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ABSTRACT

Flat, convex and concave wedge tools can all be used in cross-wedge rolling (CWR) processes. However, using
concave tools requires a new generation of rolling mills with segmented tool assemblies. This paper presents the
concepts for such a machine. Next, the influence of tool shape on the CWR process is analysed using the example
of a stepped shaft. This analysis was based on numerical simulations carried out using the Simufact.Forming soft-
ware. The distributions of temperature, effective strain and damage function, as well as force and energy param-
eters, were compared. Based on this analysis, the most effective CWR process variant was selected.

Keywords: stepped shaft, cross wedge rolling, tools, FEM.

INTRODUCTION

Cross-wedge rolling (CWR) is a widely
known method for hot working steel shafts and
axles, as well as preforms for die forging [1-3].
However, thanks to numerous research works
carried out in recent years, the area of application
of the CWR process has been extended to:

e forming of hollow parts, both free [4—6] and
on a mandrel [7-9];

e rolling of parts made of non-ferrous materials
such as aluminium alloys [10-12], titanium al-
loys [13—15], magnesium alloys [16, 17] and
nickel superalloys [18];

e rolling of hybrid parts from charges welded
onto a cylindrical surface [19-21], assembled
coaxially [22-24] and butt-welded [25, 26];

e warm rolling [27-29], which is carried out at
a temperature lower than the recrystallization
temperature and at the same time higher than
the ambient temperature;

e forming of large-sized products [30-32], clas-
sic examples of which are railway axles.

Numerical modelling played an important
role in research aimed at developing CWR tech-
nology [33]. The numerical simulations of the

CWR process were mainly based on commercial
software dedicated to the analysis metal forming
processes, such as Simufact.Forming [34-36],
Deform-3D [37-39], Forge [40—42] and QForm
[43-45]. In addition to expanding the technolog-
ical capabilities of the CWR process, researchers
developed new methods for this forming pro-
cess and modernised wedge tools. Among other
things, a reversible flat wedge rolling mill was
developed at the Lublin University of Technol-
ogy [46, 47], in which the idle return movement
of the tools was eliminated. This machine was
used to manufacture balls made from worn rail-
way rail heads. It was also proposed to form parts
using sets of segmented tools [48] connected in
a caterpillar shape, which can be flat, concave or
convex in the working part. Regarding wedge
tools, research was aimed at introducing changes
that would limit the occurrence of phenomena re-
stricting the CWR process, such as uncontrolled
slippage, narrowing (breaking) of the workpiece
and the formation of internal cracks [49]. The
use of tools with a shaped (convex or concave)
wedge-forming surface is particularly interesting
in this respect [50].

Given that several basic CWR methods are in
use, it was decided to conduct comparative tests of
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these methods to determine which is the most ef-
fective. The comparison covered three CWR meth-
ods, i.e. forming with flat wedges, two rollers and
concave tools (in a previously unknown variant).
A detailed analysis was conducted to examine the
impact of the CWR method on the distribution of
strain, temperature and damage functions in the
workpiece, as well as its effect on the force and en-
ergy parameters of the forming process. Due to cost
constraints, the research was limited to thermome-
chanical analyses. The results of the research pre-
sented in this paper may help with the selection of
the CWR method when implementing this modern
manufacturing technique in industrial conditions.

SUBJECT OF THE STUDY

A comparative analysis was performed using
the example of a rolling machine shaft, shown in
Figure 1. This part has a maximum diameter of
@125 mm, a length of 1146 mm and a weight of
67.85 kg. The steps with the smallest diameter
of @72 mm are located at the ends of the shaft.
The maximum reduction ratio 6 = d /d (where: d
- billet diameter, d — diameter of the rolled step)
is 1.74 and can be achieved in a single pass of
the wedges. Figure 2 shows the basic wedge tool

