable accura-
cy without GCPs, typically 1–3 cm horizontally 
and 4–7 cm vertically [13, 14]. Although GCPs 
are still recommended to ensure vertical control, 
minimizing their number is particularly advanta-
geous when mapping large or inaccessible areas.

Light detection and ranging (LiDAR) pro-
vides dense three-dimensional point clouds by 
measuring the time of flight of laser pulses re-
flected from surfaces. Depending on the measure-
ment platform, LiDAR technology can be catego-
rized as satellite laser scanning (SLS), airborne 
laser scanning (ALS), UAV-borne laser scanning 
(ULS), mobile laser scanning (MLS), and terres-
trial laser scanning (TLS) [15–17]. Each of these 
techniques offers a different balance between ac-
curacy, point density, range, and cost [18–20]. 
Satellite laser scanning (SLS) is mainly applied 
in large-scale studies such as spatial and envi-
ronmental planning. Although it provides global 
coverage, its practical use is limited by low spa-
tial resolution and sensitivity to atmospheric con-
ditions [21–24]. In contrast, ALS offers greater 
flexibility in flight planning and data acquisition. 
It provides higher point densities and vertical 
accuracy between 2–15 cm, depending primar-
ily on flight altitude, sensor characteristics, and 
land-cover type [24–28]. The rapidly developing 
UAV-borne laser scanning (ULS) technology can 
produce exceptionally dense point clouds with 
vertical accuracies between 2–10 cm [29–35]. 
Mobile laser scanning (MLS), performed from 
ground vehicles, achieves very high precision (er-
rors below 2.5 cm) and generates extremely dense 
datasets, ranging from several thousand to over 
30 000 points/m². It is ideal for detailed mapping 
of road and railway corridors [36–38]. Terrestrial 
laser scanning (TLS), although less mobile, offers 
millimetre-level precision and is commonly used 
for high-detail documentation and deformation 
analysis of buildings, bridges, and other engineer-
ing structures [39–41]. The main parameters and 

application ranges of different LiDAR data acqui-
sition techniques are compared in Table 1.

In engineering practice, hybrid approaches 
are increasingly common, combining UAV pho-
togrammetry and LiDAR data to enhance both 
completeness and accuracy [19, 39, 42, 43]. Pho-
togrammetry offers high-resolution imagery and 
flexibility at low cost, while LiDAR provides 
dense, accurate point clouds and the ability to 
penetrate vegetation, which is crucial in forested 
or mountainous terrain [20].

A DTM is a fundamental data source in civil 
engineering design and analytical applications 
such as slope stability and hydrological model-
ling [44]. Two main forms of terrain representa-
tion are commonly used: the GRID model and the 
Triangulated Irregular Network (TIN) [45–47]. 
The GRID model represents elevation values on 
a regular grid, offering simple structure and com-
patibility with GIS tools. Approximately 90% of 
practical applications use this format because it 
supports efficient processing of large datasets [44, 
48]. However, raster representation may smooth 
out narrow features such as ditches or embank-
ments [49]. Two variants are distinguished: the 
cell-based model, where elevation represents the 
mean value of a cell, and the node-based model, 
where it corresponds to grid node intersections 
[50]. In contrast, the TIN model represents the 
terrain using irregular triangulation, usually based 
on Delaunay algorithms and structural lines. This 
allows flexible point distribution and accurate 
representation of sharp terrain features through 
breaklines [51, 52]. Although computationally 
more demanding, TIN provides superior accuracy 
in representing slopes, embankments, and other 
linear features relevant to engineering design 
[48, 49]. In linear infrastructure projects, such as 
roads or railways, accurate terrain representation 
is essential for designing the longitudinal profile, 
cross-sections, slope geometry, and drainage sys-
tems [49, 53, 54]. Comparative analyses show 
that TIN models better represent terrain variabil-
ity, while GRID models remain advantageous for 
hydrological analyses where regular grid struc-
tures simplify flow modelling [49, 55]. In prac-
tice, hybrid approaches are used: TIN models are 
created for geometric design, while GRID models 
support further analytical computations [48, 53].

