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INTRODUCTION

Experimenting with polymer matrix compos-
ites has expanded knowledge on their mechani-
cal behavior under diverse loading conditions, 
from temperature-induced buckling phenomena 
in thin-walled profiles[1] to dynamic impact re-
sponses in fiber-reinforced systems [2], while 
simultaneous investigations into surface topog-
raphy characterization [3] and unconventional 
joining methodologies have [4] illuminated the 
complex interplay between material architecture 
and structural performance [5]. 

The polymer matrix composites (PMCs) have 
become eminent in a varied range of engineering 

fields, especially aerospace, automotive and 
structure applications, on account of their high 
strength-weight ratio, resistance to corrosion and 
durability [6]. These materials are, however, vul-
nerable to fatigue related damage thus undermin-
ing structural integrity in the long run. Due to 
the safety and reliability of the composite based 
structures, proper modeling of the degradation of 
stiffness and fatigue property is critical in PMCs 
[7, 8]. Conventional fatigue testing techniques 
(including destructive tests, and conventional 
non-destructive evaluation (NDE) techniques are 
not relevant because they are time consuming in 
terms of laboratory analysis and inapplicable to 
real-time structural health monitoring (SHM). 
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AI-driven approaches offer compelling advan-
tages over traditional SHM methods: automated 
detection of subtle damage patterns in Lamb 
wave signals that human operators might miss, 
real-time processing of high-frequency ultrasonic 
data streams. Studies have demonstrated that op-
timal particle loadings can improve fatigue life 
by up to eight times in thermoplastic composites, 
while multi-scale approaches combining nano 
and macro reinforcements show improvements 
in fracture toughness [9–11]. The emergence of 
recent progresses in artificial intelligence (AI) 
and deep learning has provided an opportunity to 
come up with effective, data-driven business acu-
men capable of diagnosing and predicting fatigue 
in composite materials [12, 13].

The need to develop a fatigue prediction ca-
pability in the PMCs is provoked by the growing 
level of demand in the application of cost-effec-
tive and dependable SHM systems in engineering 
applications. Failure can occur in the structure 
because of unidentified fatigue damage resulting 
in disastrous effect especially to the aerospace 
industry and automotive industry where safety is 
much needed [13]. The predictive maintenance 
strategies, used when the stiffness degradation 
and fatigue damage are detected early, reducing 
the downtime in the operation and minimizing 
the prices spent on maintenance [14]. This paper 
describes an effective approach using artificial 
neural networks in predicting fatigues in poly-
mer matrix composites. Unlike existing meth-
odologies that rely on traditional time-domain 
or frequency-domain analysis, this research in-
troduces a sophisticated time-frequency repre-
sentation through scalogram transformation. The 
validation through extensive datasets from Stan-
ford Structures and Composites Laboratory and 
NASA Ames Research Center aims to bench-
mark for predictive maintenance technologies in 
composite materials.

RELATED WORKS

When the applications of a range of different 
machine learning (ML) regression models were 
explored, combined with materials informatics, to 
make predictions of post-fatigue residual strength 
of CFRPs and GFRPs. The training of the model 
was done by the ten fatigue-related features (clas-
sified by material, testing, manufacturing, and 
composite properties). The experiment involved 

contrasting the regressors which included a lin-
ear, non-linear, decision tree, ensemble, support 
vector and ANN. R 2, MAE, MedAE, and RMSE 
were used as a measure of performance. Con-
clusions indicated that Multi-Layer Perceptron 
(MLP) was found accurate in terms of R 2, which 
gave 0.88 and 0.95 on the validation and test data 
respectively [15].

Underpinning fatigue life prediction meth-
ods of CFRP composites characterised semi-em-
pirical methods, the finite element approaches, 
non-destructive testing (NDT)-related methods, 
and data-driven methods [5]. All the methods, 
their pros, cons, and usability are discussed. 
Semi-empirical models provide quick estima-
tions at the cost of low flexibility in using a wide 
range of materials and constructions. The finite 
element methods can accommodate complicat-
ed geometries, whereas they need a significant 
number of experiments to be calibrated. The 
methods, which are based on NDT technology, 
allow the assessment of fatigue damage quickly, 
with the evaluation of its accuracy of correla-
tion with the types of fatigue damage being the 
remaining problem. Modeling based on past re-
cords exploits past information at the expense 
of being unable to sieve out fatigue-related data. 
New fast prediction techniques are also dis-
cussed in the review.

