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INTRODUCTION

Nowadays, privacy has become of significant 
importance to our society. With the growth of 
digital services, both industry and science have 
had to find a balance between processing and 
protecting data. Many countries have introduced 
specific data protection regulations such as the 
General Data Protection Regulation (GDPR) in 
the European Union [1], or the Personal Infor-
mation Protection and Electronic Documents Act 
(PIPEDA) in Canada [2]. These regulations aim 
to safe-guard personal data, while still allowing 
for innovation in areas such as artificial intelli-
gence (AI) and machine learning.

One example of the challenges posed by AI 
and privacy is the increasing accuracy in recognis-
ing handwritten characters. Recent research shows 

that the proposed models can correctly classify 
writing with accuracy as high as 96% [3]. These 
systems open up possibilities for applications, 
such as digital archives, but on the other hand, 
they pose a privacy risk, particularly in behaviour 
identification. Such use raises some concerns, es-
pecially when happening beyond legislative con-
trol or when their results fall into the wrong hands.

Many devices that use artificial intelligence 
work in a client-server architecture, which poses 
a risk of losing control over data. The samples 
have to be sent to the server for analysis. In many 
companies, transferring data outside the premises 
is prohibited and may violate regulations. This is 
especially true when handling sensitive data, such 
as medical, financial or tax information [4]. At the 
same time, a single device does not have enough 
computing power to make a prediction or build a 
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new model. Furthermore, single clients typically 
have a limited dataset of cases registered in their 
own companies. Building one large, shared mod-
el seems to be more effective than building mod-
els by each company individually. To achieve this 
while maintaining data privacy, federated learn-
ing offers a promising solution [5]. However, the 
method cited above presents several challenges 
related to aggregating weights and ensuring the 
accuracy of trained models. One of the main is-
sues with weight aggregation is the inherent di-
versity in the data distribution across different cli-
ents. Each client possesses a local dataset which 
can vary in the number of samples, size, quality 
and representativeness. These factors indicate a 
risk that the final model might be skewed, biased 
or inaccurate when applied to real-world data [6].

Nowadays, aggregation methods are one of 
the most popular research topics. One example 
is using the F1-Score metrics in ensemble meth-
ods to aggregate different models [7]. Similarly, 
in the field of federated learning, there is a lot 
of research focused on the various methods for 
weights aggregation. One of them is Federated 
Averaging, which includes several samples of 
each client. Consequently, expanding the client’s 
training datasets enhances their involvement with 
the training global model. However, this process 
might skew the global model, which leads to a 
failure of achieving established accuracy [8]. The 
case described above prompts the pursuit of new 
solutions. Thus, the primary objective of this ar-
ticle was to propose a novel approach to weights 
aggregation that leverages entropy

This paper is organised as follows: firstly, the 
state-of-the-art works are discussed. Section 3 de-
scribes the material used during research as well 
as shows the basic concepts and types of feder-
ated learning. Further, the proposed algorithm is 
described. Subsequently, Section 4 introduces the 
course of the experiment, showing the breakdown 
of the dataset, the methods used and the equip-
ment. In Section 5, the obtained results are pre-
sented. Finally, Section 6 contains a discussion of 
the results achieved. The last paragraph includes 
a summary of the research.

RELATED WORKS

Although federated learning is a relatively 
new approach to machine learning, there is already 
extensive literature on the subject. This section 

provides a state-of-the-art review of publications 
related to the research focus of this article.

One of the interesting uses of federated learn-
ing is shown in the article [9] where the authors 
aimed to improve the accuracy of predictions for 
the mobile keyboard used in the Android operat-
ing system (Gboard). This approach was an ideal 
solution, as the data entered by the user might be 
highly confidential, such as credit card creden-
tials or a PIN for a mobile bank applications. Dur-
ing their research, they used federated learning to 
calculate the local model on the client’s devices. 
Additionally, the authors have taken an interest-
ing approach as training the models was possible 
only when the device was plugged into the char-
ger and at night. The above method was intended 
to minimise the load on the device during normal 
operation. As a measure of evaluation, the authors 
chose click-through rate (CTR), which measures 
the ratio of clicks to impressions. Of the three 
proposed learning rates, the best one achieved a 
CTR increase of about 42% for the training set, 
while for the test set it was about 34%.

