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INTRODUCTION

Additive manufacturing (AM) is transforming 
the manufacturing industry by radically changing 
the centuries-old production models. This new 
technology is very flexible, customized, and effi-
cient. AM works by printing layer by layer on the 
basis of the digital designs of objects, allowing the 
production of models and prototypes, and func-
tional final products. The wide use and enormous 
potential of 3D printing have been enabled by the 
fact that it can process a wide variety of materials 
such as plastics, metals, ceramics, and even living 
cells [1]. The transformational ability of AM can 

be traced in several industries that make use of its 
unique benefits to innovate. AM can be applied in 
the aerospace sector to produce lightweight com-
plex components, which create fuel-efficient and 
better structural designs, making aircraft more 
advanced. On the same note, the application of 
AM in medicine is applied in the production of 
patient-specific implants, prosthetics, and biolog-
ical structures that match specific requirements. 
In addition to these fields, automotive corpora-
tions are openly using AM in quick prototyping, 
tailored automobile materials, and lean supply 
chains [2]. Its capabilities are ventured into by 
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architects and designers in designing complex 
structures and models that stretch the limits of 3D 
design and construction [3]. Even the food sec-
tor tries to utilize AM to create something new 
in the world of food and individual nutrition [4]. 
Conventional manufacturing tends to produce 
waste due to the usually subtractive method of 
production, whereas AM allows the manufactur-
ing of objects with high levels of precision, utiliz-
ing only the required amount of materials, hence 
facilitating sustainability [5, 6]. The development 
of AM keeps extending boundaries by bringing 
next-level materials science and scale-up. Its in-
troduction into the current production ecosystems 
equates to a paradigm shift of decentralized, on-
demand manufacturing, which will result in the 
advent where complex designs quickly manifest 
into real-life products, and lead to the maximiza-
tion of innovation in international industries [7].

It is done by heating the material in the lique-
fier head until it is molten, where it is then pre-
cisely extruded into a nozzle. This nozzle trav-
els along the particular geometry of the various 
cross-sections of the item under fabrication. Both 
the construction and support materials are sup-
plied as filaments with a diameter of 1.75 mm, 
rolled into spools. These filaments are provided 
to the extrusion head through a flexible tube with 
ease and continuous supply. The spools are also 
normally fixed on a spindle situated on the side 
or the backside of the machine so as to keep them 
steady and within easy reach of the operator in the 
course of reaching them. This arrangement allows 
controlling the deposition of materials with high 
precision needed to generate parts with compli-
cated geometry and low features. This research 
involves making parts on the basis of the FDM 
printing method, by using ABS filament. As a 
very common thermoplastic polymer in 3D print-
ing, ABS could be called a tough and impact-re-
sistant material suitable for functional prototypes 
and end-use pieces. 

Unlike PLA, ABS demands a hot bed and 
higher extrusion temperature, but it is much 
tougher and temperature resistant. Despite the fact 
that ABS is harder to print because of the warping 
and smell problems, it is widely used in areas that 
require a stronger mechanical stiffness and resis-
tance to heat. Every FDM parameter has a con-
siderable influence on the quality of printed ABS 
parts. It is necessary to optimize these parameters 
so as to enhance print quality as well as reduce 
the effort put into printing. Parameters in the FDM 

processes are usually determined either by the 
machine manuals or by the individual operator’s 
experience, and yet it is not always optimal to suit 
a given system or an environment. When this hap-
pens, an alternative is the Taguchi that makes the 
whole experiment simple and predicts the interac-
tion and effects of FDM parameters [9].

