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INTRODUCTION

In today’s reality, conducting numerical sim-
ulations has become a standard in the process of 
creating modern structures. They allow us to cus-
tomise the entire structure to predictable operat-
ing conditions, as well as optimise our product at 
the construction stage.

Numerical simulations owe their popularity 
primarily to the speed of obtaining relatively ac-
curate results, which would be time-consuming 
to obtain by the analytical method and costly to 
obtain by the experimental method.

The notion of dynamic processes, due to its 
complex nature, is highly demanding. Therefore, 
extensive and reliable material studies are a key 
element. An appropriate description of material 
properties enables numerical simulations to be 
carried out as close as possible to reality, while 
minimising errors in the obtained results.

The Johnson–Cook (JC) model remains a 
standard for describing the response of metals 
under large strains, high strain rates, and elevat-
ed temperatures. However, its parametrisation 
and reliability are still the subject of intensive 
research. For structural steels, Yendluri et al. 

(2023) presented a complete identification of 
the ten JC parameters (strength and damage) for 
E250 steel, covering an extensive experimental 
programme (quasi-static tests, Split Hopkinson 
Pressure Bar (SHPB), a range of stress triaxial-
ities ηTRIAX and temperatures) and rigorous vali-
dation with independent tests, underscoring the 
need for a holistic approach to model calibration 
in impact and blast applications [1]. In parallel, 
comparisons and modifications of the JC formu-
lation are being pursued. For tool steels, it has 
been shown that a modified JC (MJC) and Ar-
rhenius-type models can outperform the classi-
cal JC across broad thermomechanical regimes, 
especially where strain- or thermal-softening 
strongly affects the flow stress [2]. In alumini-
um matrix composites, where degradation leads 
to softening, it has been proposed to augment JC 
with a damage-induced softening term, improv-
ing agreement with 𝜎-𝜀 curves at high strain rates 
[3]. For austenitic steels, Jiang et al. (2024) per-
formed an inverse identification of JC parame-
ters for 304 steel using genetic algorithms and 
3D cutting simulations, showing that applica-
tion-driven optimisation (process-loading condi-
tions) can substantially reduce force-prediction 
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errors and better reflect service conditions than 
parameters obtained solely from quasi-static/
SHPB tests [4]. Taken together, these studies 
confirm that JC identification should span the 
full strain-rate range relevant to the intended 
application, along with the corresponding tem-
peratures. Moreover, model modifications or 
extensions of damage evolution are often neces-
sary when softening is observed. Additionally, in 
the work of Guo and Nemat-Nasser on Nitron-
ic-50 steel, based on uniaxial compression tests, 
a strong dependence of the flow (yield) stress 
on strain rate (up to ∼8 × 10³ s⁻¹) and temper-
ature (77–1000 K) was demonstrated, including 
the presence of dynamic strain ageing (DSA) in 
the range 400–1000 K (most pronounced at low 
rates and diminishing at higher rates), as well as 
an increasing role of viscous resistance to dislo-
cation motion at 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

. The authors also 
distinguished adiabatic and isothermal responses 
at high rates, confirmed by measuring and ana-
lyzing differences in the stress–strain curves[5]. 
Against this backdrop, the present work provides 
a set of JC parameters for an austenitic steel over 
the strain-rate range relevant to rapidly changing 
processes (impacts, wave interactions), together 
with combined numerical–experimental valida-
tion aimed at finite-element (FE) applications 
and may serve as a basis for follow-on studies in-
volving comprehensive parameter identification 
across other stress states and temperatures.

Despite major advances in constitutive mod-
elling of materials, physics-based models are still 
insufficiently advanced to capture the full com-
plexity of the dynamic response of metals.

The present study addresses this need by fo-
cusing on an austenitic steel used in ship struc-
tures and presenting a consistent calibration and 
verification workflow for FE applications. The 
novelty lies in the use of a unique rotary-hammer 
test rig to perform dynamic tension over a wide 
strain-rate range of 250–2100 s⁻¹, which bridg-
es the measurement gap between classical qua-
si-static testing and very high rates, while better 
reflecting the service conditions of thin-walled 
hull components. From a marine applications 
viewpoint, the calibrated JC model is direct-
ly useful for analyses of structural resistance to 
impact and shock loading. A consistent perspec-
tive is presented in [6], where the Johnson–Cook 
model was also used to describe a non-magnetic 
steel and the dynamic characteristics were ob-
tained from static and dynamic tests.

