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ABSTRACT

In the article, elevation data along the axes of a dirt road and an asphalt road in flat terrain were compared. For
this purpose, data obtained from airborne laser scanning and from a photogrammetric survey using an unmanned
acrial vehicle were used. The acquired data, in the form of a 1 x 1 m grid of terrain elevation points, were applied
to create a digital terrain model in the form of a grid or triangles. The grid of elevation points was also resampled
to resolutions of 2 m, 5 m, and 10 m. The analyses performed showed very good agreement of the acquired mea-
surement data in the case of the asphalt road (particularly for grids with resolutions up to 5 m). Due to the uneven
surface of the dirt road, photogrammetric data and the digital terrain model based on triangles provided a better
representation of its terrain. For elevation differences between ALS and UAV data along road centrelines, the
gravel road showed higher errors (RMSE from 0.09 m to 0.13 m) than the asphalt road (RMSE 0.04 m). The study
introduces a new comparative workflow that provides a practical solution for linear infrastructure designers, sup-
porting the selection of appropriate data sources and spatial resolutions depending on the project characteristics.
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INTRODUCTION

Modern technologies for acquiring and pro-
cessing geospatial data enable precise support of
design processes, particularly for linear structures
such as roads and railway lines. Remote sensing
methods make it possible to accurately represent
both the terrain topography and anthropogenic
features (such as buildings, infrastructure, or veg-
etation cover), while simultaneously reducing
the scope of fieldwork. The term remote sensing
encompasses measurement techniques that allow
the collection of information about objects, phe-
nomena, and processes without direct physical
contact with the investigated surface or object.
Among remote sensing techniques, photogram-
metry and laser scanning (light detection and
ranging — LIDAR) play a key role [1, 2].

Photogrammetry using unmanned aerial
vehicles (UAVs) and structure-from-motion
(StM) algorithms enables the generation of
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high-resolution geospatial products. The most
commonly obtained outputs include orthophoto-
maps (terrain surface images free from geometric
distortions), digital terrain models (DTM — repre-
senting the topography of the ground surface after
removing above-ground objects) and digital sur-
face models (DSM — which include the elevation
of all elements such as vegetation and buildings.
The quality of the results depends on various fac-
tors such as flight altitude, image overlap, sensor
resolution, camera calibration, and the number
and distribution of ground control points (GCPs)
[3-8]. Properly conducted UAV photogrammetry
can achieve horizontal and vertical accuracies of
a few centimetres, comparable to GNSS — RTK
(Global Navigation Satellite System - Real-Time
Kinematic) measurements, where the error reach-
es approximately 2 cm horizontally and 4 cm
vertically [9, 10]. Several studies [4, 11-14] have
confirmed that UAV photogrammetry ensures
high measurement accuracy even with a limited
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number of GCPs. For example, a low-cost UAV
mission achieved RMSE (root mean square error)
below 5 cm horizontally and 6 cm vertically [11].
Such accuracy enables the creation of maps at
scales up to 1:200 with a contour interval of 30
cm, suitable for infrastructure design. Other stud-
ies [4, 12] indicated that using only three to seven
GCPs, alternately placed along both sides of the
road, provides vertical RMSE values below 6-8
cm. UAVs equipped with RTK-enabled GNSS
receivers can even achieve comparable accura-
cy without GCPs, typically 1-3 ¢m horizontally
and 4-7 cm vertically [13, 14]. Although GCPs
are still recommended to ensure vertical control,
minimizing their number is particularly advanta-
geous when mapping large or inaccessible areas.

