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INTRODUCTION

A common denominator in the work of many 
mathematicians and physicists was the pursuit 
of a rigorous, mathematical formalization of the 
laws of nature. Augustin-Louis Cauchy’s [1] con-
tributions to mathematical analysis and the theory 
of differential equations laid the foundations for 
the development of modern analysis. Siméon De-
nis Poisson [2] made significant contributions to 
the advancement of theoretical mechanics. Lord 
Kelvin (William Thomson) [3, 4] sought to unify 
the description of natural phenomena through 
mathematical analysis and physical analogies. 

Scientific concepts [5-9] whose mathematical 
models include the Dirac delta described in 1930 in 
“The Principles of Quantum Mechanics” [10] also 
belong to the research combining mathematics with 
classical mechanics. Roberts developed a theory for 
predicting the response of a linear vibratory system 

to impulses that occur at random times and have 
random strength [11]. This theory was used to cal-
culate the mean square response of a single degree-
of-freedom system to two simple types of random 
impulse excitation [12, 13], and introduced the con-
cept of “mean square resonance”. The dynamic re-
sponse of non-linear systems to external excitations 
in the form of a Poisson distributed train of random 
impulses is considered by Iwankiewicz [14–16]. 
However these scientific concepts whose math-
ematical models include the Dirac delta that have 
never been verified through experiments [17–19].

One of the key issues in signal and systems 
theory is the impulse response of linear systems. 
Such analysis allows not only the description of 
the dynamic properties of electrical and electronic 
systems, but also the formulation of analogical 
models for mechanical and vibroacoustic systems 
[20–22]. Classical models based on RLC elements 
are still widely used however, they are increasingly 
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complemented by generalized approaches, such as 
fractional-order models or strongly nonlinear sys-
tems. Recent research pays particular attention to 
fractional-order circuits. Studies on the impulse 
response of such systems indicate diverse types 
of transient behaviors [23]. Similar results were 
reported in the study [24], which emphasized the 
influence of the modified transfer function on the 
nature of the impulse response.

Currently, RLC circuits find numerous ap-
plications, including energy harvesting systems. 
In [25], the concept of an electromagnetic energy 
harvester was presented, in which the impulse re-
sponse of the resonant RLC circuit coupled with 
a magnetorheological damper plays a key role. 
Another application of RLC circuits is their use 
in active and passive vibration damping. The 
article [26] presented the concept of coupling a 
mechanical system with a shunted RLC circuit. It 
has been demonstrated that appropriately selected 
values of resistance, inductance, and capacitance 
allow for the regulation of the damping character-
istics of the impulse response of the structure. An 
important aspect of contemporary research is also 
the use of the impulse response for the identifica-
tion of dynamic systems. The study [27] focuses 
on the analysis of the dynamic response of high-
damped test systems, based on impulsive excita-
tions, for the purpose of parameter estimation.

The team consisting of the authors of the pres-
ent paper is also conducting studies of systems [28, 
29] whose vibrations are forced by a random series 
of impulses [30].The authors have prepared an ex-
periment for the RLC system, and the results of the 
study are presented in the current paper. Excitations 
with the help of the Dirac delta and the response of 
the system was executed using the NI USB-6251 
card by National Instruments.  The goal of this 
study is to assess to what extent the model reflects 

the phenomena occurring in the real RLC system. 
The differences between the model and the experi-
ment discussed in this study are significant. This 
requires a redefinition of the mathematical models.

MATHEMATICAL MODEL

This study deals with the motion of a oscilla-
tor x(t) with damping b and frequency of damped 
vibrations ω. The force f(t) exciting the vibrations 
of the system is defined as a series of random im-
pulses with values Ai occurring at random instants 
of time ti.

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (1)

Dirac delta δti at ti, which are the basic tool 
in mathematical physics and the theory [31–33] 
of signals [34–36], were used to model a series 
of impulses. For zero initial conditions until the 
moment when the first impulse occurs, x(0) = 0, 
ẋ(0) = 0. The first impulse of random value A1 will 
occur at random time t1, and causes the oscillator 
to vibrate. At the moment of hit, the impulse of the 
action time close to zero causes a rapid increase 
in the velocity up to the value issued by the law of 
momentum variation. The initial conditions from 
which the constants occur in the equation of mo-
tion x(t) of the oscillator are the form: x(0) = 0, 
ẋ(0) = A1. Applying the rule of superposition, 
the characteristics of the solutions of differential 
equations manifests itself in the fact that the sum 
of the solutions is also a solution to the equation 
of the system, and the mathematical model for a 
random series of impulses is determined in the 
same way for each of the impulses occurring in 
the random series. The response of the system 
[37, 38] to forcing assumes the form (2). 

