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INTRODUCTION

The proliferation of internet of things (IoT) 
and industrial internet of things (IIoT) devices 
has led to a significant increase in the volume and 
complexity of data generated within interconnect-
ed systems. While these technologies drive inno-
vation and efficiency across various sectors, they 
also introduce new vulnerabilities and expand the 
attack surface for cyber threats[27]. The number 
of security incidents in IT systems is growing an-
nually. Threats such as phishing and malware pose 
a significant and well-documented risk [28], while 
distributed denial-of-service (DDoS) attacks con-
tinue to increase in scale and frequency [29]. En-
suring the security and reliability of these critical 

infrastructures necessitates robust and intelligent 
anomaly detection systems capable of identifying 
subtle deviations from normal behavior that may 
indicate malicious activity or system faults.

Multi-parameter anomaly detection methods, 
which analyze multiple variables simultaneously, 
offer the potential for more precise and effective 
threat identification compared to single-parameter 
approaches. These methods can uncover complex 
dependencies between variables, leading to a bet-
ter understanding of system behavior and more 
accurate detection of unusual patterns. However, 
they also present challenges, including increased 
complexity, potential for model overfitting, and 
sensitivity to outliers, which require careful data 
preprocessing and model tuning.
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This paper focuses on the application and 
optimization of machine learning (ML) models, 
specifically those based on decision tree algo-
rithms, for multi-parameter anomaly detection in 
IIoT network traffic. The research investigates the 
efficacy of models such as RandomForest, Ex-
traTrees, AdaBoost, XGBoost, and CatBoost in 
identifying various network attacks. A key aspect 
of this work is the systematic evaluation of data 
preparation techniques, including class balancing 
strategies (OverSampling and UnderSampling), 
data aggregation within time windows, and data 
sampling methods. Furthermore, the study em-
phasizes the optimization of the XGBoost model 
through meticulous feature selection and hyper-
parameter tuning to achieve high detection accu-
racy while maintaining computational efficiency. 

The primary contribution of this work lies in 
presenting a systematic optimization methodolo-
gy that explicitly addresses the trade-off between 
detection accuracy and computational cost, a crit-
ical challenge in resource-constrained IIoT envi-
ronments. Unlike previous studies that often fo-
cus singularly on maximizing accuracy, this paper 
demonstrates a practical pathway involving data 
reduction strategies (aggregation and sampling), 
feature selection, and hyperparameter tuning. The 
research proves that this holistic approach allows 
for the development of lightweight yet robust 
anomaly detection systems, significantly lower-
ing the barrier for real-world deployment.

The general system model is presented in 
Figure 1. It consists of three main areas: IIoT, 

Network, and Processing. The IIoT Area is re-
sponsible for data aggregation, control operations, 
and the initial preprocessing of collected data. In 
the next step, data is transmitted through the Net-
work Area using various communication proto-
cols such as HTTP, MQTT, gRPC, and others. Fi-
nally, the data reaches the Processing Area, where 
it is stored and used by machine learning mod-
els for anomaly detection. In the traditional ap-
proach, the anomaly detection process for a large 
number of IIoT elements is highly complex due to 
the volume of transmitted data and the significant 
demand for computational power. This paper pro-
poses a set of optimization methods that reduce 
both bandwidth usage and computational require-
ments, thereby enabling support for a greater 
number of IoT devices without the need to scale 
the communication or processing infrastructure. 
Particular attention should be paid to the bound-
ary between the IIoT and Network areas. Net-
work gateways are most commonly deployed at 
this point, and they can also serve as aggregation 
points for IoT data. If equipped with data prepro-
cessing capabilities, these gateways can perform 
operations such as data aggregation, sampling, 
and feature selection. This approach aligns with 
the Edge Computing paradigm, which enables the 
distribution of processing across the entire sys-
tem, thereby increasing its reliability and reduc-
ing operational costs. To verify the feasibility of 
the proposed approach, a series of experiments 
were conducted using the CIC-IoT 2023 dataset 
[1], which provides realistic network traffic data, 

