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ABSTRACT

Automated detection of surface defects in steel is critical for ensuring product quality and operational efficiency
in modern manufacturing. This study presents a unified framework for real-time steel surface inspection using five
lightweight YOLO (you only look once) nano architectures: YOLOv5n, YOLOv8n, YOLOv11n, YOLOv12n, and
YOLOv13n. Unlike prior studies that focused on optimizing individual models, this work conducts a cross-gen-
eration comparative analysis, introducing the first evaluation of YOLOv13 for steel surface defect detection. The
proposed framework integrates systematic dataset preparation, model training on benchmark and custom industrial
datasets, and detailed performance assessment under stringent IoU thresholds and real-time inference conditions.
Experimental results reveal that inference performance depends more on architectural efficiency, hardware utiliza-
tion, and software-level optimization than on model size alone. Basic augmentation techniques, such as flipping
and rotation, further enhance the detection of small and hard-to-capture defects. Among all models, YOLOv13n
achieves the fastest inference of 303.03 FPS with competitive accuracy, demonstrating exceptional suitability for
real-time, edge-based industrial deployments. The findings provide valuable empirical insights for selecting ef-
ficient architectures in automated visual inspection systems.

Keywords: machine vision, steel surface defects, light-weight YOLO variants, architectural differences,
model performances.

automated defect detection methods. Advance-
ments in deep learning, especially convolutional
neural networks, have led to the YOLO (you only
look once) model family, one of the most popular
for object identification. Recent work applying
YOLO architectures for welding surface inspec-
tion has highlighted the potential of these models
for defect detection and automation [4]. However,
using the latest YOLO models to find defects in
steel surfaces is still an active field of research.

INTRODUCTION

Steel surfaces, such as steel rods and hot-
rolled steel strips, are integral to industries like
automotive, aerospace, manufacturing, and con-
struction. However, it was shown that these sur-
faces are susceptible to defects, including scratch-
es, inclusions, cracks, and pitted surfaces, which
compromise quality, safety, and operational effi-
ciency [1, 2]. Ensuring the quality of steel prod-
ucts is an important requirement of modern indus-

trial manufacturing. Traditional defect detection
methods are manual, labour-intensive and prone
to inconsistency [3], encouraging a shift toward