Austenitic steels owe their popularity to prop-
erties such as corrosion resistance, high strength 
at relatively low weight and, above all, amag-
netism [7–9]. Due to these properties, they are 
widely used in the chemical, energy, medical, 
aerospace and food industries [7–10]. Austenitic 
steels are also increasingly used in the defence in-
dustry, especially in the construction of modern 
mine destroyers (Figure 1) and submarines. The 
reason for this is the demanding environmental 
conditions, such as high humidity, elevated tem-
peratures and the impact loads caused by the det-
onation of explosive charges for which the strain 
rates reach over 104 s-1 [6, 8, 11–15].

In response to the increasing use of austenit-
ic steels in the marine industry, especially in the 
context of military structures, static and dynam-
ic material tests were carried out to determine 
the material characteristics in the Johnson-Cook 
model. A properly developed model allows for 
implementation in numerical simulations using 
the finite element method, providing an effective 
tool for assessing the resistance of structures, 
especially in the context of ship hulls. Com-
puter simulations enable the conducting detailed 
analyses of resistance to impact loads, provid-
ing an alternative to risky physical experiments 
that would involve high costs and potential dam-
age to the test object, thus generating significant 
economic losses.

MATERIAL AND SAMPLES FOR TESTS

Standardised specimens were prepared from 
austenitic steel material for quasi-static tensile 
tests on a MTS 810-02 tensile testing machine 
according to PN-EN ISO 6892-1:2020-5 [17] 
(Figure 2a). Austenitic steel is suitable for con-
tact with seawater. It is characterised by its non-
magnetic properties and resistance to intergranu-
lar corrosion [7–9, 11]. To perform the dynamic 
tensile test on a rotary hammer, threaded circular 
specimens were made with a working-part diam-
eter of 5 mm and a length of 40 mm (Figure 2b). 

Static tensile test

After preparing the specimens and collecting 
initial measurements, in accordance with the norm 
(Figure 3) the steel specimens – with a cross-sec-
tional area of 8 mm2 and an original gauge length 
of 40 mm -were subjected to static tensile test 
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and based on the results obtained, nominal stress-
strain diagrams were created, taking into account 
the constant cross-sectional area of the specimen 
– So throughout the whole process (Figure 4).

Based on the results obtained, a Young’s mod-
ulus of E = 191.87 GPa was determined in the 
elastic range. In addition, the nominal values of the 
conventional yield strength Re of 980 MPa and the 
tensile strength Rm of 1080 MPa can be estimated.

Test of dynamic mechanical properties 	
on a rotary hammer

The plastic behaviour of the material under 
short-duration deformation was investigated us-
ing a unique rotary hammer station located at the 
Laboratory of Fundamentals of Technology at 
the Polish Naval Academy. The device (Figure 5) 

enables the acceleration of the flywheel to a pe-
ripheral linear velocity ranging from 10 to 50 m/s. 
The strain rate is determined as the ratio of the 
specimen’s fracture velocity to its gauge length 
[12, 15, 18].

	 𝜀𝜀̇ = d𝜀𝜀
d𝑡𝑡 =

d
d𝑡𝑡 (

𝜐𝜐 ∙ 𝑡𝑡
𝑙𝑙 ) = 𝜐𝜐

𝑙𝑙  

 

𝜎𝜎true =
𝐹𝐹

𝐴𝐴(𝐹𝐹) =
𝐹𝐹
𝐴𝐴0

𝑙𝑙
𝑙𝑙0
= 𝜎𝜎nom ( 𝑙𝑙𝑙𝑙0

) 

 

𝑙𝑙
𝑙𝑙0
= 1 + 𝜀𝜀nom 

 

𝜀𝜀true = ln(1 + 𝜀𝜀nom)     (4) 

 
𝜎𝜎true = 𝜎𝜎nom(1 + 𝜀𝜀nom)     (5) 

 
 

𝜀𝜀pl = 𝜀𝜀true − 𝜀𝜀el = 𝜀𝜀true −
𝜎𝜎true
𝐸𝐸  

 
 

𝜎𝜎pl = (A + B𝜀𝜀pl𝑛𝑛 ) [1 + 𝐶𝐶 ln ( 𝜀𝜀̇𝜀𝜀0̇
)] 

[1 − ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0

)
𝑚𝑚
] 

 
 
 

