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INTRODUCTION

Nowadays, almost every house has a washing 
machine to help in our daily lives. They come in 
various forms: a simple top load with a vertical 
axis of rotation, or a front load with a horizon-
tal axis of rotation, the latter usually with more 
washing programs. There are two main working 
stages of washing: the first drum rotates slowly 
back and forth, sloshing the clothes against the 
water with detergent, followed by the second 
stage, the spinning cycle, during which the drum 
spins at high velocity to eliminate water. During 
the spinning cycle, the laundry is not symmetri-
cally distributed and generates vibrations. Some-
times, the unbalance is so large that it makes the 
washing machine move, and some modern wash-
ing machines have vibration sensors, to stop it.

The self-balancing method would be the ide-
al method to eliminate the vibrations during the 

spinning cycle as the drum unbalance changes 
for each restart. Since Thearle [1] proposed self-
balancing with the balls, some articles analyzed 
its dynamics [2–10]. Most recently, some articles 
presented the analytical approach for synchro-
nous and nonsynchronous solutions and their sta-
bility due to the balancing effect [11–13]. How-
ever, the conclusion from the ideal model cannot 
be directly applied to the real system as the balls 
occupy a position that does not entirely compen-
sate for the unbalance. More parameters influence 
the dynamic of a real washing machine and the 
final unbalance.

The author of the article proposed his expla-
nation of auto-balancing phenomena because of 
the vibratory forces that exist in the system. In 
this way, it was possible to explain why the rotor 
with one degree of freedom also may eliminate 
its vibration from the unbalance. If there are more 
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degrees of freedom, the vibratory force results 
from the vibrations of all component [14–16]. 
This method was used in the next part of the ar-
ticle. In the case of the ideal model taken in more 
publications, the balls fully eliminate unbalance 
and no vibrations. 

In practice, some reasons decrease the ef-
ficiency of the method resulting in vibrations, 
noise, and mechanical degradation for the wash-
ing machine. Some articles considered only a 
singular reason for decreasing the efficiency of 
balancing or proposed unrealistic modifications. 
The first time the influence of rolling resistance 
on the final positioning of the free balls was ana-
lyzed in the author’s article [17]. Recently, this 
problem was studied again [18–23]. In their 

model, the component of precession centrifugal 
force is used to overcome rolling resistance. This 
is true when the properties of the rotor suspension 
are the same in both directions. Practically, it is 
impossible to align the circular path of the ball 
with the rotor axis and the next error in the ball 
positioning. In the case of a washing machine, 
misalignment may cause considerable error in the 
final ball positions and the drum vibrations. Some 
additional causes can appear in real systems that 
decrease the efficiency of the method, e.g., an ex-
ternal vibration or variable speed of the washing 
machine [24–27]. This is the first article revealing 
a holistic and systematic approach to evaluating 
the efficiency of the self-balancing method for a 
washing machine.

 

 

 

 

 

 

Spinning the laundry 

To establish the rate of removing water from clothes, a static experiment with a sloshy towel was performed. 
The dry towel of mass mt= 0.44 kg and waterlogged of 1.7 kg, was subjected to a pressure of 4.5 kPa in a container 
with the same holes as the drum. The diagram in Figure 1 presents the removal of water ∆ in time; with increasing 
dynamic pressure the water extraction is faster. Dynamic pressure during spinning is defined as: 

𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐 = �𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛
30
�
2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐      (1) 

where: an  – is normal acceleration, n [rpm], R – speed and radius of the drum, dc [kg/m2] – density of the wet 
towel. 

 
Fig. 1. Extracting water from the towel: ∆ – extracting water, m – mass of the sloshy towel 

 
The investigation of the behavior of the drum with the self-balancer is limited to one plane without the vibration 

of the housing. The conclusions from the investigation will be true for a washing machine with more degrees of 
freedom, but more parameters affect the balancing process. In the article, the parameters of the washing machine 
Samsung (WD15F5K5ASG/Ax) were taken for further analysis. It is a typical front-loaded washing machine used 
in most households.  

 

    
Fig. 2. Front and rear view of the basic elements of Samsung one: 1 – drum; 2 – tub with 

counterweights m1, m2; 3 – dampers; 4 – motor 
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The tub vibrations measured with two accelerometers B&K 4507 of the sensibility Cs= 0.24 mV/ms-2 are shown 
in Figure 3 at the centrifugal velocity of n=930 rpm and the load of 7.5 kg.  

 
Fig. 3. Vertical and horizontal accelerations of the tub 

The amplitudes of acceleration are 

𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 ≅ 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 ≅ 47 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚 0.24 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−2

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 11.3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 

The amplitude of vibration  𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 ≅ 𝐴𝐴𝐴𝐴𝑦𝑦𝑦𝑦 ≅ 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥/𝜔𝜔𝜔𝜔2 = 11.28/(𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛
30 

)2 ≅ 1.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

At the spinning velocity of 680 rpm, the acceleration amplitude is 16 m s-2, and the displacement amplitude is 3.3 
mm. 

Principle of self-balancing 

The inertial forces exist in every vibratory system. When the system is not linear the inertial forces can change its 
properties. These forces can move free balls continuously or move them to new positions in which they increase or 
decrease the vibrations. In addition, the vibrational forces can change the stable position into an unstable one and vice 
versa.  

Figure 4 shows the suspension system of the tub-drum assembly, which consists of two springs and four dampers 
on the bottom. The drum spins inside the tub with the angular velocity ω. Two extra masses M1 and M2 are fixed to 
the tub to lower its natural frequencies. A ring with free elements is attached to the drum. The free elements can be 
either balls or rollers, in the article they are called balls. The balls have the same mass m and can move freely inside 
the ring of radius R. The position of the ball to the static unbalance 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined by the angle 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖.  

The coordinates x and y define the position of the drum axis O. The coordinate system Ox1y1 turns with the 
drum. The rotation of the unbalanced drum causes vibrations, x(t) and y(t), which generate an inertial force on each 
ball. The mass center C is defined by OC=e. 