Figure 1. General model of an anomaly detection system in industrial IoT systems
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including various simulated IoT attacks such as 
DDoS, DoS, Recon, and Spoofing. The findings 
indicate that through appropriate data preparation 
and rigorous model optimization, particularly for 
XGBoost, it is possible to achieve high anomaly 
detection rates: over 92% accuracy for binary 
classification and 87% for multi-class classifica-
tion after optimization. Importantly, these results 
are achievable with reduced data requirements 
and lower computational overhead, making the 
proposed approach suitable for real-world de-
ployment in resource-constrained IIoT environ-
ments. The insights gained from this research can 
contribute to the development of more resilient, 
efficient, and scalable cybersecurity solutions 
for industrial control systems, smart cities, and 
broader IIoT ecosystems.

This study makes several contributions to the 
field of anomaly detection in Industrial IoT. First, 
we propose a unified optimisation pipeline that 
integrates feature selection, class rebalancing, 
and hyperparameter tuning, all tailored for IIoT 
deployment scenarios. While each of these com-
ponents has been explored separately in the litera-
ture, our novelty lies in systematically combining 
them to address resource constraints typical of 
edge devices, including limited memory, compu-
tation power, and latency tolerance. Second, we 
provide a detailed analysis of trade-offs between 
model accuracy, training time, and model size, 
which are rarely considered jointly in prior stud-
ies. Finally, we demonstrate that optimised tree-
based models can achieve competitive accuracy 
with a significantly smaller computational foot-
print, highlighting their practical suitability for 
real-time IIoT anomaly detection.

This paper is structured as follows: Section 2 
will briefly review related work in anomaly de-
tection. Section 3 will describe the methodology, 
including the dataset, machine learning models, 
and optimization techniques. Section 4 will pres-
ent and discuss the experimental results. Finally, 
Section 5 will conclude the paper and suggest fu-
ture research directions.

RELATED WORK

The detection of anomalies in network traffic, 
particularly within IoT and IIoT environments, 
has become a critical area of research due to the 
increasing sophistication and volume of cyber 
threats. Effective anomaly detection systems are 

paramount for maintaining the security and oper-
ational integrity of these interconnected systems. 
This section reviews relevant literature concern-
ing datasets, detection methodologies, and spe-
cific research efforts in this domain.

Datasets for anomaly detection

In this subsection, we provide an overview of 
publicly available datasets that have been used in 
the literature for anomaly detection in networked 
and IoT/IIoT environments. The aim is to posi-
tion our choice of dataset in the broader research 
landscape by briefly summarising how earlier 
works relied on benchmarks such as KDD’99, 
NSL-KDD, or IoT-23, and why the CICIoT2023 
dataset offers a more realistic and up-to-date ba-
sis for evaluating anomaly detection methods in 
IIoT systems.

The availability of representative datasets is 
crucial for the development and evaluation of 
anomaly detection models. Several publicly avail-
able datasets have been utilized by the research 
community. Early datasets, such as KDD’99 and 
its successor NSL-KDD, served as benchmarks 
for network intrusion detection [2]. However, 
with the rise of IoT, more specific datasets have 
emerged. TON_IoT, for instance, includes data 
from various IoT devices and simulated attacks 
such as DoS, DDoS, and ransomware [24]. The 
IoT-23 dataset provides traffic from real IoT de-
vices, capturing activity from 2018–2019 [25]. 
Other notable datasets include CIDDS, focusing 
on anomaly-based intrusion detection in virtual 
environments, and CIC-IDS2017, which aimed 
to generate realistic network traffic data [26].

