
287

INTRODUCTION

Detection and localisation of various subsets
in multidimensional spaces is crucial in computer
data analysis [1]. An example of such action may
be object recognition in the images [2–5]. The lat-
ter is essential in image segmentation tasks [6].
For instance, the problem of object detection and
localisation appears during a three-dimensional
analysis of medical, geological, material, astro-
nomical, and many other types of images [7,8].
In such instances, the searched objects are usually
three-dimensional. It is also quite common that the
data in question may have even a higher spatial di-
mension. Each element of a given space can also
have many properties that define its location and
other characteristics. Initial object location forms
valuable information for further data analysis [9].

Often, the sought objects have a spherical
shape. This is due to certain dynamic processes
in space. It happens when elements gravitate to a
certain point in space or when individual elements
spread evenly from a single point in space. If the

sought object is a ball, then its edge in space is a
sphere. During the analysis of multidimensional
data, it is often possible to efficiently find edges of
a region in space. Using edge detection operators,
one can extract the points belonging to the edge
of spatial objects. A set of such points creates a
“cloud of points” in multi-dimensional space. De-
tection and localisation of an object’s edge based
on a cloud of points is therefore an important task.
Assuming that the sought object is similar to a ball
in arbitrary Euclidean space (with the correspond-
ing boundary representing a sphere).

In this paper, it was stipulated that the research
task was to automatically detect an n-dimensional
hypersphere based on a cloud of points. It was
assumed that studied sphere is embedded in
(n+1) dimensional space. For a large dimension
of space and a large number of cloud points, this
problem is characterised by high computational
complexity [9,10]. In the adopted setting, it was
assume this problem is solved with the aid of ad-
equate evolutionary methods [11–14]. Evolution-
ary algorithms constitute a family of algorithms

Multithreaded evolutionary detection of hyperspheres			
in high-dimensional point cloud data

Maciej Moryń1* , Paweł Hoser1 , Bartłomiej Kubica1 , Ryszard Kozera1

1	 Institute of Information Technology, Warsaw University of Life Sciences ul. Nowoursynowska 159/34, 02-776,
Warsaw, Poland

* Corresponding author’s e-mail: maciej_moryn@sggw.edu.pl

ABSTRACT
Object segmentation in multidimensional data spaces is a pivotal component of modern computational analysis.
Frequently, accurate segmentation hinges on the detection and localisation of object boundaries. The targeted
objects often exhibit spherical symmetry. This paper introduced an algorithm for the automatic detection of n-di-
mensional hyperspheres embedded in (n+1)-dimensional Euclidean space. The algorithm utilises an evolutionary
computation strategy to estimate hypersphere parameters from extensive point clouds. This method demonstrates
notable advantages over traditional approaches such as the Hough transform and active surface models. Prelimi-
nary results suggest strong potential of the proposed technique as well as its adaptability to broader classes of
hypersurfaces, offering a promising extension for future exploration.

Keywords: multithreaded computation, approximation, image segmentation, computer vision, evolutionary algorithm.

Received: 2025.08.31
Accepted: 2025.10.29
Published: 2026.02.01

Advances in Science and Technology Research Journal, 2026, 20(3), 287–298
https://doi.org/10.12913/22998624/213729
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0000-0003-0205-032X
https://orcid.org/0000-0003-4409-8989
https://orcid.org/0000-0002-5547-3759
https://orcid.org/0000-0002-2907-8632

288

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

that are inspired by the process of natural evolu-
tion and are widely studied, mainly in optimisa-
tion and approximation tasks across various dis-
ciplines [12–14]. These methods have proven to
be effective in solving complex problems, where
traditional methods are falling short [14]. The key
idea behind using evolutionary methods for ap-
proximation problems is their ability to iteratively
evolve a population of candidate solutions, with
each iteration coming closer to an optimal result,
using mechanisms imitating natural evolution,
like selection, crossover, and mutation [10–12].
Such an iterative process benefits from combina-
torial and probabilistic principles that allow for
the exploration of vast solution spaces.

As evolutionary algorithms are computation-
ally intensive, it is worthwhile to implement them
in a parallel manner [15,16]. This usually results
in a significant improvement in the execution time
[16]. Therefore, a multithreaded implementation
[16,17] was applied in this paper. More details are
given in the further section of this paper.

