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INTRODUCTION

Detection and localisation of various subsets 
in multidimensional spaces is crucial in computer 
data analysis [1]. An example of such action may 
be object recognition in the images [2–5]. The lat-
ter is essential in image segmentation tasks [6]. 
For instance, the problem of object detection and 
localisation appears during a three-dimensional 
analysis of medical, geological, material, astro-
nomical, and many other types of images [7,8]. 
In such instances, the searched objects are usually 
three-dimensional. It is also quite common that the 
data in question may have even a higher spatial di-
mension. Each element of a given space can also 
have many properties that define its location and 
other characteristics. Initial object location forms 
valuable information for further data analysis [9]. 

Often, the sought objects have a spherical 
shape. This is due to certain dynamic processes 
in space. It happens when elements gravitate to a 
certain point in space or when individual elements 
spread evenly from a single point in space. If the 

sought object is a ball, then its edge in space is a 
sphere. During the analysis of multidimensional 
data, it is often possible to efficiently find edges of 
a region in space. Using edge detection operators, 
one can extract the points belonging to the edge 
of spatial objects. A set of such points creates a 
“cloud of points” in multi-dimensional space. De-
tection and localisation of an object’s edge based 
on a cloud of points is therefore an important task. 
Assuming that the sought object is similar to a ball 
in arbitrary Euclidean space (with the correspond-
ing boundary representing a sphere).

In this paper, it was stipulated that the research 
task was to automatically detect an n-dimensional 
hypersphere based on a cloud of points. It was 
assumed that studied sphere is embedded in 
(n+1) dimensional space. For a large dimension 
of space and a large number of cloud points, this 
problem is characterised by high computational 
complexity [9,10]. In the adopted setting, it was 
assume this problem is solved with the aid of ad-
equate evolutionary methods [11–14]. Evolution-
ary algorithms constitute a family of algorithms 
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that are inspired by the process of natural evolu-
tion and are widely studied, mainly in optimisa-
tion and approximation tasks across various dis-
ciplines [12–14]. These methods have proven to 
be effective in solving complex problems, where 
traditional methods are falling short [14]. The key 
idea behind using evolutionary methods for ap-
proximation problems is their ability to iteratively 
evolve a population of candidate solutions, with 
each iteration coming closer to an optimal result, 
using mechanisms imitating natural evolution, 
like selection, crossover, and mutation [10–12]. 
Such an iterative process benefits from combina-
torial and probabilistic principles that allow for 
the exploration of vast solution spaces.

As evolutionary algorithms are computation-
ally intensive, it is worthwhile to implement them 
in a parallel manner [15,16]. This usually results 
in a significant improvement in the execution time 
[16]. Therefore, a multithreaded implementation 
[16,17] was applied in this paper. More details are 
given in the further section of this paper.

HEURISTIC METHODS OF HYPERSPHERE 
APPROXIMATION

Currently, there are many different methods 
for detecting and locating objects in multidi-
mensional spaces based on point clouds. Such 
methods can also be used to detect n-dimension-
al hyperspheres. It is possible to use purely ana-
lytical methods [18]. However, such methods 
usually require very complex calculations, and 
their use is practically impossible [9]. More-
over, such methods completely fail to handle 
outlier points, which should be omitted. There-
fore, heuristic methods are often incorporated 
in such cases. The RANSAC (Random Sample 
Consensus) method is certainly worth mention-
ing here, which involves an iterative approach 
to the desired object [19–21]. In each iteration 
of this algorithm, the points that do not match 
the object are discarded, and the object is re-
matched with the remaining points in the cloud. 
However, the method copes very poorly with 
large numbers of points that do not match the 
object. Furthermore, the method performs well 
predominantly for a single object in space. Over 
time, numerous modifications of this method 
have been developed, but they are not free from 
numerous limitations. A completely different ap-
proach is to use the Hough transform [22–25]. 

