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INTRODUCTION

Steel surfaces, such as steel rods and hot-
rolled steel strips, are integral to industries like 
automotive, aerospace, manufacturing, and con-
struction. However, it was shown that these sur-
faces are susceptible to defects, including scratch-
es, inclusions, cracks, and pitted surfaces, which 
compromise quality, safety, and operational effi-
ciency [1, 2]. Ensuring the quality of steel prod-
ucts is an important requirement of modern indus-
trial manufacturing. Traditional defect detection 
methods are manual, labour-intensive and prone 
to inconsistency [3], encouraging a shift toward 

automated defect detection methods. Advance-
ments in deep learning, especially convolutional 
neural networks, have led to the YOLO (you only 
look once) model family, one of the most popular 
for object identification. Recent work applying 
YOLO architectures for welding surface inspec-
tion has highlighted the potential of these models 
for defect detection and automation [4]. However, 
using the latest YOLO models to find defects in 
steel surfaces is still an active field of research.

Multiple studies adopted and enhanced YO-
LOv5, v8, and v11 models for steel surface defect 
detection, each proposing unique improvements 
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aiming to enhance accuracy and speed. Cheng et 
al. [1] proposed EC-YOLO, an improved version 
of the YOLO-V5-based model, using an efficient 
channel attention bottleneck (EB) module for bet-
ter feature extraction, and Context Transforma-
tion Networks block for enhanced feature fusion 
and context modeling, for detecting small and 
elongated defects. They used publicly available 
datasets; GC10-DET, NEU-DET and SLD-DET, 
and achieved mean Average Precision (mAP) val-
ues of 71%, 83% and 87.5%, respectively, on the 
improved model, but with FPS of 91.74 on NEU-
DET and 64.10 on GC10-DET, it also increased 
the parameters of the model by around 116.81 
MB, slowing down the detection efficiency. Wang 
et al. [2] proposed a lightweight RDB-YOLO 
model for detecting steel surface defects based 
on YOLOv5n. Using Receptive Field Enhance-
ment (RFE) to compensate for accuracy loss due 
to noise, deformable convolution network (DCN) 
to detect irregularly shaped defects, and Bi-level 
Routing Attention (BRA) to improve detection of 
small targets. Trained on the benchmark dataset, 
NEU-DET, and attained an mAP@0.5 score of 
0.821, an improvement of 0.51, but with an FPS 
of 60.4 FPS on an NVIDIA RTX 3090. Yang et 
al. [3] introduced a lightweight spatial attention 
module to extract effective information and de-
signed a new feature fusion network, Amsf, and 
added the FAM attention module to strengthen 
the capability to detect on a lightweight surface 
anomaly detection algorithm leveraging the mod-
ified YOLOv5 architecture. Experiments were 
conducted using the NEU-DET dataset, which 
gave an average detection accuracy of 81.97%. 
Yu et al. [5] customized a YOLO-v5 model, 
LCG-YOLO, for real-time anomaly detection in 
metallic parts. The LSandGlass (LSG) module 
removes the low-resolution feature layer to re-
duce loss of critical details. The experiment was 
executed on a self-made dataset, on which the 
mAP improved to 0.955, and an increase of 21 
fps, but it cost them an increase of 3.7% in pa-
rameter size, compared to the original YOLO-v5. 
Ma et al. [6] developed a lightweight approach 
for steel surface anomaly detection to reduce 
computational complexity while improving the 
accuracy, based on an improved YOLOv8 model. 
Model training and evaluation were conducted on 
the NEU-DET dataset containing 1800 images 
equally distributed among six defect classes. The 
model used GhostNet as a backbone to reduce 
complexity, MPCA was added to enhance feature 