To have the best production outcome, that too 
at the most reasonable production cost, is the un-
ending task to get the best process parameters. 
Among the most essential performance parame-
ters in the FDM process, mechanical properties 
and surface quality provide an instant impact on 
efficiency and the cost level of production [10]. 
Recently, outcomes and optimisation of 3D print-
ing parameters have been predicted through tech-
niques such as artificial neural networks (ANNs), 
genetic algorithms, simulated annealing, and grey 
relational analysis. ANNs, especially, are good at 
modeling complex interactions between the in-
puts and the outputs.. They have the abilities of 
generalization, self-organization, and association, 
just like the human brain functions. ANNs are ap-
propriate in modeling the FDM process because 
they can be efficiently used to approximate non-
linear functions. Due to their excellent learning 
and generalization capabilities, they can observe 
complex input-output relations during ABS 3D 
printing. Picking up the ideas formulated in works 
similar to that one, the present research provides 
a detailed report on the performance properties of 
FDM technology. More studies are required to 
completely comprehend the impact of different 
FDM settings on part strength. It is important, 
therefore, to be thorough in examining the weak-
nesses of the print-out parts before giving any ap-
plication recommendation. Samykano et al. [11] 
investagated were done on the impact of the three 
most significant process parameters that control 
the mechanical features of acrylonitrile butadiene 
styrene (ABS), a common thermoplastic used in 
many industrial applications of the FDM technol-
ogy, namely, the raster angle, the layer height, and 
infill density. They planned experiments to scan 
the effects of these factors on major mechanical 
properties, such as ultimate tensile strength, elas-
tic modulus, yield strength, fracture strain, and 
toughness. The findings indicated that all of the 
parameters taken into consideration greatly influ-
enced the mechanical performance of the printed 
ABS parts. Using response surface methodology 
will allow them to generate a mathematical model 
that can correlate process parameters with 
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mechanical products. In this manner, they con-
cluded that the best suited 3D printing ABS pa-
rameters were 80% percent infill parameter, the 
layer thickness of 0.5 mm, and the raster angle of 
65. In such circumstances, the experimental re-
sults yielded a tensile strength of 31.57 MPa, an 
elastic modulus of 774.50 MPa, a yield strength 
of 19.95 MPa, a fracture strain of 0.094 mm/mm, 
and the toughness (energy absorption) of 2.28 
Jm-3. As studied by Tianyun et al. [12], the ulti-
mate tensile strength of the 3D-printed ABS ma-
terials manufactured using FDM was examined 
when variable layer thicknesses were applied to 
different angles. They prepared a universal plastic 
test sample by the ISO 527-2-2012 standard. 
Their theoretical model was able to predict the 
tensile strength correctly at all printing angles and 
layer thicknesses. The research established that 
the utmost tensile strength is minimal when the 
printing angle is maximized and also when the 
layer thickness is maximized. Polylactic acid 
(PLA) was also exploited in the research. [13] 
studied the, different tool-path patterns-concen-
tric, zigzag, triangular, grid, and so on, but at par-
ticular densities Chinchanikar et al. [14] proposed 
an ANN model that could be applied to predicting 
surface roughness on parts printed with FDM. 
The factors used were print speed, nozzle tem-
perature, and infill density, the presence of hidden 
layers, the layer height, and the number of neu-
rons in the model. Their research established that 
two concealed unit trails of 150 nodes were better 
at predicting than one concealed unit trail of 150 
nodes. Also, they noted that as infill density was 
increased, surface roughness decreased. Arivazha-
gan Selvamet et al. [15] focused on optimizing 
the fused filament fabrication (FFF) printing pa-
rameters in an attempt to improve surface quality 
and printing time of ABS polymer. Analysis of 
variance (ANOVA) was employed by the re-
searchers to statistically examine the influence of 
layer thickness, printing speed, and nozzle tem-
perature on surface roughness and printing time. 
They used a central composite design under re-
sponse surface methodology (RSM) to organize 
the tests and established mathematical regression 
models to encapsulate the interactions among the 
input parameters and output reactions. Having 
confirmed the correctness of these models, they 
used them together with particle swarm optimiza-
tion (PSO) as well as RSM to propose optimum 
printing parameters. The weighted aggregated 
sum product assessment (WASPAS) algorithm 