Light detection and ranging (LiDAR) pro-
vides dense three-dimensional point clouds by
measuring the time of flight of laser pulses re-
flected from surfaces. Depending on the measure-
ment platform, LiDAR technology can be catego-
rized as satellite laser scanning (SLS), airborne
laser scanning (ALS), UAV-borne laser scanning
(ULS), mobile laser scanning (MLS), and terres-
trial laser scanning (TLS) [15—17]. Each of these
techniques offers a different balance between ac-
curacy, point density, range, and cost [18-20].
Satellite laser scanning (SLS) is mainly applied
in large-scale studies such as spatial and envi-
ronmental planning. Although it provides global
coverage, its practical use is limited by low spa-
tial resolution and sensitivity to atmospheric con-
ditions [21-24]. In contrast, ALS offers greater
flexibility in flight planning and data acquisition.
It provides higher point densities and vertical
accuracy between 2—15 cm, depending primar-
ily on flight altitude, sensor characteristics, and
land-cover type [24-28]. The rapidly developing
UAV-borne laser scanning (ULS) technology can
produce exceptionally dense point clouds with
vertical accuracies between 2—-10 cm [29-35].
Mobile laser scanning (MLS), performed from
ground vehicles, achieves very high precision (er-
rors below 2.5 cm) and generates extremely dense
datasets, ranging from several thousand to over
30 000 points/m?. It is ideal for detailed mapping
of road and railway corridors [36—38]. Terrestrial
laser scanning (TLS), although less mobile, offers
millimetre-level precision and is commonly used
for high-detail documentation and deformation
analysis of buildings, bridges, and other engineer-
ing structures [39—41]. The main parameters and

application ranges of different LiDAR data acqui-
sition techniques are compared in Table 1.

In engineering practice, hybrid approaches
are increasingly common, combining UAV pho-
togrammetry and LiDAR data to enhance both
completeness and accuracy [19, 39, 42, 43]. Pho-
togrammetry offers high-resolution imagery and
flexibility at low cost, while LiDAR provides
dense, accurate point clouds and the ability to
penetrate vegetation, which is crucial in forested
or mountainous terrain [20].

A DTM is a fundamental data source in civil
engineering design and analytical applications
such as slope stability and hydrological model-
ling [44]. Two main forms of terrain representa-
tion are commonly used: the GRID model and the
Triangulated Irregular Network (TIN) [45-47].
The GRID model represents elevation values on
a regular grid, offering simple structure and com-
patibility with GIS tools. Approximately 90% of
practical applications use this format because it
supports efficient processing of large datasets [44,
48]. However, raster representation may smooth
out narrow features such as ditches or embank-
ments [49]. Two variants are distinguished: the
cell-based model, where elevation represents the
mean value of a cell, and the node-based model,
where it corresponds to grid node intersections
[50]. In contrast, the TIN model represents the
terrain using irregular triangulation, usually based
on Delaunay algorithms and structural lines. This
allows flexible point distribution and accurate
representation of sharp terrain features through
breaklines [51, 52]. Although computationally
more demanding, TIN provides superior accuracy
in representing slopes, embankments, and other
linear features relevant to engineering design
[48, 49]. In linear infrastructure projects, such as
roads or railways, accurate terrain representation
is essential for designing the longitudinal profile,
cross-sections, slope geometry, and drainage sys-
tems [49, 53, 54]. Comparative analyses show
that TIN models better represent terrain variabil-
ity, while GRID models remain advantageous for
hydrological analyses where regular grid struc-
tures simplify flow modelling [49, 55]. In prac-
tice, hybrid approaches are used: TIN models are
created for geometric design, while GRID models
support further analytical computations [48, 53].

Various measurement methods are currently
available for acquiring data on terrain surface mor-
phology. The resulting datasets differ in accuracy,
resolution, and susceptibility to interference. These
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Table 1. Comparison of LiDAR data acquisition techniques [15-41]

. Typical point density Vertical . o
Technique Platform type (pts/m?) accuracy (cm) Cost Typical applications
SLS Satellite <1 20-100 Very high Regional and global mapping
ALS Aircraft 2-5 2-15 High Regional and urban terrain mapping
uLS UAV 50-400 2-10 Moderate Detailed topography and
infrastructure mapping
MLS Vehicle 5 00030 000 1-3 High Road and railway pavement
analysis
TLS Tripod (static) > 10 000 <2 Moderate | High-precision building and object
inspection

data can be processed in several ways to generate
a digital elevation model (DEM). In the literature,
two dominant forms of DEM representation are
emphasized: the regular GRID structure and the
triangulated irregular network (TIN) (Figure 1).
These approaches vary in both terrain represen-
tation accuracy and analytical potential [48, 49].
This study aimed to assess the differences in ter-
rain elevation resulting from the DEM generation
method (GRID and TIN) and the data acquisition
source (ALS and UAV). In engineering and design
applications, the precision of terrain representation
is important, but so are computational efficiency,
data volume, and processing time. In linear infra-
structure projects (e.g., roads or railways), spatial
data are typically acquired from dedicated survey-
ing campaigns carried out for design purposes.
These are typically based on field measurements.
For smaller projects, only characteristic points
required for design are often measured. Increas-
ingly, there is also potential to use ALS (airborne
laser scanning) data from open-access sources and
UAV-based photogrammetry. Such data can sig-
nificantly improve the density and completeness
of elevation information, enhancing the accuracy
of project models. However, a larger data volume
increases processing time, file size, and computa-
tional load, requiring a balance between accuracy
and technical or organizational efficiency [53, 55].
Therefore, the authors attempted to evaluate which
data sources and modelling methods are more suit-
able for specific design applications.

