AST Advances in Science and Technology
\MRJ Research Journal

Advances in Science and Technology Research Journal, 2026, 20(3), 249-260
https://doi.org/10.12913/22998624/213754
ISSN 2299-8624, License CC-BY 4.0

Received: 2025.09.12
Accepted: 2025.10.29
Published: 2026.02.01

Sensorless sliding mode observer with feedforward
compensation for interior permanent magnet synchronous
motors in electric vehicle drivetrains

Vinod Kumar Kuttey”®, Bali Sravana Kumar'®

! GITAM Deemed to be University, Visakhapatnam, India
* Corresponding author’s e-mail: vinodkumar.kutty@gmail.com

ABSTRACT

A sensorless control strategy of an interior permanent magnet synchronous motor (IPMSM) is a sliding mode
observer (SMO) with feedforward compensation. It is based on the d-q mathematical model of IPMSM and uses
Lyapunov’s stability analysis to guarantee the robustness of the rotor position estimation. The innovative design
eliminates the need for mechanical sensors by generating rotor speed and position estimates from the back-EMF,
which is extended in the af} reference frame. A simulation was made in MATLAB/Simulink for a 0.75 kW IPMSM
over a speed range of 200—1000 rpm. The results indicated a 67% reduction in the error of rotor position estima-
tion (from 5.4° to 1.8°) and a 30% increase in settling time compared to traditional PI-based control. The method
enhances the stability and the quality of the current regulation; at the same time, it keeps the parameter variation
robustness.

Keywords: sensorless control, rotor position estimation, sliding mode observer, field-oriented control, interior

permanent magnet synchronous motor, feedforward compensation

INTRODUCTION

Permanent magnet synchronous motors
(PMSM) have gained significant popularity com-
pared with all other motors and usage in various
industries and applications, ranging from mod-
ern electric vehicles to industrial automation.
PMSMs consist of a stator with windings and a
rotor that incorporates permanent magnets [3—5].
The coupling of stator magnetic field with rotor
magnetic fields which generates rotational mo-
tion of the rotor. PMSMs offer exceptional torque
and speed control [9]. By adjusting the electrical
current in the stator windings, the motor’s torque
and speed can be precisely regulated. This level
of control enables smooth and accurate operation
in various applications, including robotics, indus-
trial machinery, and electric propulsion systems.
Their high-power density allows for efficient
power delivery in a smaller form factor, contrib-
uting to overall system optimization. In recent

years, PM synchronous motors have attained sig-
nificant popularity in automobile industry. Their
efficiency, high torque density, and precise con-
trol make them well-suited for electric propul-
sion systems. PMSMs can provide the necessary
power and responsiveness to meet the demands of
electric vehicles, contributing to improved range
and performance.

As technology continues to advance, PMSMs
are being enhanced with features like sensor-
less control, regenerative braking, and advanced
control algorithms. These developments further
improve their performance, reliability, and over-
all versatility. Researchers have recently studied
many new control methods as the need for strong
and smooth control, or PMSM, for high-perfor-
mance uses grows. Adjustable control [8], model
predictive control (MPC) [15, 21], sliding mode
control (SMC) [6-8], active disturbance rejection
control (ADRC) [27], robust control [14], and
more are some of these.
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The PMSM drive’s overall performance is
based on its control strategy and how parameter
uncertainty and changes in load torque might af-
fect it. The PMSM must be able to estimate me-
chanical parameters with uncertainty, such as the
moment of inertia and nonlinear functions [11,
12] and have good dynamic behavior to control
the speed of an electric vehicle. It must also be
able to handle all outside disturbances. As a re-
sult, a reasonable and robust control algorithm
should be designed. Motion-controlled PMSM
applications are currently beneficial, dominated
by the cascade control structure (CCS).

Modern optimization techniques for the au-
tomated selection of SFC coefficients were very
much used to address the first drawback [6, 17,
18], whereas in [13] a constraint elimination
method was considered. Additional testing and
calculations are required for the drive robustness
evaluation. Based on the literature study, mod-
el-based robustness research is the one that is
used the most. In [29], a straightforward transfer
function-based model of compensation is used
to assess the sensitivity of the 2-DOF controller
to changes in the moment of inertia. The fluctua-
tions and nonlinearities of viscous friction are dis-
regarded in this method. The real time sate space
modelling of PM synchronous motor mechanical
component to examine the iterative learning con-
trol’s resilience applies [19].