extraction, and replaced IoU loss with SIoU for 
improved bounding box accuracy. The model 
was trained and evaluated on the system with 
Intel i9-9900k CPU and NVIDIA RTX 2080Ti 
GPU, using PyTorch 2.1.1. The improved YO-
LOv8n variant achieved an mAP@0.5 of 78.6%, 
outperforming YOLOv8n baseline (77.4%) and 
YOLOv8s (77.9%). The system also achieved an 
FPS of 171.5, which is the highest among com-
pared models and a parameter count of as low as 
2.04 M and 4.5 MB. Liu et al. [7] introduced a 
modified version of YOLOv8, SLF-YOLO, for 
steel surface anomaly detection. They modified 
the model by including an SC_C2f module to 
improve feature representation, Light-SSF_Neck 
Structure to improve multi-scale feature extrac-
tion and FIMetal-IoU Loss Function to enhance 
the recognition of small defect features. The SLF-
YOLO model achieved the mAP@0.5 of 80.0% 
compared to the YOLOv8’s 75.9% on the NEU-
DET (1800 images with 6 classes) dataset. On the 
AL10-DET (4652 images with 10 classes) datas-
et, SLF-YOLO achieved the mAP@0.5 of 86.8%, 
and reduced the parameter count to 9.65 M com-
pared to YOLOv8’s 11.12 M parameters. NVID-
IA RTX 3090 GPU was used to train the model, 
with CUDA 11.8 and cuDNN 7.0. Huang et al. 
[8] introduced DM-YOLOv11, using a Dynamic 
Weight Reparameterization Module, MPCA, and 
the Wise-IoUv2 loss function to enhance regres-
sion robustness. The experiments were carried out 
on benchmark datasets; NEU-DET and GC10-
DET, achieving an mAP score of 0.806 and 0.714, 
respectively and reduced the model size to 10.8 
M parameters. Sun et al. [9] proposed MCH-YO-
LOv12, an enhanced lightweight version of YO-
LOv12 that integrates a MultiScaleGhost module 
for improved multi-scale feature extraction, a 
Spatial-Channel Collaborative Gated Linear Unit 
(SCCGLU) for refined attention to defect details, 
and a Hybrid Detection Head combining anchor-
based and anchor-free strategies to better handle 
diverse defect sizes and shapes. The improved 
model achieved higher accuracy with reduced 
complexity, reaching 89.2 mAP (6.8 M parame-
ters) on the NEU-DET dataset and 95.0 mAP (7.0 
M parameters) on the APDDD dataset, outper-
forming the baseline YOLOv12. Zhao et al. [10] 
introduced RT-DETR, a real-time Transformer-
based detector that eliminates Non-Maximum 
Suppression (NMS) through an efficient hybrid 
encoder and Uncertainty-Minimal Query Selec-
tion, achieving 53.1% AP at 108 FPS (ResNet-50) 
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and 54.3% AP at 74 FPS (ResNet-101) on the 
COCO dataset, outperforming YOLOv8-L. Simi-
larly, Xu et al. [11] proposed PP-YOLOE, an 
anchor-free detector with the CSPRepResStage 
backbone, Task Alignment Learning (TAL), and 
an Efficient Task-aligned Head (ET-head), attain-
ing 51.4 mAP at 78.1 FPS on the COCO dataset, 
improving both accuracy (+1.9 AP) and speed 
(+13.35%) over PP-YOLOv2.

YOLOv13, which is presented in [13], and 
YOLOv12 are recent models, while there are 
some studies utilizing YOLOv12 for steel sur-
face defect detection, there are none utilizing 
YOLOv13. Most of the studies in the literature 
emphasize optimizing the original model(s) and 
assessing their performance across different sce-
narios like IFEM-YOLOv13 proposed by Feng 
et al. [14] is a modified version of YOLOv13 for 
underwater target detection, achieving a 96.8% 
mAP@0.5 on the j-EDI (Underwater Litter Im-
age) dataset. YOLOv13-Cone-Lite proposed by 
Wang et al. [15] is a modified version of YO-
LOv13 for real-time detection of traffic cones for 
autonomous formula racing cars, achieving an 
mAP@50 of 92.9% with a model size of 8.7 MB.

Our critical review of literature suggests that 
researchers have introduced several notable im-
provements to YOLO-based architectures for 
steel surface defect detection; however, most of 
these efforts have concentrated on optimizing in-
dividual models rather than performing system-
atic, cross-generation evaluations. Despite their 
promising efficiency, the most recent lightweight 
architectures, such as YOLOv12 and YOLOv13, 
are largely unexplored within the domain of qual-
ity inspection. Moreover, existing studies rarely 
integrate standardized benchmark datasets with 
real industrial data. The majority of existing re-
search has focused on increasing detection accu-
racy, with limited attention given to the collec-
tive influence of architectural design, hardware, 
and software factors on real-time inference per-
formance. Furthermore, previous works largely 
failed to empirically demonstrate that inference 
speed and model size are not directly propor-
tional. Our research study addresses these gaps 
and demonstrates that baseline models can also 
achieve competitive detection accuracies.

In this paper, we present a comprehensive 
comparative study of various YOLO nano vari-
ants for the automated detection and localization 
of surface defects on steel products. The models 
are trained and evaluated on publicly available 

benchmark datasets and a custom industrial da-
taset collected from a local manufacturing facil-
ity, respectively, thereby addressing both standard 
and real-world inspection scenarios. Although the 
experiments were validated on a custom dataset, 
it was carefully designed to reflect real produc-
tion conditions. This ensures reliable model per-
formance within its intended deployment context. 
While such specialization limits broader general-
ization, the YOLO-nano architectures offer strong 
transfer learning capabilities. With additional fine-
tuning or re-training on small samples from new 
environments within the steel domain, the very 
same models can be successfully generalized.

We systematically analyze each model to 
identify their respective strengths and limitations. 
The insights derived from this study are intended 
to guide researchers and industry practitioners in 
selecting and optimizing deep learning models for 
automated steel surface inspection scenarios. The 
major contributions of this paper are listed below:
1.	Developed a comprehensive framework for au-

tomated quality inspection, encompassing sys-
tematic dataset preparation, the training of var-
ious YOLO-based models and their validation 
for precise defect detection and localization.