In article [10] by Reyes et al. a novel method 
for aggregating weights was proposed based on 
precision. The primary aim of this method is to 
modify the weighting coefficient. Instead of rely-
ing on the number of samples, the authors utilised 
the inverse of the variance. This approach ensures 
that the clients with less dispersion have a greater 
influence on the global weights. To determine the 
variance, the authors employed an estimate of the 
raw second moment (uncentred variance) derived 
from the Adam optimiser, which approximates 
the diagonal of the Fisher information matrix. 
Their experiments demonstrated that the algo-
rithm achieves a 9% improvement in prediction 
accuracy with MNIST, an 18% improvement with 
Fashion-MNIST, and a 5% improvement with CI-
FAR-10 in non-IID settings.

Another intriguing approach was presented in 
article [11] by Ling et al., who introduce a new 
type of aggregation based on entropy. The authors 
argued that not all models should contribute to the 
creation of a common model. They proposed an 
algorithm that categorises models into two dis-
tinct groups: positive and negative devices. This 
process occurs in two steps. The first one involves 
collecting soft labels from clients, which indicate 
the probability of belonging to a particular class. 
Next, the server calculates the entropy based on 
these values to assess the diversity of the data and 
determine whether to reject a given client. In the 
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second phase, the entropy for the global model 
is calculated. One client is temporarily removed, 
and the entropy is recalculated. If the new value 
is higher than the previous one, the client is clas-
sified into the positive set; otherwise, in the nega-
tive one. As a result, weights are aggregated only 
from the positive set.

In article [12] the authors proposed a novel 
aggregation method that analyses the deviation of 
client parameters from the Gaussian distribution. 
To achieve this, they utilised statistical measures, 
such as divergence and higher-order statistics. 
Divergence, including its Kullback-Leibler diver-
gence and Renyi varieties, is employed to assess 
how different the client weight parameters are 
from the Gaussian distribution. The aggregation 
of weights involves assigning weights to the pa-
rameters of the client loss, allowing for their ef-
fective combination in the global model. Finally, 
the weights are normalised, and the server param-
eters are calculated from a weighted average.

The Choquet integral is one of the most state-
of-the-art approaches used in the fuzzy set clas-
sification. The authors of article [13] applied it to 
aggregate weights coming from different models. 
Their investigation focuses on two datasets: bal-
anced and unbalanced. The Choquet integral was 
compared to traditional methods, such as the Sug-
eno integral and arithmetic averaging. The results 
indicate that the Choquet integral raises the ac-
curacy, precision, and sensitivity, especially with 
unbalanced data. Choquet’s integral allows inputs 
from various clients, which will be combined ef-
ficiently. This helps in dealing better with uncer-
tainties and imperfect relations within the data.

MATERIAL AND METHODS

This chapter describes the datasets used in 
evaluating the newly proposed method. Addition-
ally, preliminaries on federated learning and its 
types were also introduced. Finally, a detailed de-
scription of the proposed method was presented.

Study material

The new method was tested using four pub-
licly available datasets. The basic characteristics 
of these datasets are presented in Table 1.

The Heart Disease database contains medical 
features such as resting blood pressure, maximum 
heart rate achieved, and serum cholesterol. The 

dataset is classified as occurrence or absence of 
disease. It is also worth emphasising that there are 
missing values, which were removed before start-
ing the tests [14].

The Iris dataset is one of the most popular 
sets on the issue of machine learning. Originally, 
it was introduced by the British statistician and 
biologist Fisher in 1936 [18]. During this re-
search, a set of 150 samples with 4 features and 
no missing values were used. The dataset consists 
of three classes –“Iris setosa”, “Iris versicolor”, 
and “Iris virginica” [15].

The next dataset under discussion is Pump-
kin, which describes 12 morphological features 
of pumpkin seeds: area, perimeter, major axis 
length, minor axis length, convex area, equivalent 
diameter, eccentricity, solidity, extent, roundness, 
aspect ratio and compactness. The dataset clas-
sifies the seeds into two classes: “Ürgüp Sivrisi” 
and “Çerçevelik”. This dataset is one of the larg-
est tested in this article, containing as many as 
2500 samples [19].