To estimate a laminated composite fatigue 
life, ANN- integrated and non-dominated sort-
ing genetic algorithm (NSGA-II) were integrated 
[16]. The model has been trained using experi-
mental carbon/epoxy composite data, which con-
sists of 14 cases where the loading level varied 
and stress concentration and stacking sequences. 
On test and validation sets, the ANN-NSGA-II 
model produced R2 scores of 88 percent and 90 
percent, respectively. With data augmentation, 
the scores amounted to 97% and 98%. 

The effectiveness of deep neural networks 
(DNN) was considered to create a data informed 
failure model of Fiber-reinforced Polymer (FRP) 
composites [17]. The model was trained on ex-
perimental failure data on laminates to biaxial and 
triaxial stresses based on a fully connected DNN 
architecture with 20 input units and one output 
unit. The length of the failure vector in the zone 
was the output and the inputs included the loading 
condition, the properties of lamina and the layup 
sequence of the laminate. The DNN model poten-
tial was shown to perform accurate failure predic-
tion in FRP composites due to the comparison of 
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the DNN-based failure boundary with other well-
known theories regarding failure predictions such 
as the Tsai1971TsaiWu, CuntzeCuntze. The DNN 
model gave more satisfactory predictions.

Determining the issues of damage in car-
bon fiber reinforced plastics (CFRP) composites 
that suffer because of their extreme anisotropy 
and multifaceted failure modes [18]. In order 
to overcome the drawbacks of data-driven ap-
proaches, lacking physical interpretability, and 
relying on experimental data, the authors inte-
grate monitoring data and physical modeling of 
simulation tasks by simulating CFRP structures 
in diverse damage states numerically. Experi-
mental and simulated data are then combined 
using deep transfer learning model to fix the dis-
crepancies between them.

Existing algorithms reported in the compos-
ites literature have not been tested for their ef-
fectiveness in stiffness or fatigue prediction in 
polymer matrices but only in pre-filled or hybrid 
composite systems. Prior studies have compared 
neural networks with models for axial load capac-
ity prediction in concrete columns with fiber-rein-
forced plastic (FRP) [19] and have examined ten-
sile and impact strength in natural fiber/aluminum 
oxide polymer nanocomposites, delamination 
and thrust force in glass-reinforced (GLARE) 
laminates using machine-learning (ML) models, 
and fractographic analysis in FRP laminates for 
marine applications [20], Similar computational 
techniques were used to assess fiber volume frac-
tion effects on hybrid tensile properties [21], 
low-velocity impact in hybrid laminates [22], di-
electric property prediction in banana-fiber-filled 
polypropylene composites using ANN [23], and 
steel fiber composites with brittle and ductile ma-
trices [24]. These illustrate the range of ways in 
which AI/ML have been used to assess the per-
formance parameters of composites without deg-
radation using adversarial transformer and multi-
domain attention aggregation network (MDAAN) 
architectures [25, 26].

Methods for distinguishing normal from 
anomalous composite behavior during fatigue 
testing that combine convolutional feature extrac-
tion using AlexNet with minimum redundancy–
maximum relevance (MRMR) optimization and 
ensemble learning have been found to have area-
under-the-curve (AUC) values approaching 0.997 
and overall accuracy rates of 99.8% [26, 27]. We 
therefore tested the effectiveness of advanced 
ML architectures–including wavelet-based 

convolutional neural networks (WVD-CNNs), 
adversarial transformer networks, and MDAANs 
– to detect fatigue and predict stiffness degrada-
tion in polymer matrix composites.

METHOD

We feature time-frequency representation 
of sensor signal through Continuous Wavelet 
Transform (CWT)-based scalogram generation 
by extracting features with the assistance of sca-
logram transformation. Scalogram is an efficient 
method of extraction time-frequency feature 
and has various merits. It allows monitoring of 
changes in both time and domain frequency, thus 
it is of great use in analyzing nonlinear and non-
stationary signals.