A = 𝜎𝜎pl=0 

𝑅𝑅m,true = 𝑅𝑅m(1 + 𝜀𝜀m) 

𝜀𝜀m,true = ln(1 + 𝜀𝜀m) 

𝜀𝜀m,pl = 𝜀𝜀m,true −
𝑅𝑅m,true

𝐸𝐸  

 
 

n =
𝑅𝑅m,true ∙ εm,pl
𝑅𝑅m,true − A  

B = 𝑅𝑅m,true − A
𝜀𝜀m,pln  

 

 

ln( 𝜎𝜎 − 𝐴𝐴) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑙𝑙𝑙𝑙𝑙𝑙 

 

	 (1)

Summarizing the above, for a specimen with 
a gauge length of 20 mm, the corresponding strain 
rates achieved range from 250÷2100 s-1. 

The instrumentation integrated with the ro-
tary hammer stand captures the fracture force 
of the specimen at strain rates ranging from 
250 to 2100 s-1. These measurements are subse-
quently used to calculate the true stress values 
associated with the ultimate tensile strength – 
Rm, true (Table 1).

Figure 1. German Frankenthal class mine destroyer made of austenitic steel [16]

Figure 2. Specimens of tested steel for a) static and b) dynamic tests
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Figure 3. Initial measurements for circular specimens

Figure 4. The results of tensile test – nominal charts of tested steel

Figure 5. Rotary hammer test stand and its main components: 1 – flywheel, 2 – dynamometer, 3 –grapple, 4 – 
base handle, 5 – specimen, 6 – bottom handle

True characteristics as a function of plastic 
strain in austenitic steel

The relationship between the true stress 
σtrue and the nominal stress σnom is derived from 
the assumption that the volume of the tensile 

specimen remains constant under tension, such 
that l0 A0 = l A(F). Hence

	

𝜀𝜀̇ = d𝜀𝜀
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d
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Since
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The true strain εtrue is composed of the sum 
of the elastic strain εel and the plastic strain εpl. 
Consequently, the plastic strain can be expressed 
as follows:
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where:	F – tensile force applied to the specimen,  
A(F) – current cross-sectional area, A0 – 
original cross-sectional area in the gauge 
section, l – current gauge length, l0 – orig-
inal gauge length, εnom – nominal strain, 
E – Young’s modulus.

Using the above equations, the true and plas-
tic stress-strain curves were determined for the 
tested specimens of the investigated austenitic 
steel (Table 2) (Figure 6, 7).

Based on the material properties and the in-
tended service conditions of the austenitic steel 
under investigation, a review of the literature [19] 
was conducted. It was determined that the ma-
terial most similar to the one under study is an 
austenitic steel designated X7CrNiAl17-7. The 
chemical composition of this material is present-
ed in Table 3.

In CAE software, the plastic behaviour of ma-
terials is commonly described using polynomial 
functions, where the true stress is expressed as 
a function of plastic strain, strain rate and tem-
perature σtrue = σtrue 

𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 . A widely adopted 
approach, describing plastic behaviour of metals, 
is Johnson-Cook constitutive model [18, 20], in 
which the plastic Huber-Mises-Hencky (HMH) 
reduced stresses σpl are described by the follow-
ing equation [12, 15, 18–22]: 

Table 1. Overview of results obtained from rotary hammer tests

Specimen 
designation

φ Measuring 
Length, L0,

Area, A0
Breaking 
Force, Fm

Hammer Rotational 
Speed,  młota

Strain Rate
True Dynamic 

Ultimate 
Strength, Rm, true

mm mm mm2 kN m/s s-1 MPa

Specimen_1 4.92 19.97 19.00 40.00 5 250 2105.263

Specimen_2 4.94 18.82 19.16 41.60 10 530 2171.19

Specimen_3 5.1 18.35 20.42 45.00 15 815 2203.722

Specimen_4 5.05 16.26 20.02 48.88 30 1845 2441.558

Specimen_5 4.94 19.08 19.16 49.20 40 2095 2567.85

Figure 6. True characteristics σtrue-εrue of investigated steel
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𝜎𝜎pl = (A + B𝜀𝜀pl𝑛𝑛 ) [1 + 𝐶𝐶 ln ( 𝜀𝜀̇𝜀𝜀0̇
)] 

[1 − ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0

)
𝑚𝑚
] 

 
 
 

A = 𝜎𝜎pl=0 

𝑅𝑅m,true = 𝑅𝑅m(1 + 𝜀𝜀m) 

