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ABSTRACT

The industry uses fused deposition modeling (FDM) in the manufacture of the final products through the additive
manufacturing method (AM). Due to this approach, one can construct a prototype and other components with
complicated geometry, which not only translates into the saving of expensive dollars but also makes the project
more flexible. Printing and material type, as well as other processing settings, affect the nature of parts, in terms of
mechanics as well as other aspects. This paper attempts to develop a model to predict the mechanical capabilities
and surface quality of FDM-printed ABS objects based on artificial neural networks. Taguchi design of experi-
ments is applied with an L27 orthogonal array coupled with a two-layer neural network (NN) with 15 neurons. The
impact of the characteristics of the layer height, the orientation angle, and the nozzle temperature on the strength
and finish of parts was investigated by means of the analysis of variance (ANOVA). Layer thickness seemed to
be the major variable in the analysis because it was identified to create over 43.67% variation in ultimate tensile
strength and 46.38% variation in surface roughness. The predicted results by the model were just a little different
compared with the actual results. The highest percent error in the tensile strength and the surface roughness are
2.346 and 1.876, respectively, which arises when comparing the experimental and predicted values as calculated
using the ANN model. With such a model, different parameters selected are able to achieve the requirements of a
particular application.

Keywords: ABS, FDM, ANN, tensile strength, surface roughness.

be traced in several industries that make use of its
unique benefits to innovate. AM can be applied in
the aerospace sector to produce lightweight com-
plex components, which create fuel-efficient and
better structural designs, making aircraft more
advanced. On the same note, the application of
AM in medicine is applied in the production of
patient-specific implants, prosthetics, and biolog-
ical structures that match specific requirements.
In addition to these fields, automotive corpora-

INTRODUCTION

Additive manufacturing (AM) is transforming
the manufacturing industry by radically changing
the centuries-old production models. This new
technology is very flexible, customized, and effi-
cient. AM works by printing layer by layer on the
basis of the digital designs of objects, allowing the
production of models and prototypes, and func-
tional final products. The wide use and enormous
potential of 3D printing have been enabled by the

fact that it can process a wide variety of materials
such as plastics, metals, ceramics, and even living
cells [1]. The transformational ability of AM can
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tions are openly using AM in quick prototyping,
tailored automobile materials, and lean supply
chains [2]. Its capabilities are ventured into by
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architects and designers in designing complex
structures and models that stretch the limits of 3D
design and construction [3]. Even the food sec-
tor tries to utilize AM to create something new
in the world of food and individual nutrition [4].
Conventional manufacturing tends to produce
waste due to the usually subtractive method of
production, whereas AM allows the manufactur-
ing of objects with high levels of precision, utiliz-
ing only the required amount of materials, hence
facilitating sustainability [5, 6]. The development
of AM keeps extending boundaries by bringing
next-level materials science and scale-up. Its in-
troduction into the current production ecosystems
equates to a paradigm shift of decentralized, on-
demand manufacturing, which will result in the
advent where complex designs quickly manifest
into real-life products, and lead to the maximiza-
tion of innovation in international industries [7].

It is done by heating the material in the lique-
fier head until it is molten, where it is then pre-
cisely extruded into a nozzle. This nozzle trav-
els along the particular geometry of the various
cross-sections of the item under fabrication. Both
the construction and support materials are sup-
plied as filaments with a diameter of 1.75 mm,
rolled into spools. These filaments are provided
to the extrusion head through a flexible tube with
ease and continuous supply. The spools are also
normally fixed on a spindle situated on the side
or the backside of the machine so as to keep them
steady and within easy reach of the operator in the
course of reaching them. This arrangement allows
controlling the deposition of materials with high
precision needed to generate parts with compli-
cated geometry and low features. This research
involves making parts on the basis of the FDM
printing method, by using ABS filament. As a
very common thermoplastic polymer in 3D print-
ing, ABS could be called a tough and impact-re-
sistant material suitable for functional prototypes
and end-use pieces.

