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INTRODUCTION

The term “technology” originates from the 
Greek word τέχνη [techné], meaning art, science, 
craft, skill, or cunning. The suffix -logy (from the 
Greek λόγος [logós]) indicates a semantic connec-
tion with speech, knowledge, or theory [1,2]. In 
the literature, numerous attempts have been made 
to systematise the explanations of the term within 
the literature, both in its general meaning [3,4] 
as well as within specific domains, such as, e.g. 
health [5], production [6,7], or level of advance-
ment, e.g., emerging [8]. In its broadest sense, as 

defined by OECD [9] and initially formulated by 
Griliches [10], technology is conceived as a body 
of knowledge concerning the methods for trans-
forming resources into desired outputs. It encom-
passes the practical application and integration 
of technical methods, systems, tools, skills, and 
procedures within business processes or products. 

Technologies play a crucial and transforma-
tive role in the development of societies, econo-
mies, and the shaping of the future of civilisation 
[11]. Their importance in contemporary society, 
where increasingly complex challenges are en-
countered, is undeniable, with their influence 
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becoming more visible and essential across all 
areas of life [12]. As a result of recognising the 
role of technology, as well as the need to direct 
and control technological development, a vari-
ety of methods, models, and tools for its analy-
sis and evaluation have been developed. These 
methods have been evolving since the 1960s, 
although it is the Fourth Industrial Revolution 
that has significantly increased their importance 
due to the complexity of technological systems, 
their interconnections, and their constant evolu-
tion. The set of methods that can be used in the 
process of technology assessment includes both 
approaches adapted from other fields and those 
specifically designed for technology evaluation. 
One of the method typologies in the literature 
within the context of foresight is the “foresight 
diamond” developed by R. Popper [13]. The 
identified methods were categorised as quanti-
tative, qualitative, mixed, as well as according 
to the type and source of knowledge on which 
they are based: derived from creativity, based on 
imagination or evidence, resulting from personal 
experience, or emerging through interaction. A 
fundamental classification was also proposed by 
Popper and Korte [14], dividing methods into two 
groups: “hard” methods, which utilise statistical 
and quantitative tools, and “soft” methods. A pro-
posal by Stirling et al. [15], dedicated to assess-
ment in the context of sustainable development, 
introduced a two-dimensional typology: opening/
closing methods and broad/narrow methods, with 
an additional distinction between participatory-
deliberative and expert-analytical approaches. 
Among the tools used to identify the key driv-
ers of technological change and understand their 
interdependencies, structural analysis has gained 
prominence [16], offering a systematic approach 
to mapping and analysing the relationships be-
tween various influencing factors. Although the 
range of potential technology analysis methods 
is vast, the set of methods most frequently em-
ployed has remained remarkably consistent over 
the years and include: morphological analysis, 
SWOT analysis, multi-criteria analysis, cross-
impact/structural analysis, bibliometrics, brain-
storming, relevance trees, trend extrapolation/
megatrends, essays, gaming, key technologies, 
stakeholder mapping, technology roadmapping, 
Delphi, modelling and simulation, expert panels, 
citizen panels, backcasting, literature review, sce-
narios, environmental scanning, questionnaire/
survey, workshops, and interviews [17–20].

The objective of this study was to demonstrate, 
based on a literature review and experiments, the 
role and potential applications of AI assistance in 
foresight projects. Within the field of technology 
management, foresight is regarded as a forward-
looking process that systematically attempts to 
anticipate and shape the future of science, technol-
ogy, economy, and society. As defined by B. Mar-
tin [21], foresight is “the process involved in sys-
tematically attempting to look into the longer-term 
future of science, technology, the economy and so-
ciety with the aim of identifying the areas of strate-
gic research and the emerging generic technologies 
likely to yield the greatest economic and social 
benefits.” Alongside foresight, other approaches 
such as technology assessment (TA) and technol-
ogy forecasting (TF) coexist and are actively used 
in the field of technology management. While TA 
primarily evaluates the impacts and implications of 
existing or emerging technologies, and TF focuses 
on predicting future technological trends, foresight 
emphasises a broader, more strategic perspective 
toward shaping desirable scenarios.

Foresight, while valuable in anticipating the 
future, can be costly, time-consuming, and prone 
to errors when obtained through traditional meth-
ods, as it relies on subjective expert assessments 
and long-term forecasts that can quickly become 
outdated [22]. Inaccuracies in the initial input may 
lead to flawed or non-representative scenarios, 
potentially affecting subsequent decision-making 
[23]. Moreover, in the face of rapid technologi-
cal and societal changes, its results often become 
irrelevant, and the process is at risk of inaccurate 
predictions. AI can address these issues by offer-
ing faster, more objective, and flexible analyses. 
Integrating machine learning with foresight meth-
odologies – such as scenario planning, horizon 
scanning, the Delphi method, and trend analysis 
– enhances decision-making accuracy, supports 
risk anticipation, and improves organisational 
adaptability [24]. AI enables automated data 
analysis, pattern recognition, predictive model-
ling, and dynamic scenario generation, enhancing 
the accuracy as well as resilience of technology 
evaluation processes, particularly in complex and 
rapidly evolving environments [25]. The applica-
tion of dedicated AI models in various embedded 
systems is emerging as a particularly promising 
direction, offering new possibilities for real-time 
data processing, intelligent automation, and adap-
tive system behaviour in increasingly complex 
technological environments [26]. Fuzzy hybrid 
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methodologies facilitate foresight to mitigate un-
certainty and promote strategic innovation pro-
cesses [27]. Addressing future challenges requires 
a focus on efficient resource use and the integration 
of responsible innovation to ensure sustainable 
and socially aligned technological development 
[28]. Recent literature discusses the emergence 
of a new generation of foresight that focuses on 
emerging technologies of Industry 4.0 and the co-
creation of future scenarios by futurists, utilising 
the insights derived from big data [29]. Combin-
ing expert participation with artificial AI capabili-
ties in a hybrid approach opens new perspectives 
for forecasting [30]. In particular, the broader 
availability of natural language processing (NLP) 
tools, such as ChatGPT, Copilot, and Gemini, has 
opened up new opportunities for both foresight 
practitioners and researchers [31,32]. Supports the 
creation of targeted projects, policies, and strate-
gies by guiding decision-makers in prioritising 
actions, optimising resource use, and aligning in-
novations with societal and market demands [33]. 

