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ABSTRACT

There are many studies that present mathematical models of a system’s response to excitation by a random se-
quence of impulses, but none of these models has been experimentally verified. This article presents a study
investigating the discrepancies between a mathematical model, which includes the Dirac delta, and the actual
dynamic response of an RLC system. The model describes vibrations in a discrete system subjected to a stochas-
tic sequence of impulses. The system parameters were identified using an algorithm based on statistical analyses
such as interval and point estimation, nonlinear curve fitting to experimental data, and analysis of fitting errors.
The research showed that, system’s response to individual impulses depends on both the value of the impulse and
its distribution, resulting in dynamic variations of system parameters. Furthermore, a signal flattening effect is
observed, which significantly influences the vibrational output characteristics. The results indicate that identifying
the underlying impulse distribution will require the application of artificial intelligence algorithms based on image
analysis. This approach gives hope for high effectiveness, particularly in the case of low-intensity impulses occur-
ring in a random temporal sequence.

Keywords: stochastic mechanic, Dirac delta in experiment, random series of impulses, random vibrations, system

identification.

INTRODUCTION

A common denominator in the work of many
mathematicians and physicists was the pursuit
of a rigorous, mathematical formalization of the
laws of nature. Augustin-Louis Cauchy’s [1] con-
tributions to mathematical analysis and the theory
of differential equations laid the foundations for
the development of modern analysis. Siméon De-
nis Poisson [2] made significant contributions to
the advancement of theoretical mechanics. Lord
Kelvin (William Thomson) [3, 4] sought to unify
the description of natural phenomena through
mathematical analysis and physical analogies.

Scientific concepts [5-9] whose mathematical
models include the Dirac delta described in 1930 in
“The Principles of Quantum Mechanics” [10] also
belong to the research combining mathematics with
classical mechanics. Roberts developed a theory for
predicting the response of a linear vibratory system

to impulses that occur at random times and have
random strength [11]. This theory was used to cal-
culate the mean square response of a single degree-
of-freedom system to two simple types of random
impulse excitation [12, 13], and introduced the con-
cept of “mean square resonance”. The dynamic re-
sponse of non-linear systems to external excitations
in the form of a Poisson distributed train of random
impulses is considered by Iwankiewicz [14-16].
However these scientific concepts whose math-
ematical models include the Dirac delta that have
never been verified through experiments [17-19].
One of the key issues in signal and systems
theory is the impulse response of linear systems.
Such analysis allows not only the description of
the dynamic properties of electrical and electronic
systems, but also the formulation of analogical
models for mechanical and vibroacoustic systems
[20-22]. Classical models based on RLC elements
are still widely used however, they are increasingly
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complemented by generalized approaches, such as
fractional-order models or strongly nonlinear sys-
tems. Recent research pays particular attention to
fractional-order circuits. Studies on the impulse
response of such systems indicate diverse types
of transient behaviors [23]. Similar results were
reported in the study [24], which emphasized the
influence of the modified transfer function on the
nature of the impulse response.

Currently, RLC circuits find numerous ap-
plications, including energy harvesting systems.
In [25], the concept of an electromagnetic energy
harvester was presented, in which the impulse re-
sponse of the resonant RLC circuit coupled with
a magnetorheological damper plays a key role.
Another application of RLC circuits is their use
in active and passive vibration damping. The
article [26] presented the concept of coupling a
mechanical system with a shunted RLC circuit. It
has been demonstrated that appropriately selected
values of resistance, inductance, and capacitance
allow for the regulation of the damping character-
istics of the impulse response of the structure. An
important aspect of contemporary research is also
the use of the impulse response for the identifica-
tion of dynamic systems. The study [27] focuses
on the analysis of the dynamic response of high-
damped test systems, based on impulsive excita-
tions, for the purpose of parameter estimation.

The team consisting of the authors of the pres-
ent paper is also conducting studies of systems [28,
29] whose vibrations are forced by a random series
of impulses [30].The authors have prepared an ex-
periment for the RLC system, and the results of the
study are presented in the current paper. Excitations
with the help of the Dirac delta and the response of
the system was executed using the NI USB-6251
card by National Instruments. The goal of this
study is to assess to what extent the model reflects
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the phenomena occurring in the real RLC system.
The differences between the model and the experi-
ment discussed in this study are significant. This
requires a redefinition of the mathematical models.