HEURISTIC METHODS OF HYPERSPHERE
APPROXIMATION

Currently, there are many different methods
for detecting and locating objects in multidi-
mensional spaces based on point clouds. Such
methods can also be used to detect n-dimension-
al hyperspheres. It is possible to use purely ana-
lytical methods [18]. However, such methods
usually require very complex calculations, and
their use is practically impossible [9]. More-
over, such methods completely fail to handle
outlier points, which should be omitted. There-
fore, heuristic methods are often incorporated
in such cases. The RANSAC (Random Sample
Consensus) method is certainly worth mention-
ing here, which involves an iterative approach
to the desired object [19–21]. In each iteration
of this algorithm, the points that do not match
the object are discarded, and the object is re-
matched with the remaining points in the cloud.
However, the method copes very poorly with
large numbers of points that do not match the
object. Furthermore, the method performs well
predominantly for a single object in space. Over
time, numerous modifications of this method
have been developed, but they are not free from
numerous limitations. A completely different ap-
proach is to use the Hough transform [22–25].

Hough transform-based methods turned out to
be a great idea, but they do not work at all for
higher-dimensional spaces. Another very im-
portant approach is the use of active surfaces
and deformable models [26–28]. However, the
computational complexity of these methods
also dramatically increases with the dimen-
sion of the space. Currently, with a sufficiently
well-defined goal function, it is possible to use
many modern heuristic methods. Population-
based heuristic methods inspired by biology or
physics deserve special attention. Such methods
include the swarm intelligence algorithm [29],
the gravity algorithm [30], the firefly algorithm
[31], the cuckoo search algorithm [32], the bat
algorithm [33], the gray wolf algorithm [34],
the multiverse algorithm [35], and differential
evolution [36]. Various evolutionary methods
can also be used, such as genetic algorithms or
evolutionary strategies, like in this proposed
method. In the latest approach, even complex
deep learning tools can be used for this purpose
[37]. However, such methods are poorly scalable
and easily overfit in this case. In addition, deep
learning methods require high complexity in
the training process. The power of evolutionary
methods lies in their universality and resistance
to various types of noise and interference. The
proposed method has specific advantages. This
method works very effectively for high spatial
dimensions, and is also very stable and noise-
resistant. Furthermore, this method can be eas-
ily programmed in parallel, further enhancing its
benefits and capabilities.

PROBLEM SOLUTION

In the conducted research, hypersphere ap-
proximation is implemented using an evolution-
ary strategy. The algorithm has a population of in-
dividuals at each stage of the approximation pro-
cess. Each individual is a hypersphere embedded
in an (n+1)-dimensional real space with a specific
metric. The fitness function of each individual is
related to the distance of the hypersphere from the
point cloud in space.

Approximation

Approximation is a process of substituting
certain objects (e.g. functions, surfaces, oper-
ators) with other, usually simpler objects. This

289

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

permits to simplify further calculations. Its goal
is to find an object as similar as possible to the
original (possibly unknown) object, minimizing
the difference between them measured according
to the preselected rule.

Hypersphere

In mathematical terms, a hypersphere is a well-
known concept. This is a set of points in space
equidistant from a certain point in the space. This
definition makes sense in any metric space, so it
is a very general concept. Here, an n-dimensional
hypersphere is embedded in a higher-dimension-
al real space. Hence, the dimension of this space
must be at least (n+1). Furthermore, the hyper-
sphere is assumed to be the boundary of a ball in
this space. This implies that the dimension of the
space must be exactly (n+1). In such a space, a
metric, a norm, and an inner product are naturally
introduced. Hence, the definitions of a ball and a
hypersphere are clearly defined (Figure 1). The
set of all points belonging to the hypersphere is
defined as follows:

	 𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (1)

where:	 s represents a hypersphere centre and r re-
fers to the hypersphere radius.

Here, each n-dimensional hypersphere is rep-
resented by (n+2) parameters. These are the (n+1)
coordinates of the centre of the hypersphere si and
the length of its radius r.

Distance

In this case, it is also easy to define the dis-
tance of any point from the hypersphere. The
line segment connecting any point in space
and the centre of the hypersphere intersects the

hypersphere surface at a right angle. Therefore,
the length of the line segment connecting this
point with the hypersphere surface is the distance
of the point from the hypersphere. This would no
longer be true for an ellipsoid. Therefore, the dis-
tance of any point from the hypersphere can be
calculated as follows:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (2)

where:	x→ – point, S – hypersphere, s – hyper-
sphere centre, r – hypersphere radius.