This study contributes by offering a compre-
hensive review of the current literature on the ap-
plication of artificial intelligence in foresight proj-
ects and by illustrating the practical potential of AI-
based data analysis using the empirical data from 
a real foresight initiative. The findings highlight 
how generative AI (GenAI) assistance supports 

expert judgment, uncovers hidden patterns, and 
increases the robustness of foresight analyses. The 
research process is illustrated in Figure 1. Consid-
ering the two types – human-driven foresight as 
well as AI- and ML-driven foresight [34], the ar-
ticle incorporated AI into human-driven processes 
to make the foresight process more efficient and 
reflective of diverse perspectives. The literature 
review addressed the research questions: Q1. 
Which AI methods most frequently co-occurred 
with specific foresight methods in the analysed 
publications? The second part of the study illus-
trates the supervised AI-assisted process of data 
analysis and addresses Q2. In what ways can AI 
facilitate expert-based technology foresight?

The structure of this paper is as follows: the 
next section provides a review of AI in technology 
foresight projects with the help of large language 
models (LLMs). It then explores the practical appli-
cation of AI-based methods for technology analysis 
within the NT FOR Podlaskie 2020 project. The 
paper concludes with a discussion of the findings.

AI IN FORESIGHT PROJECTS

To identify relevant studies at the intersec-
tion of foresight and AI, a systematic search was 
conducted using Scopus, IEEE Xplore, and Web 

Figure 1. UML diagram of the study flow
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of Science databases. The search query targeted 
the documents containing the term “foresight” 
in combination with a wide array of AI‑related 
terms (e.g., artificial intelligence, machine learn-
ing, deep learning, neural networks, natural lan-
guage processing, large language models, etc.) 
within titles, abstracts, or keywords (Table 1). 
The publication window was limited to the years 
2017–2025 (until May 15th), as the period marks 
a significant acceleration in the development and 
application of AI techniques, particularly fol-
lowing the publication of the conference paper 
“Attention Is All You Need” by Vaswani et al. 
(2017) [35], which introduced the transformer 
architecture. This breakthrough laid the founda-
tion for many modern AI applications, especially 
in natural language processing (NLP) and large 
language models (LLMs), which are increasingly 
used in foresight research, both as tools for analy-
sis and as objects of investigation.

Foresight-related keywords were included 
specifically in the title field to ensure that the se-
lected papers genuinely addressed foresight, rath-
er than simply referencing the term in passing. 
Following the removal of duplicates, a total of 
259 unique records remained – all sourced from 
Scopus, as IEEE Explore and Web of Science did 
not contribute any additional unique entries.

In the context of this literature survey on AI 
support for foresight projects, the review of the 
analysed publications reveals that the topic areas 

addressed are predominantly technology-related 
in various ways. Although some publications dis-
cussed broader issues such as societal dynamics, 
policy development, or strategic planning, these 
discussions were often framed in the context of 
technological change, digital transformation, or 
innovation management. 

A formal investigation of the areas conducted 
using embedding technology highlights the fol-
lowing sectors: agriculture and sustainability, 
education and digital skills, economics and pub-
lic policy, health and medicine, energy and en-
vironment, and innovation and general foresight 
(Figure 2). Analysis of the results reveals that ar-
tificial intelligence is not only a tool, but also a 
subject of foresight research itself [36], including 
studies that incorporate AI-based methods [37]. 
AI is widely recognised as a key driver of trans-
formation and one of the most prominent topics 
in strategic foresight initiatives across various in-
dustries [38]. Furthermore, AI competences have 
been anticipated through ICT-focused foresight 
initiatives, which aim to address the digital and 
AI skills gap in response to the ongoing techno-
logical advancements [39]. 

Hybrid models effectively address the chal-
lenge of integrating the strengths of various mod-
elling approaches. They reduce uncertainty by 
clarifying ambiguous value judgments in later vi-
sualisations and assist in pinpointing potential ac-
tions after future scenarios have been established, 

Table 1. Search queries and the number of articles

Database Search query Number of 
documents

Scopus

( TITLE ( „foresight” ) OR KEY ( „foresight” ) ) AND TITLE-ABS-KEY-AUTH ( „artificial intelligence” 
OR ai OR „machine learning” OR ml OR „deep learning” OR „neural networks” OR „neural 
network” OR ann OR rnn OR cnn OR lstm OR „natural language processing” OR nlp OR 
„text mining” OR „data mining” OR „predictive modeling” OR „AI-based methods” OR „genetic 
algorithms” OR „evolutionary algorithms” OR „swarm intelligence” OR „reinforcement learning” OR 
„support vector machines” OR svm OR „fuzzy logic” OR „decision trees” OR „random forest” OR 
„bayesian networks” OR „deep neural networks” OR „transformer models” OR „large language 
models” OR llm OR „knowledge graphs” ) AND PUBYEAR > 2016 AND PUBYEAR < 2026 AND ( 
LIMIT-TO ( LANGUAGE , „English” ) )

259

IEEE Xplore

((„Document Title”:”foresight” OR „Index Terms”:”foresight”) AND („All Metadata”:”artificial 
intelligence” OR „All Metadata”:AI OR „All Metadata”:”machine learning” OR „All Metadata”:”deep 
learning” OR „All Metadata”:”neural networks” OR „All Metadata”:”natural language processing” 
OR „All Metadata”:”genetic algorithms” OR „All Metadata”:”reinforcement learning” OR „All 
Metadata”:”decision trees” OR „All Metadata”:”random forest” OR „All Metadata”:”transformer 
models”) )AND (Publication Year:2017 TO 2025) AND (Language:English)

