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ABSTRACT

Federated learning is a machine learning technique that enables models to learn while preserv-
ing user privacy. In this approach, multiple institutions collaborate to develop a shared model without
exchanging raw data. Instead, they share only the model’s generated weights. In this article, a novel
method for weight aggregation is proposed, based on weighted averages and entropy, within the frame-
work of horizontal federated learning. The aggregation process begins by generating predictions on a
validation set. Then, entropy is calculated for the weights from each client, reflecting the uncertainty or
variability in their contributions. Finally, a weighted average is applied, and the previously computed
entropies are used to determine the influence of each client’s weights in the final model. The proposed
algorithm has been evaluated on several datasets and compared against widely used methods such as
FedAvg, FedProx, and FedOpt. The results indicate that the new approach increased mean accuracy by
about 2 percentage points compared to FedAvg. The most significant improvement was observed on the
Iris dataset, where accuracy increased by about 6 percentage points.

Keywords: classification, entropy, federated learning, federated averaging, machine learning, neural network.

INTRODUCTION

Nowadays, privacy has become of significant
importance to our society. With the growth of
digital services, both industry and science have
had to find a balance between processing and
protecting data. Many countries have introduced
specific data protection regulations such as the
General Data Protection Regulation (GDPR) in
the European Union [1], or the Personal Infor-
mation Protection and Electronic Documents Act
(PIPEDA) in Canada [2]. These regulations aim
to safe-guard personal data, while still allowing
for innovation in areas such as artificial intelli-
gence (Al) and machine learning.

One example of the challenges posed by Al
and privacy is the increasing accuracy in recognis-
ing handwritten characters. Recent research shows

that the proposed models can correctly classify
writing with accuracy as high as 96% [3]. These
systems open up possibilities for applications,
such as digital archives, but on the other hand,
they pose a privacy risk, particularly in behaviour
identification. Such use raises some concerns, €s-
pecially when happening beyond legislative con-
trol or when their results fall into the wrong hands.

Many devices that use artificial intelligence
work in a client-server architecture, which poses
a risk of losing control over data. The samples
have to be sent to the server for analysis. In many
companies, transferring data outside the premises
is prohibited and may violate regulations. This is
especially true when handling sensitive data, such
as medical, financial or tax information [4]. At the
same time, a single device does not have enough
computing power to make a prediction or build a
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new model. Furthermore, single clients typically
have a limited dataset of cases registered in their
own companies. Building one large, shared mod-
el seems to be more effective than building mod-
els by each company individually. To achieve this
while maintaining data privacy, federated learn-
ing offers a promising solution [5]. However, the
method cited above presents several challenges
related to aggregating weights and ensuring the
accuracy of trained models. One of the main is-
sues with weight aggregation is the inherent di-
versity in the data distribution across different cli-
ents. Each client possesses a local dataset which
can vary in the number of samples, size, quality
and representativeness. These factors indicate a
risk that the final model might be skewed, biased
or inaccurate when applied to real-world data [6].

Nowadays, aggregation methods are one of
the most popular research topics. One example
is using the F1-Score metrics in ensemble meth-
ods to aggregate different models [7]. Similarly,
in the field of federated learning, there is a lot
of research focused on the various methods for
weights aggregation. One of them is Federated
Averaging, which includes several samples of
each client. Consequently, expanding the client’s
training datasets enhances their involvement with
the training global model. However, this process
might skew the global model, which leads to a
failure of achieving established accuracy [8]. The
case described above prompts the pursuit of new
solutions. Thus, the primary objective of this ar-
ticle was to propose a novel approach to weights
aggregation that leverages entropy

This paper is organised as follows: firstly, the
state-of-the-art works are discussed. Section 3 de-
scribes the material used during research as well
as shows the basic concepts and types of feder-
ated learning. Further, the proposed algorithm is
described. Subsequently, Section 4 introduces the
course of the experiment, showing the breakdown
of the dataset, the methods used and the equip-
ment. In Section 5, the obtained results are pre-
sented. Finally, Section 6 contains a discussion of
the results achieved. The last paragraph includes
a summary of the research.