If this value is small, we can say the point is
close to the hypersphere. Calculating this value
has relatively low computational complexity, and
we are also sure that this value is always non-neg-
ative. The aim was to find a hypersphere as close
as possible to all the points in the cloud.

Evolutionary algorithm

An evolutionary algorithm is an umbrella
term used to describe population-based stochastic
direct search algorithms that, in one way or anoth-
er, try to mimic naturally occurring evolutionary
processes [38]. Those processes include: selec-
tion, crossover, and mutation. Figure 2 illustrates
the typical flow of an evolutionary algorithm with
a modification of multithreading usage.

Multithreading

Evolutionary algorithms typically involve com-
putationally intensive operations on large popula-
tions of candidate solutions. Due to this high com-
putational demand, parallelisation is often advan-
tageous. Parallel computations can be performed
either on multiple CPUs or cores within a single
machine, or on a distributed system composed
of several collaborating nodes (e.g., a computing

Figure 1. Three hypersphere examples: zero/one/two-dimensional hyperspheres

290

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

cluster). In either case, the program must be de-
composed into multiple components, implemented
as separate processes, threads, or tasks, depending
on the chosen runtime environment. Simultaneous
execution of such tasks can significantly reduce
total execution time. However, proper parallelisa-
tion of certain algorithms remains challenging and
error-prone. In our case, a natural approach to par-
allelisation is the use of threads, which are more
lightweight than processes and allow for efficient
sharing of memory and data structures — in par-
ticular, the population of the current generation.
The extent to which threads are lightweight and
efficient depends on the operating system and
runtime environment. Platforms such as Linux,
Windows, and macOS differ in their threading
models and associated performance characteris-
tics. Nevertheless, thread-based parallelisation is
supported across virtually all modern computing
environments. In the presented implementation,
the selection, recombination, and mutation phas-
es are parallelised in a straightforward and effi-
cient manner. Multiple threads independently and
concurrently sample individuals from the previ-
ous generation and apply the genetic operators,
each contributing a subset of new individuals to
the next generation. This strategy avoids the need
for critical sections, as individual solutions can be
selected multiple times by different threads with-
out causing conflicts. This parallel implementa-
tion led to a significant improvement in the over-
all execution speed of the algorithm. Owing to the
simplicity of the multithreading model, there are
no synchronisation issues. This is a certain advan-
tage with respect to more sophisticated paralleli-
sation models.

ALGORIHTM PARAMETERS

In the list below, a set of algorithm param-
eters is presented:
	• mutation probability (MP): permillage chance

of mutation occurring during the crossover
process; checked for each gene individually

	• patriarchy level (PL): permillage chance of a
gene being taken from the better parent during
the crossover process

	• population size (PS): number of individuals
(solutions) in a single population

	• thread count (TC): number of threads used
while creating new populations

	• tournament size (TS): number of individuals
that take part in the tournament

The default values for those parameters were
set arbitrarily, and are shown in Table 1.

OPTIMAL PARAMETER VALUES AND
METHOD LIMITATIONS

The proposed algorithm involves several pa-
rameters that can be tuned. A careful selection of
their values may have a significant impact on the

Figure 2. The evolutionary process of hypersphere approximation

Table 1. Default values for algorithm parameters
Name Value

Mutation probability 300

Patriarchy level 600

Population size 400

Thread count 1

Tournament size 20

291

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

solver’s efficiency and robustness. In the conduct-
ed experiments, an initial, non-exhaustive param-
eter tuning was performed, which led to the prom-
ising results presented in this paper. Due to space
limitations, w full details are not provided here;
however, further improvements through more
extensive tuning are likely. In particular, popula-
tion size may have a substantial influence on the
performance of evolutionary algorithms — a topic
that remains under active discussion among re-
searchers [42]. The proposed method obviously
has its limitations. It was found in this research,
that with very high hypersphere dimensions, the
computational complexity increases significantly.
Then, the algorithm achieves the expected effect
very slowly. Limitations also apply to the input
data. If the examined point cloud is not at all simi-
lar to the hypersphere, the method cannot perform
effectively. A possible example of such deficiency
involves points distributed along an n-dimension-
al hyperplane. In such cases, the evolutionary
process becomes divergent – it will constantly
improve solution, never finding an optimal one.
However, these are very exceptional situations.