36

Web of 
Science

((TI=(foresight) OR AK=(foresight)) AND TS=(„artificial intelligence” OR „ai” OR „machine learning” 
OR „ml” OR „deep learning” OR „neural networks” OR „neural network” OR „ann” OR „rnn” OR 
„cnn” OR „lstm” OR  „natural language processing” OR „nlp” OR „text mining” OR „data mining” 
OR „predictive modeling” OR „AI-based methods” OR „genetic algorithms” OR „evolutionary 
algorithms” OR „swarm intelligence” OR „reinforcement learning” OR „support vector machines” 
OR „svm” OR „fuzzy logic” OR „decision trees” OR  „random forest” OR „bayesian networks” OR 
„deep neural networks” OR     „transformer models” OR „large language models” OR „llm” OR 
„knowledge graphs”))AND PY=(2017-2025) AND LA=(English)

157



303

Advances in Science and Technology Research Journal 2026, 20(3) 299–317

enhancing the ability to connect with the most 
beneficial future [40]. To identify patterns in the 
combined use of AI and foresight methods, a co-
occurrence analysis was conducted based on the 
titles, abstracts, and keywords across the selected 
dataset. This enabled the mapping of how specific 
AI techniques are applied in conjunction with fore-
sight approaches in published articles (Figure 3). 

A co-occurrence analysis of foresight meth-
ods and AI techniques shows that approaches 
such as scenario analysis, trend analysis, biblio-
metrics, Delphi, SWOT, and brainstorming are 
often combined with AI methods. Among AI 
techniques, artificial intelligence, machine learn-
ing, NLP, text mining, and neural networks are 
the most frequent. The results highlight the strong 
link between scenario and trend-based foresight 
and AI, reflecting the growing role of predictive 
analytics and text processing in the field. Over-
all, AI is increasingly used to support scenario 
building, trend detection, expert knowledge ag-
gregation, and analysis of large textual datasets, 
often drawn from publications, reports, patents, 
surveys, and quantitative indicators.

Analysis of keyword usage across the dataset 
reveals a notable preference among authors for 
the general term “artificial intelligence”, which 
appears significantly more frequently than more 
specific terms, such as “machine learning” or 
“deep learning.” Interestingly, “neural networks” 
also show relatively high occurrence, despite be-
ing a subset of machine learning and deep learn-
ing. This suggests that while authors often refer to 
AI in broad terms, they may also highlight specific 

technologies, such as neural networks, when rel-
evant, potentially overlooking the hierarchical 
structure of AI terminology. Such patterns indicate 
a conceptual gap in how AI methods are referenced 
in foresight-related literature, which may affect the 
clarity and precision of methodological report-
ing. When recognising the frequent imprecision 
in method definitions across scientific articles, it is 
evident that AI-assisted text/speech analyses, often 
supported by LLMs, are increasingly being incor-
porated into foresight processes, both as analytical 
tools and as sources of scenario generation. Along-
side these LLM-driven qualitative insights, several 
studies proposed quantitative enhancements, such 
as fuzzy numbers and mathematical models, to 
improve precision in decision-making processes, 
including Delphi surveys, e.g., [41]. 

In light of the summaries made, bibliometric 
analysis has never been as accessible and efficient 
as it is today, owing to the integration of AI tools. 
In the context of predicting the technological 
future, AI enables the rapid processing of mas-
sive amounts of scientific publications, patents, 
and other textual data, revealing hidden patterns, 
emerging trends, and strategic insights. This trans-
formation significantly reduces the manual effort 
traditionally required in bibliometric research, 
enabling researchers to extract valuable predic-
tive information from complex and distributed 
data sources. The analysis above was conducted 
in Python using the code generated with the sup-
port of GPT models, such as those integrated in 
ChatGPT and Copilot.

Figure 2. Distribution of AI-supported foresight applications across thematic areas
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CASE STUDY OF THE TECHNOLOGY 
FORESIGHT PROJECT 

To demonstrate the practical application of AI 
in foresight research, this section provides a case 
study on assessing and grouping emerging tech-
nologies. It combines the AI-driven methods with 
human validation to offer insights into how gen-
erative AI ideas can improve framework design 
and support decision-making processes. The fol-
lowing subsections present the GenAI concepts 
for the technology foresight project data, provide 
a brief introduction to the proposed methods, and 
present the results, including the clustering of 
technologies and the similarities between experts, 
along with a discussion.

Generative AI concepts in the context 		
of technology foresight

Comparison of LLM systems is a frequently 
discussed topic, and the basis of metrics is, for ex-
ample, success rates, runtime efficiency, memory 
usage, and error-handling capabilities [42]. Most 
formal evaluations of deep learning models have 
relied heavily on standard academic datasets, 
which have limitations in accurately reflecting 
real-world performance [43]. In contemporary re-
search practice, advanced AI tools are increasing-
ly used not only to provide methodological guid-
ance in selecting appropriate analytical techniques 

but also to support various aspects of complex 
research, including foresight projects. This paper 
presents an experimental comparative approach, 
focusing on the synthesis of generative solutions. 
This analysis directly addresses research question 
Q2: In what ways can AI facilitate expert-based 
technology foresight? 

Two leading artificial intelligence systems – 
ChatGPT 4o and M365 Copilot were prompted 
with a detailed description of a dataset from the 
NT FOR Podlaskie 2020 project [44]. The pro-
ject aimed to develop a desirable socio-economic 
development scenario for the Podlaskie region in 
Poland. It focused on nanotechnologies aligned 
with regional development goals and projecting 
a regional nanotechnology strategy [2,45]. The 
main part of the NT FOR was the evaluation of 57 
nanotechnologies (T1, T2, …, T57) across 8 do-
mains to select innovation priorities (Appendix 1 
and Appendix 2). The analytical methods includ-
ed calculating an average for the criteria weighed 
(or not) by the level of expert knowledge, and cre-
ating a ranking based on the average.