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

(2)
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Simplification of (2) requires indicating of 
interdependencies between particular elements of 
the equation. Between the subsequent impulses, 
the solutions can be presented as follows (3).

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	(3)

The coefficients C1i and C2i change after the 
subsequent impulses, in accordance with (4) and 
(5).

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (4)

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (5)
The coefficients C1i and C2i, which change af-

ter each hit, can be presented using sum (6):

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	(6)

This, in turn, simplifies the mathematical de-
scription of the continuous random variable x(t) 
by inserting the factors sin(ωt) and cos(ωt) into 
the sum (7).

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (7)

Hitherto, several simulations have been car-
ried out and in this study, experimental research 
has been conducted. Earlier simulation research 
[39] has shown that in order to develop an ana-
lytical model to recognize the distribution of sto-
chastic sizes of impulses, oscillators with strong 
damping and high frequencies should be studied. 
The high frequencies of the vibrations that are 
required can only be obtained using electronic 
systems. Simulation studies show that for appro-
priately selected oscillators, the time required to 
identify the parameters of the estimators of the 
distributions of impulse values is limited to a few 
or several minutes. This paper discusses investi-
gations aimed at checking the differences between 

the model (7) and the actual response of the RLC 
system. The identification of the response param-
eters of the RLC system to such forcing is be-
coming the key element that answers the research 
question stated in this article. As shown below, 
parameter identification required writing an algo-
rithm based on coarse identification and fine iden-
tification to estimate the response parameters of 
the RLC system.

EXPERIMENTAL INVESTIGATIONS

An RLC system with the parameters L = 
22.7 µH and C = 940 nF was investigated. In our 
research, the circuit resistance R was determined 
based on the impulse response. The investigations 
are executed with the help of the NI USB-6251 
card by National Instruments, whose sampling 
rate equals 1 µs. The Figure 1 shows a simplified 
schematic of the experiment aimed at analyzing 
the response of an RLC system to a random series 
of impulses. An application developed in the Lab-
VIEW environment generates a random sequence 
of impulses. The randomly selected impulse val-
ue and the random times of their occurrence were 
transmitted to the data acquisition (DAQ) card 
via the USB interface. The DAQ card performs 
two functions in the setup. First, it implements the 
excitation generated by the computer in the form 
of a voltage impulse, which was sent to the tested 
RLC system through a BNC connector. Second, 
it records the response of the RLC system to the 
applied excitation and transferred the recorded 
signal to the computer via the USB interface.

In the first stage, the voltage was varied from 
100 mV to 1 V in steps of 100 mV. The probabil-
ity of the occurrence of each impulse was 0.1. Im-
pulses occur with intensity λ = 10, at random times. 
The distance between impulses is executed with the 
help of a continuous random variable whose cumu-
lative distribution function is represented by (8).

Figure 1. The simplified schematic of the experiment
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 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (8)

For λ = 10, impulses occur on the average 
every 0.1 s, with standard deviation also equal to 
0.1 s. The parameters were selected so that a num-
ber of impulses sufficient to execute an analysis 
could be acquired within a few minutes (Figure 2). 
As mentioned before, the identification of parame-
ters of the RLC system response is the key element 
that allows to answer the research question asked 
in this paper. Unfortunately, RLC circuit is also the 
greatest challenge. Since Dirac Delta is merely a 
mathematical tool and its experimental execution 
is impossible, therefore the authors are considering 
forcing with a random series of hits in the shape of 
a triangle. The NI USB card executing a single hit 
generates a signal in the form shown in Figure 3.

This signal assumed the form of an impulse. 
In the diagram, one should focus on the form of 
the function responsible for increasing to 100 mV 
and decreasing of the signal. After achieving the 
top values, characteristic exponential fading was 
observed. The parabolic increase and exponen-
tial decrease of the signal were not symmetric. It 
is worth noting that the background noise, which 
has a changeable course both before and after the 
impulse. In the mathematical model, the response 
of the system to a single impulse is equivalent to 
exciting free vibrations by a rapid increase in the 
initial velocity of the system at zero initial dis-
placement. However, the increase and decrease of 
the impulse at the time 2 µs generated by the card 

(Figure 3) changes the response of the system by 
introducing of the deviations from the mathemati-
cal model. For all impulse forcings with values 
ranging from 100 mV to 1 V, only the value of the 
impulse changes, whereas the process of signal rise 
and decay remains the same. There were unexpect-
ed differences between the model and the experi-
ment. Exploratory studies show that when forcing 
assumes values greater than 400 mV (Figures 4,5), 
the effect of flattening the systems response in the 
initial phase of the interval 8 µs to 20 µs is notice-
able. Thus, the experiment did not describe model 
(2) for this values of forcings.