RELATED WORKS

Although federated learning is a relatively
new approach to machine learning, there is already
extensive literature on the subject. This section
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provides a state-of-the-art review of publications
related to the research focus of this article.

One of the interesting uses of federated learn-
ing is shown in the article [9] where the authors
aimed to improve the accuracy of predictions for
the mobile keyboard used in the Android operat-
ing system (Gboard). This approach was an ideal
solution, as the data entered by the user might be
highly confidential, such as credit card creden-
tials or a PIN for a mobile bank applications. Dur-
ing their research, they used federated learning to
calculate the local model on the client’s devices.
Additionally, the authors have taken an interest-
ing approach as training the models was possible
only when the device was plugged into the char-
ger and at night. The above method was intended
to minimise the load on the device during normal
operation. As a measure of evaluation, the authors
chose click-through rate (CTR), which measures
the ratio of clicks to impressions. Of the three
proposed learning rates, the best one achieved a
CTR increase of about 42% for the training set,
while for the test set it was about 34%.

In article [10] by Reyes et al. a novel method
for aggregating weights was proposed based on
precision. The primary aim of this method is to
modify the weighting coefficient. Instead of rely-
ing on the number of samples, the authors utilised
the inverse of the variance. This approach ensures
that the clients with less dispersion have a greater
influence on the global weights. To determine the
variance, the authors employed an estimate of the
raw second moment (uncentred variance) derived
from the Adam optimiser, which approximates
the diagonal of the Fisher information matrix.
Their experiments demonstrated that the algo-
rithm achieves a 9% improvement in prediction
accuracy with MNIST, an 18% improvement with
Fashion-MNIST, and a 5% improvement with CI-
FAR-10 in non-IID settings.

Another intriguing approach was presented in
article [11] by Ling et al., who introduce a new
type of aggregation based on entropy. The authors
argued that not all models should contribute to the
creation of a common model. They proposed an
algorithm that categorises models into two dis-
tinct groups: positive and negative devices. This
process occurs in two steps. The first one involves
collecting soft labels from clients, which indicate
the probability of belonging to a particular class.
Next, the server calculates the entropy based on
these values to assess the diversity of the data and
determine whether to reject a given client. In the
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second phase, the entropy for the global model
is calculated. One client is temporarily removed,
and the entropy is recalculated. If the new value
is higher than the previous one, the client is clas-
sified into the positive set; otherwise, in the nega-
tive one. As a result, weights are aggregated only
from the positive set.

In article [12] the authors proposed a novel
aggregation method that analyses the deviation of
client parameters from the Gaussian distribution.
To achieve this, they utilised statistical measures,
such as divergence and higher-order statistics.
Divergence, including its Kullback-Leibler diver-
gence and Renyi varieties, is employed to assess
how different the client weight parameters are
from the Gaussian distribution. The aggregation
of weights involves assigning weights to the pa-
rameters of the client loss, allowing for their ef-
fective combination in the global model. Finally,
the weights are normalised, and the server param-
eters are calculated from a weighted average.

The Choquet integral is one of the most state-
of-the-art approaches used in the fuzzy set clas-
sification. The authors of article [13] applied it to
aggregate weights coming from different models.
Their investigation focuses on two datasets: bal-
anced and unbalanced. The Choquet integral was
compared to traditional methods, such as the Sug-
eno integral and arithmetic averaging. The results
indicate that the Choquet integral raises the ac-
curacy, precision, and sensitivity, especially with
unbalanced data. Choquet’s integral allows inputs
from various clients, which will be combined ef-
ficiently. This helps in dealing better with uncer-
tainties and imperfect relations within the data.

MATERIAL AND METHODS

This chapter describes the datasets used in
evaluating the newly proposed method. Addition-
ally, preliminaries on federated learning and its
types were also introduced. Finally, a detailed de-
scription of the proposed method was presented.

Study material

The new method was tested using four pub-
licly available datasets. The basic characteristics
of these datasets are presented in Table 1.