2.	Evaluated the framework by comparing multiple 
lightweight YOLO variants, emphasizing preci-
sion under stringent IoU thresholds and real-time 
performance in terms of FPS to ensure an opti-
mal balance between accuracy and efficiency.

3.	Established that inference speed is predomi-
nantly determined by architectural efficiency, 
hardware-level utilization, and software opti-
mizations, highlighting the limited correlation 
between model size and real-time performance.

The methodology adopted as part of this re-
search work is systematic and iterative, ensuring 
the achievement of the project’s objectives. Fig-
ure 1 shows the machine vision pipeline with the 
following steps:
	• Data collection: Using two publicly available 

datasets and a custom dataset collected from a 
manufacturing facility.

	• Data preprocessing: Combining datasets to 
achieve best possible results, augmenting da-
tasets to make the trained models robust, split-
ting the dataset into subsets for training, test-
ing and validation of the models.

	• Model training and development: Training the 
nano variants five chosen YOLO model archi-
tectures on the datasets.
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	• Postprocessing: Drawing bounding boxes 
around the defects and only allowing results 
above a specified confidence threshold. 

	• Performance evaluation: Evaluate and com-
pare the trained models based on various per-
formance metrics.

DATASET PREPARATION

Dataset overview

NEU-DET (NorthEastern University Dataset)

It is a dataset available at [16] and further dis-
cussed in [17], it is a collection of grayscale im-
ages featuring surface defects on hot-rolled steel 
strips categorized into six major defect types: 
scratch, patch, rolled in scale, pitted surface, in-
clusion, and crazing as shown in Figure 2, these 
defects represent the most frequent and impactful 
surface anomalies encountered in industrial hot-
rolled steel production. Specifically, scratches 
and rolled-in scales commonly result from fric-
tion and oxide formation on steel surfaces, inclu-
sions originate during the steelmaking process, 
while pitted surfaces and patches arise from ir-
regular rolling conditions. These categories col-
lectively encompass the majority of defect types 
that significantly affect product quality and pro-
duction efficiency, making them the most relevant 
for industrial inspection applications. The dataset 
contains 300 grayscale images for each defect 
type, totaling 1800 images.

GC10-DET dataset

It is a dataset available at [18] and further 
discussed in [19], it is a collection of images of 
steel surface defects on hot-rolled steel strips, cat-
egorized into ten commonly occurring steel sur-
face defects: punching hole, welding line, cres-
cent gap, water spot, oil spot, silk spot, inclusion, 
rolled pit, crease, and waist folding as shown in 
Figure 3. The dataset consists of 2,300 images, 

with some images containing multiple defects. 
There are 3,563 labelled objects. Each of these 
objects represents an individual defect annotated 
with a bounding box and its corresponding class 
label. These annotated instances serve as the 
ground truth for model training and evaluation, 
enabling the network to learn precise localization 
and classification of defects on steel surfaces.

Custom dataset

It is a dataset collected from a local manu-
facturing facility consisting of images of sur-
face defects on steel piston rods used in vehicle 
shock absorbers, it is a binary class dataset with 
two classes: defected and non-defected. Figure 4 
highlights the real-world defect types included 
in the dataset: dent, material pit, process pit, line 
scratch, plating crack, and roughness, where each 
defect is zoomed in on and circled in red. In this 
work, 3445 images of only dent images were tak-
en into account.

Data preprocessing

Combining datasets

We combined the two publicly available datas-
ets, NEU-DET and GC10-DET, to create a dataset 
comprising 13 defect types, namely: crease, cres-
cent gap, inclusion, oil spot, patches, pitted sur-
face, punching hole, rolled in scale, scratches, silk 
spot, waist folding, water spot, and welding line. 
This was done to create a dataset with improved 
diversity, resulting in better usability. All the im-
ages were resized to 416×416 to maintain a bal-
ance between defect visibility and computational 
efficiency. This resolution offers an optimal trade-
off by preserving sufficient detail for detecting 
small surface defects while keeping the compu-
tational cost manageable. Moreover, the resizing 
followed standard aspect ratio adjustments to en-
sure consistency with YOLO input requirements. 
Larger image sizes significantly increase pro-
cessing time and memory consumption, whereas 
smaller resolutions tend to blur fine defect details, 

Figure 1. Proposed machine vision pipeline
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reducing detection accuracy. Therefore, the 416 × 
416 dimension was selected as the most practical 
choice for both accuracy and efficiency.

Data annotation

Annotation plays a vital role in the dataset 
preparation process required for effective model 
training. In this study, images were manually an-
notated using bounding boxes to precisely mark 
defect locations, and all annotations were validat-
ed by domain experts to ensure spatial accuracy 
and correct class labeling. The Roboflow tool 
was used for efficient and consistent image an-
notations. Each image has its own.txt file with a 
single line for each bounding box, the annotation 
format for YOLO models is as follows: class_id 
center_x center_y width height.

