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ABSTRACT

This article presented the properties of a front-load washing machine equipped with a self-balancing system and
its possibility of industrial application in a series of productions. The dynamic model described the behavior of
the unbalanced drum and the free elements during balancing. The article defineed the vibratory forces responsible
for changing the position of the free elements concerning the drum which leads to the self-balancing phenomena.
The kinetic-static model with the vibratory forces was compared with the solution of a set of differential equations.
Because the difference between them is small, such a model was used for further analysis. The parameters of a real
washing machine have some deviations that influence its work. Various analyses present their impact on decreas-
ing the efficiency of the method. Each of them was studied to establish the residual unbalance generated. Finally,
the authors proposed a procedure to establish acceptable maximum deviations for the parameters of the washing

machine to obtain the required level of balancing.
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INTRODUCTION

Nowadays, almost every house has a washing
machine to help in our daily lives. They come in
various forms: a simple top load with a vertical
axis of rotation, or a front load with a horizon-
tal axis of rotation, the latter usually with more
washing programs. There are two main working
stages of washing: the first drum rotates slowly
back and forth, sloshing the clothes against the
water with detergent, followed by the second
stage, the spinning cycle, during which the drum
spins at high velocity to eliminate water. During
the spinning cycle, the laundry is not symmetri-
cally distributed and generates vibrations. Some-
times, the unbalance is so large that it makes the
washing machine move, and some modern wash-
ing machines have vibration sensors, to stop it.

The self-balancing method would be the ide-
al method to eliminate the vibrations during the

spinning cycle as the drum unbalance changes
for each restart. Since Thearle [1] proposed self-
balancing with the balls, some articles analyzed
its dynamics [2—10]. Most recently, some articles
presented the analytical approach for synchro-
nous and nonsynchronous solutions and their sta-
bility due to the balancing effect [11-13]. How-
ever, the conclusion from the ideal model cannot
be directly applied to the real system as the balls
occupy a position that does not entirely compen-
sate for the unbalance. More parameters influence
the dynamic of a real washing machine and the
final unbalance.

The author of the article proposed his expla-
nation of auto-balancing phenomena because of
the vibratory forces that exist in the system. In
this way, it was possible to explain why the rotor
with one degree of freedom also may eliminate
its vibration from the unbalance. If there are more


https://orcid.org/0000-0002-4014-6982
https://orcid.org/0000-0001-9873-6670
https://orcid.org/0000-0003-1331-7595

Advances in Science and Technology Research Journal 2026, 20(3), 1-17

degrees of freedom, the vibratory force results
from the vibrations of all component [14-16].
This method was used in the next part of the ar-
ticle. In the case of the ideal model taken in more
publications, the balls fully eliminate unbalance
and no vibrations.

In practice, some reasons decrease the ef-
ficiency of the method resulting in vibrations,
noise, and mechanical degradation for the wash-
ing machine. Some articles considered only a
singular reason for decreasing the efficiency of
balancing or proposed unrealistic modifications.
The first time the influence of rolling resistance
on the final positioning of the free balls was ana-
lyzed in the author’s article [17]. Recently, this
problem was studied again [18-23]. In their

Spinning the laundry

model, the component of precession centrifugal
force is used to overcome rolling resistance. This
is true when the properties of the rotor suspension
are the same in both directions. Practically, it is
impossible to align the circular path of the ball
with the rotor axis and the next error in the ball
positioning. In the case of a washing machine,
misalignment may cause considerable error in the
final ball positions and the drum vibrations. Some
additional causes can appear in real systems that
decrease the efficiency of the method, e.g., an ex-
ternal vibration or variable speed of the washing
machine [24-27]. This is the first article revealing
a holistic and systematic approach to evaluating
the efficiency of the self-balancing method for a
washing machine.

To establish the rate of removing water from clothes, a static experiment with a sloshy towel was performed.
The dry towel of mass m= 0.44 kg and waterlogged of 1.7 kg, was subjected to a pressure of 4.5 kPa in a container
with the same holes as the drum. The diagram in Figure 1 presents the removal of water A in time; with increasing
dynamic pressure the water extraction is faster. Dynamic pressure during spinning is defined as:

2
Pa = and. = (g) Rd, (1)
where: a, — is normal acceleration, n [rpm], R — speed and radius of the drum, d. [kg/m?] — density of the wet
towel.

A/m [%]
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E
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0
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Time [s]

Fig. 1. Extracting water from the towel: A — extracting water, m — mass of the sloshy towel

The investigation of the behavior of the drum with the self-balancer is limited to one plane without the vibration
of the housing. The conclusions from the investigation will be true for a washing machine with more degrees of
freedom, but more parameters affect the balancing process. In the article, the parameters of the washing machine
Samsung (WD15F5K5ASG/Ax) were taken for further analysis. It is a typical front-loaded washing machine used
in most households.

Fig. 2. Front and rear view of the basic elements of Samsung one: 1 — drum; 2 — tub with
counterweights mj, my; 3 — dampers; 4 — motor
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The tub vibrations measured with two accelerometers B&K 4507 of the sensibility Cs= 0.24 mV/ms™ are shown
in Figure 3 at the centrifugal velocity of n=930 rpm and the load of 7.5 kg.