Unlike PLA, ABS demands a hot bed and
higher extrusion temperature, but it is much
tougher and temperature resistant. Despite the fact
that ABS is harder to print because of the warping
and smell problems, it is widely used in areas that
require a stronger mechanical stiffness and resis-
tance to heat. Every FDM parameter has a con-
siderable influence on the quality of printed ABS
parts. It is necessary to optimize these parameters
so as to enhance print quality as well as reduce
the effort put into printing. Parameters in the FDM

processes are usually determined either by the
machine manuals or by the individual operator’s
experience, and yet it is not always optimal to suit
a given system or an environment. When this hap-
pens, an alternative is the Taguchi that makes the
whole experiment simple and predicts the interac-
tion and effects of FDM parameters [9].

To have the best production outcome, that too
at the most reasonable production cost, is the un-
ending task to get the best process parameters.
Among the most essential performance parame-
ters in the FDM process, mechanical properties
and surface quality provide an instant impact on
efficiency and the cost level of production [10].
Recently, outcomes and optimisation of 3D print-
ing parameters have been predicted through tech-
niques such as artificial neural networks (ANNSs),
genetic algorithms, simulated annealing, and grey
relational analysis. ANNSs, especially, are good at
modeling complex interactions between the in-
puts and the outputs.. They have the abilities of
generalization, self-organization, and association,
just like the human brain functions. ANNs are ap-
propriate in modeling the FDM process because
they can be efficiently used to approximate non-
linear functions. Due to their excellent learning
and generalization capabilities, they can observe
complex input-output relations during ABS 3D
printing. Picking up the ideas formulated in works
similar to that one, the present research provides
a detailed report on the performance properties of
FDM technology. More studies are required to
completely comprehend the impact of different
FDM settings on part strength. It is important,
therefore, to be thorough in examining the weak-
nesses of the print-out parts before giving any ap-
plication recommendation. Samykano et al. [11]
investagated were done on the impact of the three
most significant process parameters that control
the mechanical features of acrylonitrile butadiene
styrene (ABS), a common thermoplastic used in
many industrial applications of the FDM technol-
ogy, namely, the raster angle, the layer height, and
infill density. They planned experiments to scan
the effects of these factors on major mechanical
properties, such as ultimate tensile strength, elas-
tic modulus, yield strength, fracture strain, and
toughness. The findings indicated that all of the
parameters taken into consideration greatly influ-
enced the mechanical performance of the printed
ABS parts. Using response surface methodology
will allow them to generate a mathematical model
that can correlate process parameters with
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mechanical products. In this manner, they con-
cluded that the best suited 3D printing ABS pa-
rameters were 80% percent infill parameter, the
layer thickness of 0.5 mm, and the raster angle of
65. In such circumstances, the experimental re-
sults yielded a tensile strength of 31.57 MPa, an
elastic modulus of 774.50 MPa, a yield strength
of 19.95 MPa, a fracture strain of 0.094 mm/mm,
and the toughness (energy absorption) of 2.28
Jm-3. As studied by Tianyun et al. [12], the ulti-
mate tensile strength of the 3D-printed ABS ma-
terials manufactured using FDM was examined
when variable layer thicknesses were applied to
different angles. They prepared a universal plastic
test sample by the ISO 527-2-2012 standard.
Their theoretical model was able to predict the
tensile strength correctly at all printing angles and
layer thicknesses. The research established that
the utmost tensile strength is minimal when the
printing angle is maximized and also when the
layer thickness is maximized. Polylactic acid
(PLA) was also exploited in the research. [13]
studied the, different tool-path patterns-concen-
tric, zigzag, triangular, grid, and so on, but at par-
ticular densities Chinchanikar et al. [ 14] proposed
an ANN model that could be applied to predicting
surface roughness on parts printed with FDM.
The factors used were print speed, nozzle tem-
perature, and infill density, the presence of hidden
layers, the layer height, and the number of neu-
rons in the model. Their research established that
two concealed unit trails of 150 nodes were better
at predicting than one concealed unit trail of 150