The Heart Disease database contains medical
features such as resting blood pressure, maximum
heart rate achieved, and serum cholesterol. The

dataset is classified as occurrence or absence of
disease. It is also worth emphasising that there are
missing values, which were removed before start-
ing the tests [14].

The Iris dataset is one of the most popular
sets on the issue of machine learning. Originally,
it was introduced by the British statistician and
biologist Fisher in 1936 [18]. During this re-
search, a set of 150 samples with 4 features and
no missing values were used. The dataset consists
of three classes —“Iris setosa”, “Iris versicolor”,
and “Iris virginica” [15].

The next dataset under discussion is Pump-
kin, which describes 12 morphological features
of pumpkin seeds: area, perimeter, major axis
length, minor axis length, convex area, equivalent
diameter, eccentricity, solidity, extent, roundness,
aspect ratio and compactness. The dataset clas-
sifies the seeds into two classes: “Urgiip Sivrisi”
and “Cercevelik”. This dataset is one of the larg-
est tested in this article, containing as many as
2500 samples [19].

The last dataset utilised during experiments
was Seeds, which included three types of wheat:
Kama, Rosa and Canadian. This dataset includes
7 features which describe the characteristics of
the seeds, such as size, weight and texture [17].

The concept of federated learning

Federated learning is one of the latest meth-
ods in machine learning. This approach assumes
a decentralised approach to training models
which enables the creation of a single, global
model based on the data dispersed between vari-
ous clients. Unlike traditional machine learning
methods in which data samples are sent to central
servers, in federated learning data remain on edge
devices, which significantly enhances privacy
and security.

Formally, it can be assumed that there are n
clients: {k, ..., k } where n € N, each with their
datasets {d, ..., d }. It is important to note that
it is impossible for clients to share samples with
each other, ensuring that the privacy and security

Table 1. Summary of datasets used during experiment

Name Sample Feature Class
Heart disease [14] 1025 13 2
Iris [15] 150 4 3
Pumpkin [16] 2500 12 2
Seeds [17] 210 7 3
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of each client’s data are maintained throughout
the learning process. Initially, the server initialis-
esits own weights W= {w, ..., w }, where the ris
the number of model parameters. These weights
can either be randomly set or derived from a
previously trained model, which may have been
developed in earlier rounds of federated learning
or trained on a different, related dataset. Alterna-
tively, the server may request one of the clients
to generate these initial weights based on its local
data, establishing a starting point for the training
process. A typical process includes the following
steps in one round:

1) The server sends weights w to each client.

2) Client k, where i = 1, ..., n, trains the model on
its own dataset d; using the weights w, = {w,,
..., w, } provided by the server. After the train-
ing is done, the model generates the established
weights w. and sends them back to the server.

3) Next, the server aggregates the weights re-
ceived from the clients w, for i from 1 to n, into
a single global weight W. There are different
types of aggregation. The basic methods con-
sist of simple averaging, while more advanced
methods enable the selection of clients with
the highest accuracy [20].

This process has been illustrated and present-
ed in Figure 1.

Types of federated learning

During the development of the shared mod-
el, a vast number of clients actively collaborate,
training their individual models to significantly

Phase 3

— Server
aggregates weights

Phase 2 - Clients
sent their weights to vy,
the server
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enhance the overall performance. However, due
to the broad diversity of clients and the heteroge-
neity of their data, challenges can arise during the
aggregation of weights, potentially affecting the
convergence and stability of the model. In light of
these factors, federated learning has been catego-
rised into the following types [21]:

e horizontal federated learning,

e vertical federated learning,

e federated transfer learning.

Horizontal federated learning

Horizontal federated learning is applied
when the majority of a client’s feature space
overlaps with that of another client. It is im-
portant to note that, in order to achieve model
convergence, the sample space should be dis-
tinct. The typical data preparation process in-
volves reconciling which features should be
taken into account, while others should be
discarded. This approach is commonly used
when there are multiple clients from the same
business, but each has different customers. By
adhering to the principles of privacy, they can
collaboratively develop a shared model, which
yields mutual benefits [20—22]. The process is
illustrated in Figure 2.