MATHEMATICAL MODEL

This study deals with the motion of a oscilla-
tor x(¢) with damping b and frequency of damped
vibrations w. The force f{f) exciting the vibrations
of the system is defined as a series of random im-
pulses with values 4, occurring at random instants
of time ¢.

HCEDIWIIGD W
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Dirac delta d¢, at ¢, which are the basic tool
in mathematical physics and the theory [31-33]
of signals [34-36], were used to model a series
of impulses. For zero initial conditions until the
moment when the first impulse occurs, x(0) = 0,
%(0) = 0. The first impulse of random value 4, will
occur at random time 7, and causes the oscillator
to vibrate. At the moment of hit, the impulse of the
action time close to zero causes a rapid increase
in the velocity up to the value issued by the law of
momentum variation. The initial conditions from
which the constants occur in the equation of mo-
tion x(7) of the oscillator are the form: x(0)=0,
x(0)=4,. Applying the rule of superposition,
the characteristics of the solutions of differential
equations manifests itself in the fact that the sum
of the solutions is also a solution to the equation
of the system, and the mathematical model for a
random series of impulses is determined in the
same way for each of the impulses occurring in
the random series. The response of the system
[37, 38] to forcing assumes the form (2).

1
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Simplification of (2) requires indicating of
interdependencies between particular elements of
the equation. Between the subsequent impulses,
the solutions can be presented as follows (3).

x(t) = %e‘b(t_ t(Cysin(wt) — Cysin(wt) ) (3)

The coefficients C . and C,, change after the
subsequent impulses, in accordance with (4) and

).
Cyi = Cyg-pe Pl b0 +A,cos(wty)  (4)

Cai = Co_pe Pl -0 + 4 cos(wty)  (5)
The coefficients C| and C,, which change af-
ter each hit, can be presented using sum (6):

1
x(t) = Zsin( wt) Z A;e Pt cos(wt;) —

ost;<t
1 (6)
—Zcos(wt) Z A;e Pt gin(wt;)

ost;<t

This, in turn, simplifies the mathematical de-
scription of the continuous random variable x(?)
by inserting the factors sin(wt) and cos(wt) into
the sum (7).

1
x(t) = - Z Ae Pt sin(w(t — t;)) 7
0<t;<t

Hitherto, several simulations have been car-
ried out and in this study, experimental research
has been conducted. Earlier simulation research
[39] has shown that in order to develop an ana-
lytical model to recognize the distribution of sto-
chastic sizes of impulses, oscillators with strong
damping and high frequencies should be studied.
The high frequencies of the vibrations that are
required can only be obtained using electronic
systems. Simulation studies show that for appro-
priately selected oscillators, the time required to
identify the parameters of the estimators of the
distributions of impulse values is limited to a few
or several minutes. This paper discusses investi-
gations aimed at checking the differences between

Computer with
LabVIEW application

the model (7) and the actual response of the RLC
system. The identification of the response param-
eters of the RLC system to such forcing is be-
coming the key element that answers the research
question stated in this article. As shown below,
parameter identification required writing an algo-
rithm based on coarse identification and fine iden-
tification to estimate the response parameters of
the RLC system.

EXPERIMENTAL INVESTIGATIONS

An RLC system with the parameters L =
22.7 uH and C = 940 nF was investigated. In our
research, the circuit resistance R was determined
based on the impulse response. The investigations
are executed with the help of the NI USB-6251
card by National Instruments, whose sampling
rate equals 1 us. The Figure 1 shows a simplified
schematic of the experiment aimed at analyzing
the response of an RLC system to a random series
of impulses. An application developed in the Lab-
VIEW environment generates a random sequence
of impulses. The randomly selected impulse val-
ue and the random times of their occurrence were
transmitted to the data acquisition (DAQ) card
via the USB interface. The DAQ card performs
two functions in the setup. First, it implements the
excitation generated by the computer in the form
of a voltage impulse, which was sent to the tested
RLC system through a BNC connector. Second,
it records the response of the RLC system to the
applied excitation and transferred the recorded
signal to the computer via the USB interface.