The project data was used to answer the 
question about the machine learning or statis-
tical methods that AI tools would suggest for 
analysing a multidimensional dataset consisting 
of attractiveness and feasibility assessments, all 
rated on Likert scales, along with expert knowl-
edge self-assessments. The insights from this 
experiment provide a comparative view on how 

Figure 3. Co-occurrence matrix: AI and traditional foresight methods
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generative AI systems can support methodolog-
ical decision-making in technology foresight re-
search, thereby contributing to answering Q2.

The following prompt was employed: I’m 
working with a dataset from the NT FOR Podlask-
ie 2020 project, which evaluated 57 technologies 
across seven application areas (plus a miscellane-
ous group) to identify and prioritise innovations 
for regional development in the Podlaskie region 
of Poland. Each technology was assessed by 19 
experts using 13 attractiveness criteria (e.g., mar-
ket potential, alignment with regional goals) and 
8 feasibility criteria (e.g., resource availability, 
technical complexity). All scores are on a 1–5 
Likert scale. Additionally, each expert provided a 
self-assessed knowledge level (on a 1–5 scale) for 
each domain. I do not have a target variable. What 
machine learning techniques would be appropri-
ate for analysing such data?

The summarised results are presented in Ta-
ble 2. An unsupervised learning approach was 
proposed for the application. Notable consistency 
was observed, and the methods included the con-
ventional statistical techniques. Generative artifi-
cial intelligence typically advocates three primary 
directions of analysis: dimension reduction, clus-
tering, and expert-centred analysis. The received 
suggestions significantly exceeded the analyses 
performed in the project. However, the proposed 
methods are quite standard and do not go beyond 
the analytical canon and framework. This obser-
vation is consistent with the commonly reported 
assessments in the literature, where the creative 
capabilities of generative AI, as of 2025, are often 
described as unexceptional and rather modest in 
practical applications.

Considering the proposals put by GenAI, 
variable reduction techniques – such as princi-
pal component analysis (PCA), t-distributed sto-
chastic neighbor embedding (t-SNE), uniform 
manifold approximation and projection (UMAP), 
factor analysis, latent class analysis (LCA), mul-
tidimensional scaling (MDS), and partial least 
squares (PLS) –  play a critical role in uncover-
ing the underlying structure of high-dimensional 
datasets. These methods enable the identification 
of latent dimensions or patterns by reducing the 
complexity of the original variable space, which 
is particularly valuable in exploratory data analy-
sis, thereby supporting the construction of typol-
ogies of technologies, development trajectories, 
or scenario narratives. However, despite the an-
alytical value of dimensionality reduction, such 

methods may have limited direct interpretability 
for decision-makers. Similarly, the recommen-
dation to enrich the analysis with supplementary 
expert insights –  such as those required in mul-
ti-criteria decision analysis (MCDA) methods 
like TOPSIS (technique for order of preference 
by similarity to ideal solution), AHP (analytic 
hierarchy process), or preference ranking organ-
isation method for enrichment evaluation (PRO-
METHEE) –  shows limited practical relevance, 
as these approaches inherently rely on extra ex-
pert-defined weights and judgments. In this con-
text, clustering techniques – including k-means, 
hierarchical clustering, density-based spatial 
clustering of applications with noise (DBSCAN), 
Gaussian mixture models (GMMs), bicluster-
ing and co-clustering – offer a more actionable 
framework by organising technologies into dis-
crete and interpretable groups. Considering clus-
tering methods, DBSCAN requires parameter se-
lection, GMMs require the assumption of normal 
distributions. Clustering and co-clustering (for 
simultaneous clustering of objects and features) 
seem particularly useful, allowing for the analy-
sis of the feature matrix as a whole. It provides 
a different perspective on variables and enables 
in-depth exploration of local patterns.

This article focused on clustering methods 
due to their practical utility in identifying ho-
mogeneous subsets of technologies or expert 
judgments, which can guide resource allocation, 
stakeholder engagement, and the formulation of 
targeted recommendations. In addition, the study 
also considers a second analytical dimension: the 
methods that examine the behaviour and consist-
ency of expert evaluations. While a broad spec-
trum of techniques exists, the present study em-
ployed clustering, correlation and network anal-
ysis of expert evaluations. Such approaches are 
crucial in the context of foresight studies, where 
expert-based assessments often form the back-
bone of data collection. Evaluating the internal 
coherence, reliability, and inter-expert variability 
not only strengthens the credibility of the results 
but also helps identify biases, dominant heuris-
tics, or subgroup alignments among experts. 

Methodological formulations

This paper employed complementary clus-
tering approaches: (1) hierarchical clustering 
of technologies; (2) two-dimensional hierarchi-
cal clustering of technologies and evaluation 
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attributes based on aggregated ratings, visualised 
as clustered heatmaps for attractiveness and fea-
sibility; and (3) spectral co-clustering analysis, 
which simultaneously identifies coherent groups 
of technologies and criteria by detecting structur-
al patterns in the data matrix, enabling the dis-
covery of biclusters – subsets of technologies and 
attributes that exhibit similar behaviour.

Clustering of technologies is based on the 
matrix of evaluations X = [xij], where i = 1, ..., 
N denotes technologies and j = 1, ..., M  criteria. 
In one-dimensional clustering, technologies are 
grouped into clusters C = {C1, ..., Cp} , where P is 
number of clusters, μp is the centroid of cluster Cp 
. The aim is to minimalize intra-cluster variance:

	 𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑝𝑝‖
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Two-dimensional clustering assumes that 
technologies and evaluation criteria were clus-
tered independently, using the same variance-min-
imisation principle. 