Various measurement methods are currently 
available for acquiring data on terrain surface mor-
phology. The resulting datasets differ in accuracy, 
resolution, and susceptibility to interference. These 
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data can be processed in several ways to generate 
a digital elevation model (DEM). In the literature, 
two dominant forms of DEM representation are 
emphasized: the regular GRID structure and the 
triangulated irregular network (TIN) (Figure 1). 
These approaches vary in both terrain represen-
tation accuracy and analytical potential [48, 49]. 
This study aimed to assess the differences in ter-
rain elevation resulting from the DEM generation 
method (GRID and TIN) and the data acquisition 
source (ALS and UAV). In engineering and design 
applications, the precision of terrain representation 
is important, but so are computational efficiency, 
data volume, and processing time. In linear infra-
structure projects (e.g., roads or railways), spatial 
data are typically acquired from dedicated survey-
ing campaigns carried out for design purposes. 
These are typically based on field measurements. 
For smaller projects, only characteristic points 
required for design are often measured. Increas-
ingly, there is also potential to use ALS (airborne 
laser scanning) data from open-access sources and 
UAV-based photogrammetry. Such data can sig-
nificantly improve the density and completeness 
of elevation information, enhancing the accuracy 
of project models. However, a larger data volume 
increases processing time, file size, and computa-
tional load, requiring a balance between accuracy 
and technical or organizational efficiency [53, 55]. 
Therefore, the authors attempted to evaluate which 
data sources and modelling methods are more suit-
able for specific design applications.

RESEARCH PROBLEM

Considering that open ALS (airborne laser 
scanning) data are available in a 1 × 1 m GRID 
format [57], this study investigates the potential 
of such data to serve as an alternative to UAV-
based photogrammetric measurements. Two road 

sections with contrasting characteristics were se-
lected for analysis: (1) a dirt road, representing 
a case where natural terrain conditions dominate 
and elevation changes occur over short distances, 
and (2) an asphalt road, representing a surface 
shaped and levelled during construction, with 
minimal height variation. The study addresses 
two main research questions:
	• Can ALS-derived GRID data provide accu-

racy comparable to UAV photogrammetry for 
different types of road surfaces?

	• Does the TIN model outperform the GRID 
model in representing terrain irregularities, 
particularly for unpaved (dirt) roads?

We hypothesize that the TIN model will more 
accurately capture irregular and natural surfaces 
such as dirt roads, whereas both GRID and TIN 
will perform similarly for smooth, asphalted sur-
faces. The two selected sites represent typical 
conditions encountered in linear infrastructure 
projects (from naturally shaped terrain to road 
surfaces formed through construction) providing 
a balanced basis for comparing model perfor-
mance under contrasting topographic conditions.

RESEARCH METHODOLOGY

In this study, two road sections (Figure 2) lo-
cated in flat terrain were analysed. Data for these 
sites were obtained from an open-access ALS 
database [54] and from a low-cost UAV photo-
grammetric flight carried out during the summer 
season. For the analysis, two areas were selected:
	• Area 1 – a dirt road section located in the Po-

biedziska commune, Poznań County, with a 
total length of 400 m, and

	• Area 2 – a paved urban street section within 
the administrative boundaries of the city of 
Poznań, with a total length of 200 m.

Table 1. Comparison of LiDAR data acquisition techniques [15–41]

Technique Platform type Typical point density 
(pts/m²)