In the first stage, the voltage was varied from
100 mV to 1 V in steps of 100 mV. The probabil-
ity of the occurrence of each impulse was 0.1. Im-
pulses occur with intensity A = 10, at random times.
The distance between impulses is executed with the
help of a continuous random variable whose cumu-
lative distribution function is represented by (8).

[usB]
Random variables Generated random excitation

generation

4

NI USB Data
Acquisition

[BNC)
Impulses generated
by the DAQ card

RLC system

A 4

Card

Saving the system
response <

[usB]
System response

A
[BNC]

RLC system response to the impulse

Figure 1. The simplified schematic of the experiment
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For A = 10, impulses occur on the average
every 0.1 s, with standard deviation also equal to
0.1 s. The parameters were selected so that a num-
ber of impulses sufficient to execute an analysis
could be acquired within a few minutes (Figure 2).
As mentioned before, the identification of parame-
ters of the RLC system response is the key element
that allows to answer the research question asked
in this paper. Unfortunately, RLC circuit is also the
greatest challenge. Since Dirac Delta is merely a
mathematical tool and its experimental execution
is impossible, therefore the authors are considering
forcing with a random series of hits in the shape of
a triangle. The NI USB card executing a single hit
generates a signal in the form shown in Figure 3.

This signal assumed the form of an impulse.
In the diagram, one should focus on the form of
the function responsible for increasing to 100 mV
and decreasing of the signal. After achieving the
top values, characteristic exponential fading was
observed. The parabolic increase and exponen-
tial decrease of the signal were not symmetric. It
is worth noting that the background noise, which
has a changeable course both before and after the
impulse. In the mathematical model, the response
of the system to a single impulse is equivalent to
exciting free vibrations by a rapid increase in the
initial velocity of the system at zero initial dis-
placement. However, the increase and decrease of
the impulse at the time 2 us generated by the card

0.06 T

(Figure 3) changes the response of the system by
introducing of the deviations from the mathemati-
cal model. For all impulse forcings with values
ranging from 100 mV to 1V, only the value of the
impulse changes, whereas the process of signal rise
and decay remains the same. There were unexpect-
ed differences between the model and the experi-
ment. Exploratory studies show that when forcing
assumes values greater than 400 mV (Figures 4,5),
the effect of flattening the systems response in the
initial phase of the interval 8 us to 20 ws is notice-
able. Thus, the experiment did not describe model
(2) for this values of forcings.

Another problem that can be noticed involves
changing the parameters of the response, namely,
the frequency of damped vibrations @ and damp-
ing b. In this manner we obtain a few vibrating
systems with different parameters. In the analysis
of vibrations, there is sense of applying superpo-
sition of the sum of linear solutions of differential
equations with different damping, provided that
cases in which the interval between impulses is
less than 200 us are omitted (Figure 4). Probabil-
ity (8) that the distance between impulses would
be less than the duration of the vibrations evoked
by the impulse is approximately 0.01998.

Exploratory research indicates that the differ-
ences between damping coefficients are smallest
for excitations of 100 mV and 200 mV; therefore,
in the next phase of the study, only these two
cases will be considered. It is possible that the
mathematical model (7) will provide an approxi-
mate description of the experiment, even in those
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Figure 2. The response of an RLC system to forcing with a random series of impulses
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Figure 3. NI USB-6251 card response to single impulse forcing
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Figure 4. Responses of the RLC system to excitations value ranging from 100 mV to 400 mV

extremely rare instances when the next impulse
occurs before vibrations induced by the previous
impulse have fully decayed.

DETERMININGARELIABLEPROPAGATION
TIME OF THE SYSTEM RESPONSE

The algorithm that records the response of
the RLC system registers a random time interval
t. during which the impulse occurred, as well as
its random value 4. Thus, it is possible to distin-
guish random events forced by the impulse of a
definite amplitude. It is possible to compute the

mean value of the number of trials for the record-
ed responses of the system for each amplitude of
excitation. All responses of the RLC system, se-
lected to determine the mean value, start at the
same point. In the analysis it is also possible to
neglect those cases in which a subsequent im-
pulse occurred before the vibrations forced by the
previous impulse has disappeared.