Multiple studies adopted and enhanced YO-
LOvVS5, v8, and v11 models for steel surface defect
detection, each proposing unique improvements
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aiming to enhance accuracy and speed. Cheng et
al. [1] proposed EC-YOLO, an improved version
of the YOLO-V5-based model, using an efficient
channel attention bottleneck (EB) module for bet-
ter feature extraction, and Context Transforma-
tion Networks block for enhanced feature fusion
and context modeling, for detecting small and
elongated defects. They used publicly available
datasets; GC10-DET, NEU-DET and SLD-DET,
and achieved mean Average Precision (mAP) val-
ues of 71%, 83% and 87.5%, respectively, on the
improved model, but with FPS of 91.74 on NEU-
DET and 64.10 on GC10-DET, it also increased
the parameters of the model by around 116.81
MB, slowing down the detection efficiency. Wang
et al. [2] proposed a lightweight RDB-YOLO
model for detecting steel surface defects based
on YOLOv5n. Using Receptive Field Enhance-
ment (RFE) to compensate for accuracy loss due
to noise, deformable convolution network (DCN)
to detect irregularly shaped defects, and Bi-level
Routing Attention (BRA) to improve detection of
small targets. Trained on the benchmark dataset,
NEU-DET, and attained an mAP@0.5 score of
0.821, an improvement of 0.51, but with an FPS
of 60.4 FPS on an NVIDIA RTX 3090. Yang et
al. [3] introduced a lightweight spatial attention
module to extract effective information and de-
signed a new feature fusion network, Amsf, and
added the FAM attention module to strengthen
the capability to detect on a lightweight surface
anomaly detection algorithm leveraging the mod-
ified YOLOVS architecture. Experiments were
conducted using the NEU-DET dataset, which
gave an average detection accuracy of 81.97%.
Yu et al. [5] customized a YOLO-v5 model,
LCG-YOLO, for real-time anomaly detection in
metallic parts. The LSandGlass (LSG) module
removes the low-resolution feature layer to re-
duce loss of critical details. The experiment was
executed on a self-made dataset, on which the
mAP improved to 0.955, and an increase of 21
fps, but it cost them an increase of 3.7% in pa-
rameter size, compared to the original YOLO-vS5.
Ma et al. [6] developed a lightweight approach
for steel surface anomaly detection to reduce
computational complexity while improving the
accuracy, based on an improved YOLOvV8 model.
Model training and evaluation were conducted on
the NEU-DET dataset containing 1800 images
equally distributed among six defect classes. The
model used GhostNet as a backbone to reduce
complexity, MPCA was added to enhance feature
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extraction, and replaced IoU loss with SIoU for
improved bounding box accuracy. The model
was trained and evaluated on the system with
Intel 19-9900k CPU and NVIDIA RTX 2080Ti
GPU, using PyTorch 2.1.1. The improved YO-
LOv8n variant achieved an mAP@0.5 of 78.6%,
outperforming YOLOvS8n baseline (77.4%) and
YOLOVS8s (77.9%). The system also achieved an
FPS of 171.5, which is the highest among com-
pared models and a parameter count of as low as
2.04 M and 4.5 MB. Liu et al. [7] introduced a
modified version of YOLOvVS, SLF-YOLO, for
steel surface anomaly detection. They modified
the model by including an SC_C2f module to
improve feature representation, Light-SSF Neck
Structure to improve multi-scale feature extrac-
tion and FIMetal-loU Loss Function to enhance
the recognition of small defect features. The SLF-
YOLO model achieved the mAP@0.5 of 80.0%
compared to the YOLOVS’s 75.9% on the NEU-
DET (1800 images with 6 classes) dataset. On the
AL10-DET (4652 images with 10 classes) datas-
et, SLF-YOLO achieved the mAP@0.5 of 86.8%,
and reduced the parameter count to 9.65 M com-
pared to YOLOvS8’s 11.12 M parameters. NVID-
IA RTX 3090 GPU was used to train the model,
with CUDA 11.8 and cuDNN 7.0. Huang et al.
[8] introduced DM-YOLOV11, using a Dynamic
Weight Reparameterization Module, MPCA, and
the Wise-IoUv2 loss function to enhance regres-
sion robustness. The experiments were carried out
on benchmark datasets; NEU-DET and GC10-
DET, achieving an mAP score of 0.806 and 0.714,
respectively and reduced the model size to 10.8
M parameters. Sun et al. [9] proposed MCH-YO-
LOv12, an enhanced lightweight version of YO-
LOv12 that integrates a MultiScaleGhost module
for improved multi-scale feature extraction, a
Spatial-Channel Collaborative Gated Linear Unit
(SCCGLU) for refined attention to defect details,
and a Hybrid Detection Head combining anchor-
based and anchor-free strategies to better handle
diverse defect sizes and shapes. The improved
model achieved higher accuracy with reduced
complexity, reaching 89.2 mAP (6.8 M parame-
ters) on the NEU-DET dataset and 95.0 mAP (7.0
M parameters) on the APDDD dataset, outper-
forming the baseline YOLOvV12. Zhao et al. [10]
introduced RT-DETR, a real-time Transformer-
based detector that eliminates Non-Maximum
Suppression (NMS) through an efficient hybrid
encoder and Uncertainty-Minimal Query Selec-
tion, achieving 53.1% AP at 108 FPS (ResNet-50)
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and 54.3% AP at 74 FPS (ResNet-101) on the
COCO dataset, outperforming YOLOVS-L. Simi-
larly, Xu et al. [11] proposed PP-YOLOE, an
anchor-free detector with the CSPRepResStage
backbone, Task Alignment Learning (TAL), and
an Efficient Task-aligned Head (ET-head), attain-
ing 51.4 mAP at 78.1 FPS on the COCO dataset,
improving both accuracy (+1.9 AP) and speed
(+13.35%) over PP-YOLOV2.

YOLOVI13, which is presented in [13], and
YOLOvV12 are recent models, while there are
some studies utilizing YOLOvI12 for steel sur-
face defect detection, there are none utilizing
YOLOVI13. Most of the studies in the literature
emphasize optimizing the original model(s) and
assessing their performance across different sce-
narios like [FEM-YOLOvV13 proposed by Feng
et al. [14] is a modified version of YOLOv13 for
underwater target detection, achieving a 96.8%
mAP@0.5 on the j-EDI (Underwater Litter Im-
age) dataset. YOLOv13-Cone-Lite proposed by
Wang et al. [15] is a modified version of YO-
LOv13 for real-time detection of traffic cones for
autonomous formula racing cars, achieving an
mAP@50 of 92.9% with a model size of 8.7 MB.

Our critical review of literature suggests that
researchers have introduced several notable im-
provements to YOLO-based architectures for
steel surface defect detection; however, most of
these efforts have concentrated on optimizing in-
dividual models rather than performing system-
atic, cross-generation evaluations. Despite their
promising efficiency, the most recent lightweight
architectures, such as YOLOv12 and YOLOvV13,
are largely unexplored within the domain of qual-
ity inspection. Moreover, existing studies rarely
integrate standardized benchmark datasets with
real industrial data. The majority of existing re-
search has focused on increasing detection accu-
racy, with limited attention given to the collec-
tive influence of architectural design, hardware,
and software factors on real-time inference per-
formance. Furthermore, previous works largely
failed to empirically demonstrate that inference
speed and model size are not directly propor-
tional. Our research study addresses these gaps
and demonstrates that baseline models can also
achieve competitive detection accuracies.

