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ABSTRACT

Determining fatigue and stiffness in polymer matrix composites helps with assessing their structural stability
and longevity. We propose a model based on deep learning that uses attention aggregation networks to detect
fatigue damage in composite materials, combining feature extraction, ensemble learning, and time — frequency
analysis. First, sensor data are converted to scalogram images through continuous wavelet transforms to capture
the complex, non-stationary features of Lamb wave data. These scalograms are then analyzed using AlexNet — a
deep convolutional neural network (CNN) used is a transfer-learning approach with a pre-trained architecture — to
obtain high-level spatial information with a low likelihood of overfitting due to data augmentation and dropout
procedures. A minimum redundancy — maximum relevance (MRMR) algorithm is then used to clarify the relation-
ships between the extracted features and both the fatigue states and optimal feature space. Finally, an ensemble
learning technique is used to make the classification generalizable. Thus, we combine time—frequency feature ex-
traction, CNN-based deep feature learning, MRMR feature optimization, and ensemble classification into a single
pipeline to predict fatigue and stiffness in polymer matrix composites, achieving accuracy in excess of 99.77% on
controlled laboratory datasets using CFRP specimens under Lamb wave interrogation.

Keywords: fatigue prediction, polymer matrix composite, artificial neural networks continuous wavelet trans-
form, deep learning.

INTRODUCTION fields, especially aerospace, automotive and
structure applications, on account of their high
strength-weight ratio, resistance to corrosion and

durability [6]. These materials are, however, vul-

Experimenting with polymer matrix compos-
ites has expanded knowledge on their mechani-

cal behavior under diverse loading conditions,
from temperature-induced buckling phenomena
in thin-walled profiles[1] to dynamic impact re-
sponses in fiber-reinforced systems [2], while
simultaneous investigations into surface topog-
raphy characterization [3] and unconventional
joining methodologies have [4] illuminated the
complex interplay between material architecture
and structural performance [5].

The polymer matrix composites (PMCs) have
become eminent in a varied range of engineering
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nerable to fatigue related damage thus undermin-
ing structural integrity in the long run. Due to
the safety and reliability of the composite based
structures, proper modeling of the degradation of
stiffness and fatigue property is critical in PMCs
[7, 8]. Conventional fatigue testing techniques
(including destructive tests, and conventional
non-destructive evaluation (NDE) techniques are
not relevant because they are time consuming in
terms of laboratory analysis and inapplicable to
real-time structural health monitoring (SHM).
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Al-driven approaches offer compelling advan-
tages over traditional SHM methods: automated
detection of subtle damage patterns in Lamb
wave signals that human operators might miss,
real-time processing of high-frequency ultrasonic
data streams. Studies have demonstrated that op-
timal particle loadings can improve fatigue life
by up to eight times in thermoplastic composites,
while multi-scale approaches combining nano
and macro reinforcements show improvements
in fracture toughness [9—11]. The emergence of
recent progresses in artificial intelligence (Al)
and deep learning has provided an opportunity to
come up with effective, data-driven business acu-
men capable of diagnosing and predicting fatigue
in composite materials [12, 13].

The need to develop a fatigue prediction ca-
pability in the PMCs is provoked by the growing
level of demand in the application of cost-effec-
tive and dependable SHM systems in engineering
applications. Failure can occur in the structure
because of unidentified fatigue damage resulting
in disastrous effect especially to the aerospace
industry and automotive industry where safety is
much needed [13]. The predictive maintenance
strategies, used when the stiffness degradation
and fatigue damage are detected early, reducing
the downtime in the operation and minimizing
the prices spent on maintenance [14]. This paper
describes an effective approach using artificial
neural networks in predicting fatigues in poly-
mer matrix composites. Unlike existing meth-
odologies that rely on traditional time-domain
or frequency-domain analysis, this research in-
troduces a sophisticated time-frequency repre-
sentation through scalogram transformation. The
validation through extensive datasets from Stan-
ford Structures and Composites Laboratory and
NASA Ames Research Center aims to bench-
mark for predictive maintenance technologies in
composite materials.