Formally, let X represent the feature space,
Y represent the label space and / are the training
cases. For a client 7, let their data d, be represented
by X; €X, Y; €Y and [; € I. Then for any two
clients d, a’J where i #j, it is holds that [22]:

Phase 1 - send
initial  weights  to
client

Figure 1. The basics of federated learning
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Labels

Data from first client

Horizontal Federated
Learning

Data from second client

Labels

Figure 2. Horizontal learning example [23]

Vertical federated learning

This type of learning is the opposite of hori-
zontal learning. The core idea is that while the
feature space differs between clients, the iden-
tifier space remains the same. It is particularly
useful when multiple clients come from different
industries. They share the same customers, but
the features they collect are entirely different [21,
22]. This relationship can be summarised math-
ematically as follows:

For example, consider specialist clinics that
treat the same patients but focus on different
medical conditions. Their feature space can vary
significantly due to the specific procedures used
for various diseases, even though they are treat-
ing the same individual. In some cases, diagnos-
ing a condition may require a broader diagnostic
perspective, which could be available at another
clinic, but cannot be shared due to the sensitivity
of medical data. Federated learning solves this is-
sue by allowing the creation of a shared global
model, without compromising data privacy [24].
The process outlined is illustrated in Figure 3.

Federated transfer learning

Federated transfer learning introduces greater
complexity compared to other learning paradigms.
In this approach, feature spaces are often distinct,
though there may be slight overlap in some cas-
es. Additionally, the sample spaces usually differ
as well. The core idea is to facilitate knowledge
transfer between different devices. Collaborating
clients generally come from specialised fields, but
at a broader level, their datasets share certain com-
monalities. The typical process involves training
a model with one client and then applying it to

another, even with minimal data overlap. The sec-
ond client adapts the feature space to fit their data-
set and refines the model by leveraging knowledge
transfer [22, 25]. This process can be represented
mathematically as follows:

A typical example of the described process
could involve a financial institution and an ecom-
merce company working together. Both the bank
and the online store share one common feature: the
purchase transaction. However, their feature spaces
are significantly different. The store processes infor-
mation about the products bought, quantities, and
customer behaviour on the website. In contrast, the
bank records the transaction details and has access
to the client’s past financial history. Using a model
developed by the store, the bank can refine its own
model to predict the future spending patterns and
make decisions about granting loans to clients [26].
The process depicted is shown in Figure 4.

Model aggregation techniques

Aggregation is one of the most crucial ele-
ments in the federated learning algorithm. The
main idea behind this technique is to combine lo-
cal weights trained on local data into one global
model. In the literature, many algorithms differ
in complexity, as well as in how they deal with
the problems arising from data heterogeneity or
device diversity. In this section, some of the most
popular methods were presented.

FedAvg is one of the earliest weight aggre-
gation algorithms, introduced by a team of re-
searchers from Google. Its main concept revolves
around weighting the client’s weights and averag-
ing them, where the weight is determined by the
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Data from first client

Vertical Federated Learning |

Labels

Data from second client

Figure 3. Vertical learning example [23]

Data from first client

Labels

Federated Transfer Learning

Labels

Data from second client

Figure 4. Federated transfer learning example [24]

number of samples from each client. In the #-th
round, the weight is determined as follows:

n
m.
W(t+1) — Z ;lwl(t) 4)
i=1

where: m, represents the number of samples for
the i-th client and m is the total number of
samples. The resulting value from Equa-
tion 4 will be used to initialise the client’s
weights in the next round or, if training
has concluded, will serve as the final
global weights [27].