The schematic diagram of the proposed 
method is presented in Figure 1. The complete 
pipeline follows this sequence: (1) PZT actua-
tor generates 5-cycle Hanning-windowed tone-
burst at 50kHz, (2) sensor captures Lamb wave 
response at 1 MHz sampling rate, (3) signals 
segmented into 1024-sample windows with 
50% overlap, (4) CWT applied using Complex 
Morlet wavelet (ω₀ = 6) with 64 scales spanning 
1-500 kHz, (5) resulting scalograms resized to 
227×227×3 RGB format, (6) pre-trained AlexNet 
extracts 4096 features from fc7 layer, (7) MRMR 
selects top 500 features based on mutual infor-
mation criteria, (8) ensemble bagging classifier 
(Random Forest with 100 trees) performs binary 
classification (Figure 2).

In Figure 3 the sample of actuator signal, to-
gether with the associated sensor response, that 
was captured on the CFRP dataset is displayed. 
To carry out the extraction of features of these re-
corded signals, Scalogram of Continuous Wave-
let Transform (SCOT) of scalogram transforma-
tion is carried out to facilitate fatigue detection in 
CFRP composites, as detailed below. 

Extracting cwt-based time-frequency 
features from sensor signals

The time-frequency domain transformations 
are essential to pattern recognition methods. By 
employing fundamental wavelet functions, this 
model transforms nonstationary signals, and ac-
tuator signals – into a time-frequency spectro-
gram. The continuous wavelet transform (CWT) 
is mathematically defined as follows.
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Figure 1. Schematic of the proposed method for stiffness and fatigue detection in composite materials

Figure 2. Ultrasonic guided wave propagation using PZT actuator and receiver
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where:	s(t) denotes the finite-energy input signal 
(sensor or actuator signal); 

	 ψ(·) represents the complex conjugate of 
the mother wavelet function*; 

	 a is the scaling parameter that controls 
the width of the wavelet (frequency 
resolution); 

	 b is the translation parameter that con-
trols the time localization of the wavelet; 
Z(a,b) is the resulting wavelet coefficient 
at scale a and position b.

For this study, the Complex Morlet mother 
wavelet ψ(t) = π^(-1/4) exp(iω₀t) exp(-t²/2) 
with central frequency ω₀ = 6 was selected 
based on its optimal time-frequency resolution 

for Lamb wave analysis. The scale parameter 
‘a’ ranges from 1 to 64 in logarithmic steps, 
corresponding to frequency range 0.8–50 kHz 
suitable for A₀ and S₀ mode detection. The 
translation parameter ‘b’ shifts across the en-
tire signal duration with sampling interval Δt 
= 1 μs. Figure 4 illustrates an example of a 
received sensor signal and its corresponding 
scalogram. In general, scalogram transfor-
mation, by combining the benefits of precise 
time-frequency analysis and dynamic change 
detection, serves as an ideal tool for diagnos-
ing damage in composites. The extracted time-
frequency patterns from this transformation 
are provided to deep networks for feature ex-
traction and final classification, enabling the 
detection of fatigue and structural defects in 
composite materials.
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Feature extraction using deep neural 	
network AlexNet

These scalogram images are then sup-
plied to a transfer-learning implementation of 
AlexNet. In this study, the convolutional layers 
conv1–conv5 were frozen to retain ImageNet 
pre-trained weights, while the fully connect-
ed layers fc6 and fc7 were fine-tuned using a 
learning rate of 0.001, momentum of 0.9, and a 
dropout probability of 0.5. To adapt the model 
for binary classification, the original fc8 layer 
was replaced with a two-node Softmax output 
layer. Training proceeded for a maximum of 50 
epochs, with early stopping based on the stabi-
lization of validation loss. Following this stage, 
the 4096-dimensional feature vectors extracted 

from fc7 were further refined through feature 
selection. The architecture of AlexNet is depict-
ed in Figure 5. 