146

that should ensure the desired stepped shaft is ob-
tained in the CWR process. This tool is character-
ised by a spreading angle p = 11° (smaller angles
B = 5.5° were used only to calibrate the side sur-
faces of the rolled steps) and a forming angle o =
22°. With these assumptions, taking into account
the dimensions of the shaft, the length of the
working zone of the wedge tool was 3100 mm.
To avoid side waste resulting from surface
flow of the material [2], the billet shown in Figure
3 was used in the analysed rolling case. This billet
has conical ends that prevent the formation of front
funnels in the workpiece. However, preparing such
a billet requires an additional operation in which
the desired conical ends of the billet are formed.
Based on the wedge parameters presented in
Figure 2, wedge tools were designed to ensure
the implementation of three cases of CWR, in
which flat, convex and concave tools are used.
These tools are shown in Figure 4. The simplest
tools to develop were the flat tools, which were
created by adding an entry zone (two guide paths
for proper positioning of the billet) and an exit
zone (for receiving the rolled shaft) to the base
tool. Convex tools were obtained by winding base
wedges onto a cylinder with a diameter of @1271
mm. Concave tools, on the other hand, were ob-
tained by winding base wedges inside a ring with
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Figure 1. Machine shaft weighing 67.89 kg, subject of analysis
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Figure 2. Geometry of wedge tools used for rolling a machine shaft

424



Advances in Science and Technology Research Journal 2026, 20(1) 423-435

: 6745 20°
| |
!
8 R
S
o
Figure 3. Billet used in the CWR processes of the analysed machine shaft
a) _T
|
I
il o
=
2 [l 2
al | E
| [=]
I\ =
I |
I
|
Ll
b) T T
f;‘&ﬂ—_-,: =2 =TI Ay, g
P | !
I & g
s
=
S
1300
I 1
o VERh i
G N 0 P
/O IR g
{ v i I »
R R - g
\ {
[ | [}
e e —— -
o i 2 >
N5 2
S
B
Il Il

1300

Figure 4. Overall dimensions of wedge tools used in the considered methods of CWR of a machine shaft: a) flat
wedge tool, b) convex wedge tool, c) concave wedge tool

a diameter of @1300 mm. The tools designed this
way were characterised by similar dimensions,
which determined the same forming time.

INNOVATIVE ROLLING MILL EXECUTING
THE ROLLING PROCESS WITH CONCAVE
TOOLS

It is impossible to perform the CWR pro-
cess using the concave tools shown in Figure 4

because the tools that work together collide. To
perform forming with concave tools, therefore,
the concave wedge tool must be divided into a se-
ries of segments (in the analysed case, 28) which
are installed on base plates connected by links
to form a tool assembly resembling a caterpillar
(Figure 5). The desired concave shape of the tool
in the working zone of the rolling mill is achieved
by profiling the side surfaces of the base plates
appropriately. These plates interlock to form a
monolithic tool. This shape is also reinforced by
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Figure 5. Method of power transmission in a segmented tool assembly characterised by a concave forming
surface

placing special guides in the side plates (Figure
6), into which the ends of pins passing through
the holes in the links connecting the base plates
are inserted. This tool assembly is driven by four
identical toothed shafts (see Figure 5).

Figure 7 shows the design of a rolling mill that
enables rolling with segmented concave tools.
This machine uses two identical tool assemblies,
one above the other, whose vertical position can
be adjusted using the vertical columns of the roll-
ing mill. The rolling mill drive, which is omit-
ted from Figure 7, is provided by two DC mo-
tors, each of which drives four shafts of a given
tool assembly (upper or lower) simultaneously. It
should be noted that this rolling mill’s design con-
cept is innovative on a global scale.

RESULTS OF THE NUMERICAL ANALYSIS

A numerical analysis of three CWR cases
was performed using Simufact.Forming. This
programme has previously been used to success-
fully simulate metal forming processes, including
cross-wedge rolling [51-53], thick-walled sleeve
piercing [54-56], skew rolling of stepped shafts
and axles [57-59], and ring rolling [60—62]. The
results of the numerical analyses were in very
good agreement with those of the experimental
tests used to verify them.

Three geometric models of the CWR pro-
cess of the analysed shaft were constructed using
the tools described in the previous section of the

Figure 6. Side plate of the rolling mill with guides
(located symmetrically at the bottom and top) for
controlling the trajectory of the pins connecting the
base plates

article, and are shown in Figure 8. In each case,
two identical tools (tool sets), moving in opposite
directions, and a billet (see Figure 3) were used.
In the case of rolling with two rolls, two guide
strips were also used to keep the workpiece with-
in the working zone of the rolls. All tools were
treated as perfectly rigid bodies.