Scaffold is a more sophisticated algorithm
than FedAvg and tries to eliminate a problem with
heterogeneous data by introducing two control
parameters ¢ for a server, and ¢, for each model.
In each interaction, a client obtains a parameter ¢
and estimates their weights according to the fol-
lowing formula:

g9i(wy) +> )

Wi ::wi_n(+c—ci
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where 7 is a learning rate and g, is the gradient.
Further, a client updates their local parameter c,,
where K is the number of local update steps:

1
¢t :=ci—c+K—n(W-W,-) (6)
In the end, the server aggregates the weights,

and updates the ¢ parameter [28]:

n
w:=w+12(wi—m
mé 1
i=

1, .,
c:=c+£Z(ci - ¢j)
i=1

FedProx is a novel technique proposed
by Li et al. Their research showed that local
training focuses on its own data bypassing
weights received from global models, espe-
cially in the models using stochastic gradient
descent (SGD). As a result, each model tries to
achieve a local minimum rather than the glob-
al one in the shared model. To eliminate this

(7
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discrepancy, they introduced a proximal term,
which is included in the objective function and
it might be expressed as follows:

£ wi - w2 ®)

where ¢ > 0 is known as the penalty coefficient
of the proximal term. It is also worth noting that
if the u is set to 0, this method is exactly the
same as FedAvg. Conversely, the larger the val-
ue of u, the stronger the regularisation, resulting
in smaller deviations of local models from the
global model. On the other hand, smaller values
of u ead to weaker regularisation and greater
flexibility for local models to adapt to their spe-
cific data [29].

Proposed method

In this chapter, the proposed novel algorithm
was introduced. Traditional aggregation methods
often overlook client quality, focusing solely on
model validity based on the volume of training
samples which assumes that the models trained
on larger datasets produce more accurate predic-
tions. To address these limitations, the proposed
algorithm incorporates entropy as a measure of
predictive uncertainty drawn from information
theory. Entropy is a term introduced by Shannon
and it is a certain set of uncertainties related to the
set of possible outcomes [30].

In practice, the models with lower entropy on
the validation set will have a higher inverse en-
tropy value, thereby receiving greater weight in
the aggregation process. Conversely, the models
with higher entropy, indicating lower confidence
in their predictions, will contribute less to the fi-
nal ensemble model. This approach helps prevent
weaker local models from diminishing the overall
quality of the global model.

Algorithm 1 presents a comprehensive
overview of the proposed algorithm, specifi-
cally focusing on a single round of weight ag-
gregation. The key distinction from other meth-
ods is the requirement for a validation dataset
to be maintained on the server side. This data-
set should not be sourced from clients due to
privacy concerns, nor should it duplicate any
learning events from individual clients. By im-
plementing this approach, the server can evalu-
ate each client effectively and assign an appro-
priate coefficient based on the value each client
contributes to the core model.

Algorithm 1: Weighted average method based
on entropy

Description:

W — a set of global weights

w, —a set of weights for the client £,

V' — a validation set

P, = {p,}—the set of probabilities generated by the
client k; on the validation set

¢ —number of classes

Outcome: aggregated weights

1. Collect model weights for each customer w, for
i=12,..,n

2. For each w, from i = 1,2, ..., n create a new
model M, and set its weight to w.

3. For each model M, conduct training on the vali-
dation set V: P, = M (V).

4. For each setc of probabilities compute the en-

tropy: H; = z pij logz pij.
=1
5. Calculate the inverse of entropy for each mod-

1

el: E; = E . . .
6. Aggregate weights: z w; Ei/z E;.
i=1 i=1

i=

Return the global weights: W

EXPERIMENTS

Federated learning can be applied to a variety
of models, but during this study, it will be based
on a neural network classification mechanism. The
architecture of the model was selected according
to the characteristics of the input data - such as the
number of features, dataset size, and overall task
complexity — as well as the evaluation of training
accuracy and validation learning curves. Using
this procedure allowed for the generalization abil-
ity to be evaluated alongside recognition of over-
fitting, both of which played important roles in the
architecture design for both datasets.

In the federated learning approach, a key
challenge arises in generating learning curves due
to the decentralized nature of the data. Since the
training data remains on client devices, conven-
tional real-time monitoring of performance met-
rics 1s limited. Nevertheless, there is a method to
collect training statistics locally and aggregate
them centrally, allowing for the generation of
representative learning curves. This process is
outlined as follows:

1. Collect the final training loss and accuracy from
each client at the end of their last local epoch.
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2. Send these metrics to the central server.

3. On the server, compute the average training
loss and accuracy across all clients — this gives
the overall training performance.