The data.yaml file includes the configuration 
information that the model uses to find the images 
and link class names to class ids during training, 
testing, or validation.

Data augmentation

The model’s performance is greatly impacted 
by the variety and size of the training data [20], so 
the data has been augmented by creating modified 
copies of the images as shown in Figure 5, the orig-
inal image without any augmentation goes through 
the data augmentation process using different 
augmentation techniques to create three different 
modified copies from one image. The following 
augmentation techniques have been utilized:
	• Flip: randomly flip an image vertically(in the 

up/down direction) or horizontally(in the left/

Figure 2. NEU-DET dataset six defect types

Figure 3. GC10-DET dataset defect types

Figure 4. Custom dataset defect types
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right direction), helps the model be insensitive 
to the orientation of the subject.

	• Rotation: Applies a small, random rotation to 
the image within a specific range of -10° to 
+10° (includes counter-clockwise and clock-
wise rotations).

After performing data augmentation the 
original dataset of 3445 images was increased 
to 5857 images.

Splitting the dataset

We split the dataset into three subsets:
	• Training set: 82% of the images, 4824 were 

used to train the machine learning model.
	• Validation set: 12% of the images, 689 were 

used to fine-tune the hyperparameters and 
monitor the model and prevent overfitting.

	• Testing set: Remaining 6%, 344 were reserved 
to evaluate the final model’s accuracy and 
performance.

MODEL SELECTION, TRAINING 		
AND EVALUATION

The choice of multiple YOLO versions enables 
a comprehensive comparative evaluation, as each 
iteration introduces new architectural improve-
ments such as better backbone designs, advanced 
feature aggregation, or more effective training strat-
egies. Evaluating these models on the same datasets 
allows us to systematically analyze the impact.

In this present work, five contemporary and 
widely adopted YOLO architectures including 
YOLOv5n, YOLOv8n, YOLOv11n, YOLOv12n 
and YOLOv13n were selected. These models 
are particularly suitable for industrial inspection 
scenarios and deployment on devices with lim-
ited computational resources, as they provide an 

effective trade-off between detection accuracy, in-
ference speed, and computational cost. The nano 
variants of YOLO architectures are designed with 
significantly fewer parameters, making them ideal 
for hardware-constrained environments. As dem-
onstrated in [21], the YOLOv8n model achieves 
faster inference compared to its small counterpart 
(YOLOv8s) with only a minor reduction in accu-
racy. Furthermore, a recent comparative study in-
volving YOLOv8n, YOLOv10n, and YOLOv12n 
confirmed that these lightweight variants are 
well-suited for industrial applications, offering 
high throughput and real-time performance while 
maintaining low resource consumption [22].

Model architecture

Although all the models come with their own 
distinct innovations in design, they all are made 
up of a common structure of three main compo-
nents, three basic components, namely backbone, 
neck, and head as depicted in Figure 6. Visual 
characteristics are extracted from the raw input 
image by the backbone, forming a hierarchy of 
low-level (textures, edges) and high-level (ob-
jects, shapes) features, to make up the foundation 
of the model’s understanding. Earlier versions 
of YOLO used DarkNet as the backbone while 
newer versions utilize CSPNet or convolutional 
blocks designed for optimized deployment with 
improved computational efficiency.

To improve the identification of objects of 
different sizes, the neck combines these char-
acteristics over several scales. Semantic (high-
level) and spatial (low-level) information flow 
is enhanced by the usage of Feature Pyramid 
Networks (FPN) and Path Aggregation Net-
works (PAN). increasing the model’s accuracy 
in identifying both huge, clearly defined flaws 
and tiny, subtle ones.

Figure 5. Example results of data augmentation
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The head ultimately produces predictions that 
include bounding box coordinates, class labels, 
and confidence scores [23]. Depending on the 
YOLO version, the head may use anchor-based 
detection (as in YOLOv5) or an anchor-free ap-
proach (as introduced in YOLOv8 and beyond). 
The head is crucial in producing fast detec-
tions allowing the model to maintain real time 
performance.

The architectural evolution of YOLO mod-
els has introduced several enhancements within 
this structure, to improve efficiency and detection 
accuracy. One of the early major improvements 
were the Cross Stage Partial (CSP) connections 
which separate feature maps into two paths to be 
merged later on in the model’s pipeline; this has 
resulted in a reduction in computational complex-
ity and accuracy. 

The Efficient Layer Aggregation Network 
(ELAN) added in later versions such as YOLOv7, 
improves the organization of convolutional 
blocks for better gradient propagation across deep 
layers. Allowing the network of the model to be 
deeper and wider without the problem of vanish-
ing gradients, thereby enhancing feature learning.

The Bidirectional Feature Pyramid Network 
(BiFPN) was introduced by Tan et al. [24] to 
improve the fusion of features at various scales; 
it differs from the standard FPN as it includes 
weighted connections and bi-directional path-
ways, allowing the model to adaptively learn the 
significance of different feature levels. This is ad-
vantageous in detecting defects of various sizes 
from dents to small scratches.