𝜀𝜀m,true = ln(1 + 𝜀𝜀m) 

𝜀𝜀m,pl = 𝜀𝜀m,true −
𝑅𝑅m,true
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n =
𝑅𝑅m,true ∙ εm,pl
𝑅𝑅m,true − A  

B = 𝑅𝑅m,true − A
𝜀𝜀m,pln  

 

 

ln( 𝜎𝜎 − 𝐴𝐴) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑙𝑙𝑙𝑙𝑙𝑙 

 

	 (7)

where:	A – elastic range of the material σpl = 0 
(common simplification A=Re); B – hard-
ening parameter; n – hardening exponent 
; C – strain rate coefficient; εpl – true plas-
tic strain; 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 – strain rate; 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

0 – quasi-static 
strain rate 0.0001 s-1; θ – current material 
temperature; θ0 – ambient temperature; 
θtop – melting temperature; m – thermal 
softening exponent.

The individual parameters of the Johnson-
Cook model are determined based on experi-
mental data. The values corresponding to the first 

term of the equation are obtained from the results 
of static tensile tests. To identify the parameters 
related to the strain rate sensitivity in the second 
term of the model, data from rotary hammer dy-
namic tensile tests were utilized.

The determination of the Johnson-Cook mod-
el parameters A, B, C, n and m can be performed 
using several methods [23]. One commonly ap-
plied method is the so-called engineering method, 
in which the parameters in the first term of the 
model – A, B, n – are derived from static tensile 
test data using the following relationships:
	• Based on the obtained nominal characteristic 
enom – snom, parameters Rm, em, E and as well as 
the value of parameter A – indicating the end 
of the proportionality limit – were determined;

	• Subsequently, using Equations 4, 5 i 6 Re,true, 
Rm,true, em,true, em,pl were calculated;

Figure 7. Plastic characteristics σtrue -ε pl of investigated steel

Table 2. Summary of true material properties derived from Equations 2÷6
Sample 

designation
Young’s 
modulus

Conventional Yield 
Strength (YS)

Strain at 
YS

Ultimate Tensile 
Strength (UTS) Strain at UTS Proportional limit

  E
GPa

R0.002
MPa

ε0.002
-

Rm
MPa

εm
-

A=σpl=0 
MPa

Sample_1 191.05 987.80 0.007 1346.26 0.2630 908.02

Sample_2 188.93 980.66 0.007 1327.22 0.2620 895.06

Sample_3 195.65 1003.20 0.007 1357.70 0.2641 915.45

Average 191.87 990.55 0.007 1343.87 0.2630 906.18

Table 3. Percentage chemical composition of austenitic steel X7CrNiAl17-7 [19]
C Si Mn P S Cr Al Ni

max. 0.09 max. 0.7 max.
1.0 max. 0.04 max. 0.015 16 to 18 0.7 to 1.5 6.5 to 7.8
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	• Determine the parameters B and n in accor-
dance with the specified equations;
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Utilizing the average values reported in 
Table 2, and applying Equations 8 and 9, the 
coefficients associated with the first term of the 
Johnson-Cook (JC) constitutive model were de-
termined as follows:

A = 906.18 MPa, B = 1277.32 MPa, n = 0.786

Using the aforementioned values, the true 
characteristic was compared with the JC model 
prediction as shown in Figure 8.

Owing to significant discrepancies between 
the true characteristic and the JC model predic-
tions, it was necessary to revise the parameters 
of the first term of the constitutive equation. The 
yield strength was adopted as parameter A, while 
the remaining coefficients were recalculated us-
ing Equations 9. As a result, agreement between 
the true curve and the JC model improved sub-
stantially, with a maximum deviation of approxi-
mately 6.3% (Figure 9).

The averaged true stress–strain data from the 
examined cases were used to plot the linear rela-
tionship for ln (σ−A) in accordance with equation 
(10). A linear regression model was fitted to the 
data, as shown in Figure 10.
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A coefficient of determination (R²) exceeding 
0.976 was obtained for the final linear fit (Figure 
10), indicating excellent agreement between the 
regression model and the data.

Finally, the coefficients for the first term of 
the Johnson–Cook constitutive model were deter-
mined from the data in Table 2 using Equation 9, 
as follows:

A = 990.55 MPa, B = 1095.803 MPa, n = 0.756

To determine the parameter C, it is essential 
to know the value of 
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 𝑅𝑅m,true(𝜀𝜀̇)  corresponding to 
a specific strain rate. The required data were ob-
tained through dynamic tensile testing conducted 
using a rotary hammer, as shown in Table 4.