 

a)     b)  

Fig. 4. Front view of washing machine (a), drum with free elements (b): 
1 – drum, 2 – tub, 3 – counterweights, 4 – dampers, 5 – springs, 6 – balls, 7vlaundry 

The principle parameters of the system: 𝑀𝑀𝑀𝑀 = 37 kg the mass of the tub with two extra masses, the drum, and 
the motor; 𝑅𝑅𝑅𝑅 = 0.28 m the radius of the circular path of the balls in the ring; the elastic properties in x and y 
directions are kx≅20 N/mm, ky≅6 N/mm, and the damping of the system in the x and y directions are cx≅200 kg/s, 
cy≅110 kg/s. 
The equations of motion for the drum are as follows: 

Fi 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜔𝜔𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 ∑ [(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)]𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 ,  (2) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑘𝑘𝑘𝑘𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜔𝜔𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅∑ [(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)]𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖  ,  (3) 

The equation of motion for the ith ball has a form: 

𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚[𝑥𝑥𝑥𝑥𝑥  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)] − 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 ,     𝑠𝑠𝑠𝑠 = 1,2, … ,𝑁𝑁𝑁𝑁,   (4) 

where: mx=m+Ir/r2 is the equivalent mass of the rolling ball or roller, ci is the viscous damping coefficient of the 
ball in its movement to the drum, and N is the number of balls. The behavior of the system is defined by nonlinear 
differential equations the solution of which can be obtained only by numerical integration.  

The ball changes its position concerning the drum and when this happens, the total unbalance of the system 
changes. At the final position αfi, the balls may compensate for the unbalance, the resulting force is zero, the tube 
with the drum does not vibrate, and no inertial forces pushing the balls. The diagrams in Fig. 5 present a numerical 
solution of the behavior of the washing machine and the balls during spinning at 1000 rpm when mR=Me.  

 

 
Fig. 5. Behavior of the drum and two balls at 1000 rpm, Me=mR [ι=om*t=ωt] 

As a result of the initial unbalance, there are vibrations, the balls move to their equilibrium position and the 
vibrations vanish. It turns out that the two balls can compensate for the rotor unbalance very quickly, in just 1.5 
seconds (t < 250/ω) and there are no vibrations. The balls change their position under the action of the vibratory 
force that is tangent to the ball trajectory – Eq. (4), (Fig. 4b). 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖∗ = 𝑚𝑚𝑚𝑚 [𝑥𝑥𝑥𝑥𝑥  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)].    (5) 

The balls move slowly, so the drum and its vibrations can be approximated as follows: 
 

𝑥𝑥𝑥𝑥(𝜔𝜔𝜔𝜔) ≅ 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 ,   (6) 

𝑦𝑦𝑦𝑦(𝜔𝜔𝜔𝜔) ≅ 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� + ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 .   (7) 

The behavior of the balls depends on the average magnitude of the force 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖∗, [14, 15]. 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇 ∫ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖∗

𝑇𝑇𝑇𝑇
0 𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔       (8) 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = −0.5 𝜔𝜔𝜔𝜔2𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� + ∑ 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥�𝑁𝑁𝑁𝑁
𝑥𝑥𝑥𝑥=1 + ∑ 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�𝑁𝑁𝑁𝑁

𝑥𝑥𝑥𝑥=1 � ,      
(8) 

where 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 are amplitudes from the drum unbalance and the ball, respectively. The vibratory forces Fi are 
responsible for the behavior of the balls and their final position. Each of the components of the drum vibration 
generates its vibrational force: 
 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥(𝛼𝛼𝛼𝛼1, . . ,𝛼𝛼𝛼𝛼𝑁𝑁𝑁𝑁) + 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦(𝛼𝛼𝛼𝛼1, . . ,𝛼𝛼𝛼𝛼𝑁𝑁𝑁𝑁).    (9) 

The vibratory force can also be shown as a sum of the forces from each element of the system, i.e. from the 
static unbalance and each ball 
    𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = (𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥0 + ∑ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) + (𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦0 + ∑ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦)𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 .    (10) 
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If only one ball is used with the static moment 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
𝐹𝐹𝐹𝐹1 = −0.5 𝜔𝜔𝜔𝜔2𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) +  𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) +  𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�  +  𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦��.  (11) 

The diagram below (Fig 6) shows the change in vibratory force 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 with the ball position if only one ball is used. 
The force 𝐹𝐹𝐹𝐹1 takes the value of zero at two positions: near the unbalance and the opposing the unbalance 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 = 𝜋𝜋𝜋𝜋. 
By increasing the damping of the drum, the diagram 𝐹𝐹𝐹𝐹1(𝛼𝛼𝛼𝛼) moves downwards and the negative force overrides the 
positive force. For the spin velocity between two resonances 𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦 < 𝜔𝜔𝜔𝜔 <  𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥, the two components of vibratory 
force have opposite signs, the resultant force is very small and can be positive or negative - Fig. 6 b. If force Fy is 
smaller than force Fx, then the balls cannot compensate for the unbalance.  

a)  b)  

Fig. 6. Vibratory force: a) (Fx+Fy)/(mRω2) for ω> ωx, ωy and b) for ωy< ω <ωx 

For the first diagram, both extremes of the vibratory force are almost the same and for the second one, the 
negative extreme is 2.5 times higher than the positive. In this case, the probability that the ball will move in the 
direction opposite the drum rotation is much higher than the positive (Fig. 6b). 

For higher damping, the diagram of vibratory force is more asymmetrical. For both diagrams, the stable 
equilibrium position of the ball is 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 = 𝜋𝜋𝜋𝜋 but the margin of stability in Figure 6b is small, a slight impulse can 
change the ball position into unstable. 

 
Fig. 7. Vibratory forces 𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔2⁄  for ω> ωox, ωox with different  

damping coefficients 𝜀𝜀𝜀𝜀 and for ωoy<ω<ωox 

At the spin velocity ωy<ω<ωx the vibrational force Fy tries to move the ball to the position in which the ball 
compensates for the unbalance, whereas Fx would like to increase it (Fig. 7). For low angular velocities 
𝜔𝜔𝜔𝜔/�𝜔𝜔𝜔𝜔𝑜𝑜𝑜𝑜𝑥𝑥𝑥𝑥,𝜔𝜔𝜔𝜔𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦� < 1, the balls occupy the positions near the static unbalance, lack of self-balancing. There are two 
positions of equilibrium, only one of them is dynamically stable. The position of the ball αf=π is stable if the 
derivate of the vibratory force F(α) with respect to the angle of the ball position is negative – Lagrange-Dirichlet 
theorem. 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓

= −0.5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2�𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥� + 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�� < 0.  (12) 

The ball position αf=π is stable when ω>ωx, ωy –the ball can compensate for the unbalance. For more balls, the 
stability is given in [16]. The balls can compensate for the asymmetrical distribution of laundry at a spin velocity 
higher than the natural frequencies and the laundry unbalance should be smaller than the static moment of all balls 
Me<mR*N. 
 