RESEARCH PROBLEM

Considering that open ALS (airborne laser
scanning) data are available ina 1 x 1 m GRID
format [57], this study investigates the potential
of such data to serve as an alternative to UAV-
based photogrammetric measurements. Two road
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sections with contrasting characteristics were se-
lected for analysis: (1) a dirt road, representing
a case where natural terrain conditions dominate
and elevation changes occur over short distances,
and (2) an asphalt road, representing a surface
shaped and levelled during construction, with
minimal height variation. The study addresses
two main research questions:

e Can ALS-derived GRID data provide accu-
racy comparable to UAV photogrammetry for
different types of road surfaces?

e Does the TIN model outperform the GRID
model in representing terrain irregularities,
particularly for unpaved (dirt) roads?

We hypothesize that the TIN model will more
accurately capture irregular and natural surfaces
such as dirt roads, whereas both GRID and TIN
will perform similarly for smooth, asphalted sur-
faces. The two selected sites represent typical
conditions encountered in linear infrastructure
projects (from naturally shaped terrain to road
surfaces formed through construction) providing
a balanced basis for comparing model perfor-
mance under contrasting topographic conditions.

RESEARCH METHODOLOGY

In this study, two road sections (Figure 2) lo-
cated in flat terrain were analysed. Data for these
sites were obtained from an open-access ALS
database [54] and from a low-cost UAV photo-
grammetric flight carried out during the summer
season. For the analysis, two areas were selected:
e Area | — a dirt road section located in the Po-
biedziska commune, Poznan County, with a
total length of 400 m, and

e Area 2 — a paved urban street section within
the administrative boundaries of the city of
Poznan, with a total length of 200 m.
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GRID model TIN model

Visualized DEM (GRID)

Figure 1. Graphical interpretation of the GRID, TIN, and DEM models (based on [56])

The ALS data, available from the national
geodetic and cartographic resource [54], were
downloaded in ESRI GRID format and converted
to ASCII XYZ format. These ALS datasets are
characterized by a point density ranging from 4 to
20 points/m?, with a DEM resolution of 1 x 1 m.
The second source of data was a DJI Mavic Air 2
unmanned aerial vehicle (UAV), whose technical
specifications are presented in Table 2. The UAV
photogrammetric survey was conducted during
the summer period under comparable atmospher-
ic conditions to ensure measurement consistency.
For both study areas, a temporary photogrammet-
ric control network was established, consisting of
8 ground control points (GCPs) for Area 1 and 12
GCPs for Area 2. The GCPs were implemented as
black-and-white checkerboard targets measuring
0.5 x 0.5 m. The photogrammetric image align-
ment carried out in the software achieved an ac-
curacy of about 3 cm for the control points and 8
cm for the check points. The coordinates of the
GCPs were measured using a mobile GNSS re-
ceiver operating with GPS and GLONASS satel-
lite data, allowing for positional accuracy of +2
cm horizontally (axes X and Y) and £5 cm verti-
cally (axis Z). All datasets were referenced to the
PL-ETRF2000 horizontal coordinate system and
the PL-EVRF2007-NH vertical system. The ac-
quired images were processed to create orthopho-
tomaps and Digital Terrain Models (DTMs) using
Agisoft photogrammetric software, which oper-
ates based on the Structure from Motion (SfM)
technique [7]. This method enables the creation
of a 3D model from a series of overlapping 2D
images. As a result, DTMs were generated for
both areas in GRID format, exported as ASCII
XYZ files with an elevation point resolution of 1
x 1 m. To assess the influence of data resolution
on the resulting DTM, the point grids were sub-
sequently resampled to resolutions of 2 x 2 m, 5
x5 m, and 10 x 10 m. Using CAD software (Au-
todesk Civil 3D), additional DTMs were created

for both study areas based on the ASCII XYZ
datasets with resolutions of 1 x 1 m, 2 X2 m, 5
x 5 m, and 10 x 10 m. The final stage involved
generating terrain profiles along the horizontal
road axes. In total, 12 variants were developed for
each road: six based on ALS data and six based
on UAV data. These were derived from the fol-
lowing DTM configurations:

e GRID1 % 1m,

TIN based on 1 x 1 m GRID,

TIN based on 2 x 2 m GRID,

TIN based on 5 x 5 m GRID, and

TIN based on 10 x 10 m GRID.