It is true that proportional-integral (PI)-based
controllers and classical sliding mode observers
(SMO) have their place in the field of interior
permanent magnet synchronous motor (IPMSM)
drives and are presently employed. However,
they still have their respective drawbacks, which
include among others parameter variations that
affect their sensitivity, phase delay in position
estimation, and chattering phenomena. All these
limitations may lead to decreased accuracy of the
system at low speeds and when dynamic load con-
ditions are applied. This paper/presentation deals
with the problems mentioned above by develop-
ing a feedforward-based SMO strategy which re-
sults in decreased estimation error as well as in-
creased system robustness. The proposed method,
unlike the literature, is a combination of distur-
bance estimation and Lyapunov-based stability
design, thereby allowing for accurate rotor posi-
tion estimation over a wide operating range.

The robust two-way direct orientation of field
control (DOF), multilevel state feedback control
(SFC) model predictive control, and the three

250

control schemes created for the most frequently
employed speed control of [PMSM are examined.
All research is done to measure the experimental
drive reactions in the temporal and frequency do-
mains. Each phase of the study introduced some
quality indicators.

MATHEMATICAL MODELLING OF PMSM
SPEED CONTROL

The mathematical modeling of a widely used
IPMSM involves describing the relationships
between the electrical quantities (voltages and
currents) and the mechanical quantities (torque
and speed) in the motor. The IPMSM has a ro-
tor that contains permanent magnets positioned
inside the rotor core, and the stator windings are
placed on the motor’s interior surface. The fol-
lowing section presents the basic mathematical
model for an IPMSM.

Stator voltage equations

The PMSM motor stator has three balanced
windings. By Kirchhoff’s voltage law, the wind-
ing voltage equals the resistive voltage drop plus
the magnetic flux linkage rate of change. Fara-
day’s law states that induced EMF in a coil is
proportional to the rate of change of flux linkage,
giving voltage equations for each stator phase.

dg

as = l.aS * RS + d ta
) d
vbs = lbs *Rs + a?;b

Ves :ics *Rs +%
dt

(1)

The stator voltage Equation 1 describes the
relation between the stationary stator voltages and
the stator currents. Where mentioned V,;, V., V.,
are represents stator defined voltages in which R,
is stator Resistance, i,,1I,,,I,, which are station-
ary stator defined currents and @,,4,,9. are sta-
tor fluxes shown Equation 2, which can be repre-
sented as follows,
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where: 6 represents mechanical angle, @, is the
permanent magnetic flux.

L, ., could be expressed as inductances for
interior permanent synchronous machines.

L, _L

pabes=""abcs -

LRel (0) (4)

where: L. is inductance of PMSM corresponds
to the average uniform across the airgap,
Ly, (0) is reluctance obtained due to ro-
tor saliency.

The stationary model obtained in Equation
1 transformed into @f reference by using park
transformation given in the Equation 5.

aé.
v, =Rs I, N dt
V) iy d¢;
dt (5)
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IPMSM TRANSFORMS INTO DYNAMIC

SYNCHRONOUS ROTATING REFERENCE
FRAME

Further transforming the flux equations into
rotating reference frame, equation transformed as,

3
=Li L ihs)+
¢ saﬁ' 0(aﬁ) ¢m (8)
L, =Ls—3La
2
L, :LS—EL6
2 )

Which yields following expressions,
b, = Loly + 9,
B = Lyl (10)

The voltage equations referred to rotating ref-

erence frame,

di,
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IPMSM TORQUE EQUATIONS

The electrical torque relates to the electro-
magnetic torque developed because of the inter-
action between the stator produced flux and rotor
permanent magnet flux which produced required
electromagnetic torque, it can be expressed as
Equation 13 which relates to the mechanical
torque at the shaft of the motor is given by the
torque Equation 14.