80m Lo
40m-20m 0 20m 40m

Real, V
Fig. 3. Vertical and horizontal accelerations of the tub
The amplitudes of acceleration are

ms =2

= 11.3 ms?

ay = a, =47 mV «0.24

IR

The amplitude of vibration A=A, = a,/w? = 11.28/(%)2 = 1.2 mm.
At the spinning velocity of 680 rpm, the acceleration amplitude is 16 m s, and the displacement amplitude is 3.3
mm.

Principle of self-balancing

The inertial forces exist in every vibratory system. When the system is not linear the inertial forces can change its
properties. These forces can move free balls continuously or move them to new positions in which they increase or
decrease the vibrations. In addition, the vibrational forces can change the stable position into an unstable one and vice
versa.

Figure 4 shows the suspension system of the tub-drum assembly, which consists of two springs and four dampers
on the bottom. The drum spins inside the tub with the angular velocity m. Two extra masses M; and M are fixed to
the tub to lower its natural frequencies. A ring with free elements is attached to the drum. The free elements can be
either balls or rollers, in the article they are called balls. The balls have the same mass m and can move freely inside
the ring of radius R. The position of the ball to the static unbalance Me is defined by the angle ;.

The coordinates x and y define the position of the drum axis O. The coordinate system Oxy; turns with the
drum. The rotation of the unbalanced drum causes vibrations, x(t) and y(t), which generate an inertial force on each
ball. The mass center C is defined by OC=e.
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Fig. 4. Front view of washing machine (a), drum with free elements (b):
1 — drum, 2 — tub, 3 — counterweights, 4 — dampers, 5 — springs, 6 — balls, 7vlaundry

The principle parameters of the system: M = 37 kg the mass of the tub with two extra masses, the drum, and
the motor; R = 0.28 m the radius of the circular path of the balls in the ring; the elastic properties in x and y
directions are k=20 N/mm, ky=6 N/mm, and the damping of the system in the x and y directions are c¢x=200 kg/s,
cy=110 kg/s.

The equations of motion for the drum are as follows:
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Mi + c X + kyx = Me w? cos(wt) + mR Y [(w + &;)? cos(wt + ;) + d;sin(wt + a;)],  (2)
My + ¢,y + kyy = Me w? sin(wt) + m R YL [(w + @)? sin(wt + a;) — &;cos(wt + a;)], 3)

The equation of motion for the it/ ball has a form:
m, R &; = m[X sin(wt + a;) — y cos(wt +a;)] —¢c;Rma;, i=12,..,N, @)

where: my=m+1,/’ is the equivalent mass of the rolling ball or roller, ¢; is the viscous damping coefficient of the
ball in its movement to the drum, and N is the number of balls. The behavior of the system is defined by nonlinear
differential equations the solution of which can be obtained only by numerical integration.

The ball changes its position concerning the drum and when this happens, the total unbalance of the system
changes. At the final position as, the balls may compensate for the unbalance, the resulting force is zero, the tube
with the drum does not vibrate, and no inertial forces pushing the balls. The diagrams in Fig. 5 present a numerical
solution of the behavior of the washing machine and the balls during spinning at 1000 rpm when mR=~Me.

Vibrations x, y Ball position

15

[rad]

[mm]

(o] 100 200 300 400 o 100 200 300 400
[omt] [omt]

Fig. 5. Behavior of the drum and two balls at 1000 rpm, Me=mR [iI=om*t=w(]

As a result of the initial unbalance, there are vibrations, the balls move to their equilibrium position and the
vibrations vanish. It turns out that the two balls can compensate for the rotor unbalance very quickly, in just 1.5
seconds (# < 250/w) and there are no vibrations. The balls change their position under the action of the vibratory
force that is tangent to the ball trajectory — Eq. (4), (Fig. 4b).

F =m[isin(wt+a;)—jcos(wt+a)l ®)
The balls move slowly, so the drum and its vibrations can be approximated as follows:
x(t) = ayy cos(wt — @) + XN, a;y cos(wt + a; — @), (6)
y(©) = a,y sin(wt — <py) + 35 ay sin(wt + a; — (py). (7)
The behavior of the balls depends on the average magnitude of the force F;", [14, 15].
Fy==[) F'dt (8)

Fi = —0.5 w?m| agy sin(a; + @) + agy sin(a; + @) + X)-; ay; sin(a; — a; + @) + TN_q ay; sin(a; — a; + ¢,)],
(®)
where a,; and a; are amplitudes from the drum unbalance and the ball, respectively. The vibratory forces F; are

responsible for the behavior of the balls and their final position. Each of the components of the drum vibration
generates its vibrational force:

F; :Fix(ap--,a’zv)+Fiy(a1,--;a1v)- )

The vibratory force can also be shown as a sum of the forces from each element of the system, i.e. from the
static unbalance and each ball

F; = (Fixo + X121 Fijx) + (Fiyo + XL Fijy)- (10)
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If only one ball is used with the static moment mR = Me
F, =-0.5 wzm[ Aoy sin(a + @) + a, sin(p,) + ao,y sin(a + (py) + a, sin((py)]. (11)

The diagram below (Fig 6) shows the change in vibratory force F; with the ball position if only one ball is used.
The force F; takes the value of zero at two positions: near the unbalance and the opposing the unbalance a; = 7.
By increasing the damping of the drum, the diagram F; (@) moves downwards and the negative force overrides the
positive force. For the spin velocity between two resonances w, < w < w,, the two components of vibratory
force have opposite signs, the resultant force is very small and can be positive or negative - Fig. 6 b. If force F), is
smaller than force F\, then the balls cannot compensate for the unbalance.