was used in proving the two optimization meth-
ods, whereby it is indicated that PSO provided 
better optimal values. The ideal parameters fore-
casted by PSO melting speed of 125.6 mm/sec, a 
nozzle temperature of 221 degrees Celsius, and a 
layer offset of 0.29 mm. The settings resulted in 
excellent surface quality of about 3.92 microns on 
both upper and lower surfaces, as well as about 
1.78 microns on other surfaces, and a printing 
time of only 24 minutes. Al-Duroobi et al. [16] 
made an experimental study on ANN model, 
parametric optimisation, and PEEK 3D printing. 
They studied four parameters of the process. The 
parameters they arrived at were a 4-12-2 ANN 
network system, lower speeds during printing, 
and an increase in infill density, to achieve better 
strength and surface quality. A l-Bdairy AM et al. 
[17] stood out to establish how the orientation of 
the part and parameters of the process used in 3D 
printing affect the tensile strength. They produced 
a neural network (NN) to set the relationship be-
tween input parameters and output results. A con-
cealed layer of 12 neurons performed the finest 
when it was introduced with optimum component 
orientation and process parameters to receive the 
most study on the tensile strength. In the present 
paper, the ANN was used as a fitness criterion of 
the genetic algorithm (GA) in the optimization 
process. The results proved the efficiency of the 
method applied to improving the 3D printing pro-
cess, and its possible application in different engi-
neering disciplines. Abdullah et al. [18] suggested 
that ANNs can be used in a new way to model 
part strength and minimize the errors when pre-
dicting the strength of 3D printed parts to improve 
the accuracy of those predictions. Mahdi et al. 
[19] made an attempt to learn more about the sur-
face roughness of three main process variables, 
which are printing speed, layer thickness, and ex-
trusion temperature. A Taguchi L27 orthogonal 
array experimental design was used in carrying 
out the investigation. Post-processing and any 
further surface finishing processes were not used 
on the samples. An Alti surf device was used to 
obtain 3d images and 2d profiles of surface peaks 
and valleys with abundant surface measurements 
to be fed to the subsequent statistical analysis. 
Quantitatively, the values of arithmetic roughness 
(Ra) were between 7.18 and 13.4 μm. The best 
surface finishes were reported at the highest scan 
speed of 4000 mm/min, whereas the smoother the 
surfaces were related to the thinner the layer of 
0.1 mm. Moreover, the thicker the extrusion 
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temperature was, the better the surface finishes. 
The ANOVA of a multiway type was used to de-
termine the most influential conditions and in-
teractions between them. It was found out that 
the works of both RSM and ANN could make 
the process easier to implement, lessen the 
amount of tests needed, and enhance parameter 
settings of MEAM processes. FDM requires fur-
ther studies, even though a literature review on 
numerous additive manufacturing processes has 
been conducted. The problem that is addressed 
via the work is the lack of knowledge on the sen-
sitivity of layer height, orientation angle, and 
nozzle temperature to the mechanical properties 
and surface roughness of fused deposition mod-
eling (FDM)-printed specimens. The objective 
is to develop a feed-forward artificial neural net-
work using a backpropagation algorithm in or-
der to extrapolate ultimate tensile strength and 
surface roughness on the basis of these input pa-
rameters and introduce a system of continuous 
and multi-parameter control in order to maxi-
mize mechanical properties and surface quality 
of FDM-printed specimens.

METHODOLOGY

Material and method

The design of the part or component using 
design software is the first step that is taken in 
the 3D printing process. The SOLIDWORKS 

program is used to produce the CAD file. After 
the 3D model is ready, scaling should be done 
to a common format, with the most popular file 
format being the STL file format since it is wide-
ly compatible with the various platforms and 
devices in the market. After this, it is converted 
into the desired 3D printing language, which is 
normally G-Code on an FDM printer. This pro-
gram indicates how the printer needs to move, 
flow faster or slower, what a printing tempera-
ture should be, integrated cooling systems, and 
other working processes. As shown in Figure 1, 
the workflow that the study would follow begins 
with the selection of FDM parameters and ends 
at the determination of the percentage error be-
tween the anticipated and the measured values. 
The STL file created in SolidWorks was edited in 
Cura 4. 13. 1, which further allows it to be read-
able by the machine to be used and 3D-printable. 
Figures 2a and 2b characterise the solid model 
and its sliced model which was made regarding 
ASTM D638 Type 4.

Selection of process parameters also plays a 
major role in the determination of the quality of 
the parts produced by FDM. The parameters ob-
served in this study are layer height, nozzle tem-
perature, and the orientation angle. Alteration in 
such FDM settings immensely influences process 
products like tensile strength and surface rough-
ness. Thus, the outcome of the overall process 
could be improved by selecting the best FDM pa-
rameters. In Table 1, the selection and value of 

Figure 1. Outline of the methodology workflow

Figure 2. The sliced 3D models are shown with sliced models
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the process parameters in printing the parts have 
been presented, and Table 2 gives other FDM pa-
rameters that remained unchanged throughout the 
course of the experiment. Here, the experimental 
tasks in this part of the study are explained in de-
tail as shown in Figure 3.