In this paper, we present a comprehensive
comparative study of various YOLO nano vari-
ants for the automated detection and localization
of surface defects on steel products. The models
are trained and evaluated on publicly available

benchmark datasets and a custom industrial da-
taset collected from a local manufacturing facil-
ity, respectively, thereby addressing both standard
and real-world inspection scenarios. Although the
experiments were validated on a custom dataset,
it was carefully designed to reflect real produc-
tion conditions. This ensures reliable model per-
formance within its intended deployment context.
While such specialization limits broader general-
ization, the YOLO-nano architectures offer strong
transfer learning capabilities. With additional fine-
tuning or re-training on small samples from new
environments within the steel domain, the very
same models can be successfully generalized.
We systematically analyze each model to
identify their respective strengths and limitations.

The insights derived from this study are intended

to guide researchers and industry practitioners in

selecting and optimizing deep learning models for
automated steel surface inspection scenarios. The
major contributions of this paper are listed below:

1. Developed a comprehensive framework for au-
tomated quality inspection, encompassing sys-
tematic dataset preparation, the training of var-
ious YOLO-based models and their validation
for precise defect detection and localization.

2. Evaluated the framework by comparing multiple
lightweight YOLO variants, emphasizing preci-
sion under stringent IoU thresholds and real-time
performance in terms of FPS to ensure an opti-
mal balance between accuracy and efficiency.

3. Established that inference speed is predomi-
nantly determined by architectural efficiency,
hardware-level utilization, and software opti-
mizations, highlighting the limited correlation
between model size and real-time performance.

The methodology adopted as part of this re-
search work is systematic and iterative, ensuring
the achievement of the project’s objectives. Fig-
ure 1 shows the machine vision pipeline with the
following steps:

e Data collection: Using two publicly available
datasets and a custom dataset collected from a
manufacturing facility.

e Data preprocessing: Combining datasets to
achieve best possible results, augmenting da-
tasets to make the trained models robust, split-
ting the dataset into subsets for training, test-
ing and validation of the models.

e Model training and development: Training the
nano variants five chosen YOLO model archi-
tectures on the datasets.
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Figure 1. Proposed machine vision pipeline

e Postprocessing: Drawing bounding boxes
around the defects and only allowing results
above a specified confidence threshold.

e Performance evaluation: Evaluate and com-
pare the trained models based on various per-
formance metrics.

DATASET PREPARATION

Dataset overview

NEU-DET (NorthEastern University Dataset)

It is a dataset available at [16] and further dis-
cussed in [17], it is a collection of grayscale im-
ages featuring surface defects on hot-rolled steel
strips categorized into six major defect types:
scratch, patch, rolled in scale, pitted surface, in-
clusion, and crazing as shown in Figure 2, these
defects represent the most frequent and impactful
surface anomalies encountered in industrial hot-
rolled steel production. Specifically, scratches
and rolled-in scales commonly result from fric-
tion and oxide formation on steel surfaces, inclu-
sions originate during the steelmaking process,
while pitted surfaces and patches arise from ir-
regular rolling conditions. These categories col-
lectively encompass the majority of defect types
that significantly affect product quality and pro-
duction efficiency, making them the most relevant
for industrial inspection applications. The dataset
contains 300 grayscale images for each defect
type, totaling 1800 images.

GC10-DET dataset

It is a dataset available at [18] and further
discussed in [19], it is a collection of images of
steel surface defects on hot-rolled steel strips, cat-
egorized into ten commonly occurring steel sur-
face defects: punching hole, welding line, cres-
cent gap, water spot, oil spot, silk spot, inclusion,
rolled pit, crease, and waist folding as shown in
Figure 3. The dataset consists of 2,300 images,
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with some images containing multiple defects.
There are 3,563 labelled objects. Each of these
objects represents an individual defect annotated
with a bounding box and its corresponding class
label. These annotated instances serve as the
ground truth for model training and evaluation,
enabling the network to learn precise localization
and classification of defects on steel surfaces.

Custom dataset

It is a dataset collected from a local manu-
facturing facility consisting of images of sur-
face defects on steel piston rods used in vehicle
shock absorbers, it is a binary class dataset with
two classes: defected and non-defected. Figure 4
highlights the real-world defect types included
in the dataset: dent, material pit, process pit, line
scratch, plating crack, and roughness, where each
defect is zoomed in on and circled in red. In this
work, 3445 images of only dent images were tak-
en into account.

Data preprocessing

Combining datasets

We combined the two publicly available datas-
ets, NEU-DET and GC10-DET, to create a dataset
comprising 13 defect types, namely: crease, cres-
cent gap, inclusion, oil spot, patches, pitted sur-
face, punching hole, rolled in scale, scratches, silk
spot, waist folding, water spot, and welding line.
This was done to create a dataset with improved
diversity, resulting in better usability. All the im-
ages were resized to 416x416 to maintain a bal-
ance between defect visibility and computational
efficiency. This resolution offers an optimal trade-
off by preserving sufficient detail for detecting
small surface defects while keeping the compu-
tational cost manageable. Moreover, the resizing
followed standard aspect ratio adjustments to en-
sure consistency with YOLO input requirements.
Larger image sizes significantly increase pro-
cessing time and memory consumption, whereas
smaller resolutions tend to blur fine defect details,
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Figure 2. NEU-DET dataset six defect types
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Figure 4. Custom dataset defect types

reducing detection accuracy. Therefore, the 416 x
416 dimension was selected as the most practical
choice for both accuracy and efficiency.