The last dataset utilised during experiments 
was Seeds, which included three types of wheat: 
Kama, Rosa and Canadian. This dataset includes 
7 features which describe the characteristics of 
the seeds, such as size, weight and texture [17].

The concept of federated learning

Federated learning is one of the latest meth-
ods in machine learning. This approach assumes 
a decentralised approach to training models 
which enables the creation of a single, global 
model based on the data dispersed between vari-
ous clients. Unlike traditional machine learning 
methods in which data samples are sent to central 
servers, in federated learning data remain on edge 
devices, which significantly enhances privacy 
and security. 

Formally, it can be assumed that there are n 
clients: {k1, ... , kn} where n ∈ N, each with their 
datasets {d1, ... , dn}. It is important to note that 
it is impossible for clients to share samples with 
each other, ensuring that the privacy and security 

Table 1. Summary of datasets used during experiment
Name Sample Feature Class

Heart disease [14]
Iris [15]
Pumpkin [16]
Seeds [17]

1025
150

2500
210

13
4

12
7

2
3
2
3
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of each client’s data are maintained throughout 
the learning process. Initially, the server initialis-
es its own weights ŵ = {w1, ... , wr}, where the r is 
the number of model parameters. These weights 
can either be randomly set or derived from a 
previously trained model, which may have been 
developed in earlier rounds of federated learning 
or trained on a different, related dataset. Alterna-
tively, the server may request one of the clients 
to generate these initial weights based on its local 
data, establishing a starting point for the training 
process. A typical process includes the following 
steps in one round: 
1)	The server sends weights 𝒘̂𝒘 

 

𝑋𝑋𝑖𝑖 ⊆ 𝑋𝑋,  𝑌𝑌𝑖𝑖 ⊆ 𝑌𝑌 
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 to each client. 
2)	Client ki, where i = 1, ..., n, trains the model on 

its own dataset di using the weights wi = {wi,1, 
... , wi,r} provided by the server. After the train-
ing is done, the model generates the established 
weights wi and sends them back to the server.

3)	Next, the server aggregates the weights re-
ceived from the clients wi for i from 1 to n, into 
a single global weight 𝒘̂𝒘 
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. There are different 
types of aggregation. The basic methods con-
sist of simple averaging, while more advanced 
methods enable the selection of clients with 
the highest accuracy [20].

This process has been illustrated and present-
ed in Figure 1.

Types of federated learning

During the development of the shared mod-
el, a vast number of clients actively collaborate, 
training their individual models to significantly 

enhance the overall performance. However, due 
to the broad diversity of clients and the heteroge-
neity of their data, challenges can arise during the 
aggregation of weights, potentially affecting the 
convergence and stability of the model. In light of 
these factors, federated learning has been catego-
rised into the following types [21]:
	• horizontal federated learning,
	• vertical federated learning,
	• federated transfer learning.

Horizontal federated learning

Horizontal federated learning is applied 
when the majority of a client’s feature space 
overlaps with that of another client. It is im-
portant to note that, in order to achieve model 
convergence, the sample space should be dis-
tinct. The typical data preparation process in-
volves reconciling which features should be 
taken into account, while others should be 
discarded. This approach is commonly used 
when there are multiple clients from the same 
business, but each has different customers. By 
adhering to the principles of privacy, they can 
collaboratively develop a shared model, which 
yields mutual benefits [20–22]. The process is 
illustrated in Figure 2. 

Formally, let X represent the feature space, 
Y represent the label space and l are the training 
cases. For a client i, let their data di be represented 
by 
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 and 
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. Then for any two 
clients di, dj where i ≠ j, it is holds that [22]:

	 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 
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	 (1)

Figure 1. The basics of federated learning
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Vertical federated learning

This type of learning is the opposite of hori-
zontal learning. The core idea is that while the 
feature space differs between clients, the iden-
tifier space remains the same. It is particularly 
useful when multiple clients come from different 
industries. They share the same customers, but 
the features they collect are entirely different [21, 
22]. This relationship can be summarised math-
ematically as follows:
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For example, consider specialist clinics that 
treat the same patients but focus on different 
medical conditions. Their feature space can vary 
significantly due to the specific procedures used 
for various diseases, even though they are treat-
ing the same individual. In some cases, diagnos-
ing a condition may require a broader diagnostic 
perspective, which could be available at another 
clinic, but cannot be shared due to the sensitivity 
of medical data. Federated learning solves this is-
sue by allowing the creation of a shared global 
model, without compromising data privacy [24]. 
The process outlined is illustrated in Figure 3.