Another problem that can be noticed involves 
changing the parameters of the response, namely, 
the frequency of damped vibrations ω and damp-
ing b. In this manner we obtain a few vibrating 
systems with different parameters. In the analysis 
of vibrations, there is sense of applying superpo-
sition of the sum of linear solutions of differential 
equations with different damping, provided that 
cases in which the interval between impulses is 
less than 200 µs are omitted (Figure 4). Probabil-
ity (8) that the distance between impulses would 
be less than the duration of the vibrations evoked 
by the impulse is approximately 0.01998. 

Exploratory research indicates that the differ-
ences between damping coefficients are smallest 
for excitations of 100 mV and 200 mV; therefore, 
in the next phase of the study, only these two 
cases will be considered. It is possible that the 
mathematical model (7) will provide an approxi-
mate description of the experiment, even in those 

Figure 2. The response of an RLC system to forcing with a random series of impulses
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extremely rare instances when the next impulse 
occurs before vibrations induced by the previous 
impulse have fully decayed. 

DETERMINING A RELIABLE PROPAGATION
TIME OF THE SYSTEM RESPONSE

The algorithm that records the response of 
the RLC system registers a random time interval 
ti during which the impulse occurred, as well as 
its random value Ai. Thus, it is possible to distin-
guish random events forced by the impulse of a 
definite amplitude. It is possible to compute the 

mean value of the number of trials for the record-
ed responses of the system for each amplitude of 
excitation. All responses of the RLC system, se-
lected to determine the mean value, start at the 
same point. In the analysis it is also possible to 
neglect those cases in which a subsequent im-
pulse occurred before the vibrations forced by the 
previous impulse has disappeared.

The study comprised 242 trials for the re-
sponses of the RLC system to forcings with an 
amplitude of 100 mV (Figure 6), and 269 trials 
for the responses of the RLC system to forcings 
with an amplitude of 200 mV (Figure 7). To de-
termine the duration of signal propagation, the 

Figure 3. NI USB-6251 card response to single impulse forcing

Figure 4. Responses of the RLC system to excitations value ranging from 100 mV to 400 mV
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response of the system to forcing with a random 
series of impulses shown in Figure 2 point esti-
mation and interval estimation were executed for 
each time unit dt up 0 to 250 µs with sampling at 
1 MHz. Subsequently, 251 estimators of medium 
values were prepared for this study. It is necessary 
to check the reliability of each estimator because 
the data is charged with errors related to signal 
discretization and measurement uncertainties. 

To evaluate the estimation, the relative error 
of the point estimator (10) and the relative preci-
sion of the interval estimator (11) were used. The 
estimator was assumed to be unreliable when the 
relative error value was greater than 15% or when 
the relative precision value of the estimation was 
greater than 10%. In Figure 6, 7 unreliable esti-
mators are indicated by red lines.

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (9)

where:	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

 – the standard deviation, 

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

 – the mean 
value of the samples, n – is the number of 
elements in the sample.

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (10)

where:	u – is the inverse cumulative distribution 
function for 1 – α/2 and the significance 
level was α = 0.05.

The duration of the signal propagation deter-
mined on the basis of the executed estimation, 
which can be used for identification equals 59 μs 

for the impulse of 100 mV, and for the impulse 
with an amplitude of 200 mV it equals 89 μs.

ESTIMATION OF THE PARAMETERS 	
OF AN RLC SYSTEM FOR A FORCING 
WITH AN IMPULSE

Both before and after single impulses, the 
noise of the background, whose average value of 
oscillations was other than zero, was recorded. 
Unfortunately, background noise has a significant 
influence on the estimation of damping values in 
the RLC system. Discrete values of the noise sig-
nal cause the impulse to start with an initial value 
that is different from zero. Additionally, the er-
rors that occur at low deviations in the final stage 
of the vibration change x(t) significantly. The in-
fluence of the noise of a recorded present signal, 
transfer of the start of oscillation and the occur-
rence of the constant component Cn required the 
transformation of (1) into (12).