The lower-resolution grids were generated di-
rectly from the original 1 x 1 m GRID by system-
atic subsampling. Every n-th point (corresponding
to 2 m, 5 m, and 10 m spacing) was selected to
create the reduced-density datasets. The 1 x 1, 2 x
2,5 x5,and 10 x 10 m grid sizes were chosen to
provide a representative range of resolutions for
evaluating the impact of data density on terrain
model accuracy. Statistical analyses of the meas-
urement results were performed using the Statis-
tica software package. In Autodesk Civil 3D, the
generation of TIN models from GRID data was
performed using the Delaunay triangulation algo-
rithm, which connects grid points into triangles
forming a continuous terrain surface model [55].
In order to avoid the influence of vegetation and
surface obstacles on point cloud filtering, the el-
evation profiles were extracted along the centre-
line for roads. In the case of a dirt road, the road
centreline was defined by the difference in eleva-
tion between the right and left wheel tracks. Figure
3 presents the flowchart of the research process.

RESULTS AND ANALYSIS

Figures 4-7 present the terrain elevation pro-
files along the road axes for the analysed areas,
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Figure 2. Photographs of the study areas:
Area 1 — dirt road (UAV image) (a),
Area 2 — asphalt pavement (view presented
as a point cloud)

created using the data acquired according to the
methodology described in Section 3. The compar-
ative analysis of the longitudinal profiles for the
two study areas (Area 1 — dirt road and Area 2 —
asphalt road) allows for the assessment of the con-
sistency between digital terrain models (DTMs)
generated from airborne laser scanning (ALS)
and low-altitude UAV photogrammetry data. In
Figures 4 and 6, the DTM is based on GRID data
with a 1 X 1 m elevation point resolution, whereas

102

Table 2. Specification of the UAV and
the camera sensor

Weight [g] 570
Accuracy of vertical flight [m] +0.1
Camera matrix [Mpix] 48 (effective 12)
Maximum photo resolution [pixel] 8000 x 6000
Resolution of the captured photos [pixel] 4000 x 3000
ISO 100

Focal length equivalent [mm] 24
Sensor dimensions [mm] 6.4 SI\:SS(; 2
Iris /2.8

Figures 5 and 7 present DTMs created from the
same 1 X 1 m GRID data but represented as TIN
models. The profiles were extracted along the
road centrelines at 10 m intervals. The elevation
differences were computed as ALS minus UAV,
meaning that positive values indicate higher el-
evations in the ALS-derived model compared to
the UAV model. The computed statistics for ele-
vation readings taken every 10 m are summarized
in Table 3, including:

the number of elevation points used in the cal-
culations (n),

the mean elevation difference (MEAN), indi-
cating the vertical shift between data sources,
the median (MEDIAN), showing the central
value of the distribution (less sensitive to out-
liers than the mean),

the standard deviation (SD), representing the
dispersion of results around the mean — lower
SD values indicate better agreement between
datasets,

the mean absolute error (MAFE), expressing the
average magnitude of elevation differences,
the root mean square error (RMSE), combin-
ing systematic and random errors into a com-
prehensive accuracy metric,

the minimum and maximum values (Min,
Max), representing the smallest and largest
elevation differences along the profiles, en-
abling the identification of local extremes, and
the linear error at 95% confidence level
(LE95%), calculated as 1.96-SD, which de-
fines the interval within which the true eleva-
tion difference is expected to fall with 95%
probability,

the coefficient of determination (R?), describ-
ing the strength of the linear relationship be-
tween the compared elevation datasets.
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Figure 4. Elevation profile along the road centreline in Area 1 derived from a DEM with 1 X 1 m resolution
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Figure 5. Elevation profile along the road centreline in Area 1 derived from a TIN-based DEM
using elevation points froma 1 x 1 m grid