INDIVIDUAL: STRUCTURE AND QUALITY

In evolutionary algorithms, the individual is a
singular solution for the given problem. This pa-
per describes an approximation of a hypersphere;
therefore, each hypersphere can be considered an
individual. The individual comprises at least one
chromosome (where genes are stored), and each
chromosome should contain at least one gene. For
implementation purposes, the hypersphere is con-
sidered only a genotype (g), and the individual
has additional properties, such as a value of the
fitting function (approximation error). The hyper-
sphere itself is described as an array of (n+2) real
number values, where n is the dimension, where
the solution is sought, and the last number is the
hypersphere’s radius. It can be mathematically as:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (3)

As it was stated in the second section, the
formal goal of approximation is to find the mini-
mum of an error function (which in the context
of evolutionary algorithms is also an adaptation
function. The input points can be defined as a k ×
n matrix, where k is the number of points, and n is
the dimension being worked on:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	(4)

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (5)

Having defined both points and hypersphere,
the approximation error for each individual can
be evaluated using the given formula:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (6)

SELECTION, CROSSOVER 			
AND MUTATION

The most important features of the evolution-
ary method are three processes: selection, cross-
over, and mutation. In the proposed hypersphere
approximation algorithm, the selection process
considers the protection of the best individual,
the crossover process is typical of an evolutionary
strategy, and the mutation process occurs with vari-
able intensity (relative to the generation number).

Selection

Selection, as the name suggests, is a process
in which a certain number of individuals are se-
lected to undergo crossover and mutation pro-
cesses on them. The authors decided to use one
of the most popular and simplest fashion for se-
lection in their work, namely a tournament. First,
two groups of n individuals are selected randomly
from the population. Then, from each group, the
best individual is found. Having two individuals,
they became parents to a single offspring. The se-
lection process (and then crossover and mutation)
is repeated until the new population has as many
individuals as the old population. The user sets
the value of n, which cannot be greater than half
the size of the entire population.

Crossover

Crossover is a method that allows combin-
ing certain individuals (parents) into one or more
new individuals (offspring). The crossover pro-
cess should be constructed so that the next gen-
eration is better suited to the environment than
the previous generation. In this work, crossover
was performed on two individuals (selected in the

292

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

selection process) and produced a single offspring
individual. From the parents, the better one (the
more suited to the environment) is called father,
and the worse one – mother. Implemented cross-
over method is relatively simple: for each gene
offspring should have, a specific random integer
value from a range of [0, 1000) is generated, and
if it is less than value of patriarchy level (set by
user at the start), the offspring receives gene from
its father, and if not – from the mother. The cross-
over operator mathematically reformulates into
the following formula:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1)

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2)

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3)

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

] ∈ 𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4)

𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5)

𝑒𝑒 = ∑

(

 ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟||

)

𝑘𝑘

𝑗𝑗=1
(6)

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃)
 𝑔𝑔𝑚𝑚,𝑖𝑖 − for (𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃)

(7)

	 (7)

where:	go,i – i-th offspring gene, gf,i – i-th father
gene, gm,i – i-th mother gene, rv – random
value from range [0, 1000), PL – patriar-
chy level.

Mutation

The mutation is a process that follows the
crossover, but it does not always happen. Its main
goal is to introduce more randomness into the
evolution process, so the algorithm would not get
stuck in a local optimum. The mutation proba-
bility set by user is separate for each gene. That
means several genes can be mutated at the same
time. The implementation is straightforward - we
decrease or increase value of a gene by a certain
amount. This amount is dependent on both time
passed (or strictly - number of generations creat-
ed) and given input data (point cloud). Maximum
absolute value of this change follows a pattern of

cosine function, which means it can decrease or
increase over time. This approach enables both
approaching local optimum, and if it turns to be
bad - withdrawing from it.