Co-clustering (also referred to as bicluster-
ing) assumes C = {C1, ..., Cp} as clusters of tech-
nologies, F = {F1, ..., FQ} as clusters of features, 
μpq

 
is the mean values in the bicluster (Cp, Fq)
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Expert similarity network uses cosine similar-
ity, assumes rui and rvi are the ratings of experts u 
and v for technology i:
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Unsupervised clustering of technologies

In the NT FOR Podlaskie 2020 foresight 
project, 57 technologies were grouped into four 
clusters based on the mean scores of attractive-
ness and feasibility. The resulting groups dem-
onstrated the following characteristics: (1) high 
attractiveness-high feasibility: priority technolo-
gies recommended for immediate investment; 
(2) high attractiveness-low feasibility: promising 
technologies that require improvements in imple-
mentation potential; (3) low attractiveness – high 
feasibility: technologies that are easy to imple-
ment but offer limited strategic value; (4) low 
attractiveness-low feasibility: technologies that 
should be deprioritised or eliminated from strate-
gic focus (Table 3, Figure 4). 

By applying methods proposed by GenAI, it 
becomes possible to view technologies not only 
through the lens of aggregate scores but also by 
analysing the individual values of criteria across 
both attractiveness and feasibility dimensions. 
This enables a more nuanced and multi-per-
spective analysis, far beyond simple averaging. 
In particular, it helps identify the technologies 
that may appear similar when averaged but dif-
fer significantly when examined at the level of 
individual evaluation criteria. Techniques such 
as clustering – as recommended by GenAI – al-
low researchers and decision-makers to identify 

Table 2. AI data analysis proposals
ChatGDP Copilot

Dimensionality reduction, e.g., principal component analysis 
(PCA), t-distributed stochastic neighbour embedding (t-SNE), 
uniform manifold approximation and projection (UMAP)

Dimensionality reduction, e.g. PCA, t-SNE, or UMAP

Clustering, e.g., hierarchical clustering, k-means / k-medoids, 
Gaussian Mixture Models (GMMs)

Clustering, e.g., k-means or hierarchical clustering, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)

Biclustering or co-clustering Factor analysis or latent variable models

Multidimensional scaling (MDS) Weighted Scoring Models

Factor analysis Multi-criteria decision analysis (MCDA), e.g., TOPSIS, AHP, or 
PROMETHEE.

Latent class analysis (LCA) Correlation and network analysis

Association rules or frequent pattern mining Expert behaviour analysis

Consensus analysis

Cluster stability and validation

Multivariate regression or partial least squares (PLS)
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meaningful groups of technologies, detect latent 
patterns, as well as develop more targeted and 
robust strategic recommendations. 

Firstly, hierarchical clustering of technologies 
was applied, with results shown in Figure 5, which 
represents a more detailed view while still resem-
bling the traditional four-group structure based on 
averages. The priority technologies identified in 
the NT FOR project are highlighted in the follow-
ing groups by marking them with an envelope.

The silhouette score indicated that a three-
cluster solution offered the best fit. This finding 
suggests that although clustering refines group al-
location, the overall distribution of technologies 
remains broadly similar to the original categorisa-
tion. Although this grouping highlights the most 
promising technologies (see Table 4), it does not 
significantly change the overall distribution from 
the original results.

Table 5 presents a clustering of two categories 
of variables: technologies and evaluation criteria. 
This allows for an assessment of overall similarity 
patterns across both dimensions. In other words, 
it groups technologies not only by their attrac-
tiveness and feasibility ratings, but also by how 
they align with specific evaluation criteria. The 

corresponding dendrogram heatmaps are shown in 
Figure 6, providing a visual representation of the 
clustering results. Technologies are grouped based 
on the similarity of their scores across the evalua-
tion criteria (A1–A13 for attractiveness and F1–F8 
for feasibility). Independently, the criteria them-
selves are also clustered based on how similarly 
they are rated across technologies. The clustering 
of evaluation criteria enabled the identification of 
thematic groups of attributes, which were inter-
preted and labelled based on their descriptions. 
The full list of attribute names and descriptions 
used for interpretation is provided in Appendix 2.

Co-clustering is a simultaneous two-dimen-
sional clustering of technologies and features. 
Unlike sequential clustering, co-clustering inte-
grates both dimensions in a single analytical step, 
enabling a deeper understanding of the relation-
ships between technologies and their underlying 
attributes. As a result, coherent clusters of tech-
nologies and features emerge – these are pre-
sented in Table 6 and visualised in the heatmaps 
shown in Figures 7 and 8.

Clustering algorithms are essential tools 
in data science, particularly useful for explor-
ing and organising complex, multidimensional 

Table 3. Traditional clusters by means utilised in NT FOR Podlaskie 2020
Feasibility High attractiveness Low attractiveness

High feasibility
T3, T4, T5, T8, T11, T12, T16, T17, T18, T20, T21, 
T22, T23, T24, T25, T26, T31, T33, T34, T36, T42, 

T44, T45
T19, T27, T30, T37, T38

Low feasibility T9, T14, T15, T39, T43
T1, T2, T6, T7, T10, T13, T28, T29, T32, T35, T40, 
T41, T46, T47, T48, T49, T50, T51, T52, T53, T54, 

T55, T56, T57

Figure 4. Traditional clusters by means utilised in NT FOR Podlaskie 2020
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datasets. In technology assessment, they help 
identify the groups of technologies with similar 
levels of attractiveness and feasibility, enabling 
a more structured and nuanced approach to pri-
oritisation. Importantly, these methods enable 
decision-makers to analyse the dataset from 
various analytical perspectives, thereby ensur-
ing that strategic decisions are not predicated 

solely on aggregated averages. However, clus-
tering results should be treated not as absolute 
prescriptions, but as supportive guidelines for 
informed decision-making. Attention to cluster 
stability and validation is key to ensuring robust 
and interpretable outcomes. When applied with 
awareness of their assumptions and limitations, 
clustering methods enhance the credibility of the 