The mean elevation differences ranged from
-0.02 mto 0.03 m, indicating very good agreement
between the ALS and UAV datasets. For the dirt
road (Area 1), the standard deviation of the profile
based on the GRID model was +0.11 m, while for
the TIN model, it was £0.13 m. For the asphalt
road (Area 2), the standard deviation was +0.03
m for both GRID and TIN models. These results
indicate that for the dirt road, the TIN model ex-
hibits greater elevation variability, which is a con-
sequence of its triangulation-based structure. The
TIN model captures local terrain variations more
precisely, while the GRID model tends to smooth
the surface through interpolation. The mean abso-
lute error (MAE) was 0.06 m for the GRID model

and 0.09 m for the TIN model in Area 1, and 0.03
m for both models in Area 2. Notably, the MAE
values for the dirt road were at least twice as
high as those for the asphalt road, which results
from the higher level of surface detail captured
in UAV data. The SfM photogrammetric recon-
struction algorithms reproduce small-scale ter-
rain features (such as ruts, local depressions, and
surface irregularities) with greater precision than
ALS data, which are inherently smoother due to
filtering and interpolation processes. Therefore,
higher MAE values in heterogeneous surfaces
(e.g., dirt roads) should be interpreted as an indi-
cation of greater detail in UAV-derived data, rath-
er than lower measurement accuracy. For smooth
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Figure 7. Elevation profile along the road centreline in Area 2 derived from a TIN-based DEM
using elevation points froma 1 x 1 m grid

and homogeneous surfaces (asphalt roads), both
measurement methods demonstrated very high
consistency. Moreover, the variation in MAE val-
ues for the dirt road between GRID and TIN indi-
cates that the GRID model smooths local extrema
to a greater degree. The root mean square error
(RMSE) values were 0.09 m for GRID and 0.13
m for TIN in Area 1, and 0.04 m for both models
in Area 2. Similar to MAE, the RMSE values con-
firmed greater local variability in the TIN model
for the dirt road, while showing strong correlation
between ALS and UAV data for the asphalt road.
The RMSE difference between the GRID and TIN
models did not exceed 0.04 m for the dirt road
and was 0.00 m for the asphalt road, indicating
very high consistency of both terrain models for
flat areas. The largest local elevation differences
for the dirt road between the GRID and TIN mod-
els ranged from -0.29 m to 0.16 m, reflecting the
uneven surface. For the asphalt road, the extreme
values for both models were £0.06 m. The higher
differences observed for Area 1 can be attributed
to the greater local variability captured by UAV
photogrammetric reconstruction, which produces
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a more detailed elevation profile. The LE95% val-
ues were 0.22 m for GRID and 0.26 m for TIN in
Area 1, and 0.07 m and 0.08 m, respectively, in
Area 2. These results confirm significant variation
in the datasets depending on the surface character-
istics and the measurement method (ALS or UAV).
In summary, the obtained results show that higher
correlation between ALS and UAV data (i.e., low-
er SD, RMSE, and LE95%) was achieved for the
asphalt road, due to its homogeneous and smooth
surface. In contrast, the dirt road exhibited great-
er discrepancies because of its irregular topogra-
phy. The GRID-based DTM demonstrates lower
elevation variability due to interpolation, which
partially smooths local irregularities, whereas the
TIN model provides a more detailed representa-
tion of the actual terrain profile and is thus more
sensitive to local elevation differences captured in
UAV data. Consequently, the TIN model produces
a wider range of elevation differences (higher SD,
RMSE, and LE95%), which reflects the true varia-
bility of the terrain surface rather than photogram-
metric reconstruction error. An F-test is a statisti-
cal test used to compare the variances of two or



Advances in Science and Technology Research Journal 2026, 20(3), 98-110

more groups to determine if they are significantly
different. The interpretation of the results depends
on the p-value. If it is lower than the chosen sig-
nificance level (e.g., 0.05), the null hypothesis of
equal variances is rejected. A large F-value indi-
cates greater differences between group variances.
In this case, the variance comparison using an
F-test (p > 0.05) showed no statistically signifi-
cant difference between the GRID and TIN eleva-
tion residuals. Although the TIN model exhibited
slightly higher variability in Area 1 (SD =0.13 m
vs. 0.11 m), this difference was not statistically
significant. In Area 2, both models demonstrat-
ed identical variability (SD = 0.03 m), indicating
consistent performance regardless of the surface
modelling method. The R? values for the analysed
cases were 0.99, indicating a good agreement be-
tween the ALS and UAV data.