 

 

 

 

 
Fig. 8. Principle of self-balancing – an internal feedback loop 
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It was shown that the balls move under the action of the vibratory force and the behavior of the drum depends 
on the ball position. Thus, the kinetic-static model can be used for further analyses, i.e., the behavior of the drum 
is defined by Eqs. (2, 3) and the behavior of the balls is approximated by the following equations: 

 
𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ,          𝑠𝑠𝑠𝑠 = 1,2, … ,𝑁𝑁𝑁𝑁,     (13) 

where: 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is defined by Eq. (10) and 𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 is the resistance force. 
There are two vibratory processes with a significant difference in frequency and T. Majewski proposed to 

separate them and investigate the influence of fast motion on slow motion (vibratory mechanics), and some 
applications give very good results. The behavior of mechanical systems depends on the ordinary and vibratory 
forces acting on them. 

The diagrams in Figure 9 show the difference between two solutions: q(t) the complete Eqs. (2-4) and the 
second one qk(t) for the kinetic-static model for the balls defined by Eq. (14) with the drum Eqs. (2, 3). The 
solutions are very close to each other, there are only slight differences between them; 𝐷𝐷𝐷𝐷𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥(𝜔𝜔𝜔𝜔) − 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘(𝜔𝜔𝜔𝜔),𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦 =
𝑦𝑦𝑦𝑦(𝜔𝜔𝜔𝜔) − 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘(𝜔𝜔𝜔𝜔),𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼 = 𝛼𝛼𝛼𝛼(𝜔𝜔𝜔𝜔) − 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘(𝜔𝜔𝜔𝜔). At the beginning of the simulation, Dx(t) is almost 10 μm, for 𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦(𝜔𝜔𝜔𝜔) is 25 μm 
and for the ball positions 𝐷𝐷𝐷𝐷𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔) is 0.005 rad. In a matter of seconds, the difference between the solutions vanishes. 
Similar results would be for more balls. This confirms that the kinetic-static model can be used in the following 
sections. 
 

 
Fig. 9. Difference between the solution of complete equations and kinetic-static model 

As it was proven above, as well as in articles [14-17], the vibrational forces are responsible for the self-
organizing of the balls and in this application, they lead to self-balancing. 

The vibrational forces are very small concerning the centrifugal forces acting on the balls (Fig. 4) and any extra 
disturbance may seriously affect the balancing process. The balls go to new positions that are different from an 
ideal balancing model and their dynamic stability also changes. The article showed some disturbances that exist 
in each real system, analyzed their influence on the residual unbalance, and defined the practicable efficiency of 
the method. 

Transition from washing cycle to spinning cycle 

When the washing cycle is finished the washer moves to the spinning cycle to remove the water. The spin velocity 
increases to 600, 800, or 1000 rpm, and the tub-drum overcomes two resonances. During the increasing velocity, 
there are large vibrations and angular acceleration that depend on the torque 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀 of the motor. Now, the angular 
velocity varies, and the differential equations should be modified. The kinetic energy of the ball: 
 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 1
2
𝑚𝑚𝑚𝑚{[𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 (𝜑𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝚤𝚤𝚤𝚤̇ )𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)]2 + [𝑥𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑅𝑅(𝜑𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝚤𝚤𝚤𝚤̇ )𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)]2} + 1

2
𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅
𝑟𝑟𝑟𝑟

(𝜑𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)2,  (14) 

where φ(t) is the angle of the drum rotation. 

The rotation and vibration of the drum and the balls are governed by Eqs. (14-16). 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 𝜑𝜑𝜑𝜑𝜑 + 𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑 𝜑𝜑𝜑𝜑𝜑  ≅ 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝜑𝜑 −𝑦̈𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠] + 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ [𝑥𝑥𝑥𝑥𝑥  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖]𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 ,   (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 [𝜑𝜑𝜑𝜑𝜑 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) + 𝜑𝜑𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔] + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 ∑[(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) + (𝜑𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)], (16) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑘𝑘𝑘𝑘𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 [𝜑𝜑𝜑𝜑𝜑 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) − 𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔] + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 ∑[(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − (𝜑𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)], (17) 
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where 𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 is a mass moment inertia of the drum. The equation of motion for 𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔ℎ ball has a form: 

𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅2 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 ≅ 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅[𝑥𝑥𝑥𝑥𝑥  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ] − 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 ,       𝑠𝑠𝑠𝑠 = 1,2, … ,𝑁𝑁𝑁𝑁.   (18) 

Analysis of the differential Eqs. (16-19) should explain if the balls may or not compensate for the unbalance 
and establish the maximum amplitude of vibration during the increasing spin velocity. The torque of the motor 
can be constant or variable during this period. In addition, the programmed time for obtaining maximum spin 
velocity can be different and consequently different maximum amplitudes of vibrations. When the drum spins with 
acceleration then the tangent inertial forces push the balls in the opposite direction of the drum rotation. Tables 1 
and 2 present the time 𝜔𝜔𝜔𝜔𝑓𝑓𝑓𝑓 in which the drum reaches its final speed of 1000 rpm (nf), the maximum amplitudes of 
the drum, and the number of revolutions that the balls made, before they obtain their final position. 
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where 𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 is a mass moment inertia of the drum. The equation of motion for 𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔ℎ ball has a form: 
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Analysis of the differential Eqs. (16-19) should explain if the balls may or not compensate for the unbalance 
and establish the maximum amplitude of vibration during the increasing spin velocity. The torque of the motor 
can be constant or variable during this period. In addition, the programmed time for obtaining maximum spin 
velocity can be different and consequently different maximum amplitudes of vibrations. When the drum spins with 
acceleration then the tangent inertial forces push the balls in the opposite direction of the drum rotation. Tables 1 
and 2 present the time 𝜔𝜔𝜔𝜔𝑓𝑓𝑓𝑓 in which the drum reaches its final speed of 1000 rpm (nf), the maximum amplitudes of 
the drum, and the number of revolutions that the balls made, before they obtain their final position. 
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Fig. 11. Behavior of the system with variable torque 

The behavior of the system with linear changing torque is shown in Figure 11. The balls turn with the drum about 
8 times and when the drum spin velocity stabilizes, the balls go to the position to compensate for the unbalance. 
During the increasing angular velocity, the drum goes through two resonances, and the amplitudes of vibration 
increase but in a very short time. There is a very small difference between the maximum amplitude of vibrations with 
and without the balls. 