Attention mechanisms have also been in-
troduced in newer versions of YOLO, such as 
Squeeze and Excitation (SE) or Convolutional 
Block Attention Module (CBAM) which con-
sists of a Channel Attention Module (CAM) and 
a Spatial Attention Module (SAM), both modules 
allow the estimation of attention weights for the 
precise refinement of feature maps to ensure more 
attention towards more relevant spatial regions 
and channels, and less focus on less important in-
formation. Further improvements have been made 
in the activation layers with enhanced activation 
functions such as Sigmoid Linear Unit (SiLU) or 
LeakyReLU (Rectified Linear Unit) which im-
proves upon the standard ReLU function offering 
smoother gradients. Recent YOLO models con-
tain decoupled detection heads, wherein classifi-
cation and localization tasks are executed in sepa-
rate branches which have significantly improved 
detection accuracy, speed, and deployment effi-
ciency across different variants as discussed in 
[25]. Table 1 presents a comprehensive overview 
of the YOLO model evolution, outlining the core 
innovations and architectural enhancements in-
troduced in each version:

Hyperparameter tuning and model training

All the models were trained under the follow-
ing consistent hyperparameters to guarantee un-
biased comparison:
	• Epochs: All models were trained for 300 epochs 

with patience set at 50, i.e., the training stops 
earlier if the mAP is the same for 50 epochs.

Figure 6. Common structure of the YOLO architecture
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	• Batch Size: 32 images per batch, balancing 
GPU memory utilization and training speed.

	• All the rest of the hyperparameters were kept 
the same as the default.

Performance evaluation indicators

The following performance metrics were 
evaluated to assess the trained models:
	• mAP: Evaluates the overall detection accura-

cy by averaging precision across all classes as 
represented in Equation 1 [26].

	 𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑛𝑛 ∑

𝑛𝑛

𝑘𝑘=1
𝐴𝐴𝑃𝑃𝑘𝑘 

 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  

 

𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

	 (1)

where:	APk – average precision of one class, n – 
the number of classes.

	• Precision: Indicates the proportion of cor-
rectly detected defects among all predicted 
defects. A high precision (close to 1) means 
that most of the predictions are correct with 
very few misclassifications. Mathematically, it 
is presented in Equation 2 [26].

	

𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑛𝑛 ∑

𝑛𝑛

𝑘𝑘=1
𝐴𝐴𝑃𝑃𝑘𝑘 

 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  

 

𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

	 (2)

	• Recall: Measures the ratio of actual problems 
accurately identified by the model. A high re-
call value means the model rarely misses true 
detections as shown in Equation 3 [26].
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where:	TP – the number of true positives, 	
FN – the number of false negatives,

	 FP – the number of false positives.

	• Intersection over union (IoU): IoU thresholds 
are used to measure how well the model is 
able to localize an object as discussed in [26]. 

It is the ratio of the predicted bounding boxes’ 
intersection area to the ground truth (anno-
tated) bounding boxes’ union area as shown 
in Equation 4. This quantifies the intersection 
between the expected and the actual bounding 
boxes, a perfect prediction would yield an IoU 
of 1, in practice a prediction is considered if its 
IoU exceeds a set threshold.
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	• Frames per second (FPS): It is also a key per-
formance metric and a focus point of this study, 
it measures how many images a model can pro-
cess and generate predictions for in one second. 
It evaluates the model’s inference speed and 
is essential for real-time applications. such as 
industrial inspection. Calculated as shown in 
Equation 5 [5], a higher FPS indicates faster 
processing speeds and better efficiency. 
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Experimental setup

All models were trained using kaggle, with 
2 T4 GPUs each with 15 GiB (Gibibyte) mem-
ory, 29 GiB of RAM. All YOLO models from 
YOLOv5 onwards are developed on the Pytorch 
framework with CUDA acceleration enabled for 
efficient GPU-based training and inference. Data 
preprocessing, augmentation, and post-process-
ing routines were managed using Roboflow and 
the Albumentations and OpenCV libraries.

RESULTS AND DISCUSSION

In this section, the results of the conduct-
ed experiments are discussed in detail, with 

Table 1. YOLO models’ architectural modifications
YOLO variant Architectural modifications Key strengths

YOLOv5 CSPDarknet backbone, PANet, SWISH activation Balanced accuracy, speed, and deployment 
efficiency with minimal parameters

YOLOv8 CSP+ELAN, BiFPN-style neck, anchor-free head Improved accuracy with high throughput

YOLOv11 R-ELAN backbone, PANet neck, lightweight modules Fast convergence, lightweight, and offers a 
balanced trade-off of speed and accuracy

YOLOv12 R-ELAN+Attention backbone, BiFPN neck, decoupled head Small model footprint with competitive mAP

YOLOV13 Light hybrid CNN, multiscale adaptive fusion Exceptional inference speed while 
maintaining high mAP



37

Advances in Science and Technology Research Journal 2026, 20(3), 29–46

emphasis on understanding the trade-offs be-
tween accuracy, speed, and computational cost 
for different YOLO architectures under indus-
trial inspection conditions.