Data annotation

Annotation plays a vital role in the dataset
preparation process required for effective model
training. In this study, images were manually an-
notated using bounding boxes to precisely mark
defect locations, and all annotations were validat-
ed by domain experts to ensure spatial accuracy
and correct class labeling. The Roboflow tool
was used for efficient and consistent image an-
notations. Each image has its own.txt file with a
single line for each bounding box, the annotation
format for YOLO models is as follows: class _id
center_x center_y width height.

The data.yaml file includes the configuration
information that the model uses to find the images
and link class names to class ids during training,
testing, or validation.

Data augmentation

The model’s performance is greatly impacted
by the variety and size of the training data [20], so
the data has been augmented by creating modified
copies of the images as shown in Figure 5, the orig-
inal image without any augmentation goes through
the data augmentation process using different
augmentation techniques to create three different
modified copies from one image. The following
augmentation techniques have been utilized:

e Flip: randomly flip an image vertically(in the
up/down direction) or horizontally(in the left/
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right direction), helps the model be insensitive
to the orientation of the subject.

e Rotation: Applies a small, random rotation to
the image within a specific range of -10° to
+10° (includes counter-clockwise and clock-
wise rotations).

After performing data augmentation the
original dataset of 3445 images was increased
to 5857 images.

Splitting the dataset

We split the dataset into three subsets:

e Training set: 82% of the images, 4824 were
used to train the machine learning model.

e Validation set: 12% of the images, 689 were
used to fine-tune the hyperparameters and
monitor the model and prevent overfitting.

e Testing set: Remaining 6%, 344 were reserved
to evaluate the final model’s accuracy and
performance.

MODEL SELECTION, TRAINING
AND EVALUATION

The choice of multiple YOLO versions enables
a comprehensive comparative evaluation, as each
iteration introduces new architectural improve-
ments such as better backbone designs, advanced
feature aggregation, or more effective training strat-
egies. Evaluating these models on the same datasets
allows us to systematically analyze the impact.

In this present work, five contemporary and
widely adopted YOLO architectures including
YOLOv5n, YOLOv8n, YOLOv11n, YOLOvI12n
and YOLOv13n were selected. These models
are particularly suitable for industrial inspection
scenarios and deployment on devices with lim-
ited computational resources, as they provide an

Data Augmentation

Original Image

effective trade-off between detection accuracy, in-
ference speed, and computational cost. The nano
variants of YOLO architectures are designed with
significantly fewer parameters, making them ideal
for hardware-constrained environments. As dem-
onstrated in [21], the YOLOv8n model achieves
faster inference compared to its small counterpart
(YOLOvS8s) with only a minor reduction in accu-
racy. Furthermore, a recent comparative study in-
volving YOLOv8n, YOLOv10n, and YOLOv12n
confirmed that these lightweight variants are
well-suited for industrial applications, offering
high throughput and real-time performance while
maintaining low resource consumption [22].

Model architecture

Although all the models come with their own
distinct innovations in design, they all are made
up of a common structure of three main compo-
nents, three basic components, namely backbone,
neck, and head as depicted in Figure 6. Visual
characteristics are extracted from the raw input
image by the backbone, forming a hierarchy of
low-level (textures, edges) and high-level (ob-
jects, shapes) features, to make up the foundation
of the model’s understanding. Earlier versions
of YOLO used DarkNet as the backbone while
newer versions utilize CSPNet or convolutional
blocks designed for optimized deployment with
improved computational efficiency.

To improve the identification of objects of
different sizes, the neck combines these char-
acteristics over several scales. Semantic (high-
level) and spatial (low-level) information flow
is enhanced by the usage of Feature Pyramid
Networks (FPN) and Path Aggregation Net-
works (PAN). increasing the model’s accuracy
in identifying both huge, clearly defined flaws
and tiny, subtle ones.

Rotated

Flipped

Flipped + Rotated

Figure 5. Example results of data augmentation
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Figure 6. Common structure of the YOLO architecture

The head ultimately produces predictions that
include bounding box coordinates, class labels,
and confidence scores [23]. Depending on the
YOLO version, the head may use anchor-based
detection (as in YOLOVS5) or an anchor-free ap-
proach (as introduced in YOLOvV8 and beyond).
The head is crucial in producing fast detec-
tions allowing the model to maintain real time
performance.

The architectural evolution of YOLO mod-
els has introduced several enhancements within
this structure, to improve efficiency and detection
accuracy. One of the early major improvements
were the Cross Stage Partial (CSP) connections
which separate feature maps into two paths to be
merged later on in the model’s pipeline; this has
resulted in a reduction in computational complex-
ity and accuracy.