For this study, the CIC-IoT Dataset 2023 
[1] was selected. This dataset is particularly rel-
evant as it was generated by simulating attacks 
on a large topology of 105 IoT devices and in-
cludes seven categories of modern attacks such 
as DDoS, DoS, Reconnaissance, Brute Force, 
and Spoofing, with malicious activities originat-
ing from IoT devices themselves. The recency 
and specificity of this dataset to IoT environments 
make it well-suited for evaluating the proposed 
multi-parameter anomaly detection methods.

Anomaly detection methodologies

This subsection reviews the main methodolog-
ical approaches to anomaly detection as presented 
in the literature, including statistical, time-series, 
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and AI-based techniques. By highlighting the 
range of methods adopted in previous studies, we 
place our own focus on supervised, tree-based ma-
chine learning models into context and underline 
why they are particularly relevant for tabular net-
work traffic data in IIoT environments.

Various approaches have been proposed for 
anomaly detection, broadly categorized into sta-
tistical methods, time-series analysis, and artifi-
cial intelligence (AI) techniques. Statistical meth-
ods, both parametric and non-parametric, analyze 
data distributions to identify outliers. Time-series 
analysis focuses on identifying deviations from 
established patterns, seasonality, or trends, often 
employing models like ARMA or ARIMA.

AI-based methods, which are the focus of this 
paper, encompass machine learning (ML) and 
Neural Networks (NN). Machine learning algo-
rithms learn patterns from data to classify normal 
and anomalous behavior. Popular ML algorithms 
include decision trees, support vector machines 
(SVM), and ensemble methods like random for-
ests. Neural networks, with their flexible architec-
tures, have also shown promise, with deep neural 
networks (DNNs), convolutional neural networks 
(CNNs), and recurrent neural networks (RNNs) 
being applied to anomaly detection. These AI 
methods can be trained using supervised, unsuper-
vised, semi-supervised, or reinforcement learning 
paradigms, depending on the availability of la-
beled data and the specific problem requirements. 
This work specifically explores supervised ML 
algorithms based on decision trees due to their in-
terpretability and effectiveness with tabular data.

Recent works in IoT/IIoT anomaly detec-
tion have shown promising results with neural 
models. For example, Chen et al. [37] propose 
a hybrid XGBoost-LSTM architecture, named 
MIX_LSTM, that combines feature selection 
and sequence modeling for balanced, accurate 
detection on UNSW-NB15 and NSL-KDD data-
sets. Ayad et al. [38] achieve high detection rates 
with a lightweight autoencoder-DNN pipeline 
designed for real-time IoT traffic. Xin et al. [39] 
compare convolutional neural networks and vari-
ational autoencoders, finding CNN excels in ac-
curacy (~95.9 %) while VAE effectively captures 
anomalies via reconstruction error. Kusumastuti 
et al. [40] benchmark transformer, 1D-CNN, and 
GrowNet architectures against classical models, 
including assessing inference latency and training 
time – important considerations for deployment. 
Finally, Al-Qudah and AlMahamid [41] provide 

a multi-step evaluation framework comparing 
RNN-LSTM, autoencoders, and Gradient Boost-
ing under varied preprocessing, demonstrating 
that tree-based methods often outperform deep 
models under limited resources.

Relevant studies

Numerous studies have explored anomaly 
detection in network and IoT environments. For 
instance, Poornima and Paramasivan [3] pro-
posed a model based on linear weighted projec-
tion regression (OLWPR) combined with PCA 
for dimensionality reduction, achieving 86% 
accuracy in detecting anomalies in wireless sen-
sor networks. Suthaharan et al. [4] discussed the 
challenges of obtaining labeled data for anomaly 
detection in wireless sensor networks and pro-
posed an ellipse-based detection system, high-
lighting issues with adapting such models to di-
verse environmental data.