Vertical 
accuracy (cm) Cost Typical applications

SLS Satellite <1 20–100 Very high Regional and global mapping

ALS Aircraft 2–5 2–15 High Regional and urban terrain mapping

ULS UAV 50–400 2–10 Moderate Detailed topography and 
infrastructure mapping

MLS Vehicle 5 000–30 000 1–3 High Road and railway pavement 
analysis

TLS Tripod (static) > 10 000 <2 Moderate High-precision building and object 
inspection
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The ALS data, available from the national 
geodetic and cartographic resource [54], were 
downloaded in ESRI GRID format and converted 
to ASCII XYZ format. These ALS datasets are 
characterized by a point density ranging from 4 to 
20 points/m², with a DEM resolution of 1 × 1 m. 
The second source of data was a DJI Mavic Air 2 
unmanned aerial vehicle (UAV), whose technical 
specifications are presented in Table 2. The UAV 
photogrammetric survey was conducted during 
the summer period under comparable atmospher-
ic conditions to ensure measurement consistency. 
For both study areas, a temporary photogrammet-
ric control network was established, consisting of 
8 ground control points (GCPs) for Area 1 and 12 
GCPs for Area 2. The GCPs were implemented as 
black-and-white checkerboard targets measuring 
0.5 × 0.5 m. The photogrammetric image align-
ment carried out in the software achieved an ac-
curacy of about 3 cm for the control points and 8 
cm for the check points. The coordinates of the 
GCPs were measured using a mobile GNSS re-
ceiver operating with GPS and GLONASS satel-
lite data, allowing for positional accuracy of ±2 
cm horizontally (axes X and Y) and ±5 cm verti-
cally (axis Z). All datasets were referenced to the 
PL-ETRF2000 horizontal coordinate system and 
the PL-EVRF2007-NH vertical system. The ac-
quired images were processed to create orthopho-
tomaps and Digital Terrain Models (DTMs) using 
Agisoft photogrammetric software, which oper-
ates based on the Structure from Motion (SfM) 
technique [7]. This method enables the creation 
of a 3D model from a series of overlapping 2D 
images. As a result, DTMs were generated for 
both areas in GRID format, exported as ASCII 
XYZ files with an elevation point resolution of 1 
× 1 m. To assess the influence of data resolution 
on the resulting DTM, the point grids were sub-
sequently resampled to resolutions of 2 × 2 m, 5 
× 5 m, and 10 × 10 m. Using CAD software (Au-
todesk Civil 3D), additional DTMs were created 

for both study areas based on the ASCII XYZ 
datasets with resolutions of 1 × 1 m, 2 × 2 m, 5 
× 5 m, and 10 × 10 m. The final stage involved 
generating terrain profiles along the horizontal 
road axes. In total, 12 variants were developed for 
each road: six based on ALS data and six based 
on UAV data. These were derived from the fol-
lowing DTM configurations:
	• GRID 1 × 1 m,
	• TIN based on 1 × 1 m GRID,
	• TIN based on 2 × 2 m GRID,
	• TIN based on 5 × 5 m GRID, and
	• TIN based on 10 × 10 m GRID.

The lower-resolution grids were generated di-
rectly from the original 1 × 1 m GRID by system-
atic subsampling. Every n-th point (corresponding 
to 2 m, 5 m, and 10 m spacing) was selected to 
create the reduced-density datasets. The 1 × 1, 2 × 
2, 5 × 5, and 10 × 10 m grid sizes were chosen to 
provide a representative range of resolutions for 
evaluating the impact of data density on terrain 
model accuracy. Statistical analyses of the meas-
urement results were performed using the Statis-
tica software package. In Autodesk Civil 3D, the 
generation of TIN models from GRID data was 
performed using the Delaunay triangulation algo-
rithm, which connects grid points into triangles 
forming a continuous terrain surface model [55]. 
In order to avoid the influence of vegetation and 
surface obstacles on point cloud filtering, the el-
evation profiles were extracted along the centre-
line for roads. In the case of a dirt road, the road 
centreline was defined by the difference in eleva-
tion between the right and left wheel tracks. Figure 
3 presents the flowchart of the research process.