The Efficient Layer Aggregation Network
(ELAN) added in later versions such as YOLOvV7,
improves the organization of convolutional
blocks for better gradient propagation across deep
layers. Allowing the network of the model to be
deeper and wider without the problem of vanish-
ing gradients, thereby enhancing feature learning.

The Bidirectional Feature Pyramid Network
(BiFPN) was introduced by Tan et al. [24] to
improve the fusion of features at various scales;
it differs from the standard FPN as it includes
weighted connections and bi-directional path-
ways, allowing the model to adaptively learn the
significance of different feature levels. This is ad-
vantageous in detecting defects of various sizes
from dents to small scratches.

Attention mechanisms have also been in-
troduced in newer versions of YOLO, such as
Squeeze and Excitation (SE) or Convolutional
Block Attention Module (CBAM) which con-
sists of a Channel Attention Module (CAM) and
a Spatial Attention Module (SAM), both modules
allow the estimation of attention weights for the
precise refinement of feature maps to ensure more
attention towards more relevant spatial regions
and channels, and less focus on less important in-
formation. Further improvements have been made
in the activation layers with enhanced activation
functions such as Sigmoid Linear Unit (SiLU) or
LeakyReLU (Rectified Linear Unit) which im-
proves upon the standard ReL.U function offering
smoother gradients. Recent YOLO models con-
tain decoupled detection heads, wherein classifi-
cation and localization tasks are executed in sepa-
rate branches which have significantly improved
detection accuracy, speed, and deployment effi-
ciency across different variants as discussed in
[25]. Table 1 presents a comprehensive overview
of the YOLO model evolution, outlining the core
innovations and architectural enhancements in-
troduced in each version:

Hyperparameter tuning and model training

All the models were trained under the follow-
ing consistent hyperparameters to guarantee un-
biased comparison:

e Epochs: All models were trained for 300 epochs
with patience set at 50, i.e., the training stops
earlier if the mAP is the same for 50 epochs.
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Table 1. YOLO models’ architectural modifications

YOLO variant Architectural modifications Key strengths

YOLOV5  |CSPDarknet backbone, PANet, SWISH activation Balanced accuracy, speed, and deployment
efficiency with minimal parameters

YOLOv8 CSP+ELAN, BiFPN-style neck, anchor-free head Improved accuracy with high throughput

YOLOVI1  |R-ELAN backbone, PANet neck, lightweight modules Fast convergence, lightweight, and offers a
balanced trade-off of speed and accuracy

YOLOv12 R-ELAN+Attention backbone, BiFPN neck, decoupled head | Small model footprint with competitive mAP

YOLOV13  |Light hybrid CNN, multiscale adaptive fusion Exceptional inference speed while
maintaining high mAP

e Batch Size: 32 images per batch, balancing
GPU memory utilization and training speed.

e All the rest of the hyperparameters were kept
the same as the default.

Performance evaluation indicators

The following performance metrics were
evaluated to assess the trained models:
e mAP: Evaluates the overall detection accura-
cy by averaging precision across all classes as
represented in Equation 1 [26].

n
1
mAP = EZ AP, (1)
k=1

where: AP, — average precision of one class, n —
the number of classes.

e Precision: Indicates the proportion of cor-
rectly detected defects among all predicted
defects. A high precision (close to 1) means
that most of the predictions are correct with
very few misclassifications. Mathematically, it
is presented in Equation 2 [26].

TP
TP + FP

Precision = 2)

e Recall: Measures the ratio of actual problems
accurately identified by the model. A high re-
call value means the model rarely misses true
detections as shown in Equation 3 [26].

TP
Recall =

g — 3
TP + FN @)

where: TP — the number of true positives,
FN — the number of false negatives,
FP — the number of false positives.

e Intersection over union (IoU): IoU thresholds
are used to measure how well the model is
able to localize an object as discussed in [26].
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It is the ratio of the predicted bounding boxes’
intersection area to the ground truth (anno-
tated) bounding boxes’ union area as shown
in Equation 4. This quantifies the intersection
between the expected and the actual bounding
boxes, a perfect prediction would yield an loU
of 1, in practice a prediction is considered if its
IoU exceeds a set threshold.

_ Area of Overlap

IoU = 4)

Area of Union

e Frames per second (FPS): It is also a key per-
formance metric and a focus point of this study,
it measures how many images a model can pro-
cess and generate predictions for in one second.
It evaluates the model’s inference speed and
is essential for real-time applications. such as
industrial inspection. Calculated as shown in
Equation 5 [5], a higher FPS indicates faster
processing speeds and better efficiency.

Number of Images Processed
FPS = . )
Total Inference Time

Experimental setup

All models were trained using kaggle, with
2 T4 GPUs each with 15 GiB (Gibibyte) mem-
ory, 29 GiB of RAM. All YOLO models from
YOLOVS5 onwards are developed on the Pytorch
framework with CUDA acceleration enabled for
efficient GPU-based training and inference. Data
preprocessing, augmentation, and post-process-
ing routines were managed using Roboflow and
the Albumentations and OpenCV libraries.