Figure 5. Hierarchical clustering of technologies (Ward method)

Table 4. Hierarchical clustering of technologies
Cluster Technology

High feasibility and attractiveness ratings – the most 
strategic, ready for implementation. T4, T8, T16, T17, T18, T20, T21, T22, T23, T24, T33, T45

Average ratings, moderately attractive and feasible, require 
further contextual analysis and potential development 
investments

T1, T2, T3, T5, T6, T7, T9, T10, T11, T12, T13, T14, T15, T19, 
T25, T26, T27, T28, T29, T30, T31, T32, T34, T35, T36, T37, 
T38, T39, T40, T41, T42, T43, T44, T46, T47, T48, T49, T50, 

T51, T53, T54, T57
Low scores in all criteria – few prospects, low readiness for 
implementation T52, T55, T56

Table 5. Clustered technologies and thematic attribute groups for attractiveness and feasibility dimensions
Cluster Technology Cluster Features

Attractiveness
Technologies with the 
highest attractiveness

T4, T8, T16, T17, T18, T20, T21, T22, T23, T24, 
T33, T45

Implementation 
potential A2, A8, A11

Technologies with low 
attractiveness T52, T54, T55, T56 Growth & expansion A3, A6, A7, A12, 

A13
Moderately attractive 
technologies

T1, T3, T19, T25, T26, T27, T28, T30, T31, T34, 
T36, T39, T40, T42, T43, T44 Market value A1, A4, A9, A10

Average technologies
T2, T5, T6, T7, T9, T10, T11, T12, T13, T14, T15, 

T29, T32, T35, T37, T38, T41, T46, T47, T48, T49, 
T50, T51, T53, T57

Regional Integration A5

Feasibility
Technologies with very low 
feasibility T52, T54, T55, T56 Skills & infrastructure F4, F5, F6

Moderately feasible 
technologies

T2, T6, T9, T10, T15, T35, T39, T40, T41, T43, 
T46, T47, T48, T49, T50, T51, T53 Market interest F7

Technologies with the 
highest feasibility T16, T17, T18, T20, T21, T23, T24, T25, T31 Technical feasibility F3, F8

Highly feasible technologies
T1, T3, T4, T5, T7, T8, T11, T12, T13, T14, T19, 
T22, T26, T27, T28, T29, T30, T32, T33, T34, 

T36, T37, T38, T42, T44, T45, T57
Funding access F1, F2
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Table 6. Co-clustered technologies and thematic attribute groups for attractiveness and feasibility dimensions
Cluster Technology Features

Attractiveness

Regional synergy and industrial 
readiness

T1, T2, T3, T4, T16, T17, T18, T19, T20, T21, 
T22, T26, T27, T29, T36

A5 – Use of regional potential
A10 – Entrepreneurship stimulation
A11 – Absorption in existing industry

Frontier technologies for emerging 
sectors

T46, T47, T48, T49, T50, T51, T52, T53, T56, 
T57

A3 – R&D activity
A13 – Absorption in emerging 
sectors

Next-gen precision medicine and 
therapies

T5, T6, T7, T9, T10, T11, T12, T13, T14, T15, 
T54, T55

A6 – Competitiveness
A7 – Enterprise positioning
A12 – Broad dissemination

Sustainable development and 
societal impact

T8, T23, T24, T25, T28, T30, T31, T32, T33, 
T34, T35, T37, T38, T39, T40, T41, T42, T43, 

T44, T45

A1 – Investment attractiveness
A2 – Private R&D growth
A4 – Commercialisation ease
A8 – Job creation
A9 – Economic efficiency

Feasibility

Strong infrastructure and skilled 
workforce T1, T2, T16, T18, T26, T27, T37, T38, T49, T55

F4 – Human resource quality
F5 – Qualified personnel
F6 – R&D infrastructure

Business-driven and technically 
viable

T3, T4, T8, T11, T12, T17, T20, T21, T22, 
T23, T24, T25, T28, T29, T30, T31, T32, T33, 

T34, T36, T42, T45, T53, T57

F3 - Technical feasibility
F7 – Business interest
F8 – Equipment availability

Financially ready and scalable T5, T13, T19, T35, T39, T40, T41, T43, T44, 
T46, T47, T48

F1 – Access to funding
F2 – Financial feasibility

Advanced research and 
experimental potential

T6, T7, T9, T10, T14, T15, T50, T51, T52, T54, 
T56 (No feasibility features assigned)

Figure 6. Cluster heatmaps – attractiveness and feasibility



310

Advances in Science and Technology Research Journal 2026, 20(3), 299–317

Figure 8. Co-clustered of technology feasibility based on expert evaluation

Figure 7. Co-clustered of technology attractiveness based on expert evaluation
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analysis and provide a solid basis for evidence-
based strategic recommendations.

Considering the implemented methods, one-
dimensional hierarchical clustering enables the 
prioritisation of technologies for immediate ac-
tion for long-term development. This approach 
simplifies decision-making by focusing on ag-
gregated readiness levels but provides limited 
insights into the drivers of these ratings. While 
the joint evaluation of these two dimensions 
narrows the number of technologies selected, 
it does not significantly enhance precision nor 
contribute substantial new insights. In contrast, 
two-dimensional clustering, where technologies 
and features are clustered separately, involves 
first grouping technologies based on their attrac-
tiveness and feasibility scores, followed by in-
dependent clustering of the features themselves. 
The result is the formation of distinct groups of 
technologies and separate thematic clusters of 
features. This method adds interpretive value 
by showing which features most strongly influ-
ence each technology cluster. Co-clustering is 
a simultaneous two-dimensional clustering of 
technologies and features within a single ma-
trix, and offers a more integrated approach. It 
enables the identification of shared patterns 
between technologies and features, facilitat-
ing the assignment of technologies to strategic 
thematic groups that reflect both attractiveness 
and feasibility. As a result, coherent clusters of 
technologies and features emerge, supporting a 
more holistic understanding of the innovation 
landscape and providing a stronger foundation 
for strategic planning. 