nodes. Also, they noted that as infill density was
increased, surface roughness decreased. Arivazha-
gan Selvamet et al. [15] focused on optimizing
the fused filament fabrication (FFF) printing pa-
rameters in an attempt to improve surface quality
and printing time of ABS polymer. Analysis of
variance (ANOVA) was employed by the re-
searchers to statistically examine the influence of
layer thickness, printing speed, and nozzle tem-
perature on surface roughness and printing time.
They used a central composite design under re-
sponse surface methodology (RSM) to organize
the tests and established mathematical regression
models to encapsulate the interactions among the
input parameters and output reactions. Having
confirmed the correctness of these models, they
used them together with particle swarm optimiza-
tion (PSO) as well as RSM to propose optimum
printing parameters. The weighted aggregated
sum product assessment (WASPAS) algorithm
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was used in proving the two optimization meth-
ods, whereby it is indicated that PSO provided
better optimal values. The ideal parameters fore-
casted by PSO melting speed of 125.6 mm/sec, a
nozzle temperature of 221 degrees Celsius, and a
layer offset of 0.29 mm. The settings resulted in
excellent surface quality of about 3.92 microns on
both upper and lower surfaces, as well as about
1.78 microns on other surfaces, and a printing
time of only 24 minutes. Al-Duroobi et al. [16]
made an experimental study on ANN model,
parametric optimisation, and PEEK 3D printing.
They studied four parameters of the process. The
parameters they arrived at were a 4-12-2 ANN
network system, lower speeds during printing,
and an increase in infill density, to achieve better
strength and surface quality. A 1-Bdairy AM et al.
[17] stood out to establish how the orientation of
the part and parameters of the process used in 3D
printing affect the tensile strength. They produced
a neural network (NN) to set the relationship be-
tween input parameters and output results. A con-
cealed layer of 12 neurons performed the finest
when it was introduced with optimum component
orientation and process parameters to receive the
most study on the tensile strength. In the present
paper, the ANN was used as a fitness criterion of
the genetic algorithm (GA) in the optimization
process. The results proved the efficiency of the
method applied to improving the 3D printing pro-
cess, and its possible application in different engi-
neering disciplines. Abdullah et al. [ 18] suggested
that ANNs can be used in a new way to model
part strength and minimize the errors when pre-
dicting the strength of 3D printed parts to improve
the accuracy of those predictions. Mahdi et al.
[19] made an attempt to learn more about the sur-
face roughness of three main process variables,
which are printing speed, layer thickness, and ex-
trusion temperature. A Taguchi L27 orthogonal
array experimental design was used in carrying
out the investigation. Post-processing and any
further surface finishing processes were not used
on the samples. An Alti surf device was used to
obtain 3d images and 2d profiles of surface peaks
and valleys with abundant surface measurements
to be fed to the subsequent statistical analysis.
Quantitatively, the values of arithmetic roughness
(Ra) were between 7.18 and 13.4 um. The best
surface finishes were reported at the highest scan
speed of 4000 mm/min, whereas the smoother the
surfaces were related to the thinner the layer of
0.1 mm. Moreover, the thicker the extrusion
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temperature was, the better the surface finishes.
The ANOVA of a multiway type was used to de-
termine the most influential conditions and in-
teractions between them. It was found out that
the works of both RSM and ANN could make
the process easier to implement, lessen the
amount of tests needed, and enhance parameter
settings of MEAM processes. FDM requires fur-
ther studies, even though a literature review on
numerous additive manufacturing processes has
been conducted. The problem that is addressed
via the work is the lack of knowledge on the sen-
sitivity of layer height, orientation angle, and
nozzle temperature to the mechanical properties
and surface roughness of fused deposition mod-
eling (FDM)-printed specimens. The objective
is to develop a feed-forward artificial neural net-
work using a backpropagation algorithm in or-
der to extrapolate ultimate tensile strength and
surface roughness on the basis of these input pa-
rameters and introduce a system of continuous
and multi-parameter control in order to maxi-
mize mechanical properties and surface quality
of FDM-printed specimens.