Hough transform-based methods turned out to 
be a great idea, but they do not work at all for 
higher-dimensional spaces. Another very im-
portant approach is the use of active surfaces 
and deformable models [26–28]. However, the 
computational complexity of these methods 
also dramatically increases with the dimen-
sion of the space. Currently, with a sufficiently 
well-defined goal function, it is possible to use 
many modern heuristic methods. Population-
based heuristic methods inspired by biology or 
physics deserve special attention. Such methods 
include the swarm intelligence algorithm [29], 
the gravity algorithm [30], the firefly algorithm 
[31], the cuckoo search algorithm [32], the bat 
algorithm [33], the gray wolf algorithm [34], 
the multiverse algorithm [35], and differential 
evolution [36]. Various evolutionary methods 
can also be used, such as genetic algorithms or 
evolutionary strategies, like in this proposed 
method. In the latest approach, even complex 
deep learning tools can be used for this purpose 
[37]. However, such methods are poorly scalable 
and easily overfit in this case. In addition, deep 
learning methods require high complexity in 
the training process. The power of evolutionary 
methods lies in their universality and resistance 
to various types of noise and interference. The 
proposed method has specific advantages. This 
method works very effectively for high spatial 
dimensions, and is also very stable and noise-
resistant. Furthermore, this method can be eas-
ily programmed in parallel, further enhancing its 
benefits and capabilities.

PROBLEM SOLUTION

In the conducted research, hypersphere ap-
proximation is implemented using an evolution-
ary strategy. The algorithm has a population of in-
dividuals at each stage of the approximation pro-
cess. Each individual is a hypersphere embedded 
in an (n+1)-dimensional real space with a specific 
metric. The fitness function of each individual is 
related to the distance of the hypersphere from the 
point cloud in space.

Approximation

Approximation is a process of substituting 
certain objects (e.g. functions, surfaces, oper-
ators) with other, usually simpler objects. This 
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permits to simplify further calculations. Its goal 
is to find an object as similar as possible to the 
original (possibly unknown) object, minimizing 
the difference between them measured according 
to the preselected rule.

Hypersphere

In mathematical terms, a hypersphere is a well-
known concept. This is a set of points in space 
equidistant from a certain point in the space. This 
definition makes sense in any metric space, so it 
is a very general concept. Here, an n-dimensional 
hypersphere is embedded in a higher-dimension-
al real space. Hence, the dimension of this space 
must be at least (n+1). Furthermore, the hyper-
sphere is assumed to be the boundary of a ball in 
this space. This implies that the dimension of the 
space must be exactly (n+1). In such a space, a 
metric, a norm, and an inner product are naturally 
introduced. Hence, the definitions of a ball and a 
hypersphere are clearly defined (Figure 1). The 
set of all points belonging to the hypersphere is 
defined as follows: 

	 𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1) 
 

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2) 
 

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3) 
 

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

]  ∈  𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4) 

 
𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5) 

 

𝑒𝑒 =  ∑

(

  ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟|| 

)

 
𝑘𝑘

𝑗𝑗=1
(6) 

 

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃 )
 𝑔𝑔𝑚𝑚,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃 )

(7) 
 

	 (1)

where:	 s represents a hypersphere centre and r re-
fers to the hypersphere radius.

Here, each n-dimensional hypersphere is rep-
resented by (n+2) parameters. These are the (n+1) 
coordinates of the centre of the hypersphere si and 
the length of its radius r.

Distance

In this case, it is also easy to define the dis-
tance of any point from the hypersphere. The 
line segment connecting any point in space 
and the centre of the hypersphere intersects the 

hypersphere surface at a right angle. Therefore, 
the length of the line segment connecting this 
point with the hypersphere surface is the distance 
of the point from the hypersphere. This would no 
longer be true for an ellipsoid. Therefore, the dis-
tance of any point from the hypersphere can be 
calculated as follows: 

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1) 
 

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2) 
 

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3) 
 

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

]  ∈  𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4) 

 
𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5) 

 

𝑒𝑒 =  ∑

(

  ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟|| 

)

 
𝑘𝑘

𝑗𝑗=1
(6) 

 

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃 )
 𝑔𝑔𝑚𝑚,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃 )

(7) 
 

	 (2)

where:	x→ – point, S – hypersphere, s – hyper-
sphere centre, r – hypersphere radius.