RELATED WORKS

When the applications of a range of different
machine learning (ML) regression models were
explored, combined with materials informatics, to
make predictions of post-fatigue residual strength
of CFRPs and GFRPs. The training of the model
was done by the ten fatigue-related features (clas-
sified by material, testing, manufacturing, and
composite properties). The experiment involved

contrasting the regressors which included a lin-
ear, non-linear, decision tree, ensemble, support
vector and ANN. R 2, MAE, MedAE, and RMSE
were used as a measure of performance. Con-
clusions indicated that Multi-Layer Perceptron
(MLP) was found accurate in terms of R 2, which
gave 0.88 and 0.95 on the validation and test data
respectively [15].

Underpinning fatigue life prediction meth-
ods of CFRP composites characterised semi-em-
pirical methods, the finite element approaches,
non-destructive testing (NDT)-related methods,
and data-driven methods [5]. All the methods,
their pros, cons, and usability are discussed.
Semi-empirical models provide quick estima-
tions at the cost of low flexibility in using a wide
range of materials and constructions. The finite
element methods can accommodate complicat-
ed geometries, whereas they need a significant
number of experiments to be calibrated. The
methods, which are based on NDT technology,
allow the assessment of fatigue damage quickly,
with the evaluation of its accuracy of correla-
tion with the types of fatigue damage being the
remaining problem. Modeling based on past re-
cords exploits past information at the expense
of being unable to sieve out fatigue-related data.
New fast prediction techniques are also dis-
cussed in the review.

To estimate a laminated composite fatigue
life, ANN- integrated and non-dominated sort-
ing genetic algorithm (NSGA-II) were integrated
[16]. The model has been trained using experi-
mental carbon/epoxy composite data, which con-
sists of 14 cases where the loading level varied
and stress concentration and stacking sequences.
On test and validation sets, the ANN-NSGA-II
model produced R? scores of 88 percent and 90
percent, respectively. With data augmentation,
the scores amounted to 97% and 98%.

The effectiveness of deep neural networks
(DNN) was considered to create a data informed
failure model of Fiber-reinforced Polymer (FRP)
composites [17]. The model was trained on ex-
perimental failure data on laminates to biaxial and
triaxial stresses based on a fully connected DNN
architecture with 20 input units and one output
unit. The length of the failure vector in the zone
was the output and the inputs included the loading
condition, the properties of lamina and the layup
sequence of the laminate. The DNN model poten-
tial was shown to perform accurate failure predic-
tion in FRP composites due to the comparison of
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the DNN-based failure boundary with other well-
known theories regarding failure predictions such
as the Tsa11971TsaiWu, CuntzeCuntze. The DNN
model gave more satisfactory predictions.

Determining the issues of damage in car-
bon fiber reinforced plastics (CFRP) composites
that suffer because of their extreme anisotropy
and multifaceted failure modes [18]. In order
to overcome the drawbacks of data-driven ap-
proaches, lacking physical interpretability, and
relying on experimental data, the authors inte-
grate monitoring data and physical modeling of
simulation tasks by simulating CFRP structures
in diverse damage states numerically. Experi-
mental and simulated data are then combined
using deep transfer learning model to fix the dis-
crepancies between them.

Existing algorithms reported in the compos-
ites literature have not been tested for their ef-
fectiveness in stiffness or fatigue prediction in
polymer matrices but only in pre-filled or hybrid
composite systems. Prior studies have compared
neural networks with models for axial load capac-
ity prediction in concrete columns with fiber-rein-
forced plastic (FRP) [19] and have examined ten-
sile and impact strength in natural fiber/aluminum
oxide polymer nanocomposites, delamination
and thrust force in glass-reinforced (GLARE)
laminates using machine-learning (ML) models,
and fractographic analysis in FRP laminates for
marine applications [20], Similar computational
techniques were used to assess fiber volume frac-
tion effects on hybrid tensile properties [21],
low-velocity impact in hybrid laminates [22], di-
electric property prediction in banana-fiber-filled
polypropylene composites using ANN [23], and
steel fiber composites with brittle and ductile ma-
trices [24]. These illustrate the range of ways in
which AI/ML have been used to assess the per-
formance parameters of composites without deg-
radation using adversarial transformer and multi-
domain attention aggregation network (MDAAN)
architectures [25, 26].