By transforming Equation 11, the following 
expression is derived:
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The calculated values of the constant C are 
summarized in Table 4. A constant value of C = 
0.044 was adopted for further analysis. Figure 
11 presents the true tensile strength as a function 
of strain rate 

𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇)  , based on the assumed 
value of the parameter C. 

Figure 8. True characteristics and JC for the tested steel
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Figure 12 compares the JC plastic character-
istics as a function of strain rate for the selected 
value of the strain rate coefficient C.

Figure 12 shows the influence of the John-
son–Cook strain-rate coefficient C on the material 
response as a function of strain rate, considering 
the first and second terms of Equation 7 and com-
pares this with the experimental true stress–strain 
characteristic derived from Equation 5. The sepa-
ration between the curves corresponding to dif-
ferent strain rates is approximately constant with 
plastic strain, which correctly reflects the trend 

and scale of the strain rate effect, shifts the curves 
toward higher stress values.

The third term of the equation accounts for 
the influence of temperature on the material’s 
plastic behaviour. To determine the parame-
ter m, static tensile tests should be conducted 
at elevated temperatures to obtain the tensile 
strength at the test temperature Rm(θ). In ad-
dition, the material’s melting point, θtop, is re-
quired. The required values were obtained from 
the literature [24–27].The following values were 
selected for the analysis:

Figure 9. True characteristics with the initial and final JC model curves for the tested steel

Figure 10. ln(σ − A) and lnε relationship under reference conditions for initial and final parameters

Table 4. Tensile strength corresponding to specific strain rates Rm, 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

Strain rate 𝜀𝜀̇ = 250 s-1 𝜀𝜀̇ = 530 s- 𝜀𝜀̇ = 815 s-1 𝜀𝜀̇ = 1845 s-1 𝜀𝜀̇ = 2095 s-1
 

𝑅𝑅m,true,𝜀̇𝜀, MPa 2105.04 2171.55 2203.95 2441.62 2568.28 

Coefficient C 0.03844754 0.039778 0.040217503 0.048824221 0.054047125 
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Melting point θtop = 1653.15 K; Tensile 
strength Rm = 648 MPa at a temperature of 
698.15K; Tensile strengt Rm = 469 MPa at a tem-
perature of 1003.15K.

Using the relationship between the tensile 
strength at elevated temperature and the tensile 
strength at room temperature for a strain rate of 
0.0001 s-1, as defined by the following equation:
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After applying the transformation, the follow-
ing expression is obtained:
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	 (13)

Substituting the relevant data into the equa-
tion yielded the values of the thermal plasticity 

exponent m at the temperatures considered. These 
values are summarised in Table 5. 

Figure 13 illustrates the temperature-dependent 
behaviour of the steel at strain rate of 0.0001 s-1.

Failure model for austenitic steel

Plastic failure is governed by the existing 
stress state, commonly characterised by the tri-
axiality factor hTRIAX [21, 28, 29]. This parameter 
depends on the orientation of the forces applied 
to the structural element. For uniaxial tension, 
a triaxiality factor of 1/3 was adopted [30]. The 

Figure 11. True tensile strength Rm as a function of strain rate for C = 0.044 

Figure 12. JC Model for austenitic steel as a function of strain rate with C = 0.044

Table 5. Values of parameter m calculated for 	
selected temperatures

Temperature, K Value of parameter, m

698.15 (425˚C) 0.77

1003.15 (730˚C) 0.88

Average value m 0.83
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damage model was developed from the true 
stress-strain σtrue - etrue characteristics, as shown in 
Figure 14, using the data in Table 6.