Vibration Force nylme2 Vibration Force nylme2
Fxy [%] 2 ’V Fxy %)= 4 6
0.2 r T T T T 1
al [rad] al [rad]
, . . ' 05
-2 2 4
\_/4 \/ 1
a) b)

Fig. 6. Vibratory force: a) (Fx+Fy)/(mRw?) for o> oy, ®y and b) for 0,< » <oy

For the first diagram, both extremes of the vibratory force are almost the same and for the second one, the
negative extreme is 2.5 times higher than the positive. In this case, the probability that the ball will move in the
direction opposite the drum rotation is much higher than the positive (Fig. 6b).

For higher damping, the diagram of vibratory force is more asymmetrical. For both diagrams, the stable
equilibrium position of the ball is @f = 7 but the margin of stability in Figure 6b is small, a slight impulse can
change the ball position into unstable.

Vibration Force Behavior

Fig. 7. Vibratory forces F; = F;/mRw? for 0> mox, 0ox with different
damping coefficients € and for moy<m<wox

At the spin velocity wy<w<wy the vibrational force F) tries to move the ball to the position in which the ball
compensates for the unbalance, whereas F, would like to increase it (Fig. 7). For low angular velocities
w/ (wox, a)oy) < 1, the balls occupy the positions near the static unbalance, lack of self-balancing. There are two
positions of equilibrium, only one of them is dynamically stable. The position of the ball a/=n is stable if the
derivate of the vibratory force F(a) with respect to the angle of the ball position is negative — Lagrange-Dirichlet
theorem.

oF
da

= —O.Smwz[aox cos(af + gax) +a,y cos(af + <py)] < 0. (12)
af

The ball position a/=n is stable when w>wx, ®, —the ball can compensate for the unbalance. For more balls, the
stability is given in [16]. The balls can compensate for the asymmetrical distribution of laundry at a spin velocity

higher than the natural frequencies and the laundry unbalance should be smaller than the static moment of all balls
Me<mR*N.

Unbalance
of the drum Vibrations
Drum >
Unbalance Vibrational
of the balls forces
Balls <«Y

Fig. 8. Principle of self-balancing — an internal feedback loop
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It was shown that the balls move under the action of the vibratory force and the behavior of the drum depends
on the ball position. Thus, the kinetic-static model can be used for further analyses, i.e., the behavior of the drum
is defined by Egs. (2, 3) and the behavior of the balls is approximated by the following equations:

m,Ré; =F,—F, i=12.,N, (13)

where: F; is defined by Eq. (10) and F,. is the resistance force.

There are two vibratory processes with a significant difference in frequency and T. Majewski proposed to
separate them and investigate the influence of fast motion on slow motion (vibratory mechanics), and some
applications give very good results. The behavior of mechanical systems depends on the ordinary and vibratory
forces acting on them.

The diagrams in Figure 9 show the difference between two solutions: ¢(t) the complete Eqgs. (2-4) and the
second one gi(t) for the kinetic-static model for the balls defined by Eq. (14) with the drum Egs. (2, 3). The
solutions are very close to each other, there are only slight differences between them; D, = x(t) — x4 (t), D, =
y(t) =y (), Da = a(t) — a,(t). At the beginning of the simulation, Dy(t) is almost 10 um, for D, (t) is 25 um
and for the ball positions D, (t) is 0.005 rad. In a matter of seconds, the difference between the solutions vanishes.
Similar results would be for more balls. This confirms that the kinetic-static model can be used in the following
sections.

Difference Dx(t] 3 f : .
0.02 . T (t) . . 10 %10 ‘ Dnl‘ference |n‘ ball posmlon
. 001F ]
£
E o
X
[a}
-0.01 ]
0.02 . . . . . 5 L . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

[omt] Jomt]

0.04 Difference Dy(t) Position y(x)

T T
Equations of motion

Dy [mm]

-0.04

| I | . ] ! . . . \
0 50 100 150 200 250 300 -6 -4 -2 0 2 4 6 8
[omt] X [mm]

Fig. 9. Difference between the solution of complete equations and kinetic-static model

As it was proven above, as well as in articles [14-17], the vibrational forces are responsible for the self-
organizing of the balls and in this application, they lead to self-balancing.

The vibrational forces are very small concerning the centrifugal forces acting on the balls (Fig. 4) and any extra
disturbance may seriously affect the balancing process. The balls go to new positions that are different from an
ideal balancing model and their dynamic stability also changes. The article showed some disturbances that exist
in each real system, analyzed their influence on the residual unbalance, and defined the practicable efficiency of
the method.

Transition from washing cycle to spinning cycle

When the washing cycle is finished the washer moves to the spinning cycle to remove the water. The spin velocity
increases to 600, 800, or 1000 rpm, and the tub-drum overcomes two resonances. During the increasing velocity,
there are large vibrations and angular acceleration that depend on the torque Ty, of the motor. Now, the angular
velocity varies, and the differential equations should be modified. The kinetic energy of the ball:

T, = sm{li — R(§ + d)sin (¢ + a)]? + [ + R(@ + d,)cos (¢ + a)]?} + 312 (¢ + )2, (14)

where o(t) is the angle of the drum rotation.

The rotation and vibration of the drum and the balls are governed by Eqgs. (15-18).