Methods for distinguishing normal from
anomalous composite behavior during fatigue
testing that combine convolutional feature extrac-
tion using AlexNet with minimum redundancy—
maximum relevance (MRMR) optimization and
ensemble learning have been found to have area-
under-the-curve (AUC) values approaching 0.997
and overall accuracy rates of 99.8% [26, 27]. We
therefore tested the effectiveness of advanced
ML  architectures—including  wavelet-based
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convolutional neural networks (WVD-CNNs),
adversarial transformer networks, and MDAANs
— to detect fatigue and predict stiffness degrada-
tion in polymer matrix composites.

METHOD

We feature time-frequency representation
of sensor signal through Continuous Wavelet
Transform (CWT)-based scalogram generation
by extracting features with the assistance of sca-
logram transformation. Scalogram is an efficient
method of extraction time-frequency feature
and has various merits. It allows monitoring of
changes in both time and domain frequency, thus
it is of great use in analyzing nonlinear and non-
stationary signals.

The schematic diagram of the proposed
method is presented in Figure 1. The complete
pipeline follows this sequence: (1) PZT actua-
tor generates 5-cycle Hanning-windowed tone-
burst at 50kHz, (2) sensor captures Lamb wave
response at 1 MHz sampling rate, (3) signals
segmented into 1024-sample windows with
50% overlap, (4) CWT applied using Complex
Morlet wavelet (mo = 6) with 64 scales spanning
1-500 kHz, (5) resulting scalograms resized to
227%227%3 RGB format, (6) pre-trained AlexNet
extracts 4096 features from fc7 layer, (7) MRMR
selects top 500 features based on mutual infor-
mation criteria, (8) ensemble bagging classifier
(Random Forest with 100 trees) performs binary
classification (Figure 2).

In Figure 3 the sample of actuator signal, to-
gether with the associated sensor response, that
was captured on the CFRP dataset is displayed.
To carry out the extraction of features of these re-
corded signals, Scalogram of Continuous Wave-
let Transform (SCOT) of scalogram transforma-
tion is carried out to facilitate fatigue detection in
CFRP composites, as detailed below.

Extracting cwt-based time-frequency
features from sensor signals

The time-frequency domain transformations
are essential to pattern recognition methods. By
employing fundamental wavelet functions, this
model transforms nonstationary signals, and ac-
tuator signals — into a time-frequency spectro-
gram. The continuous wavelet transform (CWT)
is mathematically defined as follows.
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Z(a.b) = Tlaf_zs(t)w* (%) ()

where: s() denotes the finite-energy input signal
(sensor or actuator signal);
y(-) represents the complex conjugate of
the mother wavelet function*®;
a is the scaling parameter that controls
the width of the wavelet (frequency
resolution);
b is the translation parameter that con-
trols the time localization of the wavelet;
Z(a,b) is the resulting wavelet coefficient
at scale a and position b.

For this study, the Complex Morlet mother
wavelet y(t) = n(-1/4) exp(imot) exp(-t*/2)
with central frequency wo = 6 was selected
based on its optimal time-frequency resolution
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for Lamb wave analysis. The scale parameter
‘a’ ranges from 1 to 64 in logarithmic steps,
corresponding to frequency range 0.8-50 kHz
suitable for Ao and So mode detection. The
translation parameter ‘b’ shifts across the en-
tire signal duration with sampling interval At
= 1 ps. Figure 4 illustrates an example of a
received sensor signal and its corresponding
scalogram. In general, scalogram transfor-
mation, by combining the benefits of precise
time-frequency analysis and dynamic change
detection, serves as an ideal tool for diagnos-
ing damage in composites. The extracted time-
frequency patterns from this transformation
are provided to deep networks for feature ex-
traction and final classification, enabling the
detection of fatigue and structural defects in
composite materials.
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Figure 1. Schematic of the proposed method for stiffness and fatigue detection in composite materials
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Figure 2. Ultrasonic guided wave propagation using PZT actuator and receiver
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Figure 3. Sample of actuator and sensor signals from the CFRP dataset

Feature extraction using deep neural
network AlexNet

These scalogram images are then sup-
plied to a transfer-learning implementation of
AlexNet. In this study, the convolutional layers
convl—conv5 were frozen to retain ImageNet
pre-trained weights, while the fully connect-
ed layers fc6 and fc7 were fine-tuned using a
learning rate of 0.001, momentum of 0.9, and a
dropout probability of 0.5. To adapt the model
for binary classification, the original fc8 layer
was replaced with a two-node Softmax output
layer. Training proceeded for a maximum of 50
epochs, with early stopping based on the stabi-
lization of validation loss. Following this stage,
the 4096-dimensional feature vectors extracted
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from fc7 were further refined through feature
selection. The architecture of AlexNet is depict-
ed in Figure 5.