METHODOLOGY

Material and method

The design of the part or component using
design software is the first step that is taken in
the 3D printing process. The SOLIDWORKS

program is used to produce the CAD file. After
the 3D model is ready, scaling should be done
to a common format, with the most popular file
format being the STL file format since it is wide-
ly compatible with the various platforms and
devices in the market. After this, it is converted
into the desired 3D printing language, which is
normally G-Code on an FDM printer. This pro-
gram indicates how the printer needs to move,
flow faster or slower, what a printing tempera-
ture should be, integrated cooling systems, and
other working processes. As shown in Figure 1,
the workflow that the study would follow begins
with the selection of FDM parameters and ends
at the determination of the percentage error be-
tween the anticipated and the measured values.
The STL file created in SolidWorks was edited in
Cura 4. 13. 1, which further allows it to be read-
able by the machine to be used and 3D-printable.
Figures 2a and 2b characterise the solid model
and its sliced model which was made regarding
ASTM D638 Type 4.

Selection of process parameters also plays a
major role in the determination of the quality of
the parts produced by FDM. The parameters ob-
served in this study are layer height, nozzle tem-
perature, and the orientation angle. Alteration in
such FDM settings immensely influences process
products like tensile strength and surface rough-
ness. Thus, the outcome of the overall process
could be improved by selecting the best FDM pa-
rameters. In Table 1, the selection and value of

Define the 3d printer ABS parameters
problems and objectives

Identify the control factors and their
levels (Taguchi Approach)

Testing and Compute (surface
roughness, Tensile strength)

!

Identify the optimal level of each p Measure the response by analysis of | .- -
Factor € Variance (ANOVA)) < l FDM printing (Conduct experiments)
¥ - )
ANN Model development |—>| Model prediction of each objective I—D Experunent;l);a;:iaﬁgzcgcted values

Figure 1. Outline of the methodology workflow

Y\\Hm
:\‘E
Ve

—

a-Solid Model

b- Sliced model

Supported

Figure 2. The sliced 3D models are shown with sliced models
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Table 1. Selection of process parameters with its level

Levels
FDM parameters Units
1 2 3
Layer thickness (mm) 0.2 0.25 0.3
Orientation angle degree 0 45 90
Nozzle temperature °C 230 240 250

Table 2. The constant parameters

FDM parameters value Units
Infill pattern Line -
Wall thickness 1.2 mm
Printing speed 55 mm/s

the process parameters in printing the parts have
been presented, and Table 2 gives other FDM pa-
rameters that remained unchanged throughout the
course of the experiment. Here, the experimental
tasks in this part of the study are explained in de-
tail as shown in Figure 3.

The rationale in choosing the levels of the
FDM parameters was based on experience, lit-
erature review, the importance of the identified
parameters that were significant and relevant
after the preliminary experiments, and the rec-
ommended acceptable high and low levels that
were given by the equipment’s manufacturers.
The parameter levels of three or more levels are
desirable to capture the behavior of the response
variables. The Taguchi method was applied to
design the experiments. A tensile test was per-
formed under the standard ASTM D638 Type 4.
The Taguchi method uses the signal-to-noise
(S/N) ratio to determine the extent to which a
performance attribute is off the desired level.
During the S/N ratio analysis, the performance

Proﬁlotqeter

ANYCUBIC Printer roughness

Measurement surface

characteristics are categorized into three-headed
groups of nominal-the-best, higher-the-better,
and lower-the-better characteristics. This divi-
sion assists in the choice of the best parameters
to get a better performance of the system [20].
In this experiment, the response variable of the
maximization of tensile strength and the mini-
mization of surface roughness was aimed to be
achieved (high-the-better; low-the-better). The
calculations of S/N ratios concerning higher-the-
better performance characteristics are indicated
by Equation 1, whereas Equation 2 indicates
calculations of the S/N ratio of the smaller-the-
better performance characteristic.

e [arger is better:

SIN=-10log(1nY lyk2nk=1) (1)

e Smaller is better:

SIN==10log(1n)Y 1yk2nk=1) 2)

In which n is the number of tests, and yk is the
value of the performance characteristic.