	

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 

 

	 (11)

where:	n – assumes the values 1 or 2, signifying 
the response to forcing with impulses of 
100 mV and 200 mV, respectively, Cn –
the constant around which vibrations oc-
cur, an – is equal to 

𝐴𝐴𝑛𝑛
𝜔𝜔𝑛𝑛

, 𝜙𝜙𝑛𝑛  
 

 appears as a 
result to start of the impulse with an initial 
value that is different from zero.

Figure 5. Responses of the RLC system to excitations ranging from 500 mV to 1 V

 

 𝑓𝑓(𝑡𝑡) = ∑𝐴𝐴𝑖𝑖 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

  

 𝑥𝑥(𝑡𝑡) =

{
 
 
 
 
 

 
 
 
 
  0 for 𝑡𝑡 ≤ 𝑡𝑡11
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))
 for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3

… 
 

1
𝜔𝜔 𝐴𝐴1𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡1) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡1)) +
1
𝜔𝜔𝐴𝐴2𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡2) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡2))

+⋯+ 1
𝜔𝜔𝐴𝐴𝑖𝑖𝑒𝑒

−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin( 𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1

 (2)  

 

 𝑥𝑥(𝑡𝑡) =  1𝜔𝜔 𝑒𝑒
−𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑖𝑖)( 𝐶𝐶1𝑖𝑖sin(𝜔𝜔𝜔𝜔) − 𝐶𝐶2𝑖𝑖sin(𝜔𝜔𝜔𝜔) ) (3) 

 

 𝐶𝐶1𝑖𝑖 = 𝐶𝐶1(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) 
(4) 
 
 
 

 𝐶𝐶2𝑖𝑖 = 𝐶𝐶2(𝑖𝑖−1)𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖− 𝑡𝑡𝑖𝑖−1) +𝐴𝐴𝑖𝑖cos(𝜔𝜔𝑡𝑡𝑖𝑖) (5) 
 

𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 sin(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) cos(𝜔𝜔𝑡𝑡𝑖𝑖) −

0≤𝑡𝑡𝑖𝑖<𝑡𝑡
 

− 1𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

 
(6) 

 

 𝑥𝑥(𝑡𝑡) = 1
𝜔𝜔 ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖) sin(𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
0≤𝑡𝑡𝑖𝑖<𝑡𝑡

) (7) 

 

 𝐹𝐹(𝜏𝜏) = {1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆 for 𝜏𝜏 ≥ 0

0 for 𝜏𝜏 < 0  (8) 

 

 𝑉𝑉 =  𝑠̂𝑠 ∙ 𝑚̅𝑚
√𝑛𝑛

∙ 100% (9) 

 

 𝐵𝐵 = 
𝑢𝑢(1−𝛼𝛼2)

∙ 𝑠̂𝑠

𝑚̅𝑚 ∙ √𝑛𝑛
∙ 100% (10) 

 

 𝑥𝑥𝑛𝑛(𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑛𝑛𝑒𝑒−𝑏𝑏𝑛𝑛𝑡𝑡𝑖𝑖 sin(𝜔𝜔𝑛𝑛𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑛𝑛) + 𝐶𝐶𝑛𝑛 (11) 
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 The identification process was conducted in a 
MATLAB environment, and the function lscurv-
efit() was used in the study. While identifying the 
parameters of (12), it is difficult to determine the 
value of damping b. Using the principle of elec-
tric modelling of linear vibrations of mechanical 
systems with a finite number of degrees of free-
dom [40], the frequency of the damped vibrations 
of the RLC system is derived from (12).

	 𝑏𝑏 = √ 1
𝐿𝐿𝐿𝐿 − 𝜔𝜔2 (12) 

 

	 (12)

The applied function lscurvefit() negated 
(13) hence, the algorithm had to be modified for 

an iterative search. In each iteration, the value 
of the frequency of damped vibrations, as well 
as the value of damping, change in accordance 
with Equation 13. 

The parameter identification process runs using 
the matching function (12). The parameters an, ϕn 
and Cn are identified at the ω parameter indicated at 
the iteration and the b parameter is computed from 
(13). Another important step is the assessment of 
the quality of matching, which is designed to check 
how well the model reproduces experimental data. 
To this end, four error measures for each iteration 
of the data-matching process were determined. The 
relative error, absolute error, mean squared error, 
and value of the maximum error were computed. 