B, ¢ +cp ¢ =Ty + Me[ising —jicosp] + mR X\ [ sin(p + a;) — J cos(p + a;) — Ry, (15)
M + c % + kyx = Me [@?cos(wt) + gsinwt] + m R Y[(w + ;)2 cos(wt + a;) + (¢ + d;)sin(wt + a;)], (16)
My + ¢,y + kyy = Me [¢*sin(wt) — gcoswt] + m R ¥[(w + ¢;)? sin(wt + a;) — (§ + @;)cos(wt + a;)], (17)
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where B, is a mass moment inertia of the drum. The equation of motion for ith ball has a form:

m, R? &; = mR[¥ sin(p + a;) — y cos(p + a;) — R$] — c;mR?q;, i=12,..,N. (18)

Analysis of the differential Egs. (15-18) should explain if the balls may or not compensate for the unbalance
and establish the maximum amplitude of vibration during the increasing spin velocity. The torque of the motor
can be constant or variable during this period. In addition, the programmed time for obtaining maximum spin
velocity can be different and consequently different maximum amplitudes of vibrations. When the drum spins with
acceleration then the tangent inertial forces push the balls in the opposite direction of the drum rotation. Tables 1

and 2 present the time t; in which the drum reaches its final speed of 1000 rpm (#y), the maximum amplitudes of

the drum, and the number of revolutions that the balls made, before they obtain their final position.

Table 1. 7, =25 Nm, ny= 1000 rpm, Me = mR, Me = 0.025 kg m

Torque Tin tr Xmax YVmax No. of revolutions
- - S mm mm -
Constant To 2.23 4.6 4.1 8
Linear T, =T, (1 - w/wf) 8.2 4.9 4.9 7.6
Harmonic T =T, (1 —sin (” “’/wa)> 8.6 5.1 5.2 6
Table 2. 7, =25 Nm, ny= 1000 rpm, Me = mR, Me = 0.05 kgm
Torque T tr Xmax Vmax No. of revolutions
- - S mm mm -
Constant To 1.7 8.5 8.7 7.0
Linear T =To (1~ /) 7.2 9.2 8.6 8.0
Harmonic T =T, <1 — sin (” w/Z(uf)> 8.3 9.9 9.7 55
Vibration x(t) Vibration y(t)
10 10
£ £
E O E O
x >
-10 -10
2 4 6 8 0 2 4 8
t[s] t[s]
Position of the balls Position y(x)
50 0.2
- IS
E 0k E 0
© S >
-50 S -0.2
2 4 6 8 -0.2  -0.1 0 0.2
t[s] x [mm]
Angular velocit Torque T(t
200 ngular ty - orque T(t)
S €
s 100 Z 26
. -
> 0 24
2 4 6 8 0 50 100 150
t[s] ¢ [rad/s]

Fig. 10. Behavior of the system with constant torque
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Fig. 11. Behavior of the system with variable torque

The behavior of the system with linear changing torque is shown in Figure 11. The balls turn with the drum about
8 times and when the drum spin velocity stabilizes, the balls go to the position to compensate for the unbalance.
During the increasing angular velocity, the drum goes through two resonances, and the amplitudes of vibration
increase but in a very short time. There is a very small difference between the maximum amplitude of vibrations with
and without the balls.

The process of increasing the spin velocity of the drum does not change the properties of the balls in
compensating for the unbalance; it increases the time to obtain the self-balancing effect.

Factors that decrease the efficiency of the method

The principal factors which may influence the efficiency of self-balancing:
e Increased vibrations while changing from washing to spinning cycle (resonances).
e  Variable unbalance of laundry during the spinning.

— extracting water is slow so the balls follow the unbalance change.

Eccentricity of the ring in which the balls are located.

Rolling resistance of the balls.

Friction of the tub suspension.

Impact between the balls.

Gravity force.

External vibrations.

Variable spin velocity

It was shown (Figs.10 and 11) that the balls move inside the drum in the opposite direction as the drum
accelerates and when it achieves the working velocity, the balls move to their position of equilibrium to eliminate
the vibrations. The time in which the system stabilizes is extended by the time of the variable spin velocity. At the
resonances, the amplitudes of vibrations are almost the same for the washing machine with and without the balls.

Rolling resistance of free elements

The centrifugal forces are several dozen times higher than the vibrational forces, so friction forces would
give enormous errors in the positioning of the free elements, therefore rolling elements as balls or rollers are used.
Their rolling resistance works in position errors A;, residual unbalance, and residual vibrations. The equation of
the ball with a rolling resistance has the following form:

m, R &; = m[¥ sin(wt + ;) — y cos(wt + a;)] — ¢; Rm a&; — F, (19)
where the rolling resistance is equal to:
F,=mR w2£ sign(a;). (20)
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In the equation above, r is the radius of the free element and f'is the coefficient of rolling resistance. The ball
cannot be moved if the vibrational force is smaller than the rolling resistance:

abs(F;(a;s + A;) — abs(F;) < 0, i=1,2,..,N. (1)

From the equations above, the maximum deviations A, max, - AQnrmax can be calculated. In the next step,
the components of the residual unbalance and the total residual unbalance AMe, as shown.

AMe,, = Me + mR ¥iL, cos (@i + Airmax), AMe,, = mR YL, sin (aif + Airmay) - (22)

When the residual unbalance is defined, then the amplitudes of residual vibrations a,,, a,, are obtained from
Egs. (2, 3). The shifted position of the free element can be any from the range —AQjrmar < Ay < A®jpmax- In
the case of one ball with a static moment mR = Me, the ball can stop at @y = 7 + Aa, and Eq. (22) takes a form:

abs{—0.5 w?m| ag, sin(m + Aa, + @) + gy sin(m + Aa, + goy) + aysin(py) +a, sin(goy) |}-mR w? £ <0 (23)

For a small deviation Aa;, the above equation gives a result:
2R f
r(axcospy+aycospy)’

abs(Aa,) <

(24)

Figure 12 shows the maximum error of the position of one ball for different spin velocities and two different
coefficients of the rolling resistance.