Feature selection based on MRMR algorithm

The process of carefully selecting a smaller 
subset of features from a larger set by removing 
redundant and unnecessary attributes is known 
as feature selection. The minimum redundancy 
maximum relevance (MRMR) algorithm is em-
ployed for this purpose.

With the use of mutual information, it calcu-
lates how similar two variables are. The follow-
ing formula can be used to find the mutual infor-
mation between two variables, X and Y:

Figure 3. Sample of actuator and sensor signals from the CFRP dataset

Figure 4. Sample segmented vibration signal and corresponding scalogram
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[𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐) − 1
𝑚𝑚 − 1 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥 𝜖𝜖 𝑆𝑆𝑚𝑚−1

] 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹  

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

 
 
 

	 (3)

where:	S represents the feature set; |S| denotes the 
number of selected features; xi represents 
an individual feature; c represents the 
class labels; I (xi; c) measures the mutual 
information between each feature and its 
corresponding class label.

Minimum redundancy criterion

This criterion, which is expressed as follows, 
guarantees that the correlation between chosen 
features is reduced to a minimum:

	

𝑍𝑍(𝑎𝑎. 𝑏𝑏) = 1
√𝑎𝑎

∫ 𝑠𝑠(𝑡𝑡)𝜓𝜓∗ (𝑡𝑡 − 𝑏𝑏
𝑎𝑎 ) 𝑑𝑑𝑑𝑑 

∞

−∞
 

 
 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∑ ∑ 𝑝𝑝(𝑥𝑥. 𝑦𝑦) log 𝑝𝑝(𝑥𝑥. 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

𝑦𝑦∈𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷(𝑆𝑆. 𝑐𝑐). 𝐷𝐷 = 1
|𝑆𝑆| ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑐𝑐)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅(𝑆𝑆). 𝑅𝑅 = 1
|𝑆𝑆|2 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥. 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥.𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆
 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑆𝑆𝑚𝑚−1 

[𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐) − 1
𝑚𝑚 − 1 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥 𝜖𝜖 𝑆𝑆𝑚𝑚−1

] 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹  

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

 
 
 

	 (4)

where:	R(S) quantifies the redundancy within 
the feature set S; I(x_i, x_j) measures the 
mutual information between features x_i 
and x_j and the double summation con-
siders all pairwise combinations of fea-
tures in set S.

In real-world scenarios, approximately opti-
mal feature subsets are found using incremental 
search techniques. To identify the optimal feature 
subset S_m with m features from the previous 
subset with m-1 features, the subset Sm–1 is com-
puted utilizing the following equation:

	

𝑍𝑍(𝑎𝑎. 𝑏𝑏) = 1
√𝑎𝑎

∫ 𝑠𝑠(𝑡𝑡)𝜓𝜓∗ (𝑡𝑡 − 𝑏𝑏
𝑎𝑎 ) 𝑑𝑑𝑑𝑑 

∞

−∞
 

 
 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∑ ∑ 𝑝𝑝(𝑥𝑥. 𝑦𝑦) log 𝑝𝑝(𝑥𝑥. 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

𝑦𝑦∈𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷(𝑆𝑆. 𝑐𝑐). 𝐷𝐷 = 1
|𝑆𝑆| ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑐𝑐)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅(𝑆𝑆). 𝑅𝑅 = 1
|𝑆𝑆|2 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥. 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥.𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆
 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑆𝑆𝑚𝑚−1 

[𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐) − 1
𝑚𝑚 − 1 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥 𝜖𝜖 𝑆𝑆𝑚𝑚−1

] 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹  

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

 
 
 

	 (5)

where:	X represents the complete feature space; 
X - S_{m-1} represents features not yet 
selected; x_j is a candidate feature for ad-
dition to the current subset; the first term 
I(x_j; c) represents the relevance of can-
didate feature x_j and the second term 

Figure 5. Structure of the AlexNet deep neural network
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represents the average redundancy of x_j 
with respect to already selected features.