If this value is small, we can say the point is 
close to the hypersphere. Calculating this value 
has relatively low computational complexity, and 
we are also sure that this value is always non-neg-
ative. The aim was to find a hypersphere as close 
as possible to all the points in the cloud.

Evolutionary algorithm

An evolutionary algorithm is an umbrella 
term used to describe population-based stochastic 
direct search algorithms that, in one way or anoth-
er, try to mimic naturally occurring evolutionary 
processes [38]. Those processes include: selec-
tion, crossover, and mutation. Figure 2 illustrates 
the typical flow of an evolutionary algorithm with 
a modification of multithreading usage.

Multithreading

Evolutionary algorithms typically involve com-
putationally intensive operations on large popula-
tions of candidate solutions. Due to this high com-
putational demand, parallelisation is often advan-
tageous. Parallel computations can be performed 
either on multiple CPUs or cores within a single 
machine, or on a distributed system composed 
of several collaborating nodes (e.g., a computing 

Figure 1. Three hypersphere examples: zero/one/two-dimensional hyperspheres



290

Advances in Science and Technology Research Journal 2026, 20(3), 287–298

cluster). In either case, the program must be de-
composed into multiple components, implemented 
as separate processes, threads, or tasks, depending 
on the chosen runtime environment. Simultaneous 
execution of such tasks can significantly reduce 
total execution time. However, proper parallelisa-
tion of certain algorithms remains challenging and 
error-prone. In our case, a natural approach to par-
allelisation is the use of threads, which are more 
lightweight than processes and allow for efficient 
sharing of memory and data structures — in par-
ticular, the population of the current generation. 
The extent to which threads are lightweight and 
efficient depends on the operating system and 
runtime environment. Platforms such as Linux, 
Windows, and macOS differ in their threading 
models and associated performance characteris-
tics. Nevertheless, thread-based parallelisation is 
supported across virtually all modern computing 
environments. In the presented implementation, 
the selection, recombination, and mutation phas-
es are parallelised in a  straightforward and effi-
cient manner. Multiple threads independently and 
concurrently sample individuals from the previ-
ous generation and apply the genetic operators, 
each contributing a subset of new individuals to 
the next generation. This strategy avoids the need 
for critical sections, as individual solutions can be 
selected multiple times by different threads with-
out causing conflicts. This parallel implementa-
tion led to a significant improvement in the over-
all execution speed of the algorithm. Owing to the 
simplicity of the multithreading model, there are 
no synchronisation issues. This is a certain advan-
tage with respect to more sophisticated paralleli-
sation models.

ALGORIHTM PARAMETERS

In the list below, a set of algorithm param-
eters is presented:
	• mutation probability (MP): permillage chance 

of mutation occurring during the crossover 
process; checked for each gene individually

	• patriarchy level (PL): permillage chance of a 
gene being taken from the better parent during 
the crossover process

	• population size (PS): number of individuals 
(solutions) in a single population

	• thread count (TC): number of threads used 
while creating new populations

	• tournament size (TS): number of individuals 
that take part in the tournament

The default values for those parameters were 
set arbitrarily, and are shown in Table 1.