Error Position as a Result of Rolling Resistance

2000 [ pem===TTTTTT
....

Aa [deg]

250 500 750 1000

—f/r=.001 ===-- f/r=.002

Fig. 12. Maximum deviation Aomax Vs spin velocity for //7=0.001 and f/7=0.002

The residual vibration:

Xre = Qox COS(WE — @) + ay cos(wt + T + A, — @) = —ayAa, sin(wt — @) = —AyreSin (Wt — @y).

(25)

The amplitude of residual vibration:
2Rf

Ayre = A A, = ay.
xre X 1 (agxCoS@x+a0yCoSPxy)

(26)
And similar to the amplitude a,,... If 0 >> w,, w, then a,, = a,, = Rf /re. The unbalance is unknown and

a minimum of two balls must be used. At their final position a; 5 + Aay,, @y5 + Aay, the vibratory forces cannot
move the balls until they are smaller than the rolling resistance. For the first ball

f
abs{F,(ays + Ay, azf + Aay,)} — m R w? -=<o. (27)

The same goes for the second ball. If each ball has a static moment mR=Me (than a=-ax= oy=120 deg) and
W>>0y, Oy, then ax=ay~e, px=py~n then the balls cannot move if:

abs{—[cosaf + cos (Zaf)]Aalr + cos (Zaf)AaZr}e —mR wzé <0. (28)
abs{cos(2ay) Aay, — [cosay + cos (2as)|Aaz,}e —mR w2£ <O0. (29)

As a;=120 deg, then:
|Aa, — 0500, | - 2L < 0, (30)
|-0.50a,, + Ay, | — 2L < 0. 31)
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There are many possibilities of the ball deviations Aa. For symmetrical deviations Egs. (30, 31) give the solutions:

Aay, = Aay, = +22-L (32)
For the following parameters Me=0.05 kgm, R=0.28 m, mR=Me, f/r=10" the maximum deviation is da =

2.4 deg and with the same parameter and the rolling coefficient f/r = 10~3 the maximum deviation increases

about ten times.

The diagrams in Figure 13 present the behavior of the drum balanced with two balls that move with rolling

resistance f//#=107. Figure 13a shows the vibration x(®?), y(wt), and Figure 13b the position of the balls in time.

Vibrations Balls position

20 5
4
15 .
3
2
10 .
— = 1
= =
E s - =~ O | i
= <
>< =
o -1 -1
o mN\Avvvv.m =L |
-3 |- -
-5 | -
-4 | -
-10 -5
a) o 100 200 300 b) o 100 200 300
[omt] [omt]

Fig. 13. Vibrations and the position of the balls if Me=0.05 kg m, a1=- a2=120 deg, n=1000 rpm,
=103

It can be observed that the first ball comes to a stop with a deviation of 25 deg, and the second ball stops with
a difference of 21 deg to the theoretical position ar=+120 deg, just at £im;~35/® the balls impact each other. It is
impossible to eliminate the rolling resistance; consequently, a residual unbalance causes vibrations.

Eccentricity of the ring

The ring with the balls is fixed to the drum in a free space between the drum and the tub. As the free space
between these two elements is small and the unbalance can be significant, it would be better to use the rollers
instead of the balls. The drum is an element that is not exactly manufactured, there is an eccentricity between the
axis of rotation of the motor and the drum, and between the drum and the ring. It leads to the deviation in the ball
position which gives the next resultant unbalance. The eccentricity of the ring center concerning the motor axis is
defined by the distance p=00; and the angle § (Fig 14). It results in a change in the ball velocity and consequently
transforms Egs. (2-4).

X
wt x -
B
C a . Y
11/ ' po
w R +a
(;;l (w +d) \ y
w t
o w P

Fig. 14. Position of the ring and the ball concerning the drum
The kinetic energy of the ball will have a new velocity component:

T; = 0.5m{[x — R(w + &;))sin(wt + a;) — pw sin(wt + B)]? + [y + R(w + &;)cos(wt + a;) +
pw cos(wt + B)]?} + 0.5](w + ?dl)z. (33)

The Lagrange’s equations give some extra terms F,, F,,, Fj, in the differential equations:

10
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M# + Cex + kyx = Me w? cos(wt) + m R ¥[(w + &;)? cos(wt + a;) + Fxp)], (34)

My + Cey + kyy = Me w? sin(wt) + m R L[ (w + &;)? sin(wt + ;) + F,,]. (35)

m, R &; = m[X sin(wt + a;) — y cos(wt + )] —¢;Rmda; +F,, i=12,..,N, (36)
where: F,, = %a)zcos (wt+p), F, = %wzsin (wt + B), F, = —mp w? sin (a; — B) are new terms due to
eccentricity. The vibrations of the drum can be approximated as:

x(t) = agy cos(wt — @,) + XN [ai, cos(wt + a; — @) + apy cos(wt + B — @], (37)

y(t) = ag, sin(wt — (py) + 3N [aix sin(wt +a; — (py) +a,y sin(wt +p— (py)]. (38)
The vibratory force:

F, = %fon[J'c' sin(wt + a;) — ¥ cos(wt + ;) — pw?sin (a; — B)]dt. (39)
It consists of three vibrational forces:

Fi = Fix + Fiy + Fip‘ (40)
The vibrational force F;, from the vibration x(7) has a form:

F; = —O.Smwz[aOX sin(a; + @,) + Z?’zl(axj sin(al- —a; + (px) + ay, sin(a; — B + (px))].
(41)

and similar for Fiy. The component F;,, from the eccentricity:

F;, = —mpw? sin(a; — B). 42)

For one ball with the static moment mR=Me (then a¢=a) the vibrational force F; has a form:

F, = —0.5mw?[a, sin(a + ¢,) + a, sin(p,) + ay, sin(a — B + @) + ay sin(a + ¢,) +
a, sin(<py) +ay, sin(a - B+ <py)] — mpw?sin (a — B), (43)
where a,,/a,=p/R<<1 is very small and some terms can be neglected.

Without the eccentricity, the ball should take the position a=n to compensate for the drum unbalance. With
the eccentricity, the ball is shifted by Aa, with respect ay and at this position, the vibrational force is zero.
F, = —O.Smwz[—ax sin(Aap + (px) + a, sin(@y) —a, sin(Aap + (py) +aysin(<py)] +
mpw? sin(Aa, — B) = 0. (44)

For w > wy, w,, it can be taken a, = a, = e, ¢, = ¢, = w. The small deviation of the ball concerning the
position o= is as follows:

Aa, = — P__sing. (45)

e+pcosf
Figure 15 shows in what way the deviation Aa, changes with the position of the eccentricity defined by angle S.

Error Position of Aa with Eccentricity a;= 180°

0

Aa [deg]

50

B [deg]

— —p=0.1mm  -=--- p=0.6mm ——p=1.0mm

Fig. 15. Deviation of the ball position caused by eccentricity when o=n

The order of magnitude of the deviation Aa, can be estimated from the graph in Figure 15. In the case of one
roller, its maximum deviation occurs at the angle § = m/2. In practice, a minimum of two rollers should be used
to compensate for any drum unbalance. Their deviations Aa.p, Aay, can be found from Eq. (46).
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Fy(ayf + Actyp, azp + Aayp) =0, Fy(ays + Aayp, ayp + Aay,) =0, (46)
where the vibratory forces are defined by Eq. (42). Then, the residual unbalance is determined as follows:
AMe,, = —mR YL, sin(a;f) Aa;, AMey, = mR ¥,\L, cos (a;f)Aa;), (47)

Figure 16 shows the computer simulation of the drum vibrations and the behavior of the balls when the
eccentricity of the ring is equal to p = 1 mm.

Vibrations x, y Ball position
30 4
20 2t
.10 0
IS ©
E | £
0 2t
-10 -4t
-20 -6
0 100 200 300 0 100 200 300
[omt] [omt]

Fig. 16. Behavior of the system with the eccentricity p=1 mm at 1000 rpm, Me=0.05 kgm, f=mn/2.

As the eccentricity is great p=1 mm, and f=n/2 the deviations are large: Aa,=45 deg, Aax,=34 deg, different
for each ball. The drum cannot be balanced and there are residual vibrations with the amplitude of a,, ~ 1.2 mm.

Variable unbalance

With increasing the drum velocity the distribution of wet laundry changes and the balls roll in the opposite
direction of the drum. When the velocity stabilizes, the balls move to the position to compensate for the laundry
unbalance (about a second). The next changes in laundry distribution are quickly compensated by the balls. A
special mechanism to block the ball in the drum is not necessary.

Damping of the tub

Thus far, the dissipation of energy was approximated by the viscous damping and any unbalance generates
vibrations and vibratory forces. The suspension system of the tub consists of two springs and four dampers: the
front two with a friction force of up to 80 N, and the rear two 60 N[27]— Fig.17. When the balls are close to their
final positions the small unbalance cannot overcome the friction of dampers, no vibrations, no vibratory forces,
which leads to the error in the ball position and next residual unbalance.

Fig. 17. Sketch of the tub suspension

For instance, when the dynamic force of the unbalance in the vertical direction is smaller than the friction force,
the tub cannot move in that direction.

w?[Me + mR YN cos (a;f + Aajp)] < F, = 2F - cos (y). (48)

where: 2F=140 N and y=61 deg.
For the drum speed #n=1000 rpm, with two balls mR=Me=0.05 kg m that are close to their final positions
or=£27/3, the maximum ball error position is

12
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F-cos(y)

Aaf < Me-sin(2m/3)w?

= 0.071rad (49)

For the lower speed of the drum, the error would be higher. An example of the numerical simulation of the tub
vibrations and the ball motion with the friction of the suspension is shown in Figure 18.

4 Vibrati in X direction 20 Vibrations in Y direction
2 15
=0 \MWMLNM_ _ =10
E E
® .2 > 5
-4 4] AN
-6 -5
0 100 200 300 o] 100 200 300
Time [wt] Time [wt]
6 Position of the ball/rollers 015 Displacements of the axis points
4 . _ -
2
i=) v E
£ o ! E -
[ R R I ‘2 ]
2 \\
-4 R T
-6 . " ]
4] 100 200 300 0.05
Time [wi]

Fig. 18. Behavior of the system with friction forces at spin velocity n=1000 rpm

The theoretical positions of the balls are a;; = —a,r = —4m/3 rad, for this simulation, the errors of the ball
position are Ao;=0.22 rad and Aa,=0.12 rad. The probability of this error is low as the tub is connected to the
metallic casing which can vibrate, the washing machine has anti-vibration pads, and the vibrations of the floor can
also get in.