RESULTS AND ANALYSIS

Figures 4–7 present the terrain elevation pro-
files along the road axes for the analysed areas, 

Figure 1. Graphical interpretation of the GRID, TIN, and DEM models (based on [56])
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created using the data acquired according to the 
methodology described in Section 3. The compar-
ative analysis of the longitudinal profiles for the 
two study areas (Area 1 – dirt road and Area 2 – 
asphalt road) allows for the assessment of the con-
sistency between digital terrain models (DTMs) 
generated from airborne laser scanning (ALS) 
and low-altitude UAV photogrammetry data. In 
Figures 4 and 6, the DTM is based on GRID data 
with a 1 × 1 m elevation point resolution, whereas 

Figures 5 and 7 present DTMs created from the 
same 1 × 1 m GRID data but represented as TIN 
models. The profiles were extracted along the 
road centrelines at 10 m intervals. The elevation 
differences were computed as ALS minus UAV, 
meaning that positive values indicate higher el-
evations in the ALS-derived model compared to 
the UAV model. The computed statistics for ele-
vation readings taken every 10 m are summarized 
in Table 3, including:
	• the number of elevation points used in the cal-

culations (n),
	• the mean elevation difference (MEAN), indi-

cating the vertical shift between data sources,
	• the median (MEDIAN), showing the central 

value of the distribution (less sensitive to out-
liers than the mean),

	• the standard deviation (SD), representing the 
dispersion of results around the mean – lower 
SD values indicate better agreement between 
datasets,

	• the mean absolute error (MAE), expressing the 
average magnitude of elevation differences,

	• the root mean square error (RMSE), combin-
ing systematic and random errors into a com-
prehensive accuracy metric,

	• the minimum and maximum values (Min, 
Max), representing the smallest and largest 
elevation differences along the profiles, en-
abling the identification of local extremes, and

	• the linear error at 95% confidence level 
(LE95%), calculated as 1.96·SD, which de-
fines the interval within which the true eleva-
tion difference is expected to fall with 95% 
probability,

	• the coefficient of determination (R²), describ-
ing the strength of the linear relationship be-
tween the compared elevation datasets.

(a)

(b)

Figure 2. Photographs of the study areas:
Area 1 – dirt road (UAV image) (a),

Area 2 – asphalt pavement (view presented
as a point cloud)

Table 2. Specification of the UAV and
the camera sensor
Weight [g] 570

Accuracy of vertical flight [m] ± 0.1

Camera matrix [Mpix] 48 (effective 12)

Maximum photo resolution [pixel] 8000 × 6000

Resolution of the captured photos [pixel] 4000 × 3000

ISO 100

Focal length equivalent [mm] 24

Sensor dimensions [mm] 6.4 × 4.8 (1/2” 
CMOS)

Iris f/2.8
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The mean elevation differences ranged from 
-0.02 m to 0.03 m, indicating very good agreement 
between the ALS and UAV datasets. For the dirt 
road (Area 1), the standard deviation of the profile 
based on the GRID model was ±0.11 m, while for 
the TIN model, it was ±0.13 m. For the asphalt 
road (Area 2), the standard deviation was ±0.03 
m for both GRID and TIN models. These results 
indicate that for the dirt road, the TIN model ex-
hibits greater elevation variability, which is a con-
sequence of its triangulation-based structure. The 
TIN model captures local terrain variations more 
precisely, while the GRID model tends to smooth 
the surface through interpolation. The mean abso-
lute error (MAE) was 0.06 m for the GRID model 

and 0.09 m for the TIN model in Area 1, and 0.03 
m for both models in Area 2. Notably, the MAE 
values for the dirt road were at least twice as 
high as those for the asphalt road, which results 
from the higher level of surface detail captured 
in UAV data. The SfM photogrammetric recon-
struction algorithms reproduce small-scale ter-
rain features (such as ruts, local depressions, and 
surface irregularities) with greater precision than 
ALS data, which are inherently smoother due to 
filtering and interpolation processes. Therefore, 
higher MAE values in heterogeneous surfaces 
(e.g., dirt roads) should be interpreted as an indi-
cation of greater detail in UAV-derived data, rath-
er than lower measurement accuracy. For smooth 

Figure 3. Flowchart of the research process

Figure 4. Elevation profile along the road centreline in Area 1 derived from a DEM with 1 × 1 m resolution