The ensemble employs Random Forest bag-
ging algorithm with the following specifications: 
100 decision trees with maximum depth limited 
to √500 ≈ 22 levels, bootstrap aggregating with 
replacement sampling, feature subsampling using 
√500 ≈ 22 randomly selected features per node 
split, Gini impurity criterion for split optimiza-
tion, and majority voting aggregation for final bi-
nary decision (Normal vs. Anomaly).

RESULTS

The image resolution resized to 227 × 227 × 
3 pixels, ensuring that significant regions of inter-
est within the scalogram images are retained. In 
the simulations, 70% of the scalogram images are 
used to train the AlexNet network.

AlexNet’s convolutional layers are used to 
capture 1.000 features from every scalogram 
image. Subsequently, the MRMR algorithm re-
duces the feature set to 500 optimal features, 
which are then classified using the ensemble 
learning algorithm. 

Evaluation metrics

To assess the performance of the proposed 
method, several standard classification metrics are 
used, including Accuracy, Precision, Recall, and 
F1-score. These metrics provide a comprehensive 
evaluation of the model’s ability to distinguish be-
tween healthy and fatigued composite samples.

Accuracy: Represents the proportion of cor-
rectly classified samples to the total number of 
samples and is calculated as follows:

	

𝑍𝑍(𝑎𝑎. 𝑏𝑏) = 1
√𝑎𝑎

∫ 𝑠𝑠(𝑡𝑡)𝜓𝜓∗ (𝑡𝑡 − 𝑏𝑏
𝑎𝑎 ) 𝑑𝑑𝑑𝑑 

∞

−∞
 

 
 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∑ ∑ 𝑝𝑝(𝑥𝑥. 𝑦𝑦) log 𝑝𝑝(𝑥𝑥. 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

𝑦𝑦∈𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷(𝑆𝑆. 𝑐𝑐). 𝐷𝐷 = 1
|𝑆𝑆| ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑐𝑐)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅(𝑆𝑆). 𝑅𝑅 = 1
|𝑆𝑆|2 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥. 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥.𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆
 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑆𝑆𝑚𝑚−1 

[𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐) − 1
𝑚𝑚 − 1 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥 𝜖𝜖 𝑆𝑆𝑚𝑚−1

] 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹  

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

 
 
 

	 (6)

where:	 TP (True Positive): The number of correct-
ly classified Anomaly samples; TN (True 
Negative): The number of correctly classi-
fied Normal samples; FP (False Positive): 
The number of incorrectly classified Nor-
mal samples as Anomaly; FN (False Nega-
tive): The number of incorrectly classified 
Anomaly samples as Normal.

Precision: Represents the proportion of cor-
rectly classified positive samples among all pre-
dicted positive samples and is given by:

	

𝑍𝑍(𝑎𝑎. 𝑏𝑏) = 1
√𝑎𝑎

∫ 𝑠𝑠(𝑡𝑡)𝜓𝜓∗ (𝑡𝑡 − 𝑏𝑏
𝑎𝑎 ) 𝑑𝑑𝑑𝑑 

∞

−∞
 

 
 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∑ ∑ 𝑝𝑝(𝑥𝑥. 𝑦𝑦) log 𝑝𝑝(𝑥𝑥. 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

𝑦𝑦∈𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷(𝑆𝑆. 𝑐𝑐). 𝐷𝐷 = 1
|𝑆𝑆| ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑐𝑐)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅(𝑆𝑆). 𝑅𝑅 = 1
|𝑆𝑆|2 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥. 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥.𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆
 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑆𝑆𝑚𝑚−1 

[𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐) − 1
𝑚𝑚 − 1 ∑ 𝐼𝐼(𝑥𝑥𝑥𝑥; 𝑥𝑥𝑥𝑥)

𝑥𝑥𝑥𝑥 𝜖𝜖 𝑆𝑆𝑚𝑚−1

] 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹  

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

 
 
 

	 (7)

Recall: shows the percentage of all real pos-
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Convergence analysis for different 	
numbers of learners

Experiments were conducted with different 
numbers of learners. Figure 6 illustrates the con-
vergence curve of the training process for various 
numbers of learners.