The study comprised 242 trials for the re-
sponses of the RLC system to forcings with an
amplitude of 100 mV (Figure 6), and 269 trials
for the responses of the RLC system to forcings
with an amplitude of 200 mV (Figure 7). To de-
termine the duration of signal propagation, the
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Figure 5. Responses of the RLC system to excitations ranging from 500 mV to 1 V

response of the system to forcing with a random
series of impulses shown in Figure 2 point esti-
mation and interval estimation were executed for
each time unit df up 0 to 250 us with sampling at
1 MHz. Subsequently, 251 estimators of medium
values were prepared for this study. It is necessary
to check the reliability of each estimator because
the data is charged with errors related to signal
discretization and measurement uncertainties.

To evaluate the estimation, the relative error
of the point estimator (10) and the relative preci-
sion of the interval estimator (11) were used. The
estimator was assumed to be unreliable when the
relative error value was greater than 15% or when
the relative precision value of the estimation was
greater than 10%. In Figure 6, 7 unreliable esti-
mators are indicated by red lines.

A

v=2""100% ©)
Vn
where: § — the standard deviation, m — the mean
value of the samples, # — is the number of
elements in the sample.

u., a S
1-3)
m-vn
where: u — is the inverse cumulative distribution
function for 1 — /2 and the significance
level was o.= 0.05.

(10)

The duration of the signal propagation deter-
mined on the basis of the executed estimation,
which can be used for identification equals 59 us

S
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for the impulse of 100 mV, and for the impulse
with an amplitude of 200 mV it equals 89 ps.

ESTIMATION OF THE PARAMETERS
OF AN RLC SYSTEM FOR A FORCING
WITH AN IMPULSE

Both before and after single impulses, the
noise of the background, whose average value of
oscillations was other than zero, was recorded.
Unfortunately, background noise has a significant
influence on the estimation of damping values in
the RLC system. Discrete values of the noise sig-
nal cause the impulse to start with an initial value
that is different from zero. Additionally, the er-
rors that occur at low deviations in the final stage
of the vibration change x(?) significantly. The in-
fluence of the noise of a recorded present signal,
transfer of the start of oscillation and the occur-
rence of the constant component C required the
transformation of (1) into (12).

X () = agePntisin(wpt; + @) + €, (11)

where: n — assumes the values 1 or 2, signifying
the response to forcing with impulses of
100 mV and 200 mV, respectively, C, —
the constant around which vibrations oc-

. An
cur, a, — is equal to —=,¢. appears as a
. n . e
result to start of the impulse with an initial
value that is different from zero.
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Figure 6. Estimates of the mean value determined from 242 trials for the response of the RLC system to an
excitation of amplitude 100 mV. The red line indicates unreliable estimators
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Figure 7. Estimates of the mean value determined from 269 trials for an excitation of 200 mV. The red line
indicates unreliable estimators

The identification process was conducted in a
MATLAB environment, and the function Iscurv-
efit() was used in the study. While identifying the
parameters of (12), it is difficult to determine the
value of damping b. Using the principle of elec-
tric modelling of linear vibrations of mechanical
systems with a finite number of degrees of free-
dom [40], the frequency of the damped vibrations
of the RLC system is derived from (12).

(12)

The applied function Iscurvefit() negated
(13) hence, the algorithm had to be modified for

an iterative search. In each iteration, the value
of the frequency of damped vibrations, as well
as the value of damping, change in accordance
with Equation 13.

The parameter identification process runs using
the matching function (12). The parameters a , ¢,
and C are identified at the @ parameter indicated at
the iteration and the b parameter is computed from
(13). Another important step is the assessment of
the quality of matching, which is designed to check
how well the model reproduces experimental data.
To this end, four error measures for each iteration
of the data-matching process were determined. The
relative error, absolute error, mean squared error,
and value of the maximum error were computed.
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Figure 8. Representation of normalized error measures

Relative error is a measure that expresses the quo-
tient of the absolute and actual measured values.
The absolute error describes the difference between
the mean value and the identified absolute value.
The mean square error, which is the most popular
measure for assessing the quality of data matching,
is a measure that estimates the mean value of the
square of differences. The final measure used in the
assessment of matching was the value of the error
of the maximum deviation of the prognosis from
the actual value in the data set. These measures and
their changes for each iteration of the matching pro-
cess are presented in Figure 8.