RESULTS

In this work two applications are created: an
approximator and a generator. As the name indi-
cates, the generator yields a point cloud (based on
user input) and the approximator searches for the
best hypersphere based on the point cloud (without
knowledge of how points were generated). Both
applications are written in C#, using the Windows
Forms library and the.NET 9.0 framework. A to-
tal of 10 hyperspheres are generated, differing in
their dimension. Each hypersphere had its centre
at point [x1, x2 ..., xn] and a radius of r, where the
number of centre coordinates depends on the di-
mension. Two main research tasks are posed:
	• finding whether the implemented algorithm

works regardless of hypersphere dimension,
and if it does, how less effective it is for high-
er-dimensional hyperspheres;

	• determining how the number of threads, pop-
ulation size, and point cloud size affect the
speed of finding optimal solutions. An “opti-
mal solution” is a solution for which the ap-
proximation error, rounded to 5 decimal plac-
es, is equal to 0.

All tests were performed on the same worksta-
tion, with an AMD Ryzen 7 9800X3D processor,
comprising eight cores and 16 threads. Most of the

Figure 3. Dependence of time and number of generations on hypersphere dimension

293

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

tests performed used default approximation param-
eters (from Table 1, with the exception of the pa-
rameter currently tested) and their results are shown
in tables and plots below. All time is given in sec-
onds (with three decimal places for milliseconds).

Figure 3 presents the results of the test, how
hypersphere dimension impacts time and the
number of generations needed to find an optimal
solution. In this test, and the three next tests, time
is shown as a blue line, and its scale is on the left,
and the number of generations is shown as a red
line, with scale on the right side. These results
show that for dimensions lesser than or equal to
7, the time needed to find a solution is relatively
short, and the number of generations is relative-
ly small. Beyond that dimension, both time and
generations rapidly increase. Figure 4 shows how
the execution time and generations are dependent
on population size. This test was performed for a

3-dimensional hypersphere, and its results show
that an increase in population size increases the
time needed to find a solution and decreases the
number of generations decreases. Additionally, as
Figure 4 shows, an optimum for population size is
visible. At 30 individuals per population, the time
needed to find the optimal result is the shortest.

Another test was performed to check how the
point cloud size affects the time needed to find a
solution. The plot shown in Figure 5 shows the re-
sults of this test. On the basis of these results, the
authors gained two pieces of information: firstly,
the time needed to find a solution increases al-
most linearly with the size of the point cloud, and
secondly, the number of generations needed to
find a solution stays more or less the same.

Test for which results are shown on Figure 6
is performed to verify how the number of threads

Figure 4. The dependence of time and number of generations on population size

Figure 5. The dependence of time and number of generations on point cloud size

294

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

Figure 6. The dependence of time and number of generations on thread count

impacts on time of finding optimal solution. The
presented values are indicative and show two
things: first, using twice as much threads results in
finding a solution about twice as fast, and second
– while workstation has installed processor with
8 cores, using 16 physical threads was impossible
– therefore, logical threads were used instead. It is
also transparent that while their usage decreased
time needed to find result, this improvement was
not as substantial as when using physical threads.

A key feature of this type of method is its ro-
bustness to input data noise. This work involved
a thorough analysis of the impact of noise on the
algorithm performance. For this purpose, mul-
tiple test series were conducted. For each noise
level, point clouds corresponding to the noisy
hypersphere Sn were repeatedly generated, and
then the hypersphere was approximated. It was
assumed that all hyperspheres (of radius one)
were embedded in (n+1) dimensional space. Add-
ing noise involved randomly moving points in
space. This shift size was generated by a uniform
distribution with the maximum magnitude of the
shift represented by the parameter d. Thus, the δ
parameter controlled the noise level. The approxi-
mation errors were statistically examined relative
to the level of noise. The distance between the
cloud and the hypersphere was also examined to
confirm the accuracy of the simulations. For each
noise level δ, a hundred different clouds, consist-
ing of a thousand points in space, were generated.
All distances were calculated using the L2 met-
ric. On the basis of the tests, it is clear that the
proposed method is very resistant to noise. Only
very high noise values δ cause significant approx-
imation errors. For noise values associated with

the parameter δ = 0.35, the approximation errors
were still very small, almost non-existent relative
to the hypersphere radius. The cloud-to-hyper-
sphere distance values confirmed the accuracy of
the simulations. An interesting observation is that
the dependence of error magnitude on noise is
not a linear function. Additionally, a repeatability
and stability analysis of the proposed method was
performed. The hypersphere approximation was
run multiple times for the same point cloud. The
obtained parameter values were statistically anal-
ysed. These tests were repeated for various noise
levels. Among other things, the error sizes and the
dispersion of the obtained results were examined.