The process of increasing the spin velocity of the drum does not change the properties of the balls in 
compensating for the unbalance; it increases the time to obtain the self-balancing effect. 

Factors that decrease the efficiency of the method 

The principal factors which may influence the efficiency of self-balancing: 
• Increased vibrations while changing from washing to spinning cycle (resonances). 
• Variable unbalance of laundry during the spinning. 

– extracting water is slow so the balls follow the unbalance change. 
• Eccentricity of the ring in which the balls are located. 
• Rolling resistance of the balls. 
• Friction of the tub suspension. 
• Impact between the balls. 
• Gravity force. 
• External vibrations. 

Variable spin velocity 

It was shown (Figs.10 and 11) that the balls move inside the drum in the opposite direction as the drum 
accelerates and when it achieves the working velocity, the balls move to their position of equilibrium to eliminate 
the vibrations. The time in which the system stabilizes is extended by the time of the variable spin velocity. At the 
resonances, the amplitudes of vibrations are almost the same for the washing machine with and without the balls.  

Rolling resistance of free elements 

The centrifugal forces are several dozen times higher than the vibrational forces, so friction forces would 
give enormous errors in the positioning of the free elements, therefore rolling elements as balls or rollers are used. 
Their rolling resistance works in position errors ∆i, residual unbalance, and residual vibrations. The equation of 
the ball with a rolling resistance has the following form: 

𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 ≅ 𝑚𝑚𝑚𝑚[𝑥𝑥𝑥𝑥𝑥  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)] − 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟,   (19) 

where the rolling resistance is equal to: 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 𝜔𝜔𝜔𝜔2 𝑓𝑓𝑓𝑓

𝑟𝑟𝑟𝑟
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖).       (20) 
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In the equation above, r is the radius of the free element and f is the coefficient of rolling resistance. The ball 
cannot be moved if the vibrational force is smaller than the rolling resistance: 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + ∆𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟� − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟) ≤ 0,            𝑠𝑠𝑠𝑠 = 1, 2, … ,𝑁𝑁𝑁𝑁.    (21) 

From the equations above, the maximum deviations ∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, … ,∆𝛼𝛼𝛼𝛼𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 can be calculated. In the next step, 
the components of the residual unbalance and the total residual unbalance ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 as shown. 
 

∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 ,            ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1  .  (22) 

When the residual unbalance is defined, then the amplitudes of residual vibrations 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 ,𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟 are obtained from 
Eqs. (2, 3). The shifted position of the free element can be any from the range  −∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 < ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. In 
the case of one ball with a static moment 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, the ball can stop at 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 = 𝜋𝜋𝜋𝜋 + ∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 and Eq. (22) takes a form: 
 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�−0.5 𝜔𝜔𝜔𝜔2𝑚𝑚𝑚𝑚� 𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝜋𝜋 + ∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) +  𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜋𝜋𝜋𝜋 + ∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� +  𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥)  + 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�  �� − 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 𝜔𝜔𝜔𝜔2 𝑓𝑓𝑓𝑓

𝑟𝑟𝑟𝑟
≤ 0   (23) 

For a small deviation ∆αr the above equation gives a result: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟) ≤ 2∙𝑅𝑅𝑅𝑅∙𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟�𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥+𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�

.     (24) 

Figure 12 shows the maximum error of the position of one ball for different spin velocities and two different 
coefficients of the rolling resistance.  

 
Fig. 12. Maximum deviation Δαmax vs spin velocity for f/r=0.001 and f/r=0.002 

The residual vibration: 

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝜋𝜋𝜋𝜋 + ∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) ≅ −𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥).      
(25) 

The amplitude of residual vibration: 
𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≅ 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 = 2𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓

𝑟𝑟𝑟𝑟(𝑚𝑚𝑚𝑚0𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥+𝑚𝑚𝑚𝑚0𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦)
𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥.    (26) 

And similar to the amplitude 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. If 𝜔𝜔𝜔𝜔 >> 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥, 𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦 then 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 ≅  𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟  ≈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀. The unbalance is unknown and 
a minimum of two balls must be used. At their final position 𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + 𝛥𝛥𝛥𝛥𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 ,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + 𝛥𝛥𝛥𝛥𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟 the vibratory forces cannot 
move the balls until they are smaller than the rolling resistance. For the first ball 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�𝐹𝐹𝐹𝐹1(𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 ,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟)� − 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 𝜔𝜔𝜔𝜔2 𝑓𝑓𝑓𝑓

𝑟𝑟𝑟𝑟
≤ 0.    (27) 

The same goes for the second ball. If each ball has a static moment mR=Me (than α1f=-α2f= αf=120 deg) and 
ω>>ωx, ωy, then ax=ay≈e, φx=φy≈π then the balls cannot move if:  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�−�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓)�∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓)∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟�𝑀𝑀𝑀𝑀 − 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 𝜔𝜔𝜔𝜔2 𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟
≤ 0.    (28) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠�2𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓� ∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 − �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓)�∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟�𝑀𝑀𝑀𝑀 − 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 𝜔𝜔𝜔𝜔2 𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟
≤ 0.    (29) 

As αf=120 deg, then: 
|∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 − 0.5∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟| − 𝑅𝑅𝑅𝑅

𝑟𝑟𝑟𝑟
𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟

< 0,     (30) 

|−0.5∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 + ∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟| − 𝑅𝑅𝑅𝑅
𝑟𝑟𝑟𝑟
𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟

< 0.     (31) 
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There are many possibilities of the ball deviations Δα. For symmetrical deviations Eqs. (30, 31) give the solutions: 

∆𝛼𝛼𝛼𝛼1𝑟𝑟𝑟𝑟 = ∆𝛼𝛼𝛼𝛼2𝑟𝑟𝑟𝑟 = ±2 𝑅𝑅𝑅𝑅
𝑟𝑟𝑟𝑟
∙ 𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟
      (32) 

For the following parameters Me=0.05 kgm, R=0.28 m, mR=Me, f/r=10-4 the maximum deviation is 𝛥𝛥𝛥𝛥𝛼𝛼𝛼𝛼 ≌
2.4 deg and with the same parameter and the rolling coefficient 𝑅𝑅𝑅𝑅/𝑟𝑟𝑟𝑟 = 10−3 the maximum deviation increases 
about ten times. 
The diagrams in Figure 13 present the behavior of the drum balanced with two balls that move with rolling 
resistance f/r=10-3. Figure 13a shows the vibration x(ωt), y(ωt), and Figure 13b the position of the balls in time. 