Numerical simulations were performed under
the assumption that the shaft is made of C45 steel,
for which the material model is defined by the fol-
lowing equation [63, 64]:

Op = 2859.88_0'00312STS(_0'00004466T_0'10126)e(_0'00002726T_0'0008183)/£é(0'00015115T_0'002748) (l)
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Figure 7. Concept of an innovative segmented rolling mill with concave forming tools
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Figure 8. Geometric models of CWR processes in the following configurations: (a) two rolls, (b) concave
segments, (¢) two flat wedges
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where: o, is the flow stress, MPa; ¢ is the effec-
tive strain, -; ¢ is the strain rate, s'; T is
the temperature, °C.

The numerical simulations took into account
the thermal phenomena that occur during the form-
ing process. These phenomena are determined by
the following parameters: the billet temperature
(1,180 °C), the tool temperature (200 °C), and the
heat transfer coefficient between the workpiece
and the tools (10,000 W/m?K) [63, 64].

The workpiece was modelled using hexahe-
dral solid elements. It was assumed that the size
of the elements was 6 mm. Remeshing was used
during the calculations when the increase in ef-
fective strain in any element exceeded 0.4.

The kinematics of the tools were selected to
ensure that the forming cycle took 28 seconds.
In the case of rolling with two rolls and sets of
concave segment tools, this was the time needed
to complete a full rotation of the tools. After the
rolled shaft was removed, the tools were ready to
start the next production cycle. However, in the
case of flat wedges, after rolling and removing the
shaft, the tools must be retracted to their starting
position to allow the next product to be rolled.
Consequently, the productivity of the flat tool
forming process is significantly lower than in the
other two CWR cases considered.

The contact between the workpiece and the
tools was determined by the Tresca friction mod-
el, according to which

t=mk (2)

where: 7 is the shear stress on contact surface,
MPa; m is the friction factor (set equal to

m = 0.95 for wedge tools and m = 0.4 for

guide rails), -; k is the shear yield stress

(k = 0z /V/3), MPa.

Simulations of three CWR cases for the ana-
lysed shaft showed that the correct-shaped prod-
uct was obtained in each of these processes. All
rolling operations were performed stably and no
undesirable phenomena, such as uncontrolled
slippage or breakage of the workpiece, occurred.
Figure 9 shows the CWR process carried out us-
ing a set of concave segments. As can be seen
from the figure, forming of the shaft proceeds
from the centre towards both ends.

Figure 10 shows the temperature distribution
in the rolled shaft. Regardless of the CWR meth-
od used, the temperature of the material inside
the formed product exceeds 880 °C (the appro-
priate range for hot-temperature steel forming),
indicating that the rolling parameters have been
correctly selected. In all cases, the temperature
of the material in the axial zone of the rolled
shaft is higher than in the surface layers. This
is undoubtedly due to heat transfer from the
workpiece to the much cooler tools. A compar-
ison of the temperature distributions obtained
in the CWR cases shows that they are similar.
The highest temperatures were recorded in the
shaft obtained by rolling with two rolls. This

Temperature [°C]
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1080.00
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1000.00
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Figure 9. Progression of the shape of the workpiece in the CWR process with concave tool segments and
marked temperature distribution (in °C)
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Figure 10. Temperature distributions (in °C) in a rolled stepped shaft, depending on the CWR method used
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Figure 11. Distributions of effective strain in a rolled stepped shaft depending on the CWR method used

is logical, as the forming value of the contact =~ Convergent deformation distributions were ob-
area between the workpiece and tools is smallest ~ tained in all cases, arranged in rings within the
in this case, affecting the amount of heat trans- rolled steps of the shaft. The greatest strains
ferred to the tools. occurred in the surface layers due to friction

Figure 11 shows the influence of the CWR  forces causing intense material flow in the
method on the distribution of effective strain.
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circumferential direction, and the smallest oc-
curred in the axial zone of the workpiece. In-
terestingly, the analysis of the strain distribu-
tion in the long shank of the shaft (on its right
side, as shown in Figure 11) reveals further
information. The greatest strain was recorded
in the shaft formed by two rolls and the small-
est in the shaft obtained by rolling with con-
cave segment tools. This appears to be due to
differences in ovalisation of the cross-section,
which is much greater when rolling with two
rolls than with concave tools. Therefore, it can
be concluded that the innovative CWR method
using segmented concave tools is particular-
ly advantageous for rolling bimetal products
where the aim is to minimise the effects con-
ducive to delamination of the workpiece.