OPTIMAL PARAMETER VALUES AND 
METHOD LIMITATIONS

The proposed algorithm involves several pa-
rameters that can be tuned. A careful selection of 
their values may have a significant impact on the 

Figure 2. The evolutionary process of hypersphere approximation

Table 1. Default values for algorithm parameters
Name Value

Mutation probability 300

Patriarchy level 600

Population size 400

Thread count 1

Tournament size 20
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solver’s efficiency and robustness. In the conduct-
ed experiments, an initial, non-exhaustive param-
eter tuning was performed, which led to the prom-
ising results presented in this paper. Due to space 
limitations, w full details are not provided here; 
however, further improvements through more 
extensive tuning are likely. In particular, popula-
tion size may have a substantial influence on the 
performance of evolutionary algorithms — a topic 
that remains under active discussion among re-
searchers [42]. The proposed method obviously 
has its limitations. It was found in this research, 
that with very high hypersphere dimensions, the 
computational complexity increases significantly. 
Then, the algorithm achieves the expected effect 
very slowly. Limitations also apply to the input 
data. If the examined point cloud is not at all simi-
lar to the hypersphere, the method cannot perform 
effectively. A possible example of such deficiency 
involves points distributed along an n-dimension-
al hyperplane. In such cases, the evolutionary 
process becomes divergent – it will constantly 
improve solution, never finding an optimal one. 
However, these are very exceptional situations. 

INDIVIDUAL: STRUCTURE AND QUALITY

In evolutionary algorithms, the individual is a 
singular solution for the given problem. This pa-
per describes an approximation of a hypersphere; 
therefore, each hypersphere can be considered an 
individual. The individual comprises at least one 
chromosome (where genes are stored), and each 
chromosome should contain at least one gene. For 
implementation purposes, the hypersphere is con-
sidered only a genotype (g), and the individual 
has additional properties, such as a value of the 
fitting function (approximation error). The hyper-
sphere itself is described as an array of (n+2) real 
number values, where n is the dimension, where 
the solution is sought, and the last number is the 
hypersphere’s radius. It can be mathematically as:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1) 
 

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2) 
 

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3) 
 

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

]  ∈  𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4) 

 
𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5) 

 

𝑒𝑒 =  ∑

(

  ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟|| 

)

 
𝑘𝑘

𝑗𝑗=1
(6) 

 

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃 )
 𝑔𝑔𝑚𝑚,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃 )

(7) 
 

	 (3)

As it was stated in the second section, the 
formal goal of approximation is to find the mini-
mum of an error function (which in the context 
of evolutionary algorithms is also an adaptation 
function. The input points can be defined as a k × 
n matrix, where k is the number of points, and n is 
the dimension being worked on:

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1) 
 

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2) 
 

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3) 
 

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

]  ∈  𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4) 

 
𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛+1, 𝑟𝑟] ∈ ℝ𝑛𝑛+2 (5) 

 

𝑒𝑒 =  ∑

(

  ||√∑(𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖)
2

𝑛𝑛+1

𝑖𝑖=1
− 𝑟𝑟|| 

)

 
𝑘𝑘

𝑗𝑗=1
(6) 

 

𝑔𝑔𝑜𝑜,𝑖𝑖 = {
 𝑔𝑔𝑓𝑓,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 < 𝑃𝑃𝑃𝑃 )
 𝑔𝑔𝑚𝑚,𝑖𝑖  − for ( 𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑃𝑃 )

(7) 
 

	(4)

	

𝑆𝑆 = {𝑥⃗𝑥 ∈ ℝ𝑛𝑛+1 ∶ ‖𝑥𝑥 − 𝑠𝑠‖ = 𝑟𝑟} (1) 
 

𝑑𝑑(𝑥⃗𝑥, 𝑆𝑆) = |𝑑𝑑(𝑥⃗𝑥, 𝑠𝑠) − 𝑟𝑟| (2) 
 

𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑛𝑛, 𝑔𝑔𝑛𝑛+1, 𝑔𝑔𝑛𝑛+2] ∈ ℝ𝑛𝑛+2 (3) 
 

𝑝𝑝 = [
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛+1
⋮ ⋱ ⋮
𝑝𝑝𝑘𝑘,1 ⋯ 𝑝𝑝𝑘𝑘,𝑛𝑛+1

]  ∈  𝑀𝑀𝑘𝑘×(𝑛𝑛+1) ~ ℝ𝑘𝑘(𝑛𝑛+1) (4) 
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SELECTION, CROSSOVER 			 
AND MUTATION

The most important features of the evolution-
ary method are three processes: selection, cross-
over, and mutation. In the proposed hypersphere 
approximation algorithm, the selection process 
considers the protection of the best individual, 
the crossover process is typical of an evolutionary 
strategy, and the mutation process occurs with vari-
able intensity (relative to the generation number).