Yolov5 results

Figure 7 shows the training evolution of the 
performance metrics of the YOLOv5n model, 
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5, 
and mAP@0.5:0.95. The values of the metrics 
are on the y-axis and the training epochs are on 
the x-axis. The graph shows a sharp increase in 
mAP@0.5, precision and recall in the initial ep-
ochs. Precision and recall stabilize above 0.99 in-
dicating reliable performance, mAP@0.5 nearly 

reaches 0.1, while mAP@05:0.95 shows consis-
tent improvement and stabilises over 0.66.

Figure 8 shows the confusion matrix of the 
YOLOv5n model trained on the custom dataset, 
the x-axis represents the true-labels and the y-axis 
represents the predicted labels generated by the 
model. The diagonal elements (top left to bottom 
right) are the correctly classified input images and 
off-diagonal elements represent the misclassified 
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the 
deep blue color denotes higher correctness in the 
model’s detections.

Figure 9 shows the inference results of the 
YOLOv5n model on the custom dataset. Where 
4 different input images have been processed, in 
each image all the detected defects are highlighted 

Figure 7. Training evolution of YOLOv5n on a custom dataset

Figure 8. Confusion matrix of YOLOv5n 
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with bounding boxes and labels, along with their 
respective confidence scores.

Yolov8 results

Figure 10 shows the training evolution of the 
YOLOv8n model’s performance metrics with 
separate graphs for the evolution of the follow-
ing metrics: precision, recall, mAP@0.5, and 
mAP@0.5:0.95. The values of the metrics are on 
the y-axis and the training epochs are on the x-ax-
is. The graphs show a sharp increase in precision, 
recall, and mAP@0.5 in the initial epochs, and 
rapid stabilization above 0.99, indicating reliable 
performance, whereas mAP@0.5:0.9 rises gradu-
ally above 0.6.

Figure 11 shows the confusion matrix of the 
YOLOv8n model trained on the custom dataset, 
the x-axis represents the true-labels and the y-axis 
represents the predicted labels generated by the 
model. The diagonal elements (top left to bottom 
right) are the correctly classified input images and 
off-diagonal elements represent the misclassified 
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the 
deep blue color denotes higher correctness in the 
model’s detections.

Figure 12 shows the inference results of the 
YOLOv8n model on the custom dataset. Where 
4 different input images have been processed, in 

each image all the detected defects are highlight-
ed with bounding boxes and labels, along with 
their respective confidence scores.

Yolov11 results

Figure 13 shows the training evolution of the 
performance metrics of the YOLOv11n model 
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5, and 
mAP@0.5:0.95. The values of the metrics are 
on the y-axis and the training epochs are on the 
x-axis. The model’s mAP@0.5 converges gradu-
ally to achieve near perfect performance. Preci-
sion and recall reach above 0.99 demonstrating 
very strong detections with minimal ambiguities. 
mAP@0.5:0.95 rises steadily indicating the mod-
el can handle stricter IoU thresholds.

Figure 14 shows the confusion matrix of the 
YOLOv11n model trained on the custom dataset, 
the x-axis represents the true-labels and the y-axis 
represents the predicted labels generated by the 
model. The diagonal elements (top left to bottom 
right) are the correctly classified input images and 
off-diagonal elements represent the misclassified 
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the 
deep blue color denotes higher correctness in the 
model’s detections.

Figure 9. Inference images of YOLOv5n on a custom dataset

Figure 10. Training evolution of YOLOv8n on a custom dataset
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Figure 15 shows the inference results of the 
YOLOv11n model on the custom dataset. Where 
4 different input images have been processed, in 
each image all the detected defects are highlight-
ed with bounding boxes and labels, along with 
their respective confidence scores.

Yolov12 results

Figure 16 shows the training evolution of the 
performance metrics of the YOLOv12n model 
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5, and 

Figure 11. Confusion Matrix of YOLOv8n

Figure 12. Inference images of YOLOv8n on a custom dataset

Figure 13. Training evolution of YOLOv11n on a custom dataset
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mAP@0.5:0.95. The values of the metrics are on 
the y-axis and the training epochs are on the x-
axis, the graphs display rapid and stable conver-
sion of prevision, recall and mAP@0.5. All the 
metrics consistently remain over 0.99 indicating 
strong and reliable detection capabilities. The 
mAP@0.5:0.95 improves steadily, demonstrating 
robust performance across various IoU thresholds.

Figure 17 shows the confusion matrix of the 
YOLOv12n model trained on the custom data-
set, the x-axis represents the true-labels and the 
y-axis represents the predicted labels generated 
by the model. The diagonal elements (top left 
to bottom right) are the correctly classified in-
put images and off-diagonal elements represent 
the misclassified input images. Both the classes 
in the matrix indicate an mAP@0.5 of 100. The 

darker shade of the deep blue color denotes high-
er correctness in the model’s detections.