A schematic of the material damage mech-
anism is shown in Figure 14. Segment 0–1 rep-
resents the elastic range, whereas the curve be-
tween points 1 and 2 represents the plastic range 
with hardening. Damage initiates at point 2. In 
a model without damage the response would 
continue along the hardening curve to point 5, 
with stress increasing monotonically with strain. 
Unloading from point 2 produces an elastic re-
sponse, reducing the strain to point 7 along a line 
parallel to segment 0–1. In the model with dam-
age, the analogue of point 5 is point 3, located 
on the 2–4 curve, along which a loss of strength 

– referred to as softening – occurs. The 2–4 curve 
is called the degradation (damage) curve. It de-
fines the parameter 𝑑, a damage-evolution coeffi-
cient taking values from 0 to 1, and the stress on 
this curve is given by:

	

𝐶𝐶 = ( 𝑅𝑅m,true(𝜀𝜀̇)
𝑅𝑅m,true(𝜀𝜀0̇)

− 1) 

/ ln ( 𝜀𝜀̇𝜀𝜀0̇
) 

 
 

𝑅𝑅m,𝜃𝜃 = 𝑅𝑅m,0 ∙ [1 − ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0

)
𝑚𝑚
] 

 
 

𝑚𝑚 =
ln (1 − 𝑅𝑅m,𝜃𝜃

𝑅𝑅m,0
)

ln ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0)

 

 
 
 

𝜎𝜎 = (1 − 𝑑𝑑)𝜎̅𝜎 
 
 

𝑢𝑢𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑝𝑝𝑝𝑝 
 
 

𝑑𝑑 =
𝑢𝑢𝑝𝑝𝑝𝑝

𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

 
 
 
 
 

	 (14)

Complete material failure occurs upon reach-
ing the failure strain εfailure, corresponding to point 
4 in the diagram. If rupture or unloading occurs 
while traversing the 2–4 curve (e.g., at point 3), 
the strain then decreases along path 3–6 owing 
to residual elastic forces. This path is not paral-
lel to the elastic segment 0–1. Damage evolu-
tion describes the progressive degradation of 

Figure 13. JC plasticity model as a function of temperature for 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 0.0001 s-1, A = 990.55 MPa,
B = 1095.803 MPa, n = 0.756, m = 0.83

Figure 14. Failure model based on σtrue - εtrue characteristics of the tested steel
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the material. The value d = 0 denotes the state at 
which the (flow) stress has reached the ultimate 
tensile strength Rm, but no degradation has oc-
curred, whereas d = 1 corresponds to complete 
degradation of the material. The state of damage 
evolution is expressed as a function of the plastic 
displacement μpl , defined as follows [24]:

	

𝐶𝐶 = ( 𝑅𝑅m,true(𝜀𝜀̇)
𝑅𝑅m,true(𝜀𝜀0̇)

− 1) 

/ ln ( 𝜀𝜀̇𝜀𝜀0̇
) 

 
 

𝑅𝑅m,𝜃𝜃 = 𝑅𝑅m,0 ∙ [1 − ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0

)
𝑚𝑚
] 

 
 

𝑚𝑚 =
ln (1 − 𝑅𝑅m,𝜃𝜃

𝑅𝑅m,0
)

ln ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0)

 

 
 
 

𝜎𝜎 = (1 − 𝑑𝑑)𝜎̅𝜎 
 
 

𝑢𝑢𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑝𝑝𝑝𝑝 
 
 

𝑑𝑑 =
𝑢𝑢𝑝𝑝𝑝𝑝

𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

 
 
 
 
 

	 (15)

where:	L is the characteristic length of the FEM 
element.

The progression of material degradation is 
described by the damage-evolution coefficient. 
In CAE practice, three alternative formulations 
are commonly used: linear, exponential, and 
tabulated. The linear form is defined as the ratio 
of plastic displacement up to failure displace-
ment ufailure [29]

	

𝐶𝐶 = ( 𝑅𝑅m,true(𝜀𝜀̇)
𝑅𝑅m,true(𝜀𝜀0̇)

− 1) 

/ ln ( 𝜀𝜀̇𝜀𝜀0̇
) 

 
 

𝑅𝑅m,𝜃𝜃 = 𝑅𝑅m,0 ∙ [1 − ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0

)
𝑚𝑚
] 

 
 

𝑚𝑚 =
ln (1 − 𝑅𝑅m,𝜃𝜃

𝑅𝑅m,0
)

ln ( 𝜃𝜃 − 𝜃𝜃0
𝜃𝜃top − 𝜃𝜃0)

 

 
 
 

𝜎𝜎 = (1 − 𝑑𝑑)𝜎̅𝜎 
 
 

𝑢𝑢𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑝𝑝𝑝𝑝 
 
 

𝑑𝑑 =
𝑢𝑢𝑝𝑝𝑝𝑝

𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

 
 
 
 
 

	 (16)

Table 6 summarises the characteristic points 
shown in Figure 14 that were used to determine 
the material’s failure parameters.