Selection

Selection, as the name suggests, is a process 
in which a certain number of individuals are se-
lected to undergo crossover and mutation pro-
cesses on them. The authors decided to use one 
of the most popular and simplest fashion for se-
lection in their work, namely a tournament. First, 
two groups of n individuals are selected randomly 
from the population. Then, from each group, the 
best individual is found. Having two individuals, 
they became parents to a single offspring. The se-
lection process (and then crossover and mutation) 
is repeated until the new population has as many 
individuals as the old population. The user sets 
the value of n, which cannot be greater than half 
the size of the entire population.

Crossover

Crossover is a method that allows combin-
ing certain individuals (parents) into one or more 
new individuals (offspring). The crossover pro-
cess should be constructed so that the next gen-
eration is better suited to the environment than 
the previous generation. In this work, crossover 
was performed on two individuals (selected in the 
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selection process) and produced a single offspring 
individual. From the parents, the better one (the 
more suited to the environment) is called father, 
and the worse one – mother. Implemented cross-
over method is relatively simple: for each gene 
offspring should have, a specific random integer 
value from a range of [0, 1000) is generated, and 
if it is less than value of patriarchy level (set by 
user at the start), the offspring receives gene from 
its father, and if not – from the mother. The cross-
over operator mathematically reformulates into 
the following formula:
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where:	go,i – i-th offspring gene, gf,i – i-th father 
gene, gm,i – i-th mother gene, rv – random 
value from range [0, 1000), PL – patriar-
chy level.

Mutation

The mutation is a process that follows the 
crossover, but it does not always happen. Its main 
goal is to introduce more randomness into the 
evolution process, so the algorithm would not get 
stuck in a local optimum. The mutation proba-
bility set by user is separate for each gene. That 
means several genes can be mutated at the same 
time. The implementation is straightforward - we 
decrease or increase value of a gene by a certain 
amount. This amount is dependent on both time 
passed (or strictly - number of generations creat-
ed) and given input data (point cloud). Maximum 
absolute value of this change follows a pattern of 

cosine function, which means it can decrease or 
increase over time. This approach enables both 
approaching local optimum, and if it turns to be 
bad - withdrawing from it.

RESULTS

In this work two applications are created: an 
approximator and a generator. As the name indi-
cates, the generator yields a point cloud (based on 
user input) and the approximator searches for the 
best hypersphere based on the point cloud (without 
knowledge of how points were generated). Both 
applications are written in C#, using the Windows 
Forms library and the.NET 9.0 framework. A to-
tal of 10 hyperspheres are generated, differing in 
their dimension. Each hypersphere had its centre 
at point [x1, x2 ..., xn] and a radius of r, where the 
number of centre coordinates depends on the di-
mension. Two main research tasks are posed:
	• finding whether the implemented algorithm 

works regardless of hypersphere dimension, 
and if it does, how less effective it is for high-
er-dimensional hyperspheres;

	• determining how the number of threads, pop-
ulation size, and point cloud size affect the 
speed of finding optimal solutions. An “opti-
mal solution” is a solution for which the ap-
proximation error, rounded to 5 decimal plac-
es, is equal to 0.

All tests were performed on the same worksta-
tion, with an AMD Ryzen 7 9800X3D processor, 
comprising eight cores and 16 threads. Most of the 

Figure 3. Dependence of time and number of generations on hypersphere dimension
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tests performed used default approximation param-
eters (from Table 1, with the exception of the pa-
rameter currently tested) and their results are shown 
in tables and plots below. All time is given in sec-
onds (with three decimal places for milliseconds).