Pr. . .
T, = 3Z[¢mz/’, + (L, +Ly)iliy | -
where: T, is electromagnetic torque at rotor, P
is the number of pole pairs, L, and L,
are the o-axis and B-axis inductances, re-
spectively, i,and i, are the a-axis and
B-axis stator current components into a
rotating reference frame, respectively.

The torque expression derived from the
power relation where it is a cross product of
flux and current vectors [1]. The torque expres-
sion in Equation 14 contains two parts, one is

: o P,
electromagnetic torque which is (3Z¢mz ﬁj and
(3§(La —L,)i, *i;j is a reluctant torque.

The mechanical load equation can be written
from Newtons law as

T _Jd mech 4 By +T

mech dist

dt (14)
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Figure 1. Equivalent circuit diagrams of IPMSM for both af axis

where: @, , is the mechanical speed at shaft of
the rotor, 7, is the disturbance torque,

J is the moment of inertia.

ROTOR POSITION ESTIMATION

This estimator’s objective is to estimate the
back-EMF voltages in the reference frame and
use that information to determine the rotor po-
sition. A straightforward integration of the ro-
tor position state can also be used to determine
the rotor speed. A sliding mode observer serves
as the implemented estimator. [25] contains
the theory underlying non-linear observers. Al-
though [16] is the basis for the design, it will
also be covered in detail here.

Designing the sliding mode observer in
the estimated af-reference frame, represented
by af*, provides an additional choice [1]. The
benefit of this is that the voltage, current, and
back-EMF signals are all DC signals in the af3-
reference frame. However, only the position er-
ror (AQ) shown in Figure 1 may be obtained
directly by calculating from the back-EMF sig-
nals from the Equation 19. This approach will
concentrate on this new state, position mistake.
In the next steps, the rotor location and speed
can be computed. It can be anticipated that a
simpler filtering mechanism and zero phase lag
will be implemented because the signals are
DC. This was confirmed in [2], and you may
use the simulation model that is given to con-
firm it as well. The first step is mainly to con-
vert the voltage equations from the af reference
frame to the af} * reference frame. Simple two-
dimensional projections are used to perform the
transformation using the position error angle,
as seen in Figure 1.
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dii, R +v_;*__w*L i
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dt Ly Ly L (15)

An IPMSM model with an extended back-
EMF was created by Morimoto in [14], and the
back-EMF was estimated to use disturbance ob-
servers (Figure 2). The rotor magnetic field refer-
ence axis rotating at synchronous speed, and new
assumed frame also rotates synchronously, from
where the extended EMF observer is built. Ex-
amine the stator voltages onto rotating reference
frame in the aligned synchronous frame.

vo | (Ro+pL, -olL, \(i 0
Vr —( —oL, RS+pLJ i J{Em] 16
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Figure 2. IPMSM reference and estimated axis
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AA¢ = ¢_5—¢ =tan' @
s (20)

The dynamic model of interior permanent
magnet motor control is provided by the above
Equation 16 and 17. Equation 18 indicates the
angle of error, which must be minimized by using
the proposed mode. Additional considerations,
such as motor saturation, magnetic saturation,
and losses, may be incorporated into the model
for more accurate representation and control.

Equation 20, which gives the error angle, is
the ratio of the back EMF of the alpha-beta axis
without considering changes in the parameters.
Here, we incorporate direct field-oriented control
(FOC) to robust and finite control to observe the
desired performance of the designed model.

SLIDING MODE CONTROL

Sliding mode control (SMC) is a very popu-
lar and known robust control technique and most
used for robust control systems with disturbanc-
es. To get finite control over IPMSM, well known
sliding mode control is most widely applied to
control the motor’s speed as well as the position.
In sliding mode control, it gives very good con-
trol over the output without much disturbance in
sharp time. Here in this, we discussed the mod-
eling of IPMSM, and Equation 21 indicates the
dynamic characteristics of IPMSM.