Tensile test with a WDW200E computer op-
erated electronic universal testing machine was
applied according to ASTM D638 Type IV to
obtain the mechanical properties of the speci-
mens which were fabricated. Figure 3 represents
the tensile properties of the specimens. They
were tested at room temperature under constant

1S3, 9[ISUa [ Jerxeru)

WDW-200E
computer-controlled
electronic universal
testing machine

Figure 3. Experimental workflow
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crosshead speed of 1.5 mm/min. During the ex-
periment, it recorded three data types of load, de-
formation, stroke, as well as time. The ultimate
tensile strength was calculated using peak load
values that were recorded same, which corre-
sponded to the actual dimensions of specimens
(and not the parameters of their CAD models).
These experimental findings were then applied in
computing the values of stress as well as the me-
chanical properties, and also in the estimation of
the tensile strength of each of the ABS test speci-
men based on Equation 3.

o =F/A 3)

where: 0 — Tensile stress (N/mm?); F — Applied
Force (N); A — Cross section area (mm?).

The roughness of the surfaces of tensile test
samples in this work was determined with the use
of the Pocket Surf profile measurement device
(illustrated in Figure 3). To determine the rough-
ness value, three measurements of the roughness
normal to the layer’s orientation were taken at
three different points on the sample, and then the
Ra parameter was calculated three times for each
specimen. Lastly, the three values were averaged
to obtain the resulting measured surface rough-
ness value of each printed component.

Artificial neural network prediction model

An artificial neural network is a computa-
tional model based on the biological neural net-
works found in the human brain. It comprises a
set of interconnected so-called neurons or nodes,
usually as an input layer, one or several hidden
layers, or as an output layer [21]. Information
runs through the network, and the weights be-
tween the connections of the neurons are adapted
during the training process. The input data is
presented to the network with many iterations,
and then the weights are altered depending on
the error between the modeled output and the
actual output. In the present work, the number
of the input neuron in the neural network model
is 3 (layer height, orientation angle, and nozzle
temperature) with a (3 x 27) input data matrix
and the number of the output neuron is also 2
(tensile strength and surface roughness) with a (2
x 27) output data matrix. In the model, the Heb-
bian learning rule is used. These input and output
neurons were processed by the neural fitting tool,
and it was presented in Figure 4.

Hidden Output
Bput Outpat
ey g
5 2
15 2
Figure 4. Illustration of the employed ANN structure

Desirability analysis

Desirability analysis (DA) is an advanced sta-
tistical technique used to simultaneously evaluate
and optimize multiple responses or parameters.
Its versatile framework is widely implemented in
manufacturing, process optimization, and product
design to achieve balanced and improved out-
comes. It improves decision-making and general
performance by giving a common platform for
describing how desirable particular outcomes are
and determining the best combinations of input
parameters to operate on several objectives. A de-
sirability function is allocated to each objective,
whose values are scaled into values between 0
and 1, where 0 denotes undesirable levels and 1
denotes desirable levels. These individual desir-
ability values are combined to form an overall de-
sirability function with each set of input param-
eters. A desirability value (Di) of 1 denotes that
it is possible to optimize the response, whereas a
value of 0 depicts that the response is in the range
of desirability [22]. The desirability values are
defined by whether a ‘lower the better’ or ‘higher
the better’ decision criterion is needed in the re-
sponses; in this case, value ‘y is supposed to be
either maximised or minimised. The value of de-
sirability Di is between 0 and one, where it grows
to 1 over a threshold value and declines to 0 over
a threshold value.