 
Fig. 13. Vibrations and the position of the balls if Me=0.05 kg m, α1f=- α2f=120 deg, n=1000 rpm, 

f/r=10-3 

It can be observed that the first ball comes to a stop with a deviation of 25 deg, and the second ball stops with 
a difference of 21 deg to the theoretical position αf = ±120 deg, just at timp≈35/ω the balls impact each other. It is 
impossible to eliminate the rolling resistance; consequently, a residual unbalance causes vibrations. 

Eccentricity of the ring 

The ring with the balls is fixed to the drum in a free space between the drum and the tub. As the free space 
between these two elements is small and the unbalance can be significant, it would be better to use the rollers 
instead of the balls. The drum is an element that is not exactly manufactured, there is an eccentricity between the 
axis of rotation of the motor and the drum, and between the drum and the ring. It leads to the deviation in the ball 
position which gives the next resultant unbalance. The eccentricity of the ring center concerning the motor axis is 
defined by the distance ρ=OO1 and the angle 𝛽𝛽𝛽𝛽 (Fig 14). It results in a change in the ball velocity and consequently 
transforms Eqs. (2-4). 

 
Fig. 14. Position of the ring and the ball concerning the drum 

The kinetic energy of the ball will have a new velocity component: 
 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 0.5𝑚𝑚𝑚𝑚{[𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽)]2 + [𝑦𝑦𝑦𝑦𝑦 + 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝛼 𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) +
                                 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽)]2} + 0.5𝐼𝐼𝐼𝐼(𝜔𝜔𝜔𝜔 + 𝑅𝑅𝑅𝑅

𝑟𝑟𝑟𝑟
𝛼𝛼𝛼𝛼𝚤𝚤𝚤𝚤̇ )2.                             (33) 

The Lagrange´s equations give some extra terms Fxρ, Fyρ, Fiρ in the differential equations: 
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𝑀𝑀𝑀𝑀𝑥̈𝑥𝑥𝑥 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝑥̇𝑥𝑥𝑥 + 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ≌ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜔𝜔𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 ∑�(𝜔𝜔𝜔𝜔 + 𝛼̇𝛼𝛼𝛼𝑖𝑖𝑖𝑖)2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) + 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)�,   (34) 

𝑀𝑀𝑀𝑀𝑦̈𝑦𝑦𝑦 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝑦̇𝑦𝑦𝑦 + 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 ≌ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜔𝜔𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔) + 𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 ∑�(𝜔𝜔𝜔𝜔 + 𝛼̇𝛼𝛼𝛼𝑖𝑖𝑖𝑖)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) + 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥�,    (35) 

𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅 𝛼̈𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≅ 𝑚𝑚𝑚𝑚[𝑥̈𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦̈𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)] − 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖  𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚 𝛼̇𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥,       𝑠𝑠𝑠𝑠 = 1,2, … ,𝑁𝑁𝑁𝑁,   (36) 

where: 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =  𝑥𝑥𝑥𝑥
𝑅𝑅𝑅𝑅
𝜔𝜔𝜔𝜔2cos (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽) , 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥

𝑅𝑅𝑅𝑅
𝜔𝜔𝜔𝜔2sin (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽), 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 = −𝑚𝑚𝑚𝑚𝜌𝜌𝜌𝜌 𝜔𝜔𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽) are new terms due to 

eccentricity. The vibrations of the drum can be approximated as: 

𝑥𝑥𝑥𝑥(𝜔𝜔𝜔𝜔) ≅ 𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + ∑ [𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) +𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽 − 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥)],  (37) 

𝑦𝑦𝑦𝑦(𝜔𝜔𝜔𝜔) ≅ 𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� + ∑ [𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� +𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛽𝛽𝛽𝛽 − 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�].  (38) 

The vibratory force: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇 ∫ 𝑚𝑚𝑚𝑚[𝑥̈𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) −

𝑇𝑇𝑇𝑇
0 𝑦̈𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) −𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽)]𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔.    (39) 

It consists of three vibrational forces: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥.         (40) 

The vibrational force 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 from the vibration x(t) has a form: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 = −0.5𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔2�𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + ∑ (𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥� + 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁
𝑥𝑥𝑥𝑥=1 )�.      

(41) 

and similar for Fiy. The component 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 from the eccentricity: 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 = −𝑚𝑚𝑚𝑚𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽).        (42) 

For one ball with the static moment mR=Me (then a0=a) the vibrational force 𝐹𝐹𝐹𝐹1 has a form: 

𝐹𝐹𝐹𝐹1 = −0.5𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔2�𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� +
                        𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦� + 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�� − 𝑚𝑚𝑚𝑚𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽),                   (43) 
where axρ/ax=ρ/R<<1 is very small and some terms can be neglected. 

Without the eccentricity, the ball should take the position af=π to compensate for the drum unbalance. With 
the eccentricity, the ball is shifted by ∆αρ with respect 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 and at this position, the vibrational force is zero. 

𝐹𝐹𝐹𝐹1 ≌ −0.5𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔2�−𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥� + 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥) −𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�+𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�� + 
𝑚𝑚𝑚𝑚𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛽𝛽𝛽𝛽� = 0.     (44) 

For 𝜔𝜔𝜔𝜔 ≫ 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥,𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦 it can be taken 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦 ≌ 𝑀𝑀𝑀𝑀,𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥 = 𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦 ≌ 𝜋𝜋𝜋𝜋. The small deviation of the ball concerning the 
position αf=π is as follows: 

∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 ≅ − 𝑥𝑥𝑥𝑥
𝑟𝑟𝑟𝑟+𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜌𝜌𝜌𝜌

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝛽𝛽.      (45) 

Figure 15 shows in what way the deviation ∆αρ changes with the position of the eccentricity defined by angle β. 
 