Zhou and Li [5] developed a network traffic 
anomaly detection model using multilevel autore-
gression based on information entropy, report-
ing 95% effectiveness inDDoS attack detection 
by analyzing data in time windows. Fouad and 
Abdel-Hamid [6] utilized hidden Markov models 
(HMM) to model power consumption patterns of 
IoT sensor nodes to detect attacks and hardware 
trojans, deploying their system in a cloud envi-
ronment. More recently, Kisanga et al. [7] pro-
posed a graph neural network (GNN) for anom-
aly detection, achieving accuracies of 76% on a 
DDoS dataset and 88% on a TOR-nonTOR data-
set, demonstrating the application of deep learn-
ing on graph-structured data.

While these studies showcase diverse ap-
proaches, there remains a need for optimized ML 
models that are both highly accurate and compu-
tationally efficient, especially for the resource-
constrained nature of many IIoT systems. This 
paper addresses this gap by focusing on the opti-
mization of decision tree-based ensemble models 
through data preparation strategies, feature selec-
tion, and hyperparameter tuning, with a particu-
lar emphasis on the XGBoost algorithm, aiming 
to provide a practical and effective solution for 
anomaly detection in IIoT environments. Fur-
thermore, recent research by Sezgin and Boyacı 
emphasizes the critical role of automated prepro-
cessing and feature selection in enhancing IDS 
performance in IIoT environments [30]. Their 
work on hybrid feature selection aligns with our 
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study’s focus on data preparation as a key step 
towards building more accurate and computation-
ally efficient detection systems.

METHODOLOGY

This section details the research methodol-
ogy, including the dataset characteristics, data 
preparation steps, machine learning models em-
ployed, experimental setup, and the metrics used 
for evaluating model performance.

Dataset 

The primary dataset used in this study is the 
CIC-IoT Dataset 2023 [1], chosen for its rel-
evance to IoT environments and inclusion of 
contemporary network attacks. This dataset was 
generated from a topology of 105 IoT devices and 
includes traffic related to 33 types of attacks, cat-
egorized into seven main groups such as DDoS, 
DoS, Reconnaissance, Brute Force, Spoofing, 
and Mirai. For this research, a 10% stratified sam-
ple of the original dataset was utilized, resulting 
in 3,132,327 records with 44 features, to ensure 
manageable processing times while maintaining 
class proportions. The attack types specifically 
included in our analysis were Benign, DDoS, 
Spoofing, Reconnaissance, and a composite ‘oth-
er’ category comprising SQL Injection, cross-site 
scripting (XSS), and Dictionary attacks. 

Instead of using the pre-processed versions 
of the dataset, features were extracted directly 
from the raw.pcap files. This was accomplished 
using custom Python scripts leveraging the Sca-
py library to parse network packet headers from 
various layers of the TCP/IP model, capturing all 
available fields. This approach allowed for a more 
granular selection of features relevant to multi-
parameter anomaly detection. The extracted fea-
tures were then compiled into CSV files. Standard 
preprocessing steps included handling missing 
values (if any), converting data to appropriate nu-
merical types, and encoding categorical features 
(though tree-based models can often handle cate-
gorical features natively or with specific encoding 
strategies). Numerical features were scaled using 
standardization (Z-score normalization) to en-
sure that features with larger value ranges did not 
dominate those with smaller ranges, which can be 
beneficial for some algorithms and for consistent 
interpretation of feature importance.

The CICIoT2023 dataset used in our ex-
periments did not contain missing values in the 
selected features; therefore, no imputation pro-
cedure was required. All attributes were numer-
ic, and categorical encoding was unnecessary. 
Feature standardisation was applied to ensure 
comparability across different models. While 
tree-based classifiers are generally insensitive 
to feature scaling, algorithms such as logistic 
regression, SVM, and kNN require normalised 
input for stable training. By applying the same 
preprocessing pipeline across all models, we 
ensured consistent evaluation under compara-
ble conditions.

The dataset was divided into training and 
testing sets using an 80/20 split, respectively, a 
common practice to evaluate model generaliza-
tion on unseen data. Stratified sampling was em-
ployed during the split to maintain the original 
proportion of classes in both training and testing 
sets. Network traffic datasets are often imbal-
anced, with benign traffic significantly outnum-
bering malicious traffic, or certain attack types 
being rare. To address this, various techniques 
from the imbalanced-learn library [12] were ex-
plored. These include:
	• Oversampling techniques:

−	 SMOTE (synthetic minority over-sampling 
technique) [13]: Generates synthetic sam-
ples for the minority class.