Figure 18 shows the inference results of the 
YOLOv12n model on the custom dataset. Where 
4 different input images have been processed, in 
each image all the detected defects are highlight-
ed with bounding boxes and labels, along with 
their respective confidence scores.

Yolov13 results

Figure 19 shows the training evolution of the 
performance metrics of the YOLOv13n model 
with separate graphs for the evolution of the fol-
lowing metrics: precision, recall, mAP@0.5, 
and mAP@0.5:0.95. The values of the metrics 
are on the y-axis and the training epochs are on 

Figure 14. Confusion Matrix of YOLOv11n 

Figure 15. Inference images of YOLOv11n on a custom dataset
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the x-axis, illustrating rapid and stable conver-
sion of mAP@0.5, precision and recall in the 
early epochs. Precision and recall reach above 
0.98 indicating strong defect detection capability, 
mAP@0.5 quickly approaches 1.0 reflecting high 
accuracy. While mAP@0.5:0.95 does not stabilize 

as rapidly but does improve steadily demonstrating 
effective detection even at stricter IoU thresholds.

Figure 20 shows the confusion matrix of the 
YOLOv13n model trained on the custom dataset, 
the x-axis represents the true-labels and the y-axis 
represents the predicted labels generated by the 

Figure 16. Training evolution of YOLOv12n on a custom dataset

Figure 17. Confusion Matrix of YOLOv12n

Figure 18. Inference images of YOLOv12n on a custom dataset
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model. The diagonal elements (top left to bottom 
right) are the correctly classified input images and 
off-diagonal elements represent the misclassified 
input images. Both the classes in the matrix indi-
cate an mAP@0.5 of 100. The darker shade of the 
deep blue color denotes higher correctness in the 
model’s detections.

Figure 21 shows the inference results of the 
YOLOv13n model on the custom dataset. Where 
4 different input images have been processed, in 
each image all the detected defects are highlight-
ed with bounding boxes and labels, along with 
their respective confidence scores.

Effects of data augmentation 			 
on model performance

In this study, basic augmentation techniques 
such as flipping and rotation were employed to 

expand the number of training samples and to 
enhance model’s generalizability. To further in-
vestigate this aspect, an ablation experiment was 
conducted on the YOLOv13n model using the 
same dataset without augmentation. The results 
revealed a noticeable decline in detection perfor-
mance, confirming that the applied augmentation 
techniques positively impacted model learning 
and enhanced the detection of small and hard-to-
capture defects. Specifically, precision improved 
by 1.33%, recall by 4.13%, mAP@50 by 1.52%, 
and mAP@50–95 by 0.63% as shown in Table 
2 compared to the non-augmented dataset, dem-
onstrating that even simple augmentations such 
as flipping and rotation contributed meaning-
fully to the overall detection performance. Fig-
ure 22 shows the comparison of the mAP@50 
of the YOLOv13n trained on the original dataset 

Figure 19. Training evolution of YOLOv13n on a custom dataset

Figure 20. Confusion Matrix of YOLOv13n 
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plotted with a blue solid line and the augmented 
dataset plotted with a red dashed line.

Comparative analysis of results

The performance metrics of all the evaluated 
models are summarized in Table 3, which includes 
the number of epochs, training time, parameter 
count, and final model size. The results reveal 
a distinct trade-off between accuracy, inference 
speed, and computational cost. While YOLOv8n 
achieves the highest mAP of 0.9978 and leading 
precision–recall scores, this comes at the expense 
of greater model complexity and longer inference 
time. YOLOv11n and YOLOv13n perform com-
parably in accuracy, particularly under stricter 
IoU thresholds, yet deliver significantly improved 
inference speeds. YOLOv5n remains competitive 
despite its smaller size, demonstrating suitability 
for highly resource-constrained scenarios, where-
as YOLOv12n, although slightly lower in mAP, 
still maintains balanced precision and recall val-
ues. Interestingly, the results indicate that smaller 
model size does not necessarily translate to faster 
inference. Although YOLOv5n has the smallest 
footprint i.e. 3.61 MB, it does not achieve the 
highest frame rate. Instead, YOLOv13n with a 
moderately larger size delivers the fastest infer-
ence of 303.03 FPS, surpassing even the much 
larger YOLOv8n (11.7 MB, 175.44 FPS). This 
observation confirms that inference performance 
is governed more by architectural efficiency than 
by model size alone.

The superior runtime efficiency of YOLOv13n 
arises from its refined architecture, incorporat-
ing HyperACE and FullPAD modules that mini-
mize redundant computation and enable adaptive 
multi-scale feature fusion. Combined with dep-
thwise separable convolutions and a lightweight 
backbone, these design enhancements substan-
tially reduce FLOPs while preserving detection 

accuracy. As reported in [13], these architectural 
refinements allow YOLOv13n to achieve higher 
throughput without sacrificing precision. From a 
cost–benefit perspective, YOLOv13n offers the 
most favorable balance by providing near-top ac-
curacy, the highest inference speed, and efficient 
resource usage. Its performance profile makes it 
highly suitable for real-time, edge-level deploy-
ment in industrial steel inspection systems, where 
high frame rates and timely detection directly in-
fluence production safety and quality assurance. 