 
Fig. 15. Deviation of the ball position caused by eccentricity when αf=π 

The order of magnitude of the deviation ∆αρ can be estimated from the graph in Figure 15. In the case of one 
roller, its maximum deviation occurs at the angle 𝛽𝛽𝛽𝛽 = 𝜋𝜋𝜋𝜋/2. In practice, a minimum of two rollers should be used 
to compensate for any drum unbalance. Their deviations ∆α1ρ, ∆α2ρ can be found from Eq. (46). 
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𝐹𝐹𝐹𝐹1�𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼1𝑥𝑥𝑥𝑥,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼2𝑥𝑥𝑥𝑥� = 0,           𝐹𝐹𝐹𝐹2(𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼1𝑥𝑥𝑥𝑥,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼2𝑥𝑥𝑥𝑥) = 0 ,   (46) 

where the vibratory forces are defined by Eq. (42). Then, the residual unbalance is determined as follows: 
 
∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ≅ −𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓� ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖          ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 ≅ 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖     (47) 

Figure 16 shows the computer simulation of the drum vibrations and the behavior of the balls when the 
eccentricity of the ring is equal to 𝜌𝜌𝜌𝜌 =  1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Fig. 16. Behavior of the system with the eccentricity ρ=1 mm at 1000 rpm, Me=0.05 kgm, β=π/2. 

 
As the eccentricity is great ρ=1 mm, and β=π/2 the deviations are large: ∆α1ρ=45 deg, ∆α2ρ=34 deg, different 

for each ball. The drum cannot be balanced and there are residual vibrations with the amplitude of 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ≈ 1.2 mm. 
Variable unbalance 

With increasing the drum velocity the distribution of wet laundry changes and the balls roll in the opposite 
direction of the drum. When the velocity stabilizes, the balls move to the position to compensate for the laundry 
unbalance (about a second). The next changes in laundry distribution are quickly compensated by the balls. A 
special mechanism to block the ball in the drum is not necessary. 

Damping of the tub 

Thus far, the dissipation of energy was approximated by the viscous damping and any unbalance generates 
vibrations and vibratory forces. The suspension system of the tub consists of two springs and four dampers: the 
front two with a friction force of up to 80 N, and the rear two 60 N [X] – Fig. X. When the balls are close to their 
final positions the small unbalance cannot overcome the friction of dampers, no vibrations, no vibratory forces, 
which leads to the error in the ball position and next residual unbalance. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Sketch of the tub suspension 
 

For instance, when the dynamic force of the unbalance in the vertical direction is smaller than the friction force, 
the tub cannot move in that direction. 
 

𝜔𝜔𝜔𝜔2[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)] ≤ 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 = 2𝐹𝐹𝐹𝐹 𝐹 cos (𝛾𝛾𝛾𝛾)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 .   (48) 

where: 2F=140 N and γ=61 deg. 
For the drum speed n=1000 rpm, with two balls mR=Me=0.05 kg m that are close to their final positions 

αf=±2π/3, the maximum ball error position is 
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𝐹𝐹𝐹𝐹1�𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼1𝑥𝑥𝑥𝑥,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼2𝑥𝑥𝑥𝑥� = 0,           𝐹𝐹𝐹𝐹2(𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼1𝑥𝑥𝑥𝑥,𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼2𝑥𝑥𝑥𝑥) = 0 ,   (46) 

where the vibratory forces are defined by Eq. (42). Then, the residual unbalance is determined as follows: 
 
∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ≅ −𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓� ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖          ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 ≅ 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖     (47) 

Figure 16 shows the computer simulation of the drum vibrations and the behavior of the balls when the 
eccentricity of the ring is equal to 𝜌𝜌𝜌𝜌 =  1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Fig. 16. Behavior of the system with the eccentricity ρ=1 mm at 1000 rpm, Me=0.05 kgm, β=π/2. 

 
As the eccentricity is great ρ=1 mm, and β=π/2 the deviations are large: ∆α1ρ=45 deg, ∆α2ρ=34 deg, different 

for each ball. The drum cannot be balanced and there are residual vibrations with the amplitude of 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ≈ 1.2 mm. 
Variable unbalance 

With increasing the drum velocity the distribution of wet laundry changes and the balls roll in the opposite 
direction of the drum. When the velocity stabilizes, the balls move to the position to compensate for the laundry 
unbalance (about a second). The next changes in laundry distribution are quickly compensated by the balls. A 
special mechanism to block the ball in the drum is not necessary. 

Damping of the tub 

Thus far, the dissipation of energy was approximated by the viscous damping and any unbalance generates 
vibrations and vibratory forces. The suspension system of the tub consists of two springs and four dampers: the 
front two with a friction force of up to 80 N, and the rear two 60 N [X] – Fig. X. When the balls are close to their 
final positions the small unbalance cannot overcome the friction of dampers, no vibrations, no vibratory forces, 
which leads to the error in the ball position and next residual unbalance. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Sketch of the tub suspension 
 

For instance, when the dynamic force of the unbalance in the vertical direction is smaller than the friction force, 
the tub cannot move in that direction. 
 

𝜔𝜔𝜔𝜔2[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + ∆𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)] ≤ 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 = 2𝐹𝐹𝐹𝐹 𝐹 cos (𝛾𝛾𝛾𝛾)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖 .   (48) 

where: 2F=140 N and γ=61 deg. 
For the drum speed n=1000 rpm, with two balls mR=Me=0.05 kg m that are close to their final positions 

αf=±2π/3, the maximum ball error position is 
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∆𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 < 𝜕𝜕𝜕𝜕∙𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐(𝛾𝛾𝛾𝛾)
𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟∙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋/3)𝜔𝜔𝜔𝜔2 = 0.071 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    (49) 

For the lower speed of the drum, the error would be higher. An example of the numerical simulation of the tub 
vibrations and the ball motion with the friction of the suspension is shown in Figure 18. 

 
Fig. 18. Behavior of the system with friction forces at spin velocity n=1000 rpm 

 
The theoretical positions of the balls are 𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓 = −𝛼𝛼𝛼𝛼2𝑓𝑓𝑓𝑓 = −4𝜋𝜋𝜋𝜋/3 rad, for this simulation, the errors of the ball 

position are ∆α1f=0.22 rad and ∆α2f=0.12 rad. The probability of this error is low as the tub is connected to the 
metallic casing which can vibrate, the washing machine has anti-vibration pads, and the vibrations of the floor can 
also get in. 
 