Figure 3 presents the results of the test, how 
hypersphere dimension impacts time and the 
number of generations needed to find an optimal 
solution. In this test, and the three next tests, time 
is shown as a blue line, and its scale is on the left, 
and the number of generations is shown as a red 
line, with scale on the right side. These results 
show that for dimensions lesser than or equal to 
7, the time needed to find a solution is relatively 
short, and the number of generations is relative-
ly small. Beyond that dimension, both time and 
generations rapidly increase. Figure 4 shows how 
the execution time and generations are dependent 
on population size. This test was performed for a 

3-dimensional hypersphere, and its results show 
that an increase in population size increases the 
time needed to find a solution and decreases the 
number of generations decreases. Additionally, as 
Figure 4 shows, an optimum for population size is 
visible. At 30 individuals per population, the time 
needed to find the optimal result is the shortest.

Another test was performed to check how the 
point cloud size affects the time needed to find a 
solution. The plot shown in Figure 5 shows the re-
sults of this test. On the basis of these results, the 
authors gained two pieces of information: firstly, 
the time needed to find a solution increases al-
most linearly with the size of the point cloud, and 
secondly, the number of generations needed to 
find a solution stays more or less the same.

Test for which results are shown on Figure 6 
is performed to verify how the number of threads 

Figure 4. The dependence of time and number of generations on population size

Figure 5. The dependence of time and number of generations on point cloud size
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Figure 6. The dependence of time and number of generations on thread count

impacts on time of finding optimal solution. The 
presented values are indicative and show two 
things: first, using twice as much threads results in 
finding a solution about twice as fast, and second 
– while workstation has installed processor with 
8 cores, using 16 physical threads was impossible 
– therefore, logical threads were used instead. It is 
also transparent that while their usage decreased 
time needed to find result, this improvement was 
not as substantial as when using physical threads.

A key feature of this type of method is its ro-
bustness to input data noise. This work involved 
a thorough analysis of the impact of noise on the 
algorithm performance. For this purpose, mul-
tiple test series were conducted. For each noise 
level, point clouds corresponding to the noisy 
hypersphere Sn were repeatedly generated, and 
then the hypersphere was approximated. It was 
assumed that all hyperspheres (of radius one) 
were embedded in (n+1) dimensional space. Add-
ing noise involved randomly moving points in 
space. This shift size was generated by a uniform 
distribution with the maximum magnitude of the 
shift represented by the parameter d. Thus, the δ 
parameter controlled the noise level. The approxi-
mation errors were statistically examined relative 
to the level of noise. The distance between the 
cloud and the hypersphere was also examined to 
confirm the accuracy of the simulations. For each 
noise level δ, a hundred different clouds, consist-
ing of a thousand points in space, were generated. 
All distances were calculated using the L2 met-
ric. On the basis of the tests, it is clear that the 
proposed method is very resistant to noise. Only 
very high noise values δ cause significant approx-
imation errors. For noise values associated with 

the parameter δ = 0.35, the approximation errors 
were still very small, almost non-existent relative 
to the hypersphere radius. The cloud-to-hyper-
sphere distance values confirmed the accuracy of 
the simulations. An interesting observation is that 
the dependence of error magnitude on noise is 
not a linear function. Additionally, a repeatability 
and stability analysis of the proposed method was 
performed. The hypersphere approximation was 
run multiple times for the same point cloud. The 
obtained parameter values were statistically anal-
ysed. These tests were repeated for various noise 
levels. Among other things, the error sizes and the 
dispersion of the obtained results were examined.