*

ok o *
di Ri” 1~

=—Twe ye = o Li"—ksign(o
dt L, L, L, " g
diy  Riy Vi 1 " . ., .
b 2P P (o L, +o ¢,)—xsign(c,)
dt Ly L, L
1)
0
o, =i =i 1]
0 A

o, =iy =iy —i, )

Sliding surface design: Define a sliding sur-
face that depends on the desired control objec-
tive. For speed control, the sliding surface might
be defined as the difference betweeAn the desired

current i;* and the actual current (i;* ).

s(t) =1i_desired —1i_actual

Control law: To design basic control law
which the target of the system guide to slide along
the sliding surface to reach from the boundary of
the surface. The basic sliding mode control law is
given below

u(t)=u eq+u_s

Where, u(t) is the control input (typically
voltage applied to the motor’s stator windings).
u_eq is the control input that ensures equilibrium
(usually calculated based on the motor model and
desired equilibrium conditions). u_s is the sliding
mode control term designed to drive the system
onto the sliding surface. It’s calculated as:

u_s = -sign(s) * y

Where sign(s) is the sign function of s (e.g.,
sign(s) = 1 for s > 0, sign(s) = -1 for s < 0, and
sign(s) = 0 for s = 0). y is a positive constant rep-
resenting the sliding mode control gain. You may
need to tune this to achieve the desired system
performance.

0 0

()= Loa- l[(i;*)2 + (l)’f)z}
r@)=0Q, Q9 +Q,Q, (24)

Now, thorough stability evidence is pro-
vided. The Lyapunov stability theory is used to
demonstrate the sliding mode observer’s stabil-
ity. How the observer gains are chosen will also
depend on this. The selected Lyapunov candidate
function, which is the positive side radially un-
bounded, is d.isplayed in the equation. The time

derivative, I'(QQ), in Equation 24, must be at least

negative to demonstrate the stability of the equi-
librium. However, the system is also globally as-

ymptotically stable if the time derivative, ['(Q) is
negative-definite.

\* H* A, R r* r* L * .
Q=i =y e g i Dy sinag
La LlZ L(l a
Ri™ v ' .
p il Ve T, iy —Ksign(o,,)
L, L, L, (25)
0 0 A Ri”
* * /\* sir . L N 7
Qy =iy —i, =L P e " +—¢ cosAf
Ly Ly L L,
R V) :
+2L L ey iy —Ksign(o,)
Lﬂ Lﬂ Lﬁ (26)
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['(QQ) = eqn(25) + eqn(26) (27)

where: Ksign(o) = |O' , o # 0 then the back emf
designed as follows

;(: =w¢, sinAg (28)
;(; =—w@, cosAp 29)

0
T(Q)=a(Q% + Q) +b( £ |9 |-k|Q,. )
(719, k|9, )

(30)
where: (-Rs/La), b= (1/La).

As previously stated, Equation 30 must be
negative definite. for the system to be globally
asymptotically stable; stability would then be
demonstrated. The worst-case scenario is used to
design the gain parameter k. Because of Rs and
Ls, the first term in Equation 30 is always nega-
tive definite.

If k is selected to be, the next two words are
negative definite.

k>max(|x Ll 2, ) (31)

Equation 29 is satisfied by the gain k, which
is used as a constant for the purposes of this sta-
bility proof. The system’s equilibrium point be-
comes globally asymptotically stable with this
selected k. Moreover, in finite time, 'Q=Q=0
when the trajectory reaches the sliding surface.
Since edq* depends on the angle error, the back-
EMF voltages (Xa[}*) and, thus, the angle error,
converge to zero [19].

The predicted b-EMF voltages from the prior
sampling period (k-1) can be used to compute the
gain. It is evident that this only lowers the ob-
server’s stability margin rather than altering its

stability.
k=1004 20t o )

Control Implementation: Implement the control
law in your control system. Measure the actual mo-
tor speed (o_actual) using a sensor and calculate the
control input u(t) using the control law. Apply this
control input to the motor’s stator windings.

Sliding mode dynamics: The sliding mode
control ensures that the system stays on the slid-
ing surface (s = 0). This means that the error (s)
should converge to zero, resulting in the desired
speed regulation.
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Chattering: One issue with sliding mode con-
trol is chattering, which is high-frequency oscil-
lation in the control input near the sliding surface.
To mitigate chattering, smoothing techniques
such as boundary layer control can be applied.