RESULTS AND DISCUSSION

In this section, the results of the conduct-
ed experiments are discussed in detail, with
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emphasis on understanding the trade-offs be-
tween accuracy, speed, and computational cost
for different YOLO architectures under indus-
trial inspection conditions.

Yolov5 results

Figure 7 shows the training evolution of the
performance metrics of the YOLOvSn model,
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5,
and mAP@0.5:0.95. The values of the metrics
are on the y-axis and the training epochs are on
the x-axis. The graph shows a sharp increase in
mAP@0.5, precision and recall in the initial ep-
ochs. Precision and recall stabilize above 0.99 in-
dicating reliable performance, mAP@0.5 nearly

metrics/precision metrics/recall

reaches 0.1, while mAP@05:0.95 shows consis-
tent improvement and stabilises over 0.66.

Figure 8 shows the confusion matrix of the
YOLOv5n model trained on the custom dataset,
the x-axis represents the true-labels and the y-axis
represents the predicted labels generated by the
model. The diagonal elements (top left to bottom
right) are the correctly classified input images and
off-diagonal elements represent the misclassified
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the
deep blue color denotes higher correctness in the
model’s detections.

Figure 9 shows the inference results of the
YOLOv5n model on the custom dataset. Where
4 different input images have been processed, in
each image all the detected defects are highlighted

metrics/mAP_0.5 metrics/mAP_0.5:0.95

1.0 1.00 Fr" 1.0
0.9 0.9 0.6
: 0.95
0.8 0.8 0.5
0.7 0:29 0.7 0.4
0.6 0.85 0.6 0.3
0.5
0.5 0.2
0.4 0.80
g 0.4
0.1
0 200 0 200 0 200 0 200

Figure 7. Training evolution of YOLOV5n on a custom dataset

Confusion Matrix

Predicted
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defected
True

- 0.4
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! -0.0
background

Figure 8. Confusion matrix of YOLOv5n
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with bounding boxes and labels, along with their
respective confidence scores.

Yolov8 results

Figure 10 shows the training evolution of the
YOLOv8n model’s performance metrics with
separate graphs for the evolution of the follow-
ing metrics: precision, recall, mAP@0.5, and
mAP@0.5:0.95. The values of the metrics are on
the y-axis and the training epochs are on the x-ax-
is. The graphs show a sharp increase in precision,
recall, and mAP@0.5 in the initial epochs, and
rapid stabilization above 0.99, indicating reliable
performance, whereas mAP@0.5:0.9 rises gradu-
ally above 0.6.

Figure 11 shows the confusion matrix of the
YOLOv8n model trained on the custom dataset,
the x-axis represents the true-labels and the y-axis
represents the predicted labels generated by the
model. The diagonal elements (top left to bottom
right) are the correctly classified input images and
off-diagonal elements represent the misclassified
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the
deep blue color denotes higher correctness in the
model’s detections.

Figure 12 shows the inference results of the
YOLOvV8n model on the custom dataset. Where
4 different input images have been processed, in

defected 0.8

each image all the detected defects are highlight-
ed with bounding boxes and labels, along with
their respective confidence scores.

Yolov11 results

Figure 13 shows the training evolution of the
performance metrics of the YOLOv1In model
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5, and
mAP@0.5:0.95. The values of the metrics are
on the y-axis and the training epochs are on the
x-axis. The model’s mAP@0.5 converges gradu-
ally to achieve near perfect performance. Preci-
sion and recall reach above 0.99 demonstrating
very strong detections with minimal ambiguities.
mAP@0.5:0.95 rises steadily indicating the mod-
el can handle stricter loU thresholds.

Figure 14 shows the confusion matrix of the
YOLOvI11n model trained on the custom dataset,
the x-axis represents the true-labels and the y-axis
represents the predicted labels generated by the
model. The diagonal elements (top left to bottom
right) are the correctly classified input images and
off-diagonal elements represent the misclassified
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the
deep blue color denotes higher correctness in the
model’s detections.

Figure 9. Inference images of YOLOv5n on a custom dataset
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Figure 10. Training evolution of YOLOvV8n on a custom dataset
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Figure 12. Inference images of YOLOv8n on a custom dataset
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Figure 13. Training evolution of YOLOv11n on a custom dataset

Figure 15 shows the inference results of the  Yolov12 results
YOLOvV11n model on the custom dataset. Where
4 different input images have been processed, in
each image all the detected defects are highlight- ~ performance metrics of the YOLOvI2n model
ed with bounding boxes and labels, along with ~ with separate graphs for the evolution of the fol-
their respective confidence scores. lowing metrics: precision, recall, mAP@0.5, and

Figure 16 shows the training evolution of the
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Figure 15. Inference images of YOLOV11n on a custom dataset

mAP@0.5:0.95. The values of the metrics are on
the y-axis and the training epochs are on the x-
axis, the graphs display rapid and stable conver-
sion of prevision, recall and mAP@0.5. All the
metrics consistently remain over 0.99 indicating
strong and reliable detection capabilities. The
mAP@0.5:0.95 improves steadily, demonstrating
robust performance across various IoU thresholds.