Figure 6. Estimates of the mean value determined from 242 trials for the response of the RLC system to an 
excitation of amplitude 100 mV. The red line indicates unreliable estimators

Figure 7. Estimates of the mean value determined from 269 trials for an excitation of 200 mV. The red line 
indicates unreliable estimators
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Relative error is a measure that expresses the quo-
tient of the absolute and actual measured values. 
The absolute error describes the difference between 
the mean value and the identified absolute value. 
The mean square error, which is the most popular 
measure for assessing the quality of data matching, 
is a measure that estimates the mean value of the 
square of differences. The final measure used in the 
assessment of matching was the value of the error 
of the maximum deviation of the prognosis from 
the actual value in the data set. These measures and 
their changes for each iteration of the matching pro-
cess are presented in Figure 8.

On the horizontal axis we can see the num-
ber of iterations while the vertical axis (Y) shows 
normalized values of errors. The curves illustrate 
in what way the particular measures change with 
subsequent iterations of the matching process. The 
points indicate the local minima of each of the pre-
sented error measures. On the basis of the diagram 
it can be inferred that particular error measures 
may reach minima at different iteration numbers, 
which emphasizes that the choice of the error mea-
sure influences the obtained solution and leads 

to different results. Therefore, it is hard to speak 
about the identification of parameters, but it is pos-
sible to speak about their assessment. The param-
eters of the system for forcing at 100 mV and 200 
mV depending on the adopter error criteria can be 
found in Table 1 and Table 2 respectively.

Exploratory analyses indicate that the larger 
the impulse values, the smaller ω becomes, which 
in turn implies stronger damping (13). Comparing 
the data in Tables 1–2, this criterion is satisfied 
by two cases: B – relative error and C –  MSE. 
However, the difference between the damping 
values for the 100 mV and 200 mV excitations 
in the case of relative error is significantly larger 
than in the other cases. Based on the results ob-
tained, the best fit was selected by applying the 
mean squared error (MSE) metric. Furthermore, 
in Tables 1 and 2, the estimated parameters yield-
ing the best fit for the excitation values of 100 mV 
and 200 mV are highlighted as underlined values. 

In classical (linear) vibration mechanics, the 
damping coefficient of a system is a property of 
the system and does not “increase” simply be-
cause we increase the amplitude of the driving 

Figure 8. Representation of normalized error measures

Table 1. Analysis of parameters for 100 mV
Error type b1 ω1 a1 Φ1 C1

A -  Absolute error 35 895.516 213 485.97 2.16·10-2 2.87·10-1 -1.70·10-4

B - Relative error 34 750.185 213 675.39 2.12·10-2 2.88·10-1 -1.32·10-4

C - MSE 35 426.193 213 564.35 2.14·10-2 2.88·10-1 -1.55·10-4

D - Maximum distance 35 426.193 213 675.39 2.12·10-2 2.88·10-1 -1.32·10-4
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force. Observed changes in damping at larger 
impulses usually result from nonlinear losses or 
heating of components, which increases damping.

CONCLUSIONS

This article discusses the studies that were 
conducted to determine the differences between 
the mathematical model and the actual response 
of an RLC system. These changes result from the 
experimental realization of a mathematical con-
cept, namely Dirac Delta, and the properties of 
an RLC system. Experiments are characterized 
by obvious phenomena such as noise and the oc-
currence of a constant component in the response 
of the system, which transforms the mathematical 
model. In an ideal RLC system, there is no tension 
threshold in which the condenser stops absorbing 
the energy and flattens out at the initial phase of 
the response. If it were strictly linear (no satura-
tions, protection diodes, amplifier limitations), 
the amplitude of the oscillation would grow at a 
stronger forcing. In the actual RLC system dis-
cussed in this article, the flattening out of the sig-
nal excluded six out of ten impulse values that 
could be used in the model. Additional impulses 
were excluded because the stronger impulse, the 
lower frequency of damped vibrations therefore, 
stronger damping occurs. By executing these 
experiments, we realized that the mathematical 
model did not reflect the experiment. The appli-
cation of the presented algorithm to identify the 
oscillator parameters indicates that the damping 
also changes in a system where smaller or larger 
impulses occur with higher or lower probability. 
The differences are significant and require the 
creation of new algorithms of artificial intelli-
gence based on image recognition and not on the 
analysis of statistical time series. 

The logical sense of application of such algo-
rithms AI exists only when the probability that a 
subsequent impulse occurs before the vibrations 
forced by a previous one expire is as small as in 

this case. Then incidents of overlaying vibrations 
can be neglected in recognition because they are 
extremely rare. Because of the random time at 
which an impulse may occur, it is impossible to 
attempt to recognize two or more impulses oc-
curring close to one another, there are infinitely 
many cases to recognize. 	
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