4. Run a validation step on the server using a
separate validation dataset to obtain validation
loss and accuracy.

5. Use the aggregated training and validation re-
sults to plot learning curves.

When fine-tuning the hyperparameters, the
standard FedAvg aggregation method was used to
ground the convergence of the model. Once con-
vergence was achieved, further experiments were
performed by applying alternative aggregation
methods. The architectures of the models used for
each dataset are detailed in Tables 2 to 5.

The study that formulated horizontal feder-
ated learning consisted of a certain central server
and three customers. The dataset was cut into
training, validation and testing subsets. In ad-
dition, the training set was already evenly dis-
tributed among the three clients to make sure all
clients have the same contribution to the model.
The hyperparameters for each subset are present-
ed in Table 6.

The new approach is evaluated through a pro-
cess that starts with training separate models for
each client and then constructing a global model
through the FedAvg, FedOpt, and FedProx meth-
ods. During this step, the model parameters are
combined across clients to build a holistic rep-
resentation of learned patterns. To evaluate the
performance of the proposed approach, the same
process was followed; this time, however, using
a novel weight aggregation method to optimise
model performance and ensure balanced contri-
butions from various clients. This comparison al-
lows for assessing the improvements provided by
the new aggregation method in comparison to the
currently known data aggregation methods, par-
ticularly the standard FedAvg algorithm.

Table 2. Summary of neural network architecture for
heart disease dataset

Layer Output shape | Parameters Activation
Flatten (,13) 0 -
Dense (,256) 3584 Relu
Dropout (,256) 0 -
Dense (,128) 32 896 Relu
Dropout (,128) 0 -
Dense (.2) 258 Softmax
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Table 3. Summary of neural network architecture for
Iris dataset

Layer Output shape | Parameters Activation
Flatten (:4) 0 -
Dense (,32) 160 Relu
Dropout (,32) 0 -
Dense (,16) 16 Relu
Dense (.3) 3 Softmax

Table 4. Summary of neural network architecture for
Pumpkin dataset

Layer Output shape Param Activation
Flatten (12) 0 -
Dense (,32) 416 Relu
Dropout (,32) 0 -
Dense (,16) 528 Relu
Dense (,2) 34 Softmax

Table 5. Summary of neural network architecture for
Seeds dataset

Layer Output shape Param Activation
Flatten (7) 0 -
Dense (:32) 256 Relu
Dropout (,32) 0 -
Dense (,16) 528 Relu
Dense (,3) 51 Softmax

Table 6. Summary of hyperparameters for each dataset

Dataset e?)'(')i?]ts eS:orZﬁ; Learning rate
Heart disease 5 20 21070
Iris 10 10 210710
Pumpkin 10 10 2-107"°
Seeds 10 8 21071

Datasets

Table 7 provides an overview of the datasets
used to test the new algorithm and their division
into training, validation, and test sets. The first
column lists the dataset names while the second
column displays the total number of training
samples, which were later divided among three
clients. Finally, the last two columns show the
number of samples in the test and validation sets,
respectively. The dataset was split into training,
validation, and test sets in a 6:2:2 ratio.

Selecting appropriate datasets ensures an accu-
rate evaluation of the proposed method by includ-
ing datasets with varying sizes of client training
data, with sample sizes ranging from 90 to 1500.
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Computing environment

During the research, the Python program-
ming language version 3.10.15 was used, togeth-
er with one of the most popular libraries targeting
federated learning — Flower version 1.10.0 [31],
[32]. The process of implementation involved le-
veraging inheritance to extend this library’s “Fe-
dAvg” class. Utilising polymorphism, the newly
created weight aggregation strategy was used in
the server class. Additionally, the following li-
braries were used:

e Tensorflow-gpu: 2.17.0,
e Keras: 3.5.0,
e Numpy: 1.26.4.

The research was conducted on a computer
with the following specifications:
e Operating System: Ubuntu 22.04,
e GPU: Nvidia RTX 5000,
e CPU: Intel(R) Xeon(R) Silver 4208 CPU @
2.10GHz,
e RAM: 64 GB.