Federated transfer learning

Federated transfer learning introduces greater 
complexity compared to other learning paradigms. 
In this approach, feature spaces are often distinct, 
though there may be slight overlap in some cas-
es. Additionally, the sample spaces usually differ 
as well. The core idea is to facilitate knowledge 
transfer between different devices. Collaborating 
clients generally come from specialised fields, but 
at a broader level, their datasets share certain com-
monalities. The typical process involves training 
a model with one client and then applying it to 

another, even with minimal data overlap. The sec-
ond client adapts the feature space to fit their data-
set and refines the model by leveraging knowledge 
transfer [22, 25]. This process can be represented 
mathematically as follows:
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𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 

	 (3)

A typical example of the described process 
could involve a financial institution and an ecom-
merce company working together. Both the bank 
and the online store share one common feature: the 
purchase transaction. However, their feature spaces 
are significantly different. The store processes infor-
mation about the products bought, quantities, and 
customer behaviour on the website. In contrast, the 
bank records the transaction details and has access 
to the client’s past financial history. Using a model 
developed by the store, the bank can refine its own 
model to predict the future spending patterns and 
make decisions about granting loans to clients [26]. 
The process depicted is shown in Figure 4.

Model aggregation techniques

Aggregation is one of the most crucial ele-
ments in the federated learning algorithm. The 
main idea behind this technique is to combine lo-
cal weights trained on local data into one global 
model. In the literature, many algorithms differ 
in complexity, as well as in how they deal with 
the problems arising from data heterogeneity or 
device diversity. In this section, some of the most 
popular methods were presented.

FedAvg is one of the earliest weight aggre-
gation algorithms, introduced by a team of re-
searchers from Google. Its main concept revolves 
around weighting the client’s weights and averag-
ing them, where the weight is determined by the 

Figure 2. Horizontal learning example [23]
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number of samples from each client. In the t-th 
round, the weight is determined as follows:

	

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 

	 (4)

where:	mi represents the number of samples for 
the i-th client and m is the total number of 
samples. The resulting value from Equa-
tion 4 will be used to initialise the client’s 
weights in the next round or, if training 
has concluded, will serve as the final 
global weights [27].

Scaffold is a more sophisticated algorithm 
than FedAvg and tries to eliminate a problem with 
heterogeneous data by introducing two control 
parameters c for a server, and ci for each model. 
In each interaction, a client obtains a parameter c 
and estimates their weights according to the fol-
lowing formula:

	

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 

	 (5)

where η is a learning rate and gi is the gradient. 
Further, a client updates their local parameter ci, 
where K is the number of local update steps:

	

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 

	 (6)

In the end, the server aggregates the weights, 
and updates the c parameter [28]:

	

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 

	 (7)

FedProx is a novel technique proposed 
by Li et al. Their research showed that local 
training focuses on its own data bypassing 
weights received from global models, espe-
cially in the models using stochastic gradient 
descent (SGD). As a result, each model tries to 
achieve a local minimum rather than the glob-
al one in the shared model. To eliminate this 

Figure 3. Vertical learning example [23]

Figure 4. Federated transfer learning example [24]
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discrepancy, they introduced a proximal term, 
which is included in the objective function and 
it might be expressed as follows:

	

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗,  𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 

 

𝑋𝑋𝑖𝑖 ≠ 𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖 ≠ 𝑌𝑌𝑗𝑗, 𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝑗𝑗 

 

𝐰̂𝐰(𝐭𝐭+𝟏𝟏) = ∑ 𝑚𝑚𝑖𝑖
𝑚𝑚 𝐰𝐰𝐢𝐢

(𝐭𝐭)
𝑛𝑛

𝑖𝑖=1
 

 

𝐰𝐰𝐢𝐢 ≔ 𝐰𝐰𝐢𝐢 − 𝜂𝜂 (𝑔𝑔𝑖𝑖(𝒘𝒘𝒊𝒊) +
+ 𝒄𝒄 − 𝒄𝒄𝒊𝒊

) 

 