RESULTS AND DISCUSSION

Analysis the results

Table 3 shows measurements of tensile
strength and surface roughness of 27 FDM-print-
ed specimens that have been made after the print-
ing procedure. The Minitab was used to analyze
the data obtained in the experiment to allow the
prediction of the best level of each parameter
based on the outcome of the tensile strength and
the surface roughness. They further conducted a
statistical ANOVA to determine the relative con-
tribution of different parameters on the ratio of
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Table 3. The experimental results

Exp. No. | Layer thickness (mm) Orie?éaetgic;;lea;ngle Nozzle teorgperature Tensi(l:ﬂﬁ;r;ength Surface roughness (um)
1 0.20 0 230 40.02 2.2943
2 0.20 0 240 442 2.158
3 0.20 0 250 43.07 2.341
4 0.20 45 230 45.33 2.27
5 0.20 45 240 42.64 2.485
6 0.20 45 250 44 .46 3.501
7 0.20 90 230 41.42 2.1473
8 0.20 90 240 41.94 2.139
9 0.20 90 250 41.33 2.3653
10 0.25 0 230 42.72 2.366
1 0.25 240 47.34 2.602
12 0.25 250 38.81 3.274
13 0.25 45 230 45.59 3.473
14 0.25 45 240 43.68 1.933
15 0.25 45 250 40.29 2.141
16 0.25 90 230 38.98 2.233
17 0.25 90 240 40.98 4.105
18 0.25 90 250 42.29 2.569
19 0.30 0 230 36.89 3.486
20 0.30 240 44.81 2.854
21 0.30 250 44.98 3.337
22 0.30 45 230 28.46 6.673
23 0.30 45 240 42.55 5.879
24 0.30 45 250 39.24 2.423
25 0.30 90 230 40.02 2.2943
26 0.30 90 240 39.32 2.214
27 0.30 90 250 38.88 1.677

factors that considered which aspects have a sig-
nificant contribution to the performance charac-
teristics and the interactions among them.

Table 3 shows that as a result of the experi-
ment, tensile strength improved from 7.45 to
10.45 MPa to 47.34 MPa of the same specimen
with the layer thickness of 0.25 mm (level 2),
an orientation angle of 0 (level 1) and a nozzle
temperature of 240 °C (level 2). Interestingly, the
reference [23] records that the anticipated highest
tensile strength of the specimen should be 23.1
MPa. Conversely, the surface roughness went
down to 6.673 to 1.677 in experimental speci-
mens that had a printed layer thickness of 0.30
mm (level 3), an oriented angle of 90 (level 3),
and a printed nozzle temperature of 250 (level 3).
The importance of this outcome is seen in the fact
that Reference [24] predicted a minimum surface
roughness of 2.792 um, and thus it can be seen
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that the actual result was much lower than expect-
ed [25]. The ANOVA using the data of the experi-
mental results given in Table 3 has been done to
determine the main parameters and interactions
that influence tensile strength and reduce the level
of surface roughness, the outcomes of which are
highlighted in Table 4.

Table 5 shows the layer thickness (mm) as the
most contributing factor in determining the tensile
strength and surface roughness using a 95 percent
level of confidence and the P-values of 0.109 and
0.158, respectively, as shown in Figure 5 (a and
b). The reason behind this is that the layer thick-
ness has direct effects on the bonding between the
layers, and also the surface finish, which then in-
fluences the mechanical strength and quality of
the printed parts. The impact of any given param-
eter was also measured by the percentage contri-
bution it made in terms of the overall variation in
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Table 4. The significance and ideal values for every parameter

IS S
= S

Mean of Tensile test (Mpa)

39

020 0.25 0.30 0 45 90 230 240 250

a)