One of the fundamental limitations of the
CWR process is the tendency for internal cracks
to form in the axial zone of the workpiece. The
tendency of the material to crack can be moni-
tored by analysing the damage function, which,
for the normalised Cockcroft-Latham criterion,
is defined by the following relationship:

Ef 0.1
fuer =f —de 3)
0

Oi

Flat wedges

where: g is critical plastic strain at fracture, o, is
equivalent stress, o, is maximal principal
stress.

The distributions of the f, ., function for the
analysed CWR cases are presented in Figure 12.
These distributions demonstrate that the highest
values of the function are obtained in the outer
steps of the shaft with the smallest diameter, re-
gardless of the CWR method used. However, the
maximum value of the damage function does not
exceed 2.0, meaning it is lower than the critical
value of 2.9 determined by [65] for 7= 1060 °C,
which leads to crack formation.

Numerical simulations were also used to
determine the distributions of force and energy
parameters in the analysed CWR cases. Figure
13 shows the distribution of the radial force that
spreads the cooperating wedge tools. This force
causes the rolling mill body to undergo elastic
deformation, which affects forming accuracy
(the lower the force, the greater the accuracy).
Regardless of the method used, the radial force
curve was similar in that it increased gradual-
ly to reach its maximum value at the end of the
forming process. Regarding the maximum radial
force value, it should be noted that it is lowest
when rolling with two rolls (2,091.4 kN) and
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Figure 12. Damage function distributions (calculated according to the normalized Cockeroft-Latham criterion)
in a rolled stepped shaft depending on the CWR method used
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Figure 13. Comparison of radial load distributions acting on the forming tool
in the analysed rolling processes
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Figure 14. Comparison of tangential load distributions acting on the forming tool
in the analysed rolling processes

highest when rolling with concave segmented
tools (2,626.7 kN). In the CWR process with flat
tools, the maximum radial force is 2,376.4 kN.
This difference in maximum radial force values
is probably due to differences in the contact area

between the workpiece and the tool. This contact
area is largest for concave tools and smallest for
convex tools (rolls).

Figure 14 shows the distribution of the tan-
gential force responsible for displacing wedge
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Figure 15. Comparison of energy consumption in the analysed rolling processes

tools, which determines the drive power of the
rolling mill. Similar relationships to those ob-
served for the radial force were found for this
force. It was shown that the smallest forces
occur during rolling with two rolls (where the
maximum force is 368.2 kN), intermediate forc-
es occur during CWR with flat tools (413.6 kN),
and the maximum forces occur during forming
with concave segment tools (453.2 kN). There-
fore, the two-roll rolling variant is the most ad-
vantageous option in terms of force.

Nowadays, energy consumption is the
most important parameter in the forming pro-
cess. Figure 15 shows the energy consumption
curves for the analysed CWR variants. For this
parameter, flat wedge rolling was the most
advantageous method, with energy consump-
tion amounting to 1,873.6 kJ (100%). Despite
lower forming forces, energy consumption was
higher for CWR with two rolls and amounted
to 1,973.0 kJ (105.3%). The least favourable
rolling variant in terms of energy consumption
was rolling with concave segment tools, with
energy consumption amounting to 2,128.1
kJ (113.6%). In summary, the use of the new
concave tool rolling method is not justified in
terms of energy consumption.
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CONCLUSIONS

Based on the numerical analyses performed,
the following conclusions were drawn:

1. Axially symmetrical elements, such as stepped
shafts and axles, can be manufactured using
CWR methods with flat, convex, and concave
wedge tools.

2. The concept of an innovative rolling mill that
enables the forming process to be carried out
using concave tool segments was presented.

3. The lowest rolling forces occur in the CWR
process with two rolls, probably due to the
smallest contact area between the workpiece
and the tool in this rolling variant.

4. Flat wedge rolling is characterised by the low-
est energy consumption among the analysed
CWR methods, but also has the lowest produc-
tivity due to the tools’ idle return movement.

5. Using the CWR method with segmented con-
cave tools is not justified due to higher force
and energy parameters compared to currently
used CWR variants. However, this method can
be used for special products such as bimetallic
or toothed parts.
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