External vibrations

The cabinet has elastic or rigid support and external vibrations can also influence the behavior of the balls and the
result of balancing. In this case, the balls want to compensate for the drum unbalance and the external excitation (Fig.
8) — the idea of synchronous eliminator of vibration was given in [28]. It was shown that the vibrations with the
same frequency or very close to the drum spin can generate the vibratory forces that change the final position of
the freely moving balls to compensate the drum unbalance and the vibration of the floor.

Effect of gravity forces

This type of washing machine has a horizontal axis of rotation. During the washing cycle, the clothes move up
and drop down to the water with detergent, while the balls in the drum keep their lower position. During the
spinning cycle, large centrifugal forces push the cloths against the drum, keeping them in their position and
removing water, the same with the balls. The gravity force of the ball gives a component tangential to its trajectory
Fiqg = mgsin(wt + ;). Hence, the Eq. (52) of the ball shows an additional force.

m, R &; = m[¥ sin(wt + ;) — J cos(wt + ;) + gsin(wt + a;)] — F, i=12,..,N. (50)

The vibrations of the drum can be approximated as earlier by Egs. (7, 8) and the vibratory force is defined as:
F* = %for[a'c' sinflwt+a;) —ycos(wt + a;) — gsin(wt + a;)] dt. (51)

It gives the same result as Eq. (10) because the average gravity force in Eq. (51) is equal to zero. The gravity
force does not influence the final position of the ball. It generates small oscillations of the ball to its position a; (t).
At the final position of the ball a;¢, the gravity force with its frequency ® does not change the ball position, because
its frequency is much higher than the natural frequency of the ball.

. JF;
MRAG; = Fi(ay, ..., ay) = Fi(ayp, .., ays) + Z?’zlaTjAaj. (52)

where F; is the vibratory force of the ball 7.
For one ballas=n then
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mRAG — O.Smwz[a()xcosgox + aoycosqoy]Aa =0. (53)
The natural frequency:
Wy = w\/i [—aoxcos@, — agycosg,]. (54)
And for @>>wy, oy:
Wy = w\/% K w. (55)

As o/m>>1 the amplitude of oscillation of the ball is very small, and it is not observed in the diagrams from
the numerical simulation with the ball gravity.

When the spinning starts then the centrifugal force, and the friction forces, drive the balls to move with the
drum. Sometimes the balls move in opposite directions and impact each other. They have the same mass, so after
the impact, they move with the same velocities in opposite directions. There can be one or two impacts, and it does
not affect the vibrations of the drum and the final position of the balls. During the washing cycle, the balls stay at
the lowest position in the drum. The system can be equipped with a mechanism that blocks the balls for the washing
cycle and unblocks them for the laundry spinning, but it makes the system more complex.

Evaluation of the final effect of auto-balancing

One by one the article presents some reasons affecting the process of auto-balancing, the importance of each
of them is different for the resulting unbalance, and all of them exist simultaneously. Several of them have a
significant influence on the deviations of the balls Aay, ..., Aay, some are small, and others are very small and can
be ignored. The resultant effect is not a simple sum of them all. To estimate their influence on the efficiency of the
method, the probability of each of them should be established.

The eccentricity p between ring with the balls and the motor always give the deviation defined by Eqs. 46, 47).
On the contrary, the deviations given by the rolling resistance can be any between zero and maximum value given
by Egs. (28, 29).

To initiate a new project for a washing machine with the ball or roller balancer, a designer must define
acceptable residual unbalance and distribute it between different reasons of unbalance — the probability of each of
them. In this way, the maximum eccentricity p,,q,, the coefficient of rolling resistance fmax, dry friction force, etc.
can be defined. The distribution depends on the designer’s experience and the manufacturer’s constraints. The
probability occurrence of each of them is given by the coefficient p;

Yipi=1 (56)

For instance, the residual unbalance AMe should be lower than 10% of the initial unbalance Me and its
distribution can be taken as follows; 50% from the eccentricity, 35% from rolling resistance, friction force 10%,
and 5% from undefined reasons, respectively.

AMey, = AMe, + AMe, + AMe; + AMe, < 0.1Me. (57)

The residual unbalance from the eccentricity should be lower than:

AMe, < 0.5-0.1Me = 0.05 Me. (58)

If one ball is used and its final position is m+Aa, then the unbalance is AM e, = mRAa,. For w >> w,, w, and
p/R << 1 the Ao, is given by Eq. (45). Then, the Eq. (58) takes a form:

mR-21E_ < 0.05Me. (59)

e+pcosf

where: p is the eccentricity, r is the radius of the ball, and R is the radius of the path.
The position of the eccentricity § and its magnitude p are unknown so the adverse situation arises when f =
/2 and Eq. (59) has a form:

mRS < 0.05Me and the maximum eccentricity  Ppq, = 0.05 % (60)

If Me=0.025 kgm and M= 37 kg the permissible eccentricity of the torus is 34 um, for Me = 0.05 kgm the
eccentricity should be smaller of 67 pm. It should be revised if it is technically feasible. If not, then the distribution
of the resultant unbalance should be changed or allow a higher residual unbalance. The maximum rolling resistance
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can be obtained similarly. For one ball that can compensate for the unbalance Me = mR and drum spin velocity

W >> Wy, Wy, 4. (26) gives.