The rationale in choosing the levels of the 
FDM parameters was based on experience, lit-
erature review, the importance of the identified 
parameters that were significant and relevant 
after the preliminary experiments, and the rec-
ommended acceptable high and low levels that 
were given by the equipment’s manufacturers. 
The parameter levels of three or more levels are 
desirable to capture the behavior of the response 
variables. The Taguchi method was applied to 
design the experiments. A tensile test was per-
formed under the standard ASTM D638 Type 4. 
The Taguchi method uses the signal-to-noise 
(S/N) ratio to determine the extent to which a 
performance attribute is off the desired level. 
During the S/N ratio analysis, the performance 

characteristics are categorized into three-headed 
groups of nominal-the-best, higher-the-better, 
and lower-the-better characteristics. This divi-
sion assists in the choice of the best parameters 
to get a better performance of the system [20]. 
In this experiment, the response variable of the 
maximization of tensile strength and the mini-
mization of surface roughness was aimed to be 
achieved (high-the-better; low-the-better). The 
calculations of S/N ratios concerning higher-the-
better performance characteristics are indicated 
by Equation 1, whereas Equation 2 indicates 
calculations of the S/N ratio of the smaller-the-
better performance characteristic.
	• Larger is better:

	 𝑆/𝑁 = −10 𝑙𝑜𝑔( 1 𝑛 ∑ 1 𝑦𝑘 2 𝑛 𝑘=1 )	 (1)

	• Smaller is better:

	 𝑆/𝑁 = −10 𝑙𝑜𝑔( 1 𝑛 ∑ 1 𝑦𝑘 2 𝑛 𝑘=1 )	 (2)

In which n is the number of tests, and yk is the 
value of the performance characteristic.

Tensile test with a WDW200E computer op-
erated electronic universal testing machine was 
applied according to ASTM D638 Type IV to 
obtain the mechanical properties of the speci-
mens which were fabricated. Figure 3 represents 
the tensile properties of the specimens. They 
were tested at room temperature under constant 

Table 1. Selection of process parameters with its level

FDM parameters Units
Levels

1 2 3

Layer thickness (mm) 0.2 0.25 0.3

Orientation angle degree 0 45 90

Nozzle temperature °C 230 240 250

Table 2. The constant parameters
FDM parameters value Units

Infill pattern Line -

Wall thickness 1.2 mm

Printing speed 55 mm/s

Figure 3. Experimental workflow
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crosshead speed of 1.5 mm/min. During the ex-
periment, it recorded three data types of load, de-
formation, stroke, as well as time. The ultimate 
tensile strength was calculated using peak load 
values that were recorded same, which corre-
sponded to the actual dimensions of specimens 
(and not the parameters of their CAD models). 
These experimental findings were then applied in 
computing the values of stress as well as the me-
chanical properties, and also in the estimation of 
the tensile strength of each of the ABS test speci-
men based on Equation 3.

	 σ = F/A	 (3) 

where:	σ – Tensile stress (N/mm2); F – Applied 
Force (N); A – Cross section area (mm2).

The roughness of the surfaces of tensile test 
samples in this work was determined with the use 
of the Pocket Surf profile measurement device 
(illustrated in Figure 3). To determine the rough-
ness value, three measurements of the roughness 
normal to the layer’s orientation were taken at 
three different points on the sample, and then the 
Ra parameter was calculated three times for each 
specimen. Lastly, the three values were averaged 
to obtain the resulting measured surface rough-
ness value of each printed component.