Note that sliding mode control is a robust
control technique but can be challenging to im-
plement in practice due to chattering and the need
for careful tuning. The specific implementation
details and tuning parameters may vary depend-
ing on the characteristics of your PMSM and the
control objectives.

SIMULATION RESULTS

The speed observer and desired torque control
block diagram with the suggested flux observer
included is displayed in Figure 3. The current
references were created using a field weakening
control approach and the maximum torque per
ampere (MTPA) [34]. Experiments and simula-
tions were conducted using the parameters of an
actual IPMSM. Motor specifications are enumer-
ated in Table 1.

Simulation results are carried out for
0.75kW IPMSM, in which the permanent
magnet is inserted in inner diaphragm of the
rotor. The specific details are mentioned in
Table 1. A sensorless sliding mode observer
implemented and results are compared with the
traditional PI controller. In Figure 4 the PMSM
speed follows through the reference speed of
400 rpm. In Figure 5 and Figure 6 shows the
direct and quadrature axis currents and Figure
6 shows the abc reference current with X-axis
time (0—1.5 s) and Y-axis current in amps.

Comparison of the rotor position estimation
performance is depicted in Figures 7, 8 and 9.
With the help of the novel SMO feedforward
design, the average position error was lowered
from 5.4° (conventional PI control) to 1.8°,
corresponding to the noticeable advancement

Table 1. IPMSM specification details

Stator defined resistance Rs=1.25Q
Inductance La = 0.0032H, LB = 0.00432H
Rotor flux Y =0.642wb

Moment of inertia J =0.00123 kg -m?

Damping B =0.000752 kg/s
No of pole Pairs 2
Switching frequency 20
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Figure 3. Block diagram of IPMSM control circuit
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Figure 12. Rotor speed in rpm

of accuracy. The following figure, i.e., Figure
10, confirms that the error variance was almost
halved, by about 65%, thus indicating that the
estimation remains relatively stable under the
load torque variation condition. Figure 11 gives
a visual of the angular variations between the
conventional SMO and the proposed method
during the rotor tracking. The new system man-
aged to keep the angle smoothly under control
while minimizing the oscillations.

Figure 12 depicts the rotor speed variation
after a step reference input. The feedforward-
SMO proposed offers a better performance as it

decreases the settling time from 0.42 s to 0.29
s (=30% faster response) and reduces the over-
shoot by =22%. Hence, the system shows bet-
ter behavior and reliability during the transient
phase. Figure 13 displays the inverter voltage
on the d- and g-axis. The new approach allows
for obtaining electrical voltages from the oscil-
lations as their amplitudes are lower than those
obtained using the PI baseline. The drop in the
ripple of the control effort is a clear indication
that the feedforward compensation effectively
releases the current loop from disturbances and
increases the drive stability.
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Figure 13. Direct and quadrature input voltage of inverter
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CONCLUSIONS

A sensorless control approach for permanent
magnet synchronous motor drives was presented
in this paper, which utilizes the feedforward-based
sliding mode observer. The traditional PI and SMO
methods differ from the suggested approach in that
the latter considerably reduces the estimation error
of rotor position and provides enhanced robust-
ness against parameter variations. Comparing the
proposed method to the conventional PI approach,
the simulation results indicate that the position er-
ror is reduced by 67% of the initial value, the set-
tling time is increased by 30%, and the overshoot is
decreased by 22%. The improvements mentioned
can make this method the preferred one for the era
of high-performance electric vehicle applications,
leading to accurate rotor position estimation and a
system being robust against disturbances.

Using the sensor-less SMO FOC method with-
out a sensor based on the feed-forward method, the
stability of the closed-loop IPMSM drive system
was checked. The experimental results showed that
the drive of the IPMSM implementing the feedfor-
ward-based system had a more accurate rotor posi-
tion with the stator reference frame and remained
stable when parameter mismatches of the [PMSM
occurred, thus confirming the superiority of the
feedforward-based scheme over the traditional
sliding mode observer-based and the feedforward-
based sensor-less SMO FOC schemes as well as
the conventional PI controller-based method.
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