From the empirical analysis, it can be con-
cluded that while inference speed may appear to 
be primarily dependent on hardware performance, 
in practice it is a complex relationship of model 
architecture, hardware utilization, and software-
level optimizations. The architectural efficiency 
of a model determines how effectively its lay-
ers and parameters can be executed in parallel. 
The models with depthwise separable convolu-
tions or reduced feature maps typically achieve 
lower latency because they minimize redundant 
computations and memory accesses. The YOLO 
family demonstrates this through progressive ar-
chitectural refinements such as improved feature 
fusion and optimized convolutional modules that 
directly impact throughput without significantly 
increasing model complexity. Hardware utiliza-
tion is another critical factor influencing infer-
ence speed. Deployment platforms with higher 
computational resources (e.g., GPUs, FPGAs, 
or AI accelerators) can process multiple opera-
tions concurrently, provided the model structure 
allows for efficient parallel execution. Memory 
bandwidth, cache utilization, and the precision 
format (e.g., FP32 vs. INT8) also play important 
roles in determining real-time performance. As 
reported in [27], deploying a smaller YOLOv3 
variant on an edge device increased FPS by ap-
proximately 7.6×, affirming the significance of 
optimizing model and hardware compatibility 

Figure 21. Inference images of YOLOv13n on a custom dataset
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rather than relying solely on raw hardware capa-
bility. At the software level, optimizations such as 
pruning, quantization, kernel fusion, and param-
eter sharing further enhance inference efficiency 
by reducing model size, memory footprint, and 
computational overhead while maintaining accu-
racy. Therefore, inference speed is not merely a 
function of hardware performance; it is the cu-
mulative outcome of architectural design choices, 
hardware-aware deployment strategies, and tar-
geted software optimizations. Collectively, these 
factors define the real-world applicability of deep 
learning models in industrial inspection systems, 

especially when deployed on embedded or edge 
computing platforms, as also emphasized in [28].

CONCLUSIONS

Our proposed work developed a complete 
machine vision pipeline using five YOLO nano 
variants (YOLOv5n to YOLOv13n), evaluated 
on benchmark and industrial steel surface defect 
datasets. The methodology followed a struc-
tured process from problem analysis to model 
evaluation. YOLOv5n offered the best resource 

Table 2. Performance metrics of YOLOv13n trained on the original and augmented datasets
Metric Original dataset Augmented dataset Change (%)

mAP@50 0.9825 0.9957 1.3200

Precision 0.9545 0.9957 4.1290

Recall 0.9790 0.9942 1.5190

mAP@50-95 0.6436 0.6400 0.6330

Figure 22. Comparison of mAP@50 of YOLOv13n trained on the original non-augmented
and augmented datasets

Table 3. Validation performance metrics table

Metrics
Models

YOLOv5 nano YOLOv8 nano YOLOv11 nano YOLOv12 nano YOLOv13 nano

Epochs 300 265 195 215 189
Training Time
(hh:mm:ss) 03:00:28 03:45:00 02:27:46 03:00:26 03:16:41

Parameters (M) 1.9 3.2 2.6 2.6 2.5

Size (Mb) 3.61 11.7 5.2 5.17 5.14

mAP@0.5 0.993 0.9977 0.992 0.9851 0.993

mAP@05:0.95 0.6573 0.6695 0.6634 0.659 0.648

Precision 0.994 0.9978 0.992 0.9895 0.994

Recall 0.995 0.9961 0.994 0.9912 0.993

FPS 126.58 175.44 131.56 69.93 303.03
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efficiency with solid real-time accuracy, while 
YOLOv8n achieved the highest precision, re-
call, and mAP@0.5 at the cost of model size 
and training time. YOLOv11n trained the fastest 
while maintaining strong accuracy, YOLOv12n 
provided reliable results but with slower infer-
ence, and YOLOv13n delivered high precision 
with the fastest inference speed of 303.03 FPS, 
making it particularly suitable for real-time in-
dustrial applications. Overall, the findings dem-
onstrate that each variant presents distinct trade-
offs between accuracy, speed, and resource effi-
ciency, enabling informed model selection based 
on deployment needs.

This study opens pathways for broader re-
search directions. However, this work is limited 
to YOLO nano variants and steel surface datasets, 
which may constrain broader applicability: 
	• Future work may extend this study to small or 

larger YOLO variants while also examining 
transformer-based lightweight architectures to 
further improve accuracy and efficiency.

	• Model compression techniques (e.g., quanti-
zation, pruning) could be applied to enhance 
deployment on edge devices.

	• Multi-modal inspection approaches that com-
bine visual and infrared imaging could be ex-
plored to improve robustness across diverse 
industrial scenarios.
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