Expert clustering analysis

Expert analysis and clustering of expert judg-
ments is the second area addressed in this work. 
The goal is to assess the consistency, behavioural 
patterns, congruence, and quality of expert judg-
ments. The proposed GenAI approaches include 
correlation and network analysis, as well as ex-
pert behaviour analysis. Expert behaviour analy-
sis facilitates the identification of inconsistent 
or extreme ratings, which may be excluded or 
examined as distinct cases. It evaluates whether 
experts with limited knowledge exhibit different 
rating patterns, such as lower ratings and a lack 
of differentiation. 

The project gathered the opinions of 19 experts 
(E_1, E_2, …, E_19). Clustering of in two-dimen-
sional space: mean attractiveness rating versus 
mean feasibility rating grouped experts into three 
clusters based on the evaluation schemes: Cluster 
0 – experts with higher, consistent ratings of both 
attractiveness and feasibility; Cluster 1 – experts 
with more critical or highly variable ratings; Clus-
ter 2 – moderate ratings (Figure 9).

When analysing the aggregated results of the 
relationship between the average level of expert 
knowledge and the average assessment of tech-
nology feasibility, both Pearson and Spearman 
correlation coefficients indicated negative and 
moderate correlations. This suggests that high-
er expert knowledge is associated with lower 
evaluations of both attractiveness and feasibility 
of technologies. Detailed correlations between 
knowledge and individual criteria are illustrated 
in Figure 10 and 11.

Figure 9. Clustering of in two-dimensional space: mean attractiveness rating versus mean feasibility rating
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In the feasibility domain, expert knowledge 
often correlates negatively with assessments – 
more knowledgeable experts tend to give lower 
feasibility scores, likely due to greater awareness 
of risks and barriers. For attractiveness, the rela-
tionship varies by domain and criterion, but nega-
tive correlations also appear often, especially in 
complex or highly regulated sectors. Examples: in 
medicine and environmental protection, experts 
with high knowledge are more critical, likely due 
to their understanding of implementation chal-
lenges. In contrast, in machinery and transport, 
experts are more optimistic – knowledge tends 
to support higher evaluations. In the clothing and 
wood industries, knowledge has little or no nega-
tive impact, possibly due to lower technological 
or institutional barriers.

GenAI also suggests analysing expert similar-
ity networks (Figure 12). 

The analysis of expert similarity networks en-
ables an understanding of how consistent the in-
dividual evaluation patterns are, both in terms of 
the attractiveness and feasibility of the assessed 
technologies. Identifying groups of experts who 
provide similar assessments can indicate shared 
experience, knowledge, or decision-making per-
spectives. This allows for the identification of 
natural “schools of thought” within the evaluation 
team. Network density and the number of connec-
tions may suggest cohesion or fragmentation of 
opinions within the expert group, as well as high-
light the experts with unique evaluation profiles 
who may represent alternative approaches or po-
tential sources of innovative insights. 

The analysis revealed a tightly connected core 
cluster of experts, indicating a strong consensus 
in evaluating the attractiveness and feasibility 
of technologies. Peripheral experts (e.g., E_7, 

Figure 11. Correlation between knowledge level and feasibility criteria by area

Figure 10. Correlation between knowledge level and attractiveness criteria by area
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E_15) showed partial alignment, while E_4, E_8, 
and E_10 represented clear outliers with distinct 
evaluation profiles. Such divergence, although 
reducing overall cohesion, can provide valuable 
alternative perspectives and highlight overlooked 
risks or opportunities. Expert similarity networks, 
therefore, not only capture the degree of consen-
sus but also support balanced expert selection by 
integrating mainstream and minority viewpoints.

OPPORTUNITIES AND CONSIDERATIONS 
OF ARTIFICIAL INTELLIGENCE IN 
FORESIGHT

Artificial intelligence is currently a widely 
discussed topic, attracting growing interest across 
various fields. In many applications, it has already 
proven effective in supporting detection and di-
agnostic tasks [46]. While much of the literature 
emphasises the productivity gains associated 
with AI, counterarguments are also emerging– for 
example, that the current AI tools may actually 
slow down experienced professionals in certain 
tasks [47]. Nevertheless, benchmark studies show 
that the performance of leading AI models con-
tinues to improve steadily [48]. As for 2025, AI 
equals or outperforms in optimisation, but it does 
not equal creativity. In foresight-related applica-
tions, generative AI offers agent-based systems 

that integrate data access (e.g., web browsing), 
information synthesis, and natural dialogue. The 
quality of the output is often comparable to that 
produced by human experts. As such, AI support 
can provide new perspectives for the data-driven 
technology foresight. However, these tools still 
require human oversight to ensure the relevance 
and accuracy of their outputs.

In the literature, hybrid approaches combin-
ing AI and human experts are typically consid-
ered in patent data analysis, bibliometrics, or 
automated analysis of text data using NLP. Such 
integration allows for combining computational 
efficiency with expert interpretation, strength-
ening both the reliability and interpretability of 
results. Moreover, researchers can use LLMs not 
only as analytical tools, but also to design ques-
tions that foster critical thinking and logical rea-
soning skills.

The role of AI in increasing the accuracy, 
efficiency, and explainability of predictive tech-
nology assessment cannot be overstated. AI un-
doubtedly brings more benefits than risks (e.g., 
hallucinations, repetition of errors), especially 
when applied transparently and in combination 
with expert-driven processes. The LLM-based 
tools offer interesting opportunities for stream-
lining data analysis, enabling rapid identifica-
tion of patterns, and supporting multidimen-
sional assessments. Importantly, in an era when 

Figure 12. Expert similarity network on concatenated attractiveness and feasibility
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LLMs are often used to generate abbreviated or 
even misleading outputs, this study highlights 
a constructive and methodologically transpar-
ent use case for these technologies in complex 
foresight processes.