Figure 5. Elevation profile along the road centreline in Area 1 derived from a TIN-based DEM
using elevation points from a 1 × 1 m grid
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and homogeneous surfaces (asphalt roads), both 
measurement methods demonstrated very high 
consistency. Moreover, the variation in MAE val-
ues for the dirt road between GRID and TIN indi-
cates that the GRID model smooths local extrema 
to a greater degree. The root mean square error 
(RMSE) values were 0.09 m for GRID and 0.13 
m for TIN in Area 1, and 0.04 m for both models 
in Area 2. Similar to MAE, the RMSE values con-
firmed greater local variability in the TIN model 
for the dirt road, while showing strong correlation 
between ALS and UAV data for the asphalt road. 
The RMSE difference between the GRID and TIN 
models did not exceed 0.04 m for the dirt road 
and was 0.00 m for the asphalt road, indicating 
very high consistency of both terrain models for 
flat areas. The largest local elevation differences 
for the dirt road between the GRID and TIN mod-
els ranged from -0.29 m to 0.16 m, reflecting the 
uneven surface. For the asphalt road, the extreme 
values for both models were ±0.06 m. The higher 
differences observed for Area 1 can be attributed 
to the greater local variability captured by UAV 
photogrammetric reconstruction, which produces 

a more detailed elevation profile. The LE95% val-
ues were 0.22 m for GRID and 0.26 m for TIN in 
Area 1, and 0.07 m and 0.08 m, respectively, in 
Area 2. These results confirm significant variation 
in the datasets depending on the surface character-
istics and the measurement method (ALS or UAV). 
In summary, the obtained results show that higher 
correlation between ALS and UAV data (i.e., low-
er SD, RMSE, and LE95%) was achieved for the 
asphalt road, due to its homogeneous and smooth 
surface. In contrast, the dirt road exhibited great-
er discrepancies because of its irregular topogra-
phy. The GRID-based DTM demonstrates lower 
elevation variability due to interpolation, which 
partially smooths local irregularities, whereas the 
TIN model provides a more detailed representa-
tion of the actual terrain profile and is thus more 
sensitive to local elevation differences captured in 
UAV data. Consequently, the TIN model produces 
a wider range of elevation differences (higher SD, 
RMSE, and LE95%), which reflects the true varia-
bility of the terrain surface rather than photogram-
metric reconstruction error. An F-test is a statisti-
cal test used to compare the variances of two or 

Figure 6. Elevation profile along the road centreline in Area 2 derived from a DEM with 1 × 1 m resolution

Figure 7. Elevation profile along the road centreline in Area 2 derived from a TIN-based DEM
using elevation points from a 1 × 1 m grid
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more groups to determine if they are significantly 
different. The interpretation of the results depends 
on the p-value. If it is lower than the chosen sig-
nificance level (e.g., 0.05), the null hypothesis of 
equal variances is rejected. A large F-value indi-
cates greater differences between group variances. 
In this case, the variance comparison using an 
F-test (p > 0.05) showed no statistically signifi-
cant difference between the GRID and TIN eleva-
tion residuals. Although the TIN model exhibited 
slightly higher variability in Area 1 (SD = 0.13 m 
vs. 0.11 m), this difference was not statistically 
significant. In Area 2, both models demonstrat-
ed identical variability (SD = 0.03 m), indicating 
consistent performance regardless of the surface 
modelling method. The R² values for the analysed 
cases were 0.99, indicating a good agreement be-
tween the ALS and UAV data.

Figures 8 and 9 present the elevation differ-
ences between ALS and UAV data for DTMs in 
TIN form, generated from GRID datasets with 
an original resolution of 1 × 1 m, subsequently 
resampled to 2 × 2 m, 5 × 5 m, and 10 × 10 m. 
In the calculations, absolute elevation differences 
were used, derived from measurements taken ev-
ery 10 m along the road centerlines. For the dirt 
road, the mean absolute elevation difference be-
tween ALS and UAV data ranged from 0.09 m to 
0.10 m, regardless of the applied grid resolution. 
The variability range (expressed as ±1.96·SD) ex-
tended from -0.01 m to 0.20 m for the 1 × 1 m 
grid, and from -0.06 m to 0.24 m for the 10 × 10 
m grid, indicating a gradual increase in variability 
with decreasing grid resolution (larger cell size). 
For the asphalt surface, the elevation differences 
between ALS and UAV data were significantly 
smaller. The mean absolute elevation differences 
were approximately 0.03 m for grids ranging from 
1 m to 5 m, while for the 10 × 10 m grid, the mean 
difference increased slightly to 0.05 m. The vari-
ability range for grids from 1 m to 5 m was -0.02 
m to 0.08 m, and for the 10 m grid, it was -0.07 m 
to 0.16 m. The obtained results indicate very good 