2fR

~ IR (61)

Alymax =

r+abs(axCosQx+aycosgy) T re

The ball’s deviation can be from the range -Adimax < Aot <Aomax With a small probability that the ball is at one
of the maximums Aomax. Thus, the acceptable unbalance from the rolling resistance can be taken twice higher.

mRAa, = mR];—f = 2*AMe, = 0.7AMer = 0.7 * 0.1Me = 0.07Me.

The coefficient of the rolling resistance should be:

L <007%=0.07%
r R MR

(62)

(63)

For the unbalance Me = 0.025 kgm the rolling resistance should be f/r = 5-107°. Again, there is the
question of whether it is possible in practice to reduce the rolling resistance to this level or not. The suspension
friction should give an unbalance lower than 10%, but its probability is small due to vibrations of the housing and
its impact can be reduced by half. If there are two balls, then their errors of position are defined by Eq. (51).

Fcos(y)
Aaf < Me-sin(2m/3)-w?"
And its unbalance

2mRAq; = 2mR ——2°0)

Me-sin (2m/3)w? —

The maximum friction force of the suspension can be defined from the equation above.

F < 0.005Me - w?

For the drum unbalance and the spin veloc-
ity 1000 rpm, the friction force of suspension F'
should be lower than 57 N, the friction of this
washing machine is close to that magnitude.

Some results of the numerical simulation with
several reasons mentioned above (ball gravity,

Vibrations in X direction

X [mm]
o

-5

0 100 200
Time [wt]

Position of the 1st ball/roller

300 400

o, [rad]

0 100 200

Time [wt]

300 400

cos(y)

(64)
< AMe; = 0.05AMey = 0.005Me, (65)
sin(z?n) (66)

eccentricity, and rolling resistance are presented
in Figure 19. The motion of the balls stops rapidly
and vibrations become small. It is seen that the
balls cannot completely compensate for the drum
unbalance. Tables 3 and 4 present the final ampli-
tude of the drum vibrations a, the position error of

Vibrations in Y direction
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Figure 19. Behavior of the system if Me = mR = 0.05 kg m, w = 100 rad/s, p = 0.5 mm, f =n/2, f= 10"
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Table 3. Me = mR = 0.05 km, f= /2, f= 10

p [mm] A [mm] Aa, [deg] Aa, [deg] RMe [%)]
0 0.35 3.5 12.3 74.5
0.05 0.34 4.7 10.9 75.2
0.1 0.334 6.0 9.4 75.7
0.5 0.34 17.3 0.3 68.9
1 0.38 37.5 7.8 44 .4
Table 4. Me = mR = 0.05 km, f=n/2, f=10"r
o [mm] A [mm] Aa, [deg] Aa, [deg] RMe [%)]
0 0.05 0.1 0.1 99.8
0.05 0.05 2.0 1.5 96.4
0.1 0.1 4.1 3.9 93
0.5 0.5 18.4 21.1 64.7
1 1 29.9 42.9 29.3

the balls Ao, and Aa,, the efficiency of unbalance
removing RMe = (Me—-AMe)/Me if the eccentric-
ity p changes from 0 to 1 mm, its position is de-
fined by the angle = /2, and two coefficients of
rolling resistance 107 or 10~r.

For the coefficient of the rolling resistance /=
107 r, the effect of the eccentricity is much small-
er (Table 3) than the resistance, for a change the
greater influence of eccentricity and smaller re-
sistance as in Table 4. The acceleration measured
during the centrifugal force of the wet towel at 720
rpm was a =a =30 mV, which gives an amplitude
of vibration of 1.3 mm. Comparing this result with
the vibration of a washing machine equipped with
a self-balancing system, as shown in Table 3, re-
veals a 70% decrease in vibration. However, com-
paring it with the results in Table 4 shows a reduc-
tion of only 25% when the eccentricity was 1 mm.
To achieve optimal self-balancing, the eccentricity
should be less than 0.1 mm and the rolling resis-
tance coefficient f/7 should be below 0.001. In this
case, the vibrations of the washing machine will be
much smaller than those shown in Figure 3.

CONCLUSIONS

Most articles on the self-balancing of rotating
systems lead to the conclusion that free elements
can compensate for the initial unbalance in 100%
and eliminate vibrations. The article showed
that some extra parameters should be taken for
a model of the washing machine if its real pos-
sibility is to be determined and decision on using
this method to eliminate vibrations is to be made.
The eccentricity between the ring and the mo-
tor, resistance of the balls, variable speed of the
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washing machine, properties of the drum suspen-
sion system, variable unbalance, gravity forces,
and external vibrations are important reasons that
decrease the efficiency of the washing machine.
The article showed in what way each of them
influences the ball distribution concerning the un-
balance, the errors in their positioning, how large
they are, and what residual unbalance they intro-
duce. Some simulations demonstrated in what way
the vibrations of the drum change during the spin-
ning of the laundry and the behavior of the balls
during this process. The balls reach their final posi-
tion very quickly t < 150/ sec, and one or two im-
pacts can happen between them. It has been proven
that ball resistance and especially eccentricity have
the greatest impact on balancing efficiency. Finally,
the article proposed a method of distribution of the
partial unbalances to achieve the required residual
unbalance. In this way, the deviations of the most
important parameters can be established, whether
self-balancing happens or not, and how large the
amplitudes of residual vibrations can be.
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