External vibrations 

The cabinet has elastic or rigid support and external vibrations can also influence the behavior of the balls and the 
result of balancing. In this case, the balls want to compensate for the drum unbalance and the external excitation (Fig. 
8) – the idea of synchronous eliminator of vibration was given in [28]. It was shown that the vibrations with the 
same frequency or very close to the drum spin can generate the vibratory forces that change the final position of 
the freely moving balls to compensate the drum unbalance and the vibration of the floor.  
 

Effect of gravity forces 

This type of washing machine has a horizontal axis of rotation. During the washing cycle, the clothes move up 
and drop down to the water with detergent, while the balls in the drum keep their lower position. During the 
spinning cycle, large centrifugal forces push the cloths against the drum, keeping them in their position and 
removing water, the same with the balls. The gravity force of the ball gives a component tangential to its trajectory 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖). Hence, the Eq. (52) of the ball shows an additional force. 
 

𝑚𝑚𝑚𝑚𝑧𝑧𝑧𝑧 𝑅𝑅𝑅𝑅 𝛼̈𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚[𝑥̈𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦̈𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)] − 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟,     𝑠𝑠𝑠𝑠 = 1,2, … ,𝑁𝑁𝑁𝑁.  (50) 

The vibrations of the drum can be approximated as earlier by Eqs. (7, 8) and the vibratory force is defined as: 
 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖∗ = 𝑚𝑚𝑚𝑚

𝑇𝑇𝑇𝑇 ∫ [𝑥̈𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑦̈𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖)]𝑇𝑇𝑇𝑇
0 𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔.    (51) 

It gives the same result as Eq. (10) because the average gravity force in Eq. (51) is equal to zero. The gravity 
force does not influence the final position of the ball. It generates small oscillations of the ball to its position 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖(𝜔𝜔𝜔𝜔). 
At the final position of the ball 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓, the gravity force with its frequency ω does not change the ball position, because 
its frequency is much higher than the natural frequency of the ball. 

𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∆𝛼̈𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝛼𝛼𝛼𝛼1, … ,𝛼𝛼𝛼𝛼𝑁𝑁𝑁𝑁) ≅ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖�𝛼𝛼𝛼𝛼1𝑓𝑓𝑓𝑓, … ,𝛼𝛼𝛼𝛼𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓� + ∑ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁
𝑥𝑥𝑥𝑥=1 ∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥.    (52) 

where Fi is the vibratory force of the ball i. 
For one ballαf=π then 
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𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∆𝛼𝛼𝛼𝛼𝛼 𝛼 0.5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2�𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦�∆𝛼𝛼𝛼𝛼 = 0.     (53) 

The natural frequency: 

𝜔𝜔𝜔𝜔𝜕𝜕𝜕𝜕 = 𝜔𝜔𝜔𝜔� 1
2𝑅𝑅𝑅𝑅

[−𝑎𝑎𝑎𝑎0𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥 − 𝑎𝑎𝑎𝑎0𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦].     (54) 

And for ω>>ωx, ωy: 

𝜔𝜔𝜔𝜔𝜕𝜕𝜕𝜕 ≈ 𝜔𝜔𝜔𝜔�𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
≪ 𝜔𝜔𝜔𝜔.        (55) 

As ω/ωα>>1 the amplitude of oscillation of the ball is very small, and it is not observed in the diagrams from 
the numerical simulation with the ball gravity.  

When the spinning starts then the centrifugal force, and the friction forces, drive the balls to move with the 
drum. Sometimes the balls move in opposite directions and impact each other. They have the same mass, so after 
the impact, they move with the same velocities in opposite directions. There can be one or two impacts, and it does 
not affect the vibrations of the drum and the final position of the balls. During the washing cycle, the balls stay at 
the lowest position in the drum. The system can be equipped with a mechanism that blocks the balls for the washing 
cycle and unblocks them for the laundry spinning, but it makes the system more complex. 

Evaluation of the final effect of auto-balancing 

One by one the article presents some reasons affecting the process of auto-balancing, the importance of each 
of them is different for the resulting unbalance, and all of them exist simultaneously. Several of them have a 
significant influence on the deviations of the balls 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥1, … ,𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁, some are small, and others are very small and can 
be ignored. The resultant effect is not a simple sum of them all. To estimate their influence on the efficiency of the 
method, the probability of each of them should be established. 

The eccentricity 𝜌𝜌𝜌𝜌 between ring with the balls and the motor always give the deviation defined by Eqs. 46, 47). 
On the contrary, the deviations given by the rolling resistance can be any between zero and maximum value given 
by Eqs. (28, 29). 

To initiate a new project for a washing machine with the ball or roller balancer, a designer must define 
acceptable residual unbalance and distribute it between different reasons of unbalance – the probability of each of 
them. In this way, the maximum eccentricity 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥, the coefficient of rolling resistance fmax, dry friction force, etc. 
can be defined. The distribution depends on the designer’s experience and the manufacturer’s constraints. The 
probability occurrence of each of them is given by the coefficient pj  

 
∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥 = 1𝑃𝑃𝑃𝑃
𝑥𝑥𝑥𝑥=1 .       (56) 

For instance, the residual unbalance Δ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝜕𝜕 should be lower than 10% of the initial unbalance Me and its 
distribution can be taken as follows; 50% from the eccentricity, 35% from rolling resistance, friction force 10%, 
and 5% from undefined reasons, respectively. 
 
 ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝜕𝜕 ≅ ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥 + ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 + ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 + ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 ≤ 0.1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 .    (57) 

The residual unbalance from the eccentricity should be lower than: 

∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥 ≤ 0.5 ∙ 0.1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.05 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.     (58) 

If one ball is used and its final position is π+∆αρ then the unbalance is ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥 ≅ 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∆𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥. For 𝜔𝜔𝜔𝜔 >> 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 ,𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦 and 
𝜌𝜌𝜌𝜌/𝑅𝑅𝑅𝑅 << 1 the ∆αρ is given by Eq. (45). Then, the Eq. (58) takes a form: 

𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜌𝜌𝜌𝜌
𝑟𝑟𝑟𝑟+𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌

≤ 0.05𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.      (59) 

where: ρ is the eccentricity, r is the radius of the ball, and R is the radius of the path. 
The position of the eccentricity 𝛽𝛽𝛽𝛽 and its magnitude 𝜌𝜌𝜌𝜌 are unknown so the adverse situation arises when 𝛽𝛽𝛽𝛽 =

𝜋𝜋𝜋𝜋/2 and Eq. (59) has a form: 
 

𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 𝑥𝑥𝑥𝑥
𝑟𝑟𝑟𝑟
≤ 0.05𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀     and the maximum eccentricity     𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥 ≅ 0.05 ∙ 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟

𝑀𝑀𝑀𝑀
   (60) 

If Me=0.025 kgm and M= 37 kg the permissible eccentricity of the torus is 34 μm, for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.05 kgm the 
eccentricity should be smaller of 67 μm. It should be revised if it is technically feasible. If not, then the distribution 
of the resultant unbalance should be changed or allow a higher residual unbalance. The maximum rolling resistance 
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can be obtained similarly. For one ball that can compensate for the unbalance 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 and drum spin velocity 
𝜔𝜔𝜔𝜔 >> 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥,𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦, eq. (26) gives. 