𝒄𝒄𝒊𝒊
+ ≔ 𝒄𝒄𝒊𝒊 − 𝒄𝒄 + 1

𝐾𝐾𝐾𝐾 (𝒘̂𝒘 − 𝒘𝒘𝒊𝒊) 

 

 

𝐰̂𝐰 ≔ 𝐰̂𝐰 + 𝜂𝜂
𝑚𝑚 ∑(𝐰𝐰𝐢𝐢 − 𝐰̂𝐰)

𝑛𝑛

𝑖𝑖=1
 

𝐜𝐜 ≔ 𝐜𝐜 + 1
𝑛𝑛 ∑(𝐜𝐜𝐢𝐢

+ − 𝐜𝐜𝐢𝐢)
𝑛𝑛

𝑖𝑖=1
 

 

 
𝜇𝜇
2 |𝐰𝐰𝐢𝐢

𝐭𝐭 − 𝐰̂𝐰𝐭𝐭|2 	 (8)

where μ ≥ 0 is known as the penalty coefficient 
of the proximal term. It is also worth noting that 
if the μ is set to 0, this method is exactly the 
same as FedAvg. Conversely, the larger the val-
ue of μ, the stronger the regularisation, resulting 
in smaller deviations of local models from the 
global model. On the other hand, smaller values 
of μ ead to weaker regularisation and greater 
flexibility for local models to adapt to their spe-
cific data [29].

Proposed method

In this chapter, the proposed novel algorithm 
was introduced. Traditional aggregation methods 
often overlook client quality, focusing solely on 
model validity based on the volume of training 
samples which assumes that the models trained 
on larger datasets produce more accurate predic-
tions. To address these limitations, the proposed 
algorithm incorporates entropy as a measure of 
predictive uncertainty drawn from information 
theory. Entropy is a term introduced by Shannon 
and it is a certain set of uncertainties related to the 
set of possible outcomes [30].

In practice, the models with lower entropy on 
the validation set will have a higher inverse en-
tropy value, thereby receiving greater weight in 
the aggregation process. Conversely, the models 
with higher entropy, indicating lower confidence 
in their predictions, will contribute less to the fi-
nal ensemble model. This approach helps prevent 
weaker local models from diminishing the overall 
quality of the global model.

Algorithm 1 presents a comprehensive 
overview of the proposed algorithm, specifi-
cally focusing on a single round of weight ag-
gregation. The key distinction from other meth-
ods is the requirement for a validation dataset 
to be maintained on the server side. This data-
set should not be sourced from clients due to 
privacy concerns, nor should it duplicate any 
learning events from individual clients. By im-
plementing this approach, the server can evalu-
ate each client effectively and assign an appro-
priate coefficient based on the value each client 
contributes to the core model.

Algorithm 1: Weighted average method based 
on entropy
Description:
𝒘̂𝒘 

 

𝑋𝑋𝑖𝑖 ⊆ 𝑋𝑋,  𝑌𝑌𝑖𝑖 ⊆ 𝑌𝑌 

 

𝐼𝐼𝑖𝑖 ⊆ 𝐼𝐼 

 

𝐻𝐻𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐

𝑗𝑗=1
𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑖𝑖𝑖𝑖  

 

𝐸𝐸𝑖𝑖 = 1
𝐻𝐻𝑖𝑖

 

 

∑ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
𝐸𝐸𝑖𝑖/ ∑ 𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

 – a set of global weights
wi – a set of weights for the client ki
V – a validation set
Pi = {pij}– the set of probabilities generated by the 
client ki on the validation set
c – number of classes

Outcome: aggregated weights
1.	Collect model weights for each customer wi for 

i = 1,2, ..., n.
2.	For each wi from i = 1,2, ..., n  create a new 

model Mi and set its weight to wi.
3.	For each model Mi conduct training on the vali-

dation set V: Pi = Mi(V).
4.	For each set of probabilities compute the en-

tropy: 

𝒘̂𝒘 

 

𝑋𝑋𝑖𝑖 ⊆ 𝑋𝑋,  𝑌𝑌𝑖𝑖 ⊆ 𝑌𝑌 

 

𝐼𝐼𝑖𝑖 ⊆ 𝐼𝐼 

 

𝐻𝐻𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐

𝑗𝑗=1
𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑖𝑖𝑖𝑖  

 

𝐸𝐸𝑖𝑖 = 1
𝐻𝐻𝑖𝑖

 

 

∑ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
𝐸𝐸𝑖𝑖/ ∑ 𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

.