ANOVA for TS
Source DF Adj SS Adj MS F-Value P-Value Percentage contribution
Layer thickness (mm) 150.36 75.18 2.49 0.109 43.67%
Orientation angle 44.6 0.78 0.474 12.95%
Nozzle temp (C) 130.65 65.325 1.93 0.172 37.94%
Error 20 18.69 9.345 5.42%
Total 26 344.30
ANOVA for Ra
Source DF Adj SS Adj MS F-Value P-Value Percentage contribution
Layer thickness (mm) 15.8222 7.911 2.03 0.158 46.38%
Orientation angle 14.7107 7.35535 1.98 0.164 43.12%
Nozzle temp (C) 3.025 1.5125 0.33 0.722 8.86%
Error 20 0.543 0.2715 1.59%
Total 26 34.1142
Layer thickness (mm) Origntation angle Nozzle temp (C) Layer thickness (mm) Orientation angle Nozzle temp (C)

o
en
S

©
=

Mean of Surface roughness (pm)

~
e
S

020 0.25 030 0 45 90 230 240 250

b)

Figure 5. Main effect plot for (a) tensile strength, (b) surface roughne

Table 5. ANOVA results for tensile strength (TS) and surface roughness (Ra)

Parameters Layer thickness (mm) | Orientation angle (Degree) | Nozzle Temperature (°C) Significant
Optimized Ts 0.25 0 240 Layer thickness
Optimized Ra 0.3 90 250 Layer thickness

the experiment results. The research also identi-
fies the layer thickness as the greatest influenc-
ing factor since it contributed 43.67% to tensile
strength and 46.38% to the surface roughness
at 95 percent confidence of the layer thickness.
Table 4 shows the best values and importance of
every parameter.

Results of the developed ANN

To allow comparison with experimental data,
predictive models based on an artificial neural

network (ANN) were generated. The experimental
database was used to train the ANN, after which a
training dataset was used to test the ANN. The data
were trained with almost 70 percent, tested with
15 percent, and validated with 15 percent. The
output response sample observation is proposed
in Table 6. Figure 6 indicates that the best solution
to the current study occurred at epoch 0, when the
data recording provided the least average absolute
error in predicted output, which was 3.7023¢%.
Levenberg-Marquardt also came up with the
best overall results, the correlation coefficient (R)
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Figure 6.Tensile and surface roughness performance plot
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Figure 7. The proposed network graphical representation

of 0.99986 as illustrated in Figure 7. The valida-
tion dataset has an even larger regression coeffi-
cient of 1, which means that there was a high cor-
relation in relation to both the ANN predictions
and the experimental data.
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The comparison of Equation 4, ANN-predict-
ed and experimental values on the tensile strength
and the surface roughness of the ABS parts is
given in Table 6. The table shows that the ten-
sile strength and the surface roughness recorded
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the highest percentage deviations between the Figures 8 and 9 illustrate the differences be-
measured and the predicted value by 2.346 and  tween the experimental results and the predic-
1.876%, respectively. tions of the ANN model.

Table 6. Experimental versus ANN values for tensile strength and surface roughness.