Figure 7 presents the results of the algorithm’s
stability test. For each point cloud, the hypersphere
approximation was run one hundred times, and the
standard deviation of the obtained results, averaged
over all approximations, was calculated. Figure 7
shows the dependence of the standard deviation on
the noise level δ. Similarly, here, an interesting ob-
servation is that the size of the standard deviation
(of the approximation results) with respect to the
noise level is not a linear function. On the basis
of the obtained analyses, it can be concluded that
the proposed method is very stable, repeatable, and
highly resistant to input data noise.

Figure 8 represents a plot of dependence of
time on thread count and hypersphere dimen-
sion. The presented values visualise the impact of
the number of threads and dimension as well as
clearly show how increase in hypersphere dimen-
sion leads to significant increase in computational
complexity and how to combat this with multi-
threading technology. Figure 9 shows the plot of
time dependency on other parameters. Here, the

295

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

Figure 7. The dependence of the scatter of results on the noise level

Figure 8. The dependence of time on thread count and hypersphere dimension

number of threads is replaced with population
size to verify how much the new parameter af-
fects the result (i.e. the execution time). The result
for this test is fairly straightforward – the more
individuals are in the population, the longer it
takes for the algorithm to find an optimal solu-
tion. Additionally, while it could not be shown on

this graph, with an increase in population size,
the number of generations needed decreases. This
test hints that there may be a certain population
size for which the optimal time needed to reach
a solution is shorter. For this reason another test
is conducted: on a single hypersphere (namely, a
3-dimensional one) an attempt to find a solution

296

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

for it is made, using as few individuals as possible
in the population

Additionally, since hypersphere dimension is
constant, this parameter is replaced with another
one (size of point cloud) to extract more informa-
tion. This new test (and data gained from it shown
in Figure 4) is the only one for which default pa-
rameters are not used. – the tournament size for
each population size is changes to half of the pop-
ulation size (rounded down). The results for this
are shown in Figure 10 below.

Figure 10 shows the result of the test aiming
to find an optimal size for the population. Upon
inspecting the plot, it is visible that the optimal
solution ranges between 25 and 30 individuals
per population. If too small a number is used,
the time to find a solution greatly increases, and

sometimes, the optimal solution cannot be found.
Additionally, this plot hints how the number of
points in the cloud impacts on execution time,
and the results are twofold. These values clearly
show that an increasing size of the point cloud
increases the time of finding solution. Visibly, the
performance of the algorithm depends on the size
of the point cloud, but this influence is small.

CONCLUSIONS

In this paper, we demonstrated how an evo-
lutionary algorithm can be used to approximate
an n-dimensional hypersphere. Multiple experi-
ments were conducted (see the previous section)
involving the estimation of centres and radii of

Figure 9. The dependence of time on population size and hypersphere dimension

Figure 10. The dependence of time on population size and size of point cloud

297

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

hyperspheres of various dimensions, with differ-
ent numbers of points and diverse initial parame-
ter settings. In all cases, the algorithm consistent-
ly produced optimal or near-optimal solutions.
Taking into account the results of experiments,
several additional observations are also made.
Firstly, the algorithm successfully finds accept-
able solutions regardless of the dimensionality of
the hypersphere in question. Secondly, the execu-
tion time required to reach a satisfactory solution
increases nonlinearly with the number of dimen-
sions. Notably, this increase is marginal for di-
mensions below 7, indicating good scalability in
low to moderate-dimensional spaces. Thirdly, the
total execution time decreases approximately lin-
early with the number of threads used, with minor
deviations attributable to thread scheduling and
system-specific factors. The proposed method of-
fers broad applicability across diverse fields of
science and technology. The effectiveness of such
methods in surface-to-point cloud matching has
been demonstrated in both medical and engineer-
ing domains [39–41]. Notably, the hypersphere
approximation technique facilitates segmentation
of high-dimensional objects with exceptional ef-
ficiency, owing to its rapid execution, parallelis-
ability, and strong resilience to various forms of
noise and interference.

REFERENCES

1.	 Etemadpour, R., Kubik, T., Gracia, J., Tory, M., Forbes,
A. Choosing visualization techniques for multidimen-
sional data analysis. Communications in Computer
and Information Science, 2016; 662: 15–30.