agreement between ALS and UAV data in the 
creation of TIN-based DTMs for paved or well-
graded road surfaces, particularly when using grid 
resolutions of up to 5 m. The homogeneous and 
smooth asphalt surface ensures high measurement 
precision for both technologies (ALS and UAV) 
and minimizes the impact of disturbing factors 
such as vegetation or surface irregularities. In the 
case of the dirt road, due to differences in data 
acquisition methods – UAV data showing locally 
higher elevation variability, and ALS data being 
more smoothed – comparable elevation differenc-
es for the TIN model were observed up to a 2 m 
grid resolution. It should be noted that, in the case 
of the analyzed data, the obtained accuracy rep-
resents the sum of measurement errors influenced 
by many factors, ranging from measurement con-
ditions to alignment errors and others.

Figures 10 and 11 illustrate the elevation dif-
ferences between ALS and UAV data along the 
analysed terrain profiles in Area 1 (gravel road) 
and Area 2 (asphalt road), respectively, for dif-
ferent grid resolutions (1 m, 2 m, 5 m, and 10 
m). In both areas, finer grids (1 × 1 m, 2 × 2 m) 
result in the smallest elevation differences, while 
coarser grids (5 × 5 m, 10 × 10 m) tend to intro-
duce greater discrepancies due to surface gener-
alization. The differences are more pronounced 
in Area 1, where the unpaved road lacks uniform 
grading and is more exposed to natural surface 
irregularities. In contrast, the asphalt surface in 
Area 2 is well-profiled, resulting in smaller and 
more consistent deviations, even for the 5 × 5 m 
grid resolution.

Table 4 presents a comparison of the collected 
data regarding the number of elevation points in 
both study areas depending on the grid resolution. 
It should be noted that the 2 × 2 m grid contains 
approximately 75% fewer measurement points, 
while the 5 × 5 m grid includes about 96% fewer 
points than the base 1 × 1 m resolution. The 10 
× 10 m grid represents only 1% of the number 
of points in the base 1 × 1 m dataset. The GRID 

Table 3. Statistical summary of elevation differences for ALS and UAV data along road horizontal
alignments (centrelines)

Area Profile 
source n Mean

[m]
Median

[m]
SD
[m]

MAE
[m]

RMSE
[m]

Min
[m]

Max
[m]

LE95%
[m] R2

Area 1 
(gravel road)

GRID 41 0.02 0.02 ±0.11 0.06 0.09 -0.22 0.16 0.22 0.99

TIN 41 -0.02 -0.02 ±0.13 0.09 0.13 -0.29 0.12 0.26 0.99

Area 2 
(asphalt road)

GRID 21 0.03 0.03 ±0.03 0.03 0.04 -0.02 0.06 0.07 0.99

TIN 21 0.03 0.03 ±0.03 0.03 0.04 -0.06 0.03 0.08 0.99
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Figure 8. Comparison of elevation profiles along the road centreline in Area 1 derived from TIN-based DEMs 
with varying grid resolutions.

Figure 9. Comparison of elevation profiles along the road centreline in Area 2 derived from TIN-based DEMs 
with varying grid resolutions

Figure 10. Elevation differences between ALS and UAV data along the analysed terrain profile in Area 1
(gravel road) for different grid resolutions (1 m, 2 m, 5 m, and 10 m)
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model can be directly used in CAD-type software. 
The TIN model, however, requires generation. In 
the analysed cases, the data file size for the 1 × 1 
m grid was approximately 10.000% larger than 
that for the 10 × 10 m grid, and similarly, the data 
loading time into the software was approximately 
six times longer.