Figure 17 shows the confusion matrix of the
YOLOvVI12n model trained on the custom data-
set, the x-axis represents the true-labels and the
y-axis represents the predicted labels generated
by the model. The diagonal elements (top left
to bottom right) are the correctly classified in-
put images and off-diagonal elements represent
the misclassified input images. Both the classes
in the matrix indicate an mAP@0.5 of 100. The

40

darker shade of the deep blue color denotes high-
er correctness in the model’s detections.

Figure 18 shows the inference results of the
YOLOvV12n model on the custom dataset. Where
4 different input images have been processed, in
each image all the detected defects are highlight-
ed with bounding boxes and labels, along with
their respective confidence scores.

Yolov13 results

Figure 19 shows the training evolution of the
performance metrics of the YOLOv13n model
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5,
and mAP@0.5:0.95. The values of the metrics
are on the y-axis and the training epochs are on
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Figure 18. Inference images of YOLOvV12n on a custom dataset

the x-axis, illustrating rapid and stable conver-
sion of mAP@0.5, precision and recall in the
early epochs. Precision and recall reach above
0.98 indicating strong defect detection capability,
mAP@0.5 quickly approaches 1.0 reflecting high
accuracy. While mAP@0.5:0.95 does not stabilize

as rapidly but does improve steadily demonstrating
effective detection even at stricter loU thresholds.

Figure 20 shows the confusion matrix of the
YOLOvV13n model trained on the custom dataset,
the x-axis represents the true-labels and the y-axis
represents the predicted labels generated by the
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Figure 19. Training evolution of YOLOV13n on a custom dataset

model. The diagonal elements (top left to bottom
right) are the correctly classified input images and
off-diagonal elements represent the misclassified
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the
deep blue color denotes higher correctness in the
model’s detections.

Figure 21 shows the inference results of the
YOLOvV13n model on the custom dataset. Where
4 different input images have been processed, in
each image all the detected defects are highlight-
ed with bounding boxes and labels, along with
their respective confidence scores.

Effects of data augmentation
on model performance

In this study, basic augmentation techniques
such as flipping and rotation were employed to

expand the number of training samples and to
enhance model’s generalizability. To further in-
vestigate this aspect, an ablation experiment was
conducted on the YOLOv13n model using the
same dataset without augmentation. The results
revealed a noticeable decline in detection perfor-
mance, confirming that the applied augmentation
techniques positively impacted model learning
and enhanced the detection of small and hard-to-
capture defects. Specifically, precision improved
by 1.33%, recall by 4.13%, mAP@50 by 1.52%,
and mAP@50-95 by 0.63% as shown in Table
2 compared to the non-augmented dataset, dem-
onstrating that even simple augmentations such
as flipping and rotation contributed meaning-
fully to the overall detection performance. Fig-
ure 22 shows the comparison of the mAP@50
of the YOLOV13n trained on the original dataset
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Figure 20. Confusion Matrix of YOLOv13n
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Figure 21. Inference images of YOLOvV13n on a custom dataset

plotted with a blue solid line and the augmented
dataset plotted with a red dashed line.

Comparative analysis of results

The performance metrics of all the evaluated
models are summarized in Table 3, which includes
the number of epochs, training time, parameter
count, and final model size. The results reveal
a distinct trade-off between accuracy, inference
speed, and computational cost. While YOLOv8n
achieves the highest mAP of 0.9978 and leading
precision—recall scores, this comes at the expense
of greater model complexity and longer inference
time. YOLOv11n and YOLOv13n perform com-
parably in accuracy, particularly under stricter
IoU thresholds, yet deliver significantly improved
inference speeds. YOLOvV5n remains competitive
despite its smaller size, demonstrating suitability
for highly resource-constrained scenarios, where-
as YOLOv12n, although slightly lower in mAP,
still maintains balanced precision and recall val-
ues. Interestingly, the results indicate that smaller
model size does not necessarily translate to faster
inference. Although YOLOvV5n has the smallest
footprint i.e. 3.61 MB, it does not achieve the
highest frame rate. Instead, YOLOvVI13n with a
moderately larger size delivers the fastest infer-
ence of 303.03 FPS, surpassing even the much
larger YOLOv8n (11.7 MB, 175.44 FPS). This
observation confirms that inference performance
is governed more by architectural efficiency than
by model size alone.