Figure 7 presents the results of the algorithm’s 
stability test. For each point cloud, the hypersphere 
approximation was run one hundred times, and the 
standard deviation of the obtained results, averaged 
over all approximations, was calculated. Figure 7 
shows the dependence of the standard deviation on 
the noise level δ. Similarly, here, an interesting ob-
servation is that the size of the standard deviation 
(of the approximation results) with respect to the 
noise level is not a linear function. On the basis 
of the obtained analyses, it can be concluded that 
the proposed method is very stable, repeatable, and 
highly resistant to input data noise.

Figure 8 represents a plot of dependence of 
time on thread count and hypersphere dimen-
sion. The presented values visualise the impact of 
the number of threads and dimension as well as 
clearly show how increase in hypersphere dimen-
sion leads to significant increase in computational 
complexity and how to combat this with multi-
threading technology. Figure 9 shows the plot of 
time dependency on other parameters. Here, the 
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Figure 7. The dependence of the scatter of results on the noise level

Figure 8. The dependence of time on thread count and hypersphere dimension

number of threads is replaced with population 
size to verify how much the new parameter af-
fects the result (i.e. the execution time). The result 
for this test is fairly straightforward – the more 
individuals are in the population, the longer it 
takes for the algorithm to find an optimal solu-
tion. Additionally, while it could not be shown on 

this graph, with an increase in population size, 
the number of generations needed decreases. This 
test hints that there may be a certain population 
size for which the optimal time needed to reach 
a solution is shorter. For this reason another test 
is conducted: on a single hypersphere (namely, a 
3-dimensional one) an attempt to find a solution 
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for it is made, using as few individuals as possible 
in the population

Additionally, since hypersphere dimension is 
constant, this parameter is replaced with another 
one (size of point cloud) to extract more informa-
tion. This new test (and data gained from it shown 
in Figure 4) is the only one for which default pa-
rameters are not used. – the tournament size for 
each population size is changes to half of the pop-
ulation size (rounded down). The results for this 
are shown in Figure 10 below.

Figure 10 shows the result of the test aiming 
to find an optimal size for the population. Upon 
inspecting the plot, it is visible that the optimal 
solution ranges between 25 and 30 individuals 
per population. If too small a  number is used, 
the time to find a solution greatly increases, and 

sometimes, the optimal solution cannot be found. 
Additionally, this plot hints how the number of 
points in the cloud impacts on execution time, 
and the results are twofold. These values clearly 
show that an increasing size of the point cloud 
increases the time of finding solution. Visibly, the 
performance of the algorithm depends on the size 
of the point cloud, but this influence is small. 

CONCLUSIONS

In this paper, we demonstrated how an evo-
lutionary algorithm can be used to approximate 
an n-dimensional hypersphere. Multiple experi-
ments were conducted (see the previous section) 
involving the estimation of centres and radii of 

Figure 9. The dependence of time on population size and hypersphere dimension

Figure 10. The dependence of time on population size and size of point cloud
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hyperspheres of various dimensions, with differ-
ent numbers of points and diverse initial parame-
ter settings. In all cases, the algorithm consistent-
ly produced optimal or near-optimal solutions. 
Taking into account the results of experiments, 
several additional observations are also made. 
Firstly, the algorithm successfully finds accept-
able solutions regardless of the dimensionality of 
the hypersphere in question. Secondly, the execu-
tion time required to reach a satisfactory solution 
increases nonlinearly with the number of dimen-
sions. Notably, this increase is marginal for di-
mensions below 7, indicating good scalability in 
low to moderate-dimensional spaces. Thirdly, the 
total execution time decreases approximately lin-
early with the number of threads used, with minor 
deviations attributable to thread scheduling and 
system-specific factors. The proposed method of-
fers broad applicability across diverse fields of 
science and technology. The effectiveness of such 
methods in surface-to-point cloud matching has 
been demonstrated in both medical and engineer-
ing domains [39–41]. Notably, the hypersphere 
approximation technique facilitates segmentation 
of high-dimensional objects with exceptional ef-
ficiency, owing to its rapid execution, parallelis-
ability, and strong resilience to various forms of 
noise and interference. 
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