Artificial neural network prediction model 

An artificial neural network is a computa-
tional model based on the biological neural net-
works found in the human brain. It comprises a 
set of interconnected so-called neurons or nodes, 
usually as an input layer, one or several hidden 
layers, or as an output layer [21]. Information 
runs through the network, and the weights be-
tween the connections of the neurons are adapted 
during the training process. The input data is 
presented to the network with many iterations, 
and then the weights are altered depending on 
the error between the modeled output and the 
actual output. In the present work, the number 
of the input neuron in the neural network model 
is 3 (layer height, orientation angle, and nozzle 
temperature) with a (3 × 27) input data matrix 
and the number of the output neuron is also 2 
(tensile strength and surface roughness) with a (2 
× 27) output data matrix. In the model, the Heb-
bian learning rule is used. These input and output 
neurons were processed by the neural fitting tool, 
and it was presented in Figure 4.

Desirability analysis 

Desirability analysis (DA) is an advanced sta-
tistical technique used to simultaneously evaluate 
and optimize multiple responses or parameters. 
Its versatile framework is widely implemented in 
manufacturing, process optimization, and product 
design to achieve balanced and improved out-
comes. It improves decision-making and general 
performance by giving a common platform for 
describing how desirable particular outcomes are 
and determining the best combinations of input 
parameters to operate on several objectives. A de-
sirability function is allocated to each objective, 
whose values are scaled into values between 0 
and 1, where 0 denotes undesirable levels and 1 
denotes desirable levels. These individual desir-
ability values are combined to form an overall de-
sirability function with each set of input param-
eters. A desirability value (Di) of 1 denotes that 
it is possible to optimize the response, whereas a 
value of 0 depicts that the response is in the range 
of desirability [22]. The desirability values are 
defined by whether a ‘lower the better’ or ‘higher 
the better’ decision criterion is needed in the re-
sponses; in this case, value ‘y is supposed to be 
either maximised or minimised. The value of de-
sirability Di is between 0 and one, where it grows 
to 1 over a threshold value and declines to 0 over 
a threshold value.

RESULTS AND DISCUSSION

Analysis the results 

Table 3 shows measurements of tensile 
strength and surface roughness of 27 FDM-print-
ed specimens that have been made after the print-
ing procedure. The Minitab was used to analyze 
the data obtained in the experiment to allow the 
prediction of the best level of each parameter 
based on the outcome of the tensile strength and 
the surface roughness. They further conducted a 
statistical ANOVA to determine the relative con-
tribution of different parameters on the ratio of 

Figure 4. Illustration of the employed ANN structure
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factors that considered which aspects have a sig-
nificant contribution to the performance charac-
teristics and the interactions among them.

Table 3 shows that as a result of the experi-
ment, tensile strength improved from 7.45 to 
10.45 MPa to 47.34 MPa of the same specimen 
with the layer thickness of 0.25 mm (level 2), 
an orientation angle of 0 (level 1) and a nozzle 
temperature of 240 °C (level 2). Interestingly, the 
reference [23] records that the anticipated highest 
tensile strength of the specimen should be 23.1 
MPa. Conversely, the surface roughness went 
down to 6.673 to 1.677 in experimental speci-
mens that had a printed layer thickness of 0.30 
mm (level 3), an oriented angle of 90 (level 3), 
and a printed nozzle temperature of 250 (level 3). 
The importance of this outcome is seen in the fact 
that Reference [24] predicted a minimum surface 
roughness of 2.792 μm, and thus it can be seen 

that the actual result was much lower than expect-
ed [25]. The ANOVA using the data of the experi-
mental results given in Table 3 has been done to 
determine the main parameters and interactions 
that influence tensile strength and reduce the level 
of surface roughness, the outcomes of which are 
highlighted in Table 4.

Table 5 shows the layer thickness (mm) as the 
most contributing factor in determining the tensile 
strength and surface roughness using a 95 percent 
level of confidence and the P-values of 0.109 and 
0.158, respectively, as shown in Figure 5 (a and 
b). The reason behind this is that the layer thick-
ness has direct effects on the bonding between the 
layers, and also the surface finish, which then in-
fluences the mechanical strength and quality of 
the printed parts. The impact of any given param-
eter was also measured by the percentage contri-
bution it made in terms of the overall variation in 

Table 3. The experimental results

Surface roughness (µm)Tensile Strength
(MPa)

Nozzle temperature 

°C
Orientation angle 

(degree)Layer thickness (mm)Exp. No.