5.	Calculate the inverse of entropy for each mod-
el: 

𝒘̂𝒘 

 

𝑋𝑋𝑖𝑖 ⊆ 𝑋𝑋,  𝑌𝑌𝑖𝑖 ⊆ 𝑌𝑌 

 

𝐼𝐼𝑖𝑖 ⊆ 𝐼𝐼 

 

𝐻𝐻𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐

𝑗𝑗=1
𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑖𝑖𝑖𝑖  

 

𝐸𝐸𝑖𝑖 = 1
𝐻𝐻𝑖𝑖

 

 

∑ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
𝐸𝐸𝑖𝑖/ ∑ 𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

. 

6.	Aggregate weights: 

𝒘̂𝒘 

 

𝑋𝑋𝑖𝑖 ⊆ 𝑋𝑋,  𝑌𝑌𝑖𝑖 ⊆ 𝑌𝑌 

 

𝐼𝐼𝑖𝑖 ⊆ 𝐼𝐼 

 

𝐻𝐻𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐

𝑗𝑗=1
𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑖𝑖𝑖𝑖  
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EXPERIMENTS

Federated learning can be applied to a variety 
of models, but during this study, it will be based 
on a neural network classification mechanism. The 
architecture of the model was selected according 
to the characteristics of the input data - such as the 
number of features, dataset size, and overall task 
complexity – as well as the evaluation of training 
accuracy and validation learning curves. Using 
this procedure allowed for the generalization abil-
ity to be evaluated alongside recognition of over-
fitting, both of which played important roles in the 
architecture design for both datasets.

In the federated learning approach, a key 
challenge arises in generating learning curves due 
to the decentralized nature of the data. Since the 
training data remains on client devices, conven-
tional real-time monitoring of performance met-
rics is limited. Nevertheless, there is a method to 
collect training statistics locally and aggregate 
them centrally, allowing for the generation of 
representative learning curves. This process is 
outlined as follows:
1.	Collect the final training loss and accuracy from 

each client at the end of their last local epoch.
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2.	Send these metrics to the central server.
3.	On the server, compute the average training 

loss and accuracy across all clients – this gives 
the overall training performance.

4.	Run a validation step on the server using a 
separate validation dataset to obtain validation 
loss and accuracy.

5.	Use the aggregated training and validation re-
sults to plot learning curves.

When fine-tuning the hyperparameters, the 
standard FedAvg aggregation method was used to 
ground the convergence of the model. Once con-
vergence was achieved, further experiments were 
performed by applying alternative aggregation 
methods. The architectures of the models used for 
each dataset are detailed in Tables 2 to 5.

The study that formulated horizontal feder-
ated learning consisted of a certain central server 
and three customers. The dataset was cut into 
training, validation and testing subsets. In ad-
dition, the training set was already evenly dis-
tributed among the three clients to make sure all 
clients have the same contribution to the model. 
The hyperparameters for each subset are present-
ed in Table 6.

The new approach is evaluated through a pro-
cess that starts with training separate models for 
each client and then constructing a global model 
through the FedAvg, FedOpt, and FedProx meth-
ods. During this step, the model parameters are 
combined across clients to build a holistic rep-
resentation of learned patterns. To evaluate the 
performance of the proposed approach, the same 
process was followed; this time, however, using 
a novel weight aggregation method to optimise 
model performance and ensure balanced contri-
butions from various clients. This comparison al-
lows for assessing the improvements provided by 
the new aggregation method in comparison to the 
currently known data aggregation methods, par-
ticularly the standard FedAvg algorithm.

Datasets

Table 7 provides an overview of the datasets 
used to test the new algorithm and their division 
into training, validation, and test sets. The first 
column lists the dataset names while the second 
column displays the total number of training 
samples, which were later divided among three 
clients. Finally, the last two columns show the 
number of samples in the test and validation sets, 
respectively. The dataset was split into training, 
validation, and test sets in a 6:2:2 ratio. 

Selecting appropriate datasets ensures an accu-
rate evaluation of the proposed method by includ-
ing datasets with varying sizes of client training 
data, with sample sizes ranging from 90 to 1500.