The article focused on the clustering of tech-
nologies and the identification of expert groups, 
demonstrating that the data obtained through the 
foresight process can be interpreted from multi-
ple perspectives. Rather than aiming for a single, 
definitive classification of technologies, this ap-
proach emphasises the further conditional and 
contextual characteristics of similarities. This 
allows for the identification of both coherent 
groups with similar assessment profiles and dis-
tinct, separate clusters. Although it does not pro-
vide significant implications for the final selec-
tion of the most important technologies – and in 
this case, it is worth using simple and understand-
able methods – it may provide new knowledge for 
additional interpretations of data.

The article also addressed the issue of expert 
analysis. Experts are a key element of the priori-
tisation process, and their knowledge and expe-
rience form the basis for preparing a list of key 
technologies, evaluation attributes, and often also 
the value of the criteria (as in the NT FOR proj-
ect). Appropriate expert selection ensures a broad 
perspective and consideration of the views of 
multiple stakeholders. At the same time, in each 
case, the use of expert constraints is equivalent 
to adopting a subjective and uncertain framework 
for analysis. The approaches proposed by GenAI 
are ex post approaches– checking the consistency 
of assessments and dependencies, identifying ex-
perts who are significantly outliers. Given that the 
analyses have already been performed, these sug-
gested approaches can only confirm the accuracy 
of the defined set of experts.

Considering further directions of research, it 
is also important to note that the original project 
under review did not fully address the issue of at-
tribute weighting, which is crucial in technology 

assessment. Including such considerations could 
improve analytical depth by capturing differ-
ences in perceived importance between attrac-
tiveness, feasibility, or other evaluation criteria. 
This would have allowed for placing the analysis 
within the wide family MCDA methods, such as 
AHP, TOPSIS, or PROMETHEE. Therefore, it 
was not introduced in this analysis. Moreover, ro-
bustness remains a key challenge in many types 
of analysis [49], and foresight is no exception. 
The variability of results depending on the chosen 
method, attributes, and experts should be viewed 
not only as a limitation but also as a valuable op-
portunity for discussion and critical reflection. A 
posteriori analysis could help answer questions 
such as: How many criteria are needed to create a 
reliable ranking? What is the appropriate number 
of experts? Is an average rating useful, or should 
more emphasis be placed on divergent or extreme 
opinions? An interesting extension of the expert-
based technology assessment would be to employ 
GenAI models to replicate the evaluation process 
and compare the results with human expert judg-
ments. However, in this case, the key limitation 
lies in the passage of time, as the AI-based assess-
ment would rely on a different set of information 
and contextual factors than those available to the 
original experts.

Table 7 summarises the main opportunities 
and considerations of AI in foresight projects. 

We are undoubtedly entering a new era of 
foresight – one that requires changes not only in 
tools and methods but also in our way of think-
ing. Automated analyses will allow for the easy 
presentation of diverse perspectives, the explo-
ration of interdependencies, the identification 
of possible interpretations, and the creation of 
a broad scope for further scenario-based analy-
ses. This article used LLMs to generate inspi-
ration, analysis, and computation, while main-
taining oversight and assuming full responsibil-
ity for the text. As such, it can serve as a guide 
for using AI.

Table 7. Opportunities and considerations of AI in foresight
Opportunities Considerations / Limitations

Increased efficiency in data processing and clustering AI-generated outputs require human oversight to ensure 
contextual accuracy

Rapid identification of thematic groups and patterns Risk of hallucinations and propagation of errors
Supports multi-perspective interpretation and scenario 
building

Robustness issues due to sensitivity to method, experts, and 
attributes selection

Enhanced explainability and identification of outliers in data Current AI tools remain limited in creativity and contextual 
nuance
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CONCLUSIONS 

This study examined how AI can enhance tech-
nology foresight by integrating a systematic litera-
ture review with an experimental analysis of empir-
ical data from the NT FOR Podlaskie 2020 project.

The literature review revealed that AI is in-
creasingly integrated into foresight, primarily in 
conjunction with scenario planning, trend analy-
sis, Delphi methods, bibliometrics, and clustering. 
Machine learning, natural language processing, 
and large language models emerge as key tools for 
processing large datasets and enhancing expert-
based evaluations, while the potential for automat-
ing numerical analysis remains underestimated. 
The review also showed a conceptual inconsisten-
cy in terminology: “artificial intelligence” domi-
nates, whereas terms such as “machine learning” 
and “deep learning” are underused, despite fre-
quent references to “neural networks.” 

In the empirical part, generative AI was ap-
plied to recommend analytical techniques and 
generate Python code for efficient data process-
ing. Hierarchical clustering, biclustering, and ex-
pert similarity networks were applied to the NT 
FOR dataset. These methods revealed coherent 
technology groups, thematic attribute clusters, 
and distinct expert groups.

The key results can be summarised as follows:
	• AI-generated suggestions remained within 

conventional frameworks and required expert 
oversight for contextual validation.

	• AI-assisted foresight provided deeper insights 
than traditional averaging, enhancing inter-
pretability and robustness.

	• Expert network analysis identified a consen-
sus group and outliers, showing both cohesion 
and diversity of views.

Overall, the integration of AI into foresight en-
riches the analytical process by enabling dynamic, 
multi-perspective analyses that combine compu-
tational efficiency with expert judgment. Such hy-
brid approaches both strengthen the explanatory 
value of foresight and provide practical guidance 
for strategic technology assessment, while main-
taining the crucial role of expert knowledge in 
shaping valid and actionable outcomes. 
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