2.294340.0223000.201

2.15844.224000.202

2.34143.0725000.203

2.2745.33230450.204

2.48542.64240450.205

3.50144.46250450.206

2.147341.42230900.207

2.13941.94240900.208

2.365341.33250900.209

2.36642.7223000.2510

2.60247.3424000.2511

3.27438.8125000.2512

3.47345.59230450.2513

1.93343.68240450.2514

2.14140.29250450.2515

2.23338.98230900.2516

4.10540.98240900.2517

2.56942.29250900.2518

3.48636.8923000.3019

2.85444.8124000.3020

3.33744.9825000.3021

6.67328.46230450.3022

5.87942.55240450.3023

2.42339.24250450.3024

2.294340.02230900.3025

2.21439.32240900.3026

1.67738.88250900.3027
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the experiment results. The research also identi-
fies the layer thickness as the greatest influenc-
ing factor since it contributed 43.67% to tensile 
strength and 46.38% to the surface roughness 
at 95 percent confidence of the layer thickness. 
Table 4 shows the best values and importance of 
every parameter.

Results of the developed ANN 

To allow comparison with experimental data, 
predictive models based on an artificial neural 

network (ANN) were generated. The experimental 
database was used to train the ANN, after which a 
training dataset was used to test the ANN. The data 
were trained with almost 70 percent, tested with 
15 percent, and validated with 15 percent. The 
output response sample observation is proposed 
in Table 6. Figure 6 indicates that the best solution 
to the current study occurred at epoch 0, when the 
data recording provided the least average absolute 
error in predicted output, which was 3.7023e-06.

Levenberg-Marquardt also came up with the 
best overall results, the correlation coefficient (R) 

Table 4. The significance and ideal values for every parameter
ANOVA for TS

Source DF Adj SS Adj MS F-Value P-Value Percentage contribution

Layer thickness (mm) 2 150.36 75.18 2.49 0.109 43.67%

Orientation angle 2 44.6 22.3 0.78 0.474 12.95%

Nozzle temp (C) 2 130.65 65.325 1.93 0.172 37.94%

Error 20 18.69 9.345 5.42%

Total 26 344.30

ANOVA for Ra

Source DF Adj SS Adj MS F-Value P-Value Percentage contribution

Layer thickness (mm) 2 15.8222 7.9111 2.03 0.158 46.38%

Orientation angle 2 14.7107 7.35535 1.98 0.164 43.12%

Nozzle temp (C) 2 3.025 1.5125 0.33 0.722 8.86%

Error 20 0.543 0.2715 1.59%

Total 26 34.1142

Figure 5. Main effect plot for (a) tensile strength, (b) surface roughne

Table 5. ANOVA results for tensile strength (TS) and surface roughness (Ra)
Parameters Layer thickness (mm) Orientation angle (Degree) Nozzle Temperature (°C) Significant

Optimized Ts 0.25 0 240 Layer thickness

Optimized Ra 0.3 90 250 Layer thickness
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of 0.99986 as illustrated in Figure 7. The valida-
tion dataset has an even larger regression coeffi-
cient of 1, which means that there was a high cor-
relation in relation to both the ANN predictions 
and the experimental data.

The comparison of Equation 4, ANN-predict-
ed and experimental values on the tensile strength 
and the surface roughness of the ABS parts is 
given in Table 6. The table shows that the ten-
sile strength and the surface roughness recorded 

Figure 6.Tensile and surface roughness performance plot

Figure 7. The proposed network graphical representation
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Table 6. Experimental versus ANN values for tensile strength and surface roughness.
No. Ts (MPa) ANN predicted Ts (MPa) % Error Ra (µm) ANN predicted Ra (µm) % Error

1 40.02 40.2059 0.464 2.2943 2.2622 1.399

2 44.2 44.3204 0.272 2.158 2.16582 0.362

3 43.07 43.1126 0.098 2.341 2.36133 0.868

4 45.33 45.0281 0.666 2.27 2.25616 0.609

5 42.64 42.1426 1.166 2.485 2.43979 1.819

6 44.46 44.5748 0.258 3.501 3.4353 1.876
7 41.42 41.2415 0.430 2.1473 2.13252 0.688