On the horizontal axis we can see the num-
ber of iterations while the vertical axis (Y) shows
normalized values of errors. The curves illustrate
in what way the particular measures change with
subsequent iterations of the matching process. The
points indicate the local minima of each of the pre-
sented error measures. On the basis of the diagram
it can be inferred that particular error measures
may reach minima at different iteration numbers,
which emphasizes that the choice of the error mea-
sure influences the obtained solution and leads

Table 1. Analysis of parameters for 100 mV

to different results. Therefore, it is hard to speak
about the identification of parameters, but it is pos-
sible to speak about their assessment. The param-
eters of the system for forcing at 100 mV and 200
mV depending on the adopter error criteria can be
found in Table 1 and Table 2 respectively.
Exploratory analyses indicate that the larger
the impulse values, the smaller w becomes, which
in turn implies stronger damping (13). Comparing
the data in Tables 1-2, this criterion is satisfied
by two cases: B — relative error and C — MSE.
However, the difference between the damping
values for the 100 mV and 200 mV excitations
in the case of relative error is significantly larger
than in the other cases. Based on the results ob-
tained, the best fit was selected by applying the
mean squared error (MSE) metric. Furthermore,
in Tables 1 and 2, the estimated parameters yield-
ing the best fit for the excitation values of 100 mV
and 200 mV are highlighted as underlined values.
In classical (linear) vibration mechanics, the
damping coefficient of a system is a property of
the system and does not “increase” simply be-
cause we increase the amplitude of the driving

Error type b, w, a, P, C,
A- Absolute eror 35895.516 213 485.97 2.16-10° 2.87-10" -1.70-10*
B - Relative error 34 750.185 213 675.39 2.12:10* 2.88:10" -1.32:10*
C-MSE 35426.193 213 564.35 2.14-102 2.88-10 -1.55-104
D - Maximum distance 35426.193 213 675.39 2.12-10? 2.88-10" -1.32-10*
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Table 2. Analysis of parameters for 200 mV

Error type b, w, a, ®, C,
A- Absolute error 35 665.853 213 524.461 4.29.10 2.17-10" -6.39-10*
B - Relative error 35322.111 213 581.593 4.27.102 2.17-10" -2.01-10*
C-MSE 35730.713 213 513.617 4.30-102 2.17-104 -3.82.10%
D - Maximum distance 34 861.371 213 657.280 4.24.102 2.17-10" -3.86-10*

force. Observed changes in damping at larger
impulses usually result from nonlinear losses or
heating of components, which increases damping.

CONCLUSIONS

This article discusses the studies that were
conducted to determine the differences between
the mathematical model and the actual response
of an RLC system. These changes result from the
experimental realization of a mathematical con-
cept, namely Dirac Delta, and the properties of
an RLC system. Experiments are characterized
by obvious phenomena such as noise and the oc-
currence of a constant component in the response
of the system, which transforms the mathematical
model. In an ideal RLC system, there is no tension
threshold in which the condenser stops absorbing
the energy and flattens out at the initial phase of
the response. If it were strictly linear (no satura-
tions, protection diodes, amplifier limitations),
the amplitude of the oscillation would grow at a
stronger forcing. In the actual RLC system dis-
cussed in this article, the flattening out of the sig-
nal excluded six out of ten impulse values that
could be used in the model. Additional impulses
were excluded because the stronger impulse, the
lower frequency of damped vibrations therefore,
stronger damping occurs. By executing these
experiments, we realized that the mathematical
model did not reflect the experiment. The appli-
cation of the presented algorithm to identify the
oscillator parameters indicates that the damping
also changes in a system where smaller or larger
impulses occur with higher or lower probability.
The differences are significant and require the
creation of new algorithms of artificial intelli-
gence based on image recognition and not on the
analysis of statistical time series.

The logical sense of application of such algo-
rithms Al exists only when the probability that a
subsequent impulse occurs before the vibrations
forced by a previous one expire is as small as in

this case. Then incidents of overlaying vibrations
can be neglected in recognition because they are
extremely rare. Because of the random time at
which an impulse may occur, it is impossible to
attempt to recognize two or more impulses oc-
curring close to one another, there are infinitely
many cases to recognize.
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