2.	 Cootes, T. F., Taylor, C. J., Lanitis, A. Active shape
models: Evaluation of a multi-resolution method for
improving image search. BMVC 1994; 1: 327–336.

3.	 Jahne, B. Digital Image Processing. Springer Verlag.
1995. https://doi.org/10.1007/978-3-662-03174-2

4.	 Malina, W., Smiatacz, M. Cyfrowe Przetwarzanie
Obrazów. EXIT. 2012.

5.	 Bovik, A. Handbook of Image and Video Process-
ing. Academy Press. 2000.

6.	 Lenkiewicz, P., Pereira, M., Freire, M. M., Fer-
nandes, J. The whole mesh deformation model: a
fast image segmentation method suitable for effec-
tive parallelization. EURASIP Journal on Advanc-
es in Signal Processing: 2013; 1–17. https://doi.
org/10.1186/1687-6180-2013-168

7.	 Anđelić, N., Baressi Šegota, S., Glučina, M.,
Car, Z. Estimation of interaction locations in su-
per cryogenic dark matter search detectors using

genetic programming - symbolic regression method.
Appl. Sci. 2023; 13: 2059. https://doi.org/10.3390/
app13042059

8.	 Rodtook, A., Kirimasthong, K., Lohitvisate, W.,
Makhanov, S. S. Automatic initialization of ac-
tive contours and level set method in ultrasound
images of breast abnormalities. Pattern Recogni-
tion 2018; 79: 172–182. https://doi.org/10.1016/j.
patrec.2017.05.001

9.	 Papadimitriou C.H. Computational Complexity.
Addison-Wesley Publishing Company. 2012.

10.	Sanjeev A., Boaz B. Computational Complexity: A
Modern Approach. Cambridge University Press. 2009.

11.	Tan, Z., Luo, L., Zhong, J. Knowledge transfer in
evolutionary multi-task optimization: A survey.
Appl. Soft Comput. 2023; 138: 110182. https://doi.
org/10.1016/j.asoc.2023.110182

12.	Hoser P., Antoniuk I., Strzęciwilk D. Algorithm
for optimization of multi-spindle drilling machine
based on evolution method. Advances in Soft and
Hard Computing, January 2019.

13.	Koza J.R. Genetic Programing. A Paradigm for
Genetically Breeding Populations of Computer
Programs to Solve Problems. Report No. STAN-
CS-90-1314, Stanford University. 1990.

14.	Cicirello, V.A. Evolutionary Computation: Theo-
ries, Techniques, and Applications. Computer Sci-
ence, Stockton University, 101 Vera King Farris Dr,
Galloway, NJ 08205, USA. Appl. Sci. 2024; 14(6):
2542. https://doi.org/10.3390/app14062542

15.	Czech. Z., Introduction to Parallel Computations (in
Polish), PWN, 2013.

16.	Karbowski A., Niewiadomska-Szynkiewicz E.
(eds.), Parallel and Distributed Programming: Col-
lective Work. (in Polish), OWPW, 2009.

17.	Hoser P., Kubica B.J., Ochnio L., The problem of thread
synchronization frequency in the computer simulation
of a dynamic system, ESM’2023, 2023; 26–30.

18.	Shi W., Tong P., Bi X. Moving-least-squares-en-
hanced 3D object detection for 4D millimeter-wave
radar. Remote Sensing, Aug. 2025; 17(8): 1465,
https://doi.org/10.3390/rs17081465

19.	Fischler, M. A., Bolles, R. C. Random sample con-
sensus: A paradigm for model fitting with applica-
tions to image analysis and automated cartography.
Communications of the ACM, 1981; 24(6): 381–
395. https://doi.org/10.1145/358669.358692

20.	Martínez-Otzeta J. M., Rodríguez-Moreno I., I.
Mendialdua, Sierra B., “RANSAC for robotic ap-
plications: A survey,” Sensors, Jan. 2023; 23(1):
327. https://doi.org/10.3390/s23010327

21.	Cavalli L., Barath D., Pollefeys M., Larsson V.
Consensus-adaptive RANSAC. arXiv preprint arX-
iv:2307.14030, Jul. 2023. https://doi.org/10.48550/
arXiv.2307.14030

298

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

22.	Hough P. V. C. Analysis of Bubble Chamber Pic-
tures. Conf. Proc. C. 1959; 590914: 554–558.

23.	Hart P. E. How the hough transform was invent-
ed. IEEE Signal Processing Magazine 2009; 26(6);
18–22, https://doi.org/10.1109/MSP.2009.934181

24.	van Ginkel M., Luengo Hendriks C. L., Van Vliet
L. J. A short introduction to the Radon and Hough
transforms and how they relate to each other. Quan-
titative Imaging Group Technical Report Series.
Number QI-2004-01. 2004.