CONCLUSION

This study compared terrain elevation profiles 
along two road centrelines: a dirt road and an as-
phalt road. Data came from ALS and UAV pho-
togrammetry using the SfM method. The results 
showed high consistency between both datasets, 
especially for the asphalt surface. Mean elevation 
differences ranged from -0.02 m to 0.03 m. For the 
dirt road, higher values of SD, RMSE, and LE95% 

were observed. This was caused by greater sur-
face irregularity and the higher detail captured in 
UAV data. The TIN model reproduced local sur-
face variations more accurately. The GRID model 
produced a smoother surface and worked better in 
flat areas with low elevation variability. Different 
grid resolutions were also tested (1 ×1 m, 2 × 2 m, 
5 × 5 m, 10 ×10 m). For asphalt roads, the high 
agreement between ALS and UAV data (mean ab-
solute error ≈ 0.03 m) remained stable up to a 5 
× 5 m grid. For dirt roads, elevation differences 
increased with grid size, but results were still re-
liable up to a 2 × 2 m grid. Reducing the resolu-
tion from 1 m to 2 m lowered the data volume by 
about 75%, with only a small loss of accuracy. A 
summary of the recommended data sources and 
modelling approaches for different terrain types is 
presented in Table 5. The obtained RMSE values 
were 0.04 m for the asphalt road and 0.09 to 0.13 

Figure 11. Elevation differences between ALS and UAV data along the analysed terrain profile in Area 2
(asphalt road) for different grid resolutions (1 m, 2 m, 5 m, and 10 m)

Table 4. Comparison of the number of elevation points for the study areas depending on the grid size
Parameter Grid size

Number of elevation points 1 × 1 m 2 × 2 m 5 × 5 m 10 × 10 m

Area 1 203 643 51 302 8 385 2 161

Area 2 84 708 21 177 3 431 888

Table 5. Recommended data sources and surface modelling approaches for different terrain types
Terrain type / surface Recommended data source Model type Remarks

Smooth, homogeneous 
(e.g. asphalt road, flat area) ALS GRID High consistency, efficient processing

Irregular (e.g. dirt road, ditch) UAV photogrammetry TIN Better representation of local 
irregularities
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m for the gravel road. The corresponding MAE 
values ranged from 0.03 m to 0.09 m. These re-
sults are consistent with previous studies on UAV 
and LiDAR terrain modelling [11, 12, 18, 34, 44, 
55], where typical RMSE values were between 
0.03 m and 0.10 m.

The obtained results confirm that both ALS 
and UAV photogrammetry can be effectively ap-
plied in high-precision geodetic and engineering 
analyses of linear infrastructure terrain modelling, 
with the choice of method and resolution depend-
ing on the characteristics of the analysed area. The 
present analysis is limited to flat-terrain condi-
tions and a relatively small dataset. Therefore, po-
tential bias related to the lack of complex topog-
raphy should be acknowledged. Future research 
should include areas with more diverse terrain and 
larger datasets. Further extensions may involve 
integration with UAV-borne LiDAR or the appli-
cation of machine learning methods for DTM er-
ror prediction. Nevertheless, the presented results 
provide practical guidance for designers and engi-
neers in selecting the optimal data acquisition and 
processing approach for creating DEMs suited to 
the specific characteristics of the analysed linear 
infrastructure. In road earthworks, cross-sections 
are typically generated at regular intervals, for ex-
ample every 25 meters, and earthwork volumes 
are calculated using the average-end area meth-
od. The obtained elevation accuracy, comparable 
to that achieved with GNSS RTK measurements, 
ensures that such small errors have a negligi-
ble effect on the calculated earthwork volumes. 
Both ALS and UAV data acquisition substantial-
ly reduce fieldwork time compared to traditional 
GNSS surveying. While a GNSS survey of a sev-
eral-hundred-metre road section may take a few 
hours, UAV or ALS data collection for the same 
area can be completed within minutes, providing 
dense and consistent elevation information suita-
ble for precise earthwork analyses.
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