RESULTS

This chapter presents the results obtained
from the conducted experiments. The evalua-
tion includes confusion matrices, test set perfor-
mance metrics, validation and training learning
curves, which were used to assess model conver-
gence. These elements provide a comprehensive
overview of the model’s behaviour, its generali-
sation capabilities, and the effectiveness of the
applied aggregation methods in the federated
learning setting.

Figure 5 illustrates the learning curves for
both accuracy and loss, tracked throughout the
training process. These curves are presented for
both the training and validation datasets, allowing
for a comprehensive assessment of the model’s
convergence behaviour. The graphs shown were
produced on the server side, following the earlier
algorithm using the FedAvg aggregation method.

Table 7. Division of the dataset into training, validation
and testing

Dataset Train Test Validation
Heart disease [14] 615 205 205
Iris [15] 90 30 30
Pumpkin [19] 1500 500 500
Seeds [17] 126 42 42

Table 8 provides a comprehensive summary
of the test set results for each dataset, comparing
the performance of four aggregation methods: Fe-
dAvg, Entropy, FedOpt, and FedProx. Each table
presents the results for key performance metrics,
including accuracy, precision, recall, and F1-score.
For each dataset, the first row shows the results for
the FedAvg method, while the second, third, and
fourth rows display the performance for the En-
tropy, FedOpt, and FedProx methods, respectively.

In order to give an accurate representation of
the behaviour of the different aggregation meth-
ods, the confusion matrices for each dataset are
presented in Figure 6. Each row contains the
aggregation methods in the following order: Fe-
dAvg, Entropy, FedOpt, and FedProx.

DISCUSSION

The results presented in Table 8 clearly dem-
onstrate that introducing an aggregation method
based on entropy into federated learning brings
tangible benefits compared to the classic FedAvg,
often outperforms FedOpt and FedProx as well.
Although the differences are minimal for the
Pumpkin dataset, a noticeable improvement in
accuracy is observed across most of metrics for
datasets, such as Heart Disease, Iris or Seeds.

Firstly, for the Heart Disease dataset, the
entropy-based method increases the classifica-
tion accuracy of sick patients from 92.66% (Fe-
dAvg) to 95.41%, while simultaneously reducing
the misclassification rate from 7.34% to 4.59%,
which is crucial for patient safety in a medical
context. The newly proposed method achieved
the best results across all metrics and increased
overall accuracy by about 1.46 percentage points
compared to the FedAvg method.

In the Iris dataset, the entropy-based meth-
od improved the classification accuracy for the
second class from 61.54% (FedAvg) to 76.92%
(Entropy). A similar result was also achieved by
the FedProx method. This method showed the
largest increase in accuracy over FedAvg across
all datasets, with an improvement of 15.38 per-
centage points. Among all the aggregation meth-
ods, both the entropy-based method and Fed-
Prox achieved the highest accuracy values, both
reaching exactly 90%.

The results obtained on the Pumpkin dataset
show little difference between the aggregation
methods. The highest accuracy was achieved by
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Figure 5. Test set results for each dataset: (a) heart disease, (b) iris, (¢) pumpkin, (d) seeds

Entropy and FedProx, with values of 88% and
87.80%, respectively. The confusion matrix indi-
cates that the Entropy method slightly improved
the accuracy for class 1, with an increase of 0.4
percentage points.

For the Seeds dataset, the largest overall in-
crease in accuracy was observed compared to
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FedProx, with an improvement of 2.39 percent-
age points. A similar increase was also noted
when compared to FedAvg. The confusion matrix
reveals that the entropy-based method achieves
the most significant improvement in class 1, with
an increase of approximately 13.34 percentage
points compared to FedProx. However, for class



Advances in Science and Technology Research Journal 2026, 20(3), 47-59

Table 8. Presents the test set results (%) for each dataset across different aggregation methods: FedAvg, Entropy,