Determination of failure parameters for aus-
tenitic steel for ηTRIAX = 0.33 (uniaxial tension)
where L defines the size of the FEM mesh.

Table 6. Summary of values used to calculate failure parameters based on Figure 14

Point No.
Strain Stress

Description
εe, - σtrue, MPa

H 0.0049 906.19 Limit of the proportionality σH = σpl = 0 

1 0.007 990.55 Yield strength Re.

2 0.263 1343.87 Tensile strength Rm.

3 0.3595 1234.197 Fracture point

4 1.59 0.0 Total material degradation d =1

5 0.3595 1478.69 Stress behaviour in a damage-free material model

6 0.3517 0.0 Strain after fracture

7 0.256 0.0 Strain after reaching the ultimate tensile strength Rm, d = 0

In summary, all parameters characterising the 
tested steel can be effectively described by the 
Johnson-Cook model. 
𝜎𝜎 = (990.55 + 1095.803 ∙ 𝜀𝜀0.756) ∙ 

∙ [1 + 0.044 ∙ ln ( 𝜀𝜀̇
0.0001)] ∙ 

∙ [1 − (𝜃𝜃 − 293.15 
1360 )

0.83
] 

 
Failure parameters: d = 0.1648 ; εfailure = 

1.334; ηTriax = 0.33 ; A = 990.55 MPa; B = 1095.803 
MPa; n = 0.756; m = 0.83; C = 0.044; θ0 = 293.15 
K; θtop = 1653.15 K; Young’s modulus – E = 
1.91‧1011 Pa; Poisson’s ratio – υ = 0.28; Density 
– ρ = 7880 kg/m3; Ultimate tensile strength - Rm = 
1343.87 MPa; Yield strength – Re = 990.55 MPa.

Reproduction of the experiment using 
numerical simulation

Based on the calibrated material parameters, 
a numerical analysis was performed using the 
ABAQUS – Dynamic Explicit procedure to com-
pare the experimental results with the simulation 
responses. The specimen geometry from the rotary 
hammer was accurately reproduced using 62,510 
linear eight-node hexahedral elements, defined by 
67,402 nodes. The characteristic element size was 

𝜀𝜀failure = 𝜀𝜀4 − 𝜀𝜀7 = 1.59 − 0.256 = 1.334 
𝑑𝑑𝜎̅𝜎 =  𝜎𝜎5 − 𝜎𝜎3 = 1478.69 − 1234.97 = 243.72 MPa 

since  𝜎𝜎 = (1 − 𝑑𝑑)𝜎̅𝜎 so,  𝑑𝑑 = 1 − 𝜎𝜎
𝜎̅𝜎 = 1 − 1234.97

1478.69 = 0.1648 
𝐸𝐸’ = (1 − 𝑑𝑑)𝐸𝐸 = (1 − 0.1648) ∙ 191.87 = 160.24 GPa 

𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1.334 ∙  𝐿𝐿 
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set at L = 0.5 mm. The following boundary condi-
tions were applied: the upper end of the specimen 
was fully fixed in all degrees of freedom, while 
the lower end was constrained against lateral dis-
placements and subjected to a prescribed axial ki-
nematic condition to achieve the target engineer-
ing strain rate. No grips were modelled. The axial 
motion was applied directly to the end face of the 
specimen. Therefore, no surface-to-surface con-
tact or friction was defined. The total simulated 
time was set as 2 × 10-3 s for 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1 and 2 
× 10-4 s for 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

  = 2095 s-1. The explicit time-step 
size was limited by the smallest element size and 
the elastic (acoustic) wave propagation velocity 
in the tested material. In this case, the maximum 
time-step size was 2.36 × 10-8 s.

The previously developed Johnson-Cook 
material model, including the failure mod-
el, was assigned to the reconstructed speci-
men geometry. Subsequently, both static 
and dynamic tensile tests on the rotary ham-
mer were simulated, applying strain rates of 
𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1 and 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

  = 2095 s-1. The results for 
𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1 are presented in Figure 15.
The numerical simulation results are shown 

in Figure 16.
The principal stress values obtained for the 

simulated strain rates are consistent with those 
predicted by the JC model. The simulated material 

strength is approximately 9% higher than the val-
ues recorded in the dynamic tensile test at a strain 
rate of 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1, and approximately 6.5% high-
er than those from the static tensile test.