Table 2. Summary of neural network architecture for 
heart disease dataset

Layer Output shape Parameters Activation

Flatten
Dense
Dropout
Dense 
Dropout
Dense

(,13)
(,256)
(,256)
(,128)
(,128)

(,2)

0
3 584

0
32 896

0
258

-
Relu

-
Relu

-
Softmax

Table 3. Summary of neural network architecture for 
Iris dataset

Layer Output shape Parameters Activation

Flatten
Dense
Dropout
Dense 
Dense

(,4)
(,32)
(,32)
(,16)
(,3)

0
160

0
16
3

-
Relu

-
Relu

Softmax

Table 4. Summary of neural network architecture for 
Pumpkin dataset

Layer Output shape Param Activation

Flatten
Dense
Dropout
Dense 
Dense

(,12)
(,32)
(,32)
(,16)
(,2)

0
416

0
528
34

-
Relu

-
Relu

Softmax

Table 5. Summary of neural network architecture for 
Seeds dataset

Layer Output shape Param Activation

Flatten
Dense
Dropout
Dense 
Dense

(,7)
(,32)
(,32)
(,16)
(,3)

0
256

0
528
51

-
Relu

-
Relu

Softmax

Table 6. Summary of hyperparameters for each dataset

Dataset Client 
epochs

Server 
epochs Learning rate

Heart disease
Iris
Pumpkin
Seeds

5
10
10
10

20
10
10
8

2 · 10-10

2 · 10-10

2 · 10-10

2 · 10-10
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Computing environment

During the research, the Python program-
ming language version 3.10.15 was used, togeth-
er with one of the most popular libraries targeting 
federated learning – Flower version 1.10.0 [31], 
[32]. The process of implementation involved le-
veraging inheritance to extend this library’s “Fe-
dAvg” class. Utilising polymorphism, the newly 
created weight aggregation strategy was used in 
the server class. Additionally, the following li-
braries were used:
	• Tensorflow-gpu: 2.17.0,
	• Keras: 3.5.0,
	• Numpy: 1.26.4.

The research was conducted on a computer 
with the following specifications:
	• Operating System: Ubuntu 22.04,
	• GPU: Nvidia RTX 5000,
	• CPU: Intel(R) Xeon(R) Silver 4208 CPU @ 

2.10GHz,
	• RAM: 64 GB.

RESULTS

This chapter presents the results obtained 
from the conducted experiments. The evalua-
tion includes confusion matrices, test set perfor-
mance metrics, validation and training learning 
curves, which were used to assess model conver-
gence. These elements provide a comprehensive 
overview of the model’s behaviour, its generali-
sation capabilities, and the effectiveness of the 
applied aggregation methods in the federated 
learning setting.

Figure 5 illustrates the learning curves for 
both accuracy and loss, tracked throughout the 
training process. These curves are presented for 
both the training and validation datasets, allowing 
for a comprehensive assessment of the model’s 
convergence behaviour. The graphs shown were 
produced on the server side, following the earlier 
algorithm using the FedAvg aggregation method.

Table 8 provides a comprehensive summary 
of the test set results for each dataset, comparing 
the performance of four aggregation methods: Fe-
dAvg, Entropy, FedOpt, and FedProx. Each table 
presents the results for key performance metrics, 
including accuracy, precision, recall, and F1-score. 
For each dataset, the first row shows the results for 
the FedAvg method, while the second, third, and 
fourth rows display the performance for the En-
tropy, FedOpt, and FedProx methods, respectively.

In order to give an accurate representation of 
the behaviour of the different aggregation meth-
ods, the confusion matrices for each dataset are 
presented in Figure 6. Each row contains the 
aggregation methods in the following order: Fe-
dAvg, Entropy, FedOpt, and FedProx.

DISCUSSION

The results presented in Table 8 clearly dem-
onstrate that introducing an aggregation method 
based on entropy into federated learning brings 
tangible benefits compared to the classic FedAvg, 
often outperforms FedOpt and FedProx as well. 
Although the differences are minimal for the 
Pumpkin dataset, a noticeable improvement in 
accuracy is observed across most of metrics for 
datasets, such as Heart Disease, Iris or Seeds. 