In this figure, the x-axis represents the num-
ber of learners (classifiers) and the y-axis repre-
sents the classification accuracy. As observed in 
Figure 6, increasing the number of classifiers en-
hances the accuracy of the learning process. This 
convergence curve validates the effectiveness of 
the proposed method in accurately classifying 
sensor signals, ensuring the robust performance 
of the proposed model in fatigue detection.

Confusion matrix analysis 			 
in data classification

The confusion matrix for fatigue detection in 
polymer composites is shown in Figure 7. The 
received sensor signals are classified into two 
categories: Anomaly and Normal. Any stiffness 
degradation or fatigue in polymer composites is 
identified by classifying sensor signals under the 
Anomaly category. The confusion matrix consists 
of true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN). A high TP 
rate and a low FP rate indicate that the model ef-
fectively detects fatigued composite samples with 
minimal classification errors.
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The confusion matrix demonstrates excel-
lent model performance in distinguishing be-
tween Anomaly and Normal composite sam-
ples. The confusion matrix reveals: 465 Anom-
aly samples (100.0% correctly classified), 440 
Normal samples (99.5% correctly classified, 2 
samples or 0.5% misclassified as Anomaly), 
yielding True Positive Rate = 465/465 = 100%, 
True Negative Rate = 440/442 = 99.5%, False 

Positive Rate = 2/442 = 0.5%, and False Neg-
ative Rate = 0/465 = 0%. The overall model 
accuracy based on these values is calculated 
as 99.8%, highlighting the model’s high reli-
ability in detecting composite material fatigue. 
Furthermore, the false negative rate (FNR) 
is approximately 0.4%, indicating that only 
a few Normal samples were misclassified as 
Anomaly.

Figure 6. Convergence curve of the ensemble learning technique for different numbers of learners

Figure 7. Confusion matrix for fatigue classification in polymer composites
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Evaluation of the receiver operating 
characteristic (ROC) curve

The ROC curve of the proposed method is 
presented in Figure 8. This curve shows the ac-
curacy of the provided classifier in varied clas-
sification thresholds; true positive rate (TPR) v/s 
false positive (FPR). By plotting TPR versus FPR 
for all possible thresholds, the trade-off between 
these two metrics can be analyzed. A high TPR 
and a low FPR for the suggested approach are in-
dicated by the curve’s breakpoint, which is situat-
ed in the upper-left corner of the plot in Figure 8. 
In contrast, for a weak classifier, the breakpoint 
would be located toward the bottom-right corner 
of the ROC curve, where TPR is low and FPR is 
high. Furthermore, since a random classifier gives 
equal probabilities to TPR and FPR, its break-
point would be located along the ROC curve’s 
diagonal line. The area under the curve (AUC) 
in the ROC diagram quantifies the model’s abil-
ity to distinguish between different data classes. 
The closer the breakpoint is to the top-left corner, 
the higher the AUC value, indicating a stronger 
classification performance. The proposed method 
achieves an AUC value of 0.9973, demonstrating 
its high efficiency in distinguishing between the 
two data classes. 

The AUC confidence interval, calculated using 
DeLong’s method with bootstrap resampling (n = 
1000), yields 0.9973 [95% CI: 0.9962–0.9981], 
confirming statistically significant discrimina-
tion capability with p < 0.001 compared to ran-
dom classifier baseline. The proposed method vs. 
FFT+SVM showed mean accuracy difference of 
12.3% ± 1.8% [t(9) = 6.83, p < 0.001]; proposed 

method vs. Raw signal+RF showed mean accu-
racy difference of 8.7% ± 1.2%, [t(9) = 7.25, p 
< 0.001] and proposed method vs. STFT+CNN 
showed mean accuracy difference of 5.4% ± 0.9% 
[(9) = 6.00, p < 0.001]. Cohen’s d effect sizes ex-
ceed 2.0 for all comparisons.