Feature selection based on MRMR algorithm

The process of carefully selecting a smaller
subset of features from a larger set by removing
redundant and unnecessary attributes is known
as feature selection. The minimum redundancy
maximum relevance (MRMR) algorithm is em-
ployed for this purpose.

With the use of mutual information, it calcu-
lates how similar two variables are. The follow-
ing formula can be used to find the mutual infor-
mation between two variables, X and Y:

Scalogram
Percentage of energy for each wavelet coefficient
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Time b
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Figure 4. Sample segmented vibration signal and corresponding scalogram
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Figure 5. Structure of the AlexNet deep neural network
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where: /(X;Y) represents the mutual information
between variables X and Y; p(x,)) repre-
sents the joint probability density func-
tion of variables X and Y and p(x) and p(»)
represent the marginal probability density
functions of X and Y, respectively

The MRMR algorithm integrates maximum
relevance (D) and minimum redundancy (R)
conditions. Therefore, the simultaneous optimi-
zation of D and R can be achieved using the fol-
lowing equations.

Maximum relevance criterion

This metric guarantees the optimal enhance-
ment of the association between individual fea-
tures and their respective class labels, as repre-
sented by the following expression:

Max D(S.c).D = 5] Z 1(xi; c) (3)

xieS

where: S represents the feature set; |S| denotes the
number of selected features; x, represents
an individual feature; c represents the
class labels; 7 (xi; ¢) measures the mutual
information between each feature and its
corresponding class label.

Minimum redundancy criterion

This criterion, which is expressed as follows,
guarantees that the correlation between chosen
features is reduced to a minimum:

Z Ixi.xj) (4

xlx]ES

Min R(S).R =

where: R(S) quantifies the redundancy within
the feature set S; I(x_i, x_j) measures the
mutual information between features x_i
and x_j and the double summation con-
siders all pairwise combinations of fea-
tures in set S.

In real-world scenarios, approximately opti-
mal feature subsets are found using incremental
search techniques. To identify the optimal feature
subset S m with m features from the previous
subset with m-1 features, the subset § |
puted utilizing the following equation:

1S com-

MaXyxjex—Sm_1

1
— Z I1(xj; xj) ®)

Xi € Sp—1

I(x;;¢) —

where: X represents the complete feature space;
X - § {m-1} represents features not yet
selected; x_j is a candidate feature for ad-
dition to the current subset; the first term
I(x_j; c) represents the relevance of can-
didate feature x j and the second term
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represents the average redundancy of x_j
with respect to already selected features.

The ensemble employs Random Forest bag-
ging algorithm with the following specifications:
100 decision trees with maximum depth limited
to V500 ~ 22 levels, bootstrap aggregating with
replacement sampling, feature subsampling using
V500 ~ 22 randomly selected features per node
split, Gini impurity criterion for split optimiza-
tion, and majority voting aggregation for final bi-
nary decision (Normal vs. Anomaly).

RESULTS

The image resolution resized to 227 x 227 x
3 pixels, ensuring that significant regions of inter-
est within the scalogram images are retained. In
the simulations, 70% of the scalogram images are
used to train the AlexNet network.

AlexNet’s convolutional layers are used to
capture 1.000 features from every scalogram
image. Subsequently, the MRMR algorithm re-
duces the feature set to 500 optimal features,
which are then classified using the ensemble
learning algorithm.

Evaluation metrics

To assess the performance of the proposed
method, several standard classification metrics are
used, including Accuracy, Precision, Recall, and
F1-score. These metrics provide a comprehensive
evaluation of the model’s ability to distinguish be-
tween healthy and fatigued composite samples.

Accuracy: Represents the proportion of cor-
rectly classified samples to the total number of
samples and is calculated as follows:

(TP +TN)

6
(TP + FP + TN + FN) ©)

Accuracy =

where: TP (True Positive): The number of correct-
ly classified Anomaly samples; TN (True
Negative): The number of correctly classi-
fied Normal samples; FP (False Positive):
The number of incorrectly classified Nor-
mal samples as Anomaly; FN (False Nega-
tive): The number of incorrectly classified
Anomaly samples as Normal.
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Precision: Represents the proportion of cor-
rectly classified positive samples among all pre-
dicted positive samples and is given by:

Precision = L 7
recision = TP + FP (7

Recall: shows the percentage of all real pos-
itive samples that were accurately categorized
as such:

TP
Recall = ——— 8
T TP FN ®)

F1-score: Denotes the harmonic mean of Pre-
cision and Recall, equilibrating the trade-off be-
tween the two.