Figures 8 and 9 present the elevation differ-
ences between ALS and UAV data for DTMs in
TIN form, generated from GRID datasets with
an original resolution of 1 x 1 m, subsequently
resampled to 2 x 2 m, 5 X 5 m, and 10 x 10 m.
In the calculations, absolute elevation differences
were used, derived from measurements taken ev-
ery 10 m along the road centerlines. For the dirt
road, the mean absolute elevation difference be-
tween ALS and UAV data ranged from 0.09 m to
0.10 m, regardless of the applied grid resolution.
The variability range (expressed as £1.96-SD) ex-
tended from -0.01 m to 0.20 m for the 1 X 1 m
grid, and from -0.06 m to 0.24 m for the 10 x 10
m grid, indicating a gradual increase in variability
with decreasing grid resolution (larger cell size).
For the asphalt surface, the elevation differences
between ALS and UAV data were significantly
smaller. The mean absolute elevation differences
were approximately 0.03 m for grids ranging from
1 m to 5 m, while for the 10 x 10 m grid, the mean
difference increased slightly to 0.05 m. The vari-
ability range for grids from 1 m to 5 m was -0.02
m to 0.08 m, and for the 10 m grid, it was -0.07 m
to 0.16 m. The obtained results indicate very good

agreement between ALS and UAV data in the
creation of TIN-based DTMs for paved or well-
graded road surfaces, particularly when using grid
resolutions of up to 5 m. The homogeneous and
smooth asphalt surface ensures high measurement
precision for both technologies (ALS and UAV)
and minimizes the impact of disturbing factors
such as vegetation or surface irregularities. In the
case of the dirt road, due to differences in data
acquisition methods — UAV data showing locally
higher elevation variability, and ALS data being
more smoothed — comparable elevation differenc-
es for the TIN model were observed up to a 2 m
grid resolution. It should be noted that, in the case
of the analyzed data, the obtained accuracy rep-
resents the sum of measurement errors influenced
by many factors, ranging from measurement con-
ditions to alignment errors and others.

Figures 10 and 11 illustrate the elevation dif-
ferences between ALS and UAV data along the
analysed terrain profiles in Area 1 (gravel road)
and Area 2 (asphalt road), respectively, for dif-
ferent grid resolutions (1 m, 2 m, 5 m, and 10
m). In both areas, finer grids (1 x 1 m, 2 x 2 m)
result in the smallest elevation differences, while
coarser grids (5 X 5 m, 10 x 10 m) tend to intro-
duce greater discrepancies due to surface gener-
alization. The differences are more pronounced
in Area 1, where the unpaved road lacks uniform
grading and is more exposed to natural surface
irregularities. In contrast, the asphalt surface in
Area 2 is well-profiled, resulting in smaller and
more consistent deviations, even for the 5 X 5 m
grid resolution.

Table 4 presents a comparison of the collected
data regarding the number of elevation points in
both study areas depending on the grid resolution.
It should be noted that the 2 X 2 m grid contains
approximately 75% fewer measurement points,
while the 5 X 5 m grid includes about 96% fewer
points than the base 1 X 1 m resolution. The 10
x 10 m grid represents only 1% of the number
of points in the base 1 x 1 m dataset. The GRID

Table 3. Statistical summary of elevation differences for ALS and UAV data along road horizontal

alignments (centrelines)

Profile Mean Median SD MAE RMSE Min Max LE95%
Area n R?
source [m] [m] [m] [m] [m] [m] [m] [m]
Area 1 GRID 41 0.02 0.02 +0.11 0.06 0.09 -0.22 0.16 0.22 0.99
(gravel road) TIN 41 -0.02 -0.02 +0.13 0.09 0.13 -0.29 0.12 0.26 0.99
Area 2 GRID 21 0.03 0.03 +0.03 0.03 0.04 -0.02 0.06 0.07 0.99
(asphalt road) TIN 21 0.03 0.03 +0.03 0.03 0.04 -0.06 0.03 0.08 0.99
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Figure 8. Comparison of elevation profiles along the road centreline in Area 1 derived from TIN-based DEMs
with varying grid resolutions.
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Figure 9. Comparison of elevation profiles along the road centreline in Area 2 derived from TIN-based DEMs
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Figure 10. Elevation differences between ALS and UAV data along the analysed terrain profile in Area 1
(gravel road) for different grid resolutions (1 m, 2 m, 5 m, and 10 m)
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Figure 11. Elevation differences between ALS and UAV data along the analysed terrain profile in Area 2
(asphalt road) for different grid resolutions (1 m, 2 m, 5 m, and 10 m)