25.	Hassanein A. S., Mohammad S., Sameer M., Ragab M.
E. A Survey on hough transform, theory, techniques and
applications. Source-arXiv. February 2015.

26.	Lenkiewicz, P., Pereira, M., Freire, M. M., Fernan-
des, J. The whole mesh deformation model: a fast
image segmentation method suitable for effective
parallelization. EURASIP Journal on Advances in
Signal Processing: 2013; 1–17.

27.	Sefti R., Sbibih D., Jennane R. A CNN-based spline ac-
tive surface method with an after-balancing step for 3D
medical image segmentation. Mathematics and Com-
puters in Simulation. Elsevier. 2024; 225: 607–618.

28.	Molnar J., Tasnadi E., Kintses B., Farkas Z., Pal C., Hor-
vath P.. Active Surfaces for Selective Object Segmen-
tation in 3D. 2017 International Conference on Digital
Image Computing: Techniques and Applications (DIC-
TA). https://doi.org/10.1109/DICTA.2017.8227401
IEEE, Sydney, NSW, Australia. 2017.

29.	Kennedy, J., Eberhart, R. Particle swarm optimiza-
tion. In Proceedings of the International Conference
on Neural Networks, Perth, WA, Australia, 27 No-
vember–1 December 1995; 4: 1942–1948.

30.	Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.
GSA: A gravitational search algorithm. Information
Sciences, 2009; 179(13): 2232–2248.

31.	Yang X.-S., Firefly algorithm, stochastic test func-
tions and design optimization. International Journal
of Bio-Inspired Computation, 2010; 2: 78-84.

32.	Yang X.-S., S. Deb. Cuckoo search via Lévy flights.
Nature & Biologically Inspired Computing, 2009.

NaBIC 2009. World Congress on, 2009; 210–214.
https://doi.org/10.1108/02644401211235834

33.	Yang X.-S., Gandomi A.H. Bat algorithm: a nov-
el approach for global engineering optimization.
Eng Comput, 2012; 29(5): 464–483, https://doi.
org/10.1108/02644401211235834

34.	Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf opti-
mizer. Adv Eng Softw, 2014; 69: 46-61, https://doi.
org/10.1016/j.advengsoft.2013.12.007

35.	Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse
optimizer: a nature-inspired algorithm for global op-
timization. Neural Comput Appl, 2015; 27(2): 495–
513. https://doi.org/10.1007/s00521-015-1870-7

36.	Rainer S., Price K. Differential evolution – A simple
and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimiza-
tion, 1997; 11(4): 341–359. https://doi.org/10.3390/
robotics12040100

37.	Ding Z., Sun Y., Xu S. et al. Recent advances and
perspectives in deep learning techniques for 3D
point cloud data processing. Robotics, 2023; 12(4):
100. https://doi.org/10.3390/robotics12040100

38.	Bartz-Beielstein, T., Branke, J., Mersmann, O.
Overview: Evolutionary Algorithms, Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge
Discovery, May 2014.

39.	Berger M., Tagliasacchi A., Seversky L., Alliez P.,
Guennebaud G. A survey of surface reconstruction
from point clouds. Computer Graphics Forum,
2016; 27. hal-01348404v2.

40.	Tian H., Xu K. Surface reconstruction from point
clouds via grid‑based intersection prediction. Com-
puter Science, Computer Vision and Pattern Recog-
nition, arXiv:2403.14085v1 [cs.CV]. 9 April 2024.

41.	Trung-Thien T., Van-Toan C., Denis L. eSphere:
extracting spheres from unorganized point clouds.
Visual Computer 2016; 32: 1205–1222.

42.	Galar, R. Simulation of local evolutionary dynam-
ics of small populations. Biol. Cybern. 1991; 65:
37–45. https://doi.org/1007/BF00197288