This discrepancy is primarily attributed to 
the use of an average value of the parameter C 
within the tested strain rate range (Figure 11), as 
well as geometric simplifications arising from the 
discretisation of the specimen. It should be noted 
that, in the case of static loading, a more accurate 
representation could be achieved by using data 
obtained directly from the measuring equipment 
of the testing machine.

Additionally, the strength of the specimen in 
the simulation performed at a strain rate 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 2095 
s-1, using the assumed JC model coefficients, is ap-
proximately 12% lower than the values obtained 
from the dynamic tensile test. As shown in Figure 
16, an increase in strain rate leads to a wave-like 
pattern of stress propagation and noticeable het-
erogeneity in material hardening. Despite these 
dynamic effects, the results are within an accept-
able range, confirming that the developed JC 
model is suitable for simulating more demanding 
structures made from the tested material. 

The simulation was conducted using two 
different mesh discretisation methods, as il-
lustrated in Figure 17. The choice of discreti-
sation significantly influences the distribution 

Figure 15. Principal stresses S22 in the tensile specimen at a strain rate of 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1
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of stress concentrations. In the case of uniaxial 
tension, the stress values should be relatively 
uniform around the entire circumference of the 
specimen. The observed discrepancies indicate 
that, for the present case, the advancing front 
meshing algorithm yields better agreement. 
This method constructs the mesh by progres-
sively generating elements from the boundaries 
inward, resulting in a more uniform and physi-
cally realistic stress distribution.

CONCLUSIONS

Based on static and dynamic tensile tests per-
formed using a rotary hammer, the mechanical 
properties of austenitic steel were determined and 
a corresponding material model was developed 
in line with CAE software conventions for strain 
rates ranging from 0÷2100 s-1. This model facili-
tates the simulation of rapidly evolving phenom-
ena relevant to impact events, ballistic resistance 

Figure 16. Failure model from CAE simulations overlaid on true stress-strain characteristics

Figure 17. Results for different mesh discretisation methods at a strain rate of 𝜀𝜀̇ = 103 𝑠𝑠−1 

 

𝜎𝜎true = 𝜎𝜎true (𝜀𝜀pl, 𝜀𝜀̇, 𝜃𝜃) 

 

 𝑅𝑅m,true(𝜀𝜀̇) 

 = 250 s-1
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and shock-wave effects (e.g., explosion-induced 
pressure) in the tested structures. 

Finite element method (FEM) simulations 
enable the detailed calculation of field variables 
at any node within the analysed structure during 
loading. Such capabilities are essential for the 
accurate assessment of dynamic and high strain 
rate events. Moreover, reliable characterisation of 
the material’s behaviour enables the simulations 
to produce results closely aligned with those ob-
tained in physical experiments. 

The comparison of numerical simulation re-
sults with experimental data demonstrated devia-
tions of approximately 6.5%, 9% and 12% at the 
respective strain rates, which are within acceptable 
limits and confirm the validity of the developed 
model and its underlying material description. 

The resulting material model is suitable for 
more complex simulations involving intricate ge-
ometries or assemblies, thereby reducing the need 
for costly physical crash tests during the design and 
development phases. This research expands the 
materials database for high strain-rate conditions.

Enhancement of the model’s predictive relia-
bility requires expansion of both the experimental 
dataset and the constitutive formulation. Results 
for E250 steel [1] indicate that combining tests 
spanning a broad range of stress triaxialities, 
temperatures, and strain rates - together with 
validation under independent loading configura-
tions - markedly improves predictive accuracy. 
In the present work, the baseline Johnson–Cook 
model is employed, but it does not capture triax-
iality-dependent void nucleation and growth or 
post-necking softening. Accordingly, the scope is 
limited to identifying damage parameters for uni-
axial tension (ηTriax). Limited material availability 
precluded a larger test matrix that would have en-
abled identification at other values ​​of the triaxi-
ality coefficient. Calibration and validation were 
carried out in uniaxial tension at a single temper-
ature, without accounting for adiabatic self-heat-
ing at high strain rates, which affects the material 
response. An additional contributor to discrepan-
cies between simulations and experiments is the 
adoption of a single, averaged value of the John-
son–Cook strain-rate sensitivity parameter 𝐶 over 
the entire rate range considered. Despite these 
limitations, the study provides a sound basis for 
further work, including extension to other stress 
states and temperatures, explicit incorporation of 
thermal effects, and more precise calibration of 
strain-rate-dependent parameters.
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