Firstly, for the Heart Disease dataset, the 
entropy-based method increases the classifica-
tion accuracy of sick patients from 92.66% (Fe-
dAvg) to 95.41%, while simultaneously reducing 
the misclassification rate from 7.34% to 4.59%, 
which is crucial for patient safety in a medical 
context. The newly proposed method achieved 
the best results across all metrics and increased 
overall accuracy by about 1.46 percentage points 
compared to the FedAvg method.

In the Iris dataset, the entropy-based meth-
od improved the classification accuracy for the 
second class from 61.54% (FedAvg) to 76.92% 
(Entropy). A similar result was also achieved by 
the FedProx method. This method showed the 
largest increase in accuracy over FedAvg across 
all datasets, with an improvement of 15.38 per-
centage points. Among all the aggregation meth-
ods, both the entropy-based method and Fed-
Prox achieved the highest accuracy values, both 
reaching exactly 90%.

The results obtained on the Pumpkin dataset 
show little difference between the aggregation 
methods. The highest accuracy was achieved by 

Table 7. Division of the dataset into training, validation 
and testing

Dataset Train Test Validation
Heart disease [14]
Iris [15]
Pumpkin [19]
Seeds [17]

615
90

1500
126

205
30

500
42

205
30

500
42
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Figure 5. Test set results for each dataset: (a) heart disease, (b) iris, (c) pumpkin, (d) seeds

Entropy and FedProx, with values of 88% and 
87.80%, respectively. The confusion matrix indi-
cates that the Entropy method slightly improved 
the accuracy for class 1, with an increase of 0.4 
percentage points.

For the Seeds dataset, the largest overall in-
crease in accuracy was observed compared to 

FedProx, with an improvement of 2.39 percent-
age points. A similar increase was also noted 
when compared to FedAvg. The confusion matrix 
reveals that the entropy-based method achieves 
the most significant improvement in class 1, with 
an increase of approximately 13.34 percentage 
points compared to FedProx. However, for class 
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3, there is a decrease of 6.66 percentage points. 
Despite this, the method still demonstrates a no-
table increase in overall accuracy.

The analysis of the presented results shows 
that the entropy-based weight aggregation 
method for federated learning yields measur-
able benefits compared to classical methods 

such as FedAvg, and in many cases also out-
performs the FedOpt method. In all tested da-
tasets, the newly proposed method achieved 
the highest scores or consistently high results, 
regardless of the dataset. The average increase 
in accuracy over the FedAvg method was 2.73 
percentage points.

Table 8. Presents the test set results (%) for each dataset across different aggregation methods: FedAvg, Entropy, 
FedOpt, and FedProx

Dataset Methods Accuracy Precision Recall F1-Score

Heart disease

FedAvg
Entropy
FedOpt
FedProx

93.66
95.12
93.66
94.15

93.71
95.12
93.67
94.23

93.66
95.12
93.66
94.15

93.66
95.12
93.66
94.15

Iris

FedAvg
Entropy
FedOpt
FedProx

83.33
90.00
86.67
90.00

90.91
93.33
92.00
93.33

83.33
90.00
86.67
90.00

83.80
90.35
87.12
90.35

Pumpkin

FedAvg
Entropy
FedOpt
FedProx

87.60
88.00
87.80
87.80

87.61
88.00
87.82
87.81

87.60
88.00
87.80
87.80

87.60
88.00
87.80
87.80

Seeds

FedAvg
Entropy
FedOpt
FedProx

85.71
88.10
83.33
85.71

86.49
88.54
84.65
86.57

85.71
88.10
83.33
85.71

85.90
88.24
83.20
85.69

Figure 6. Presents the confusion matrices (%) for each dataset, comparing the classification performance 	
across different aggregation methods: FedAvg, Entropy, FedOpt, and FedProx
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CONCLUSIONS

This article introduced a new aggregation 
method based on entropy which was empirically 
tested on various datasets. The results show that 
in all tested cases, the proposed method outper-
forms the classical approach such as FedProx or 
FedOpt. The present achievement confirms the 
thesis put forward at the beginning of this article, 
providing strong evidence that the novel method 
offers significant benefits and advantages in Fed-
erated Learning. The presented algorithm opens 
a new approach to using entropy in the context 
of Federated Learning. The author’s future work 
will involve examining the proposed method on 
other types of data, especially in the datasets con-
taining image datasets.
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