2 X Precision X Recall

F1-— =
score (Precision + Recall)

Convergence analysis for different
numbers of learners

Experiments were conducted with different
numbers of learners. Figure 6 illustrates the con-
vergence curve of the training process for various
numbers of learners.

In this figure, the x-axis represents the num-
ber of learners (classifiers) and the y-axis repre-
sents the classification accuracy. As observed in
Figure 6, increasing the number of classifiers en-
hances the accuracy of the learning process. This
convergence curve validates the effectiveness of
the proposed method in accurately classifying
sensor signals, ensuring the robust performance
of the proposed model in fatigue detection.

Confusion matrix analysis
in data classification

The confusion matrix for fatigue detection in
polymer composites is shown in Figure 7. The
received sensor signals are classified into two
categories: Anomaly and Normal. Any stiffness
degradation or fatigue in polymer composites is
identified by classifying sensor signals under the
Anomaly category. The confusion matrix consists
of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). A high TP
rate and a low FP rate indicate that the model ef-
fectively detects fatigued composite samples with
minimal classification errors.
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Figure 6. Convergence curve of the ensemble learning technique for different numbers of learners
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Figure 7. Confusion matrix for fatigue classification in polymer composites

The confusion matrix demonstrates excel-
lent model performance in distinguishing be-
tween Anomaly and Normal composite sam-
ples. The confusion matrix reveals: 465 Anom-
aly samples (100.0% correctly classified), 440
Normal samples (99.5% correctly classified, 2
samples or 0.5% misclassified as Anomaly),
yielding True Positive Rate = 465/465 = 100%,
True Negative Rate = 440/442 = 99.5%, False

Positive Rate = 2/442 = 0.5%, and False Neg-
ative Rate = 0/465 = 0%. The overall model
accuracy based on these values is calculated
as 99.8%, highlighting the model’s high reli-
ability in detecting composite material fatigue.
Furthermore, the false negative rate (FNR)
is approximately 0.4%, indicating that only
a few Normal samples were misclassified as
Anomaly.
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Figure 8. The ROC curve for proposed method

Evaluation of the receiver operating
characteristic (ROC) curve

The ROC curve of the proposed method is
presented in Figure 8. This curve shows the ac-
curacy of the provided classifier in varied clas-
sification thresholds; true positive rate (TPR) v/s
false positive (FPR). By plotting TPR versus FPR
for all possible thresholds, the trade-off between
these two metrics can be analyzed. A high TPR
and a low FPR for the suggested approach are in-
dicated by the curve’s breakpoint, which is situat-
ed in the upper-left corner of the plot in Figure 8.
In contrast, for a weak classifier, the breakpoint
would be located toward the bottom-right corner
of the ROC curve, where TPR is low and FPR is
high. Furthermore, since a random classifier gives
equal probabilities to TPR and FPR, its break-
point would be located along the ROC curve’s
diagonal line. The area under the curve (AUC)
in the ROC diagram quantifies the model’s abil-
ity to distinguish between different data classes.
The closer the breakpoint is to the top-left corner,
the higher the AUC value, indicating a stronger
classification performance. The proposed method
achieves an AUC value of 0.9973, demonstrating
its high efficiency in distinguishing between the
two data classes.

The AUC confidence interval, calculated using
DeLong’s method with bootstrap resampling (n =
1000), yields 0.9973 [95% CI: 0.9962-0.9981],
confirming statistically significant discrimina-
tion capability with p < 0.001 compared to ran-
dom classifier baseline. The proposed method vs.
FFT+SVM showed mean accuracy difference of
12.3% + 1.8% [t(9) = 6.83, p < 0.001]; proposed
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method vs. Raw signal+RF showed mean accu-
racy difference of 8.7% + 1.2%, [t(9) = 7.25, p
< 0.001] and proposed method vs. STFT+CNN
showed mean accuracy difference of 5.4% + 0.9%
[(9) =6.00, p <0.001]. Cohen’s d effect sizes ex-
ceed 2.0 for all comparisons.