No. Ts (MPa) ANN predicted Ts (MPa) % Error Ra (um) ANN predicted Ra (um) % Error
1 40.02 40.2059 0.464 2.2943 2.2622 1.399
2 44.2 44.3204 0.272 2.158 2.16582 0.362
3 43.07 43.1126 0.098 2.341 2.36133 0.868
4 45.33 45.0281 0.666 2.27 2.25616 0.609
5 42.64 42.1426 1.166 2.485 2.43979 1.819
6 44.46 44.5748 0.258 3.501 3.4353 1.876
7 41.42 41.2415 0.430 2.1473 2.13252 0.688
8 41.94 41.3559 1.392 2.139 2.13614 0.133
9 41.33 41.7881 1.108 2.3653 2.33165 1.422
10 42.72 42.7915 0.167 2.366 2.35499 0.465
1 47.34 46.9059 0.9169 2.602 2.60861 0.254
12 38.81 38.3381 1.215 3.274 3.23412 1.218
13 45.59 45.6137 0.051 3.473 3.46895 0.116
14 43.68 43.7281 0.110 1.933 1.93258 0.021
15 40.29 40.1604 0.321 2.141 2.16808 1.264
16 38.98 38.827 0.392 2.233 2.26531 1.446
17 40.98 41.9415 2.346 4.105 4.16893 1.557
18 42.29 42.3737 0.197 2.569 2.56444 0.177
19 36.89 36.7548 0.366 3.486 3.4775 0.243
20 44.81 44.7693 0.090 2.854 2.88112 0.950
21 44.98 44.7015 0.619 3.337 3.37663 1.187
22 28.46 28.577 0.411 6.673 6.59146 1.221
23 42.55 42.8915 0.802 5.879 5.79508 1.427
24 39.24 39.3237 0.213 2.423 2.45059 1.138
25 40.02 39.9904 0.073 2.2943 2.28782 0.282
26 39.32 39.1048 0.547 2.2145 2.25144 1.668
27 38.88 38.537 0.882 1.67778 1.64695 1.837

M Tensile Stress (MPa)
m ANN Predicted Tensile Strength (MPa)
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Figure 8. Comparison between experimental vs. ANN predicted values for tensile strength
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Figure 11. The percentage error in surface roughness between the experimental and the predicted

Figures 10 and 11 depict that the percent-
age error falls within an acceptable range, which
means that the ANN model has been able to pre-
dict the tensile strength and the surface roughness
of the specimens.

Error % = |((measured value — )
Predictedvalue)/measured value) - 100

A desirability analysis was also used in the
current study to optimize printing parameters. In
Figure 12, Minitab 20 is utilized in the evaluation
of the optimal printing parameters that will give
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the maximum tensile and minimum surface rough-
ness. It is also important to optimize all responses
at once since the best parameters of responses
usually become conflicting. A unique composite
desirability value of 0.9006 was arrived at after
multi-optimizing all the parameters together under
desirability analysis (DA). The best parameters
were a layer thickness of 0.2mm, 0° orientation,
and 236.2625 °C. The best results demonstrated
the maximum tensile strength and the minimum
value of surface roughness,44.5427 MPa and
1.9173 pm, respectively.
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Figure 12. Optimization of multi-responses using desirability analysis

CONCLUSIONS

This paper aimed to design an ANN model

for quantitatively predicting the mechanical
strength and surface quality of FDM-manufac-
tured parts, using process key parameters. The
findings and the key objectives are summarized
in the following way:

1.

The experiment aimed at maximizing tensile
strength and surface roughness through the in-
vestigation of the influence of layer thickness,
orientation angle, and nozzle temperature on
FDM-printed specimens.

. The experimental results indicated that tensile

strength maximized at 0.25 mm layer thick-
ness, 0° as orientation angle, and 240 °C as
nozzle temperature.

. The best surface roughness was observed as

1.67778 pum, which was acquired at a layer
thickness of 0.30 mm, nozzle temperature of
250 °C, and an orientation angle of 90°,

. The ANN model being trained using 17 ex-

perimental patterns was able to predict tensile
strength and surface roughness with the great-
est percentage error of 2.346% and 1.876% re-
spectively, a verdict of high accuracy.

. The best combined results were determined us-

ing the desirability analysis of tensile strength
and surface roughness levels of 44.5427 MPa
and 1.9173 um, respectively, at the given pro-
cess parameters.

. The thickness of the layer was verified to be

the most relevant parameter affecting tensile
strength (43.67% variance explained) and sur-
face roughness (46.38% variance explained).

7.

Further advantages of prediction may be attained
by more training patterns, which would advance
the generalization and dependability of the mod-
els in optimization of the FDM processes.
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