FedOpt, and FedProx

Dataset Methods Accuracy Precision Recall F1-Score
FedAvg 93.66 93.71 93.66 93.66
Heart disease Entropy 95.12 95.12 95.12 95.12
FedOpt 93.66 93.67 93.66 93.66
FedProx 94.15 94.23 94.15 94.15
FedAvg 83.33 90.91 83.33 83.80
Iris Entropy 90.00 93.33 90.00 90.35
FedOpt 86.67 92.00 86.67 87.12
FedProx 90.00 93.33 90.00 90.35
FedAvg 87.60 87.61 87.60 87.60
Pumokin Entropy 88.00 88.00 88.00 88.00
P FedOpt 87.80 87.82 87.80 87.80
FedProx 87.80 87.81 87.80 87.80
FedAvg 85.71 86.49 85.71 85.90
Seeds Entropy 88.10 88.54 88.10 88.24
FedOpt 83.33 84.65 83.33 83.20
FedProx 85.71 86.57 85.71 85.69
Iris Seeds
Methods Setosa | Versicolor | Virginica Methods Kama | Rosa | Canadian
FedAvg 100.0 0.0 0.0 FedAvg 86.67 | 0.0 13.33
Entropy Setosa 100.0 0.0 0.0 Entropy Kama 86.67 0.0 0.0
FedOpt 100.0 0.0 0.0 FedOpt 66.67 | 0.0 33.33
FedProx 100.0 0.0 0.0 FedProx 7333 | 0.0 26.67
FedAvg 0.0 61.54 38.46 FedAvg 8.33 | 91.67 0.0
Entropy Versicolor 0.0 76.92 23.08 Entropy Rosa 8.33 | 91.67 0.0
FedOpt 0.0 69.23 30.77 FedOpt 8.33 | 91.67 0.0
FedProx 0.0 76.92 23.08 FedProx 8.33 | 91.67 0.0
FedAvg 0.0 0.0 100.0 FedAvg 20.0 0.0 80.0
Entropy Virginica 0.0 0.0 100.0 Entropy Canadian 13.33 0.0 86.67
FedOpt 0.0 0.0 100.0 FedOpt 6.67 0.0 93.33
FedProx 0.0 0.0 100.0 FedProx 6.67 0.0 93.33
Heart Disease Pumpkin
Urgiip
Methods Helathy Sick Methods Cergevelik Sivrisi
ivrisi
FedAvg 94.79 521 FedAvg 88.40 11.60
Entropy 94.79 5.21 Entropy : 88.40 11.60
Fedopt | clathy 93.75 625 Fedopt | VK | e g0 11.20
FedProx 95.83 4.17 FedProx 88.40 11.60
FedAvg 7.34 92.66 FedAvg ) 13.20 86.80
Entropy Sick 4.59 95.41 Entropy Urgiip 12.40 87.60
FedOpt 6.42 93.58 FedOpt Sivrisi 13.20 86.80
FedProx 7.34 92.66 FedProx 12.80 87.20

Figure 6. Presents the confusion matrices (%) for each dataset, comparing the classification performance
across different aggregation methods: FedAvg, Entropy, FedOpt, and FedProx

3, there is a decrease of 6.66 percentage points.
Despite this, the method still demonstrates a no-
table increase in overall accuracy.

The analysis of the presented results shows
that the entropy-based weight aggregation
method for federated learning yields measur-
able benefits compared to classical methods

such as FedAvg, and in many cases also out-
performs the FedOpt method. In all tested da-
tasets, the newly proposed method achieved
the highest scores or consistently high results,
regardless of the dataset. The average increase
in accuracy over the FedAvg method was 2.73
percentage points.
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CONCLUSIONS

This article introduced a new aggregation
method based on entropy which was empirically
tested on various datasets. The results show that
in all tested cases, the proposed method outper-
forms the classical approach such as FedProx or
FedOpt. The present achievement confirms the
thesis put forward at the beginning of this article,
providing strong evidence that the novel method
offers significant benefits and advantages in Fed-
erated Learning. The presented algorithm opens
a new approach to using entropy in the context
of Federated Learning. The author’s future work
will involve examining the proposed method on
other types of data, especially in the datasets con-
taining image datasets.
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