 
∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥 = 2𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅

𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑥𝑥𝑥𝑥+𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦)
≅ 𝑓𝑓𝑓𝑓

𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
𝑟𝑟𝑟𝑟
.      (61) 

The ball’s deviation can be from the range -∆αmax < ∆α <∆αmax with a small probability that the ball is at one 
of the maximums ∆αmax. Thus, the acceptable unbalance from the rolling resistance can be taken twice higher. 

 
𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∆𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
= 2 ∗ ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 = 0.7∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝜕𝜕 = 0.7 ∗ 0.1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.07𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.   (62) 

The coefficient of the rolling resistance should be: 
𝑓𝑓𝑓𝑓
𝑟𝑟𝑟𝑟
≤ 0.07  𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅
= 0.07 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟

𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅
.       (63) 

For the unbalance 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.025 kgm the rolling resistance should be  𝑅𝑅𝑅𝑅/𝑟𝑟𝑟𝑟 𝑟 5 ∙ 10−5. Again, there is the 
question of whether it is possible in practice to reduce the rolling resistance to this level or not. The suspension 
friction should give an unbalance lower than 10%, but its probability is small due to vibrations of the housing and 
its impact can be reduced by half.  If there are two balls, then their errors of position are defined by Eq. (51). 

 
 ∆𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 < 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝛾𝛾𝛾𝛾)

𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟∙𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/3)∙𝜔𝜔𝜔𝜔2.       (64) 

And its unbalance 
2𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅∆𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 = 2𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝛾𝛾𝛾𝛾)

𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟∙𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2𝜋𝜋𝜋𝜋/3∙)𝜔𝜔𝜔𝜔2 ≤ ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 = 0.05∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝜕𝜕 = 0.005𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,  (65) 

The maximum friction force of the suspension can be defined from the equation above. 

    𝐹𝐹𝐹𝐹 < 0.005𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝜔𝜔𝜔𝜔2 sin�
2𝜋𝜋𝜋𝜋
3 �

cos(𝛾𝛾𝛾𝛾)
.                      (66) 

 

For the drum unbalance  and the spin veloc-
ity 1000 rpm, the friction force of suspension F 
should be lower than 57 N, the friction of this 
washing machine is close to that magnitude.

Some results of the numerical simulation with 
several reasons mentioned above (ball gravity, 

eccentricity, and rolling resistance are presented 
in Figure 19. The motion of the balls stops rapidly 
and vibrations become small. It is seen that the 
balls cannot completely compensate for the drum 
unbalance. Tables 3 and 4 present the final ampli-
tude of the drum vibrations a, the position error of 

Figure 19. Behavior of the system if Me = mR = 0.05 kg m, ω = 100 rad/s, ρ = 0.5 mm, β = π/2, f = 10-4r
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Table 4. Me = mR = 0.05 km, β = π/2, f = 10-4r
ρ [mm] A [mm] Δα1 [deg] Δα2 [deg] RMe [%]

0 0.05 0.1 0.1 99.8
0.05 0.05 2.0 1.5 96.4
0.1 0.1 4.1 3.9 93
0.5 0.5 18.4 21.1 64.7
1 1 29.9 42.9 29.3

the balls Δα1 and Δα2, the efficiency of unbalance 
removing RMe = (Me–ΔMe)/Me if the eccentric-
ity ρ changes from 0 to 1 mm, its position is de-
fined by the angle β = π/2, and two coefficients of 
rolling resistance 10-4r or 10-3r.

For the coefficient of the rolling resistance f = 
10-3 r, the effect of the eccentricity is much small-
er (Table 3) than the resistance, for a change the 
greater influence of eccentricity and smaller re-
sistance as in Table 4. The acceleration measured 
during the centrifugal force of the wet towel at 720 
rpm was ax@ay=30 mV, which gives an amplitude 
of vibration of 1.3 mm. Comparing this result with 
the vibration of a washing machine equipped with 
a self-balancing system, as shown in Table 3, re-
veals a 70% decrease in vibration. However, com-
paring it with the results in Table 4 shows a reduc-
tion of only 25% when the eccentricity was 1 mm. 
To achieve optimal self-balancing, the eccentricity 
should be less than 0.1 mm and the rolling resis-
tance coefficient f/r should be below 0.001. In this 
case, the vibrations of the washing machine will be 
much smaller than those shown in Figure 3.

CONCLUSIONS

Most articles on the self-balancing of rotating 
systems lead to the conclusion that free elements 
can compensate for the initial unbalance in 100% 
and eliminate vibrations. The article showed 
that some extra parameters should be taken for 
a model of the washing machine if its real pos-
sibility is to be determined and decision on using 
this method to eliminate vibrations is to be made. 
The eccentricity between the ring and the mo-
tor, resistance of the balls, variable speed of the 

washing machine, properties of the drum suspen-
sion system, variable unbalance, gravity forces, 
and external vibrations are important reasons that 
decrease the efficiency of the washing machine. 

The article showed in what way each of them 
influences the ball distribution concerning the un-
balance, the errors in their positioning, how large 
they are, and what residual unbalance they intro-
duce. Some simulations demonstrated in what way 
the vibrations of the drum change during the spin-
ning of the laundry and the behavior of the balls 
during this process. The balls reach their final posi-
tion very quickly t < 150/ω sec, and one or two im-
pacts can happen between them. It has been proven 
that ball resistance and especially eccentricity have 
the greatest impact on balancing efficiency. Finally, 
the article proposed a method of distribution of the 
partial unbalances to achieve the required residual 
unbalance. In this way, the deviations of the most 
important parameters can be established, whether 
self-balancing happens or not, and how large the 
amplitudes of residual vibrations can be.
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