8 41.94 41.3559 1.392 2.139 2.13614 0.133

9 41.33 41.7881 1.108 2.3653 2.33165 1.422

10 42.72 42.7915 0.167 2.366 2.35499 0.465

11 47.34 46.9059 0.9169 2.602 2.60861 0.254

12 38.81 38.3381 1.215 3.274 3.23412 1.218

13 45.59 45.6137 0.051 3.473 3.46895 0.116

14 43.68 43.7281 0.110 1.933 1.93258 0.021

15 40.29 40.1604 0.321 2.141 2.16808 1.264

16 38.98 38.827 0.392 2.233 2.26531 1.446

17 40.98 41.9415 2.346 4.105 4.16893 1.557

18 42.29 42.3737 0.197 2.569 2.56444 0.177

19 36.89 36.7548 0.366 3.486 3.4775 0.243

20 44.81 44.7693 0.090 2.854 2.88112 0.950

21 44.98 44.7015 0.619 3.337 3.37663 1.187

22 28.46 28.577 0.411 6.673 6.59146 1.221

23 42.55 42.8915 0.802 5.879 5.79508 1.427

24 39.24 39.3237 0.213 2.423 2.45059 1.138

25 40.02 39.9904 0.073 2.2943 2.28782 0.282

26 39.32 39.1048 0.547 2.2145 2.25144 1.668

27 38.88 38.537 0.882 1.67778 1.64695 1.837

Figure 8. Comparison between experimental vs. ANN predicted values for tensile strength

the highest percentage deviations between the 
measured and the predicted value by 2.346 and 
1.876%, respectively.

Figures 8 and 9 illustrate the differences be-
tween the experimental results and the predic-
tions of the ANN model.
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Figure 9. Comparison between experimental vs. ANN predicted values for surface roughness

Figure 10. The percentage error in tension strength between the experimental and the predicted

Figure 11. The percentage error in surface roughness between the experimental and the predicted

Figures 10 and 11 depict that the percent-
age error falls within an acceptable range, which 
means that the ANN model has been able to pre-
dict the tensile strength and the surface roughness 
of the specimens.
	 Error % = |((measured value −		
	 Predictedvalue)/measured value) · 100|	 (4)

A desirability analysis was also used in the 
current study to optimize printing parameters. In 
Figure 12, Minitab 20 is utilized in the evaluation 
of the optimal printing parameters that will give 

the maximum tensile and minimum surface rough-
ness. It is also important to optimize all responses 
at once since the best parameters of responses 
usually become conflicting. A unique composite 
desirability value of 0.9006 was arrived at after 
multi-optimizing all the parameters together under 
desirability analysis (DA). The best parameters 
were a layer thickness of 0.2mm, 00 orientation, 
and 236.2625 °C. The best results demonstrated 
the maximum tensile strength and the minimum 
value of surface roughness,44.5427 MPa and 
1.9173 μm, respectively.
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CONCLUSIONS 

This paper aimed to design an ANN model 
for quantitatively predicting the mechanical 
strength and surface quality of FDM-manufac-
tured parts, using process key parameters. The 
findings and the key objectives are summarized 
in the following way:
1.	The experiment aimed at maximizing tensile 

strength and surface roughness through the in-
vestigation of the influence of layer thickness, 
orientation angle, and nozzle temperature on 
FDM-printed specimens.

2.	The experimental results indicated that tensile 
strength maximized at 0.25 mm layer thick-
ness, 0° as orientation angle, and 240 °C as 
nozzle temperature.

3.	The best surface roughness was observed as 
1.67778 μm, which was acquired at a layer 
thickness of 0.30 mm, nozzle temperature of 
250 °C, and an orientation angle of 90°.

4.	The ANN model being trained using 17 ex-
perimental patterns was able to predict tensile 
strength and surface roughness with the great-
est percentage error of 2.346% and 1.876% re-
spectively, a verdict of high accuracy.

5.	The best combined results were determined us-
ing the desirability analysis of tensile strength 
and surface roughness levels of 44.5427 MPa 
and 1.9173 μm, respectively, at the given pro-
cess parameters.

6.	The thickness of the layer was verified to be 
the most relevant parameter affecting tensile 
strength (43.67% variance explained) and sur-
face roughness (46.38% variance explained).

7.	Further advantages of prediction may be attained 
by more training patterns, which would advance 
the generalization and dependability of the mod-
els in optimization of the FDM processes.
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