Comparison of the proposed method 		
with recent studies

To further validate the effectiveness of the 
proposed method, a comparative study was con-
ducted against recent methods from the literature. 
Figure 9 illustrates the performance comparison 
of the proposed method in terms of Precision, 
Recall, and F1-score. The performance is com-
pared with state-of-the-art algorithms, including: 
WVD-CNN 9 (Wigner-Ville Distribution), ACR-
DSVDD (Adaptive Centered Representation 
with Deep-SVDD), adversarial transformer and 
MDAAN (multiple domain adaptive and adver-
sarial network). The proposed model achieves the 
highest values of 99.78% for Precision, 99.77% 
for Recall, and 99.77% for F1-score, outperform-
ing all the benchmark methods across all evalu-
ation metrics. The multi-dimensional radar chart 
shows a perfect pentagon near the outer edge of 
the performance space while other methods ex-
hibit irregular polygons with varying strengths 
and weaknesses. Furthermore, t-test analysis con-
firms that performance improvements achieve 
statistically significant results.

Figure 8. The ROC curve for proposed method
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DISCUSSION

Polymer matrix composites, particularly 
CFRP, have achieved been adopted across aero-
space, automotive, and marine sectors owing to 
their exceptional strength-to-weight ratios and 
superior corrosion resistance. However, their sus-
ceptibility to fatigue-induced degradation can pre-
cipitate structural failures if undetected. Contem-
porary non-destructive evaluation methodologies 
define deficiencies in detecting incipient fatigue 
damage, particularly when confronted with the 
non-stationary signals characteristic of ultrasonic 
guided wave propagation in composite structures. 
Recent advances in micromechanical modeling 
have shown that temperature-dependent effective 
moduli can be predicted by considering interfa-
cial debonding evolution, while deep learning ap-
proaches using convolutional autoencoders and 
neural ODEs have demonstrated superior capa-
bility in processing guided wave information for 
fatigue damage characterization [16, 28, 29].

The confusion matrix analysis reveals excep-
tionally low false negative rates (FNR ~ 0.4%) 
with 100% true positive and 99.5% true negative 
classifications, indicating only two misclassified 
samples. This diagnostic precision is critical for 
safety-critical applications where undetected fa-
tigue damage can lead to catastrophic failures. 
The literature demonstrates that composite mate-
rials exhibit complex failure modes influenced by 
manufacturing processes, environmental condi-
tions, and material architecture. Studies on addi-
tively manufactured composites show significant 
variations in strength and ductility based on print 
direction and recycled material content, while 
natural fiber composites demonstrate improved 
fatigue strength under hydrothermal aging de-
spite reduced quasi-static properties [30–32].

The integration of advanced AI-driven diag-
nostic capabilities with physics-informed con-
straints addresses the need for interpretable struc-
tural health monitoring [16, 29]. The high AUC 
value attained indicates exceptional classifier 
performance across the tested threshold settings 

Figure 9. Comparison of results based on the mean values of Precision, Recall, and F1-score
across different layup configurations
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during preload relaxation in bolted connections 
to dynamic meshing forces in PEEK-based in-
volute spline systems. Consistent with this find-
ing, recent accelerated degradation models have 
shown prediction errors remaining stable within 
0.5% over 500 hours [33, 34]. The integration of 
predictive maintenance strategies with advanced 
material design principles represents a significant 
step toward autonomous structural health man-
agement in next-generation composite applica-
tions across aerospace, automotive, and biomedi-
cal sectors [9, 35].

CONCLUSIONS

This study demonstrates the efficacy of in-
tegrating continuous wavelet transform-based 
scalogram generation with AlexNet CNNs to 
predict fatigue in polymer composites. This 
improves upon existing SHM methodologies 
by optimizing feature extraction using MRMR 
algorithms and increasing computational effi-
ciency through ensemble learning approaches. 
However, the computational overhead – 847 ms 
per classification cycle on standard GPU archi-
tectures – limits the real-time use in resource-
constrained aerospace applications. Depen-
dence on specific sensor modalities (e.g., Lamb 
wave transducers) also diminishes sensitivity to 
measurement noise, and the scalability across 
large-scale composite structures with altered 
geometries remains untested.

Future research should use physics-in-
formed neural networks, into which the govern-
ing equations of wave propagation have been 
embedded. Hybrid modeling approaches that 
combine high-fidelity simulations with experi-
mental datasets are another promising direction, 
especially for research examining multiple con-
current damage mechanisms.
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