The superior runtime efficiency of YOLOv13n
arises from its refined architecture, incorporat-
ing HyperACE and FullPAD modules that mini-
mize redundant computation and enable adaptive
multi-scale feature fusion. Combined with dep-
thwise separable convolutions and a lightweight
backbone, these design enhancements substan-
tially reduce FLOPs while preserving detection

accuracy. As reported in [13], these architectural
refinements allow YOLOvV13n to achieve higher
throughput without sacrificing precision. From a
cost—benefit perspective, YOLOv13n offers the
most favorable balance by providing near-top ac-
curacy, the highest inference speed, and efficient
resource usage. Its performance profile makes it
highly suitable for real-time, edge-level deploy-
ment in industrial steel inspection systems, where
high frame rates and timely detection directly in-
fluence production safety and quality assurance.
From the empirical analysis, it can be con-
cluded that while inference speed may appear to
be primarily dependent on hardware performance,
in practice it is a complex relationship of model
architecture, hardware utilization, and software-
level optimizations. The architectural efficiency
of a model determines how effectively its lay-
ers and parameters can be executed in parallel.
The models with depthwise separable convolu-
tions or reduced feature maps typically achieve
lower latency because they minimize redundant
computations and memory accesses. The YOLO
family demonstrates this through progressive ar-
chitectural refinements such as improved feature
fusion and optimized convolutional modules that
directly impact throughput without significantly
increasing model complexity. Hardware utiliza-
tion is another critical factor influencing infer-
ence speed. Deployment platforms with higher
computational resources (e.g., GPUs, FPGAs,
or Al accelerators) can process multiple opera-
tions concurrently, provided the model structure
allows for efficient parallel execution. Memory
bandwidth, cache utilization, and the precision
format (e.g., FP32 vs. INT8) also play important
roles in determining real-time performance. As
reported in [27], deploying a smaller YOLOV3
variant on an edge device increased FPS by ap-
proximately 7.6x, affirming the significance of
optimizing model and hardware compatibility
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Table 2. Performance metrics of YOLOvV13n trained on the original and augmented datasets

Metric Original dataset Augmented dataset Change (%)
mAP@50 0.9825 0.9957 1.3200
Precision 0.9545 0.9957 4.1290
Recall 0.9790 0.9942 1.5190
mAP@50-95 0.6436 0.6400 0.6330
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Figure 22. Comparison of mAP@50 of YOLOv13n trained on the original non-augmented
and augmented datasets

rather than relying solely on raw hardware capa-
bility. At the software level, optimizations such as
pruning, quantization, kernel fusion, and param-
eter sharing further enhance inference efficiency
by reducing model size, memory footprint, and
computational overhead while maintaining accu-
racy. Therefore, inference speed is not merely a
function of hardware performance; it is the cu-
mulative outcome of architectural design choices,
hardware-aware deployment strategies, and tar-
geted software optimizations. Collectively, these
factors define the real-world applicability of deep
learning models in industrial inspection systems,

Table 3. Validation performance metrics table

especially when deployed on embedded or edge
computing platforms, as also emphasized in [28].

CONCLUSIONS

Our proposed work developed a complete
machine vision pipeline using five YOLO nano
variants (YOLOv5n to YOLOv13n), evaluated
on benchmark and industrial steel surface defect
datasets. The methodology followed a struc-
tured process from problem analysis to model
evaluation. YOLOv5n offered the best resource

Models
Metrics YOLOV5 nano YOLOVS8 nano YOLOv11 nano YOLOvV12 nano YOLOvV13 nano

Epochs 300 265 195 215 189
(Tr:ﬁ"r:’r‘fgs';”e 03:00:28 03:45:00 02:27:46 03:00:26 03:16:41
Parameters (M) 1.9 3.2 2.6 2.6 25
Size (Mb) 3.61 1.7 5.2 5.17 5.14
mAP@0.5 0.993 0.9977 0.992 0.9851 0.993
mAP@05:0.95 0.6573 0.6695 0.6634 0.659 0.648
Precision 0.994 0.9978 0.992 0.9895 0.994
Recall 0.995 0.9961 0.994 0.9912 0.993
FPS 126.58 175.44 131.56 69.93 303.03
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efficiency with solid real-time accuracy, while
YOLOv8n achieved the highest precision, re-
call, and mAP@0.5 at the cost of model size
and training time. YOLOvV11n trained the fastest
while maintaining strong accuracy, YOLOv12n
provided reliable results but with slower infer-
ence, and YOLOv13n delivered high precision
with the fastest inference speed of 303.03 FPS,
making it particularly suitable for real-time in-
dustrial applications. Overall, the findings dem-
onstrate that each variant presents distinct trade-
offs between accuracy, speed, and resource effi-
ciency, enabling informed model selection based
on deployment needs.

This study opens pathways for broader re-
search directions. However, this work is limited
to YOLO nano variants and steel surface datasets,
which may constrain broader applicability:

e Future work may extend this study to small or
larger YOLO variants while also examining
transformer-based lightweight architectures to
further improve accuracy and efficiency.

e Model compression techniques (e.g., quanti-
zation, pruning) could be applied to enhance
deployment on edge devices.

e Multi-modal inspection approaches that com-
bine visual and infrared imaging could be ex-
plored to improve robustness across diverse
industrial scenarios.
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