Table 4. Comparison of the number of elevation points for the study areas depending on the grid size

Parameter Grid size

Number of elevation points 1%x1m 2%x2m 5x5m 10%x10m
Area 1 203 643 51302 8 385 2161

Area 2 84 708 21177 3431 888
Table 5. Recommended data sources and surface modelling approaches for different terrain types

Terrain type / surface Recommended data source Model type Remarks
Smooth, homogeneous . . - .
(e.g. asphalt road, flat area) ALS GRID High consistency, efficient processing
. . Better representation of local

Irregular (e.g. dirt road, ditch) UAV photogrammetry TIN irregularities

model can be directly used in CAD-type software.
The TIN model, however, requires generation. In
the analysed cases, the data file size for the 1 x 1
m grid was approximately 10.000% larger than
that for the 10 x 10 m grid, and similarly, the data
loading time into the software was approximately
six times longer.

CONCLUSION

This study compared terrain elevation profiles
along two road centrelines: a dirt road and an as-
phalt road. Data came from ALS and UAV pho-
togrammetry using the SfM method. The results
showed high consistency between both datasets,
especially for the asphalt surface. Mean elevation
differences ranged from -0.02 m to 0.03 m. For the
dirt road, higher values of SD, RMSE, and LE95%

were observed. This was caused by greater sur-
face irregularity and the higher detail captured in
UAV data. The TIN model reproduced local sur-
face variations more accurately. The GRID model
produced a smoother surface and worked better in
flat areas with low elevation variability. Different
grid resolutions were also tested (1 x1 m,2 X 2 m,
5 x5 m, 10 x10 m). For asphalt roads, the high
agreement between ALS and UAV data (mean ab-
solute error ~ 0.03 m) remained stable up to a 5
x 5 m grid. For dirt roads, elevation differences
increased with grid size, but results were still re-
liable up to a 2 x 2 m grid. Reducing the resolu-
tion from 1 m to 2 m lowered the data volume by
about 75%, with only a small loss of accuracy. A
summary of the recommended data sources and
modelling approaches for different terrain types is
presented in Table 5. The obtained RMSE values
were 0.04 m for the asphalt road and 0.09 to 0.13
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m for the gravel road. The corresponding MAE
values ranged from 0.03 m to 0.09 m. These re-
sults are consistent with previous studies on UAV
and LiDAR terrain modelling [11, 12, 18, 34, 44,
55], where typical RMSE values were between
0.03 m and 0.10 m.

The obtained results confirm that both ALS
and UAV photogrammetry can be effectively ap-
plied in high-precision geodetic and engineering
analyses of linear infrastructure terrain modelling,
with the choice of method and resolution depend-
ing on the characteristics of the analysed area. The
present analysis is limited to flat-terrain condi-
tions and a relatively small dataset. Therefore, po-
tential bias related to the lack of complex topog-
raphy should be acknowledged. Future research
should include areas with more diverse terrain and
larger datasets. Further extensions may involve
integration with UAV-borne LiDAR or the appli-
cation of machine learning methods for DTM er-
ror prediction. Nevertheless, the presented results
provide practical guidance for designers and engi-
neers in selecting the optimal data acquisition and
processing approach for creating DEMs suited to
the specific characteristics of the analysed linear
infrastructure. In road earthworks, cross-sections
are typically generated at regular intervals, for ex-
ample every 25 meters, and earthwork volumes
are calculated using the average-end area meth-
od. The obtained elevation accuracy, comparable
to that achieved with GNSS RTK measurements,
ensures that such small errors have a negligi-
ble effect on the calculated earthwork volumes.
Both ALS and UAV data acquisition substantial-
ly reduce fieldwork time compared to traditional
GNSS surveying. While a GNSS survey of a sev-
eral-hundred-metre road section may take a few
hours, UAV or ALS data collection for the same
area can be completed within minutes, providing
dense and consistent elevation information suita-
ble for precise earthwork analyses.
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