Comparison of the proposed method
with recent studies

To further validate the effectiveness of the
proposed method, a comparative study was con-
ducted against recent methods from the literature.
Figure 9 illustrates the performance comparison
of the proposed method in terms of Precision,
Recall, and Fl-score. The performance is com-
pared with state-of-the-art algorithms, including:
WVD-CNN 9 (Wigner-Ville Distribution), ACR-
DSVDD (Adaptive Centered Representation
with Deep-SVDD), adversarial transformer and
MDAAN (multiple domain adaptive and adver-
sarial network). The proposed model achieves the
highest values of 99.78% for Precision, 99.77%
for Recall, and 99.77% for F1-score, outperform-
ing all the benchmark methods across all evalu-
ation metrics. The multi-dimensional radar chart
shows a perfect pentagon near the outer edge of
the performance space while other methods ex-
hibit irregular polygons with varying strengths
and weaknesses. Furthermore, #-test analysis con-
firms that performance improvements achieve
statistically significant results.
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DISCUSSION

Polymer matrix composites, particularly
CFRP, have achieved been adopted across aero-
space, automotive, and marine sectors owing to
their exceptional strength-to-weight ratios and
superior corrosion resistance. However, their sus-
ceptibility to fatigue-induced degradation can pre-
cipitate structural failures if undetected. Contem-
porary non-destructive evaluation methodologies
define deficiencies in detecting incipient fatigue
damage, particularly when confronted with the
non-stationary signals characteristic of ultrasonic
guided wave propagation in composite structures.
Recent advances in micromechanical modeling
have shown that temperature-dependent effective
moduli can be predicted by considering interfa-
cial debonding evolution, while deep learning ap-
proaches using convolutional autoencoders and
neural ODEs have demonstrated superior capa-
bility in processing guided wave information for
fatigue damage characterization [16, 28, 29].

The confusion matrix analysis reveals excep-
tionally low false negative rates (FNR ~ 0.4%)
with 100% true positive and 99.5% true negative
classifications, indicating only two misclassified
samples. This diagnostic precision is critical for
safety-critical applications where undetected fa-
tigue damage can lead to catastrophic failures.
The literature demonstrates that composite mate-
rials exhibit complex failure modes influenced by
manufacturing processes, environmental condi-
tions, and material architecture. Studies on addi-
tively manufactured composites show significant
variations in strength and ductility based on print
direction and recycled material content, while
natural fiber composites demonstrate improved
fatigue strength under hydrothermal aging de-
spite reduced quasi-static properties [30-32].

The integration of advanced Al-driven diag-
nostic capabilities with physics-informed con-
straints addresses the need for interpretable struc-
tural health monitoring [16, 29]. The high AUC
value attained indicates exceptional classifier
performance across the tested threshold settings
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during preload relaxation in bolted connections
to dynamic meshing forces in PEEK-based in-
volute spline systems. Consistent with this find-
ing, recent accelerated degradation models have
shown prediction errors remaining stable within
0.5% over 500 hours [33, 34]. The integration of
predictive maintenance strategies with advanced
material design principles represents a significant
step toward autonomous structural health man-
agement in next-generation composite applica-
tions across aerospace, automotive, and biomedi-
cal sectors [9, 35].

CONCLUSIONS

This study demonstrates the efficacy of in-
tegrating continuous wavelet transform-based
scalogram generation with AlexNet CNNs to
predict fatigue in polymer composites. This
improves upon existing SHM methodologies
by optimizing feature extraction using MRMR
algorithms and increasing computational effi-
ciency through ensemble learning approaches.
However, the computational overhead — 847 ms
per classification cycle on standard GPU archi-
tectures — limits the real-time use in resource-
constrained aerospace applications. Depen-
dence on specific sensor modalities (e.g., Lamb
wave transducers) also diminishes sensitivity to
measurement noise, and the scalability across
large-scale composite structures with altered
geometries remains untested.

Future research should use physics-in-
formed neural networks, into which the govern-
ing equations of wave propagation have been
embedded. Hybrid modeling approaches that
combine high-fidelity simulations with experi-
mental datasets are another promising direction,
especially for research examining multiple con-
current damage mechanisms.
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