−	 Borderline-SMOTE [14]: A SMOTE vari-
ant that focuses on samples near the class 
border.

−	 ADASYN (adaptive synthetic sampling) 
[15]: Adaptively generates more synthetic 
data for minority class samples that are 
harder to learn.

	• Undersampling techniques:
−	 NearMiss [16]: Selects majority class sam-

ples based on their distance to minority 
class samples.

−	 One-Sided Selection (OSS) [17]: Removes 
noisy and borderline majority class sam-
ples. The impact of these balancing strate-
gies was evaluated as part of the model op-
timization process.

Machine learning models

This research focused on supervised machine 
learning algorithms based on decision trees, 
known for their effectiveness on tabular data and 
interpretability. The selected models were:
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	• Random forest: An ensemble method that 
constructs multiple decision trees on different 
sub-samples of the dataset and features, and 
aggregates their predictions (e.g., by voting) to 
improve accuracy and control overfitting [18].

	• ExtraTrees (extremely randomized trees): 
Similar to random forest, but introduces more 
randomness by selecting random thresholds 
for splitting nodes and using the whole train-
ing sample to grow trees [19]. This can reduce 
variance and training time.

	• AdaBoost (adaptive boosting): An iterative en-
semble method that combines multiple weak 
learners (typically decision trees). It adaptive-
ly reweights samples in each iteration, giving 
more weight to misclassified instances, thus 
focusing on harder-to-classify samples [20].

	• XGBoost (extreme gradient boosting): A 
highly efficient and scalable implementation 
of gradient boosting, which sequentially adds 
predictors, each correcting its predecessor’s 
errors. It employs regularization to prevent 
overfitting and handles missing values [21].

	• CatBoost (categorical boosting): Another 
gradient boosting algorithm that effectively 
handles categorical features and is designed 
to combat overfitting. It uses a novel approach 
for processing categorical data and ordered 
boosting [22].

In the initial stage of the experiments, all 
models were trained with a set of standard hy-
perparameter values that served as a baseline for 
further optimisation. For Decision Trees and Ran-
dom Forests, we adopted the classical gini crite-
rion, no restriction on tree depth, and the default 
minimum number of samples required to split 
a node. In the case of Random Forest, one hun-
dred trees were used, which represents a common 
compromise between accuracy and computation-
al cost. For boosting methods, namely Gradient 
Boosting and XGBoost, the initial configuration 
consisted of 100 estimators, a learning rate of 0.1, 
and maximum tree depths of 3 and 6 respective-
ly. XGBoost additionally used full subsampling 
of both observations and features (subsample = 
1.0, colsample_bytree = 1.0). Logistic Regres-
sion was configured with L2 regularisation, the 
lbfgs solver, and a penalty parameter C = 1.0. Sup-
port Vector Machines employed the radial basis 
function kernel (rbf), with C = 1.0 and gamma set 
to “scale”. The k-Nearest Neighbours algorithm 
was initially run with five neighbours, using the 

Minkowski distance metric with p = 2. These 
baseline settings reflect commonly used defaults 
in libraries and the literature and provided a trans-
parent and reproducible starting point for the sub-
sequent hyperparameter optimisation process.

Experimental environment

Experiments were conducted using Python 
version 3.11 within the JupyterLab environment. 
Key libraries included Scikit-learn [23] for core 
ML algorithms and preprocessing, Pandas for 
data manipulation, NumPy for numerical opera-
tions, Matplotlib for visualization, Imbalanced-
learn [12] for handling imbalanced datasets, and 
the specific libraries for XGBoost and CatBoost. 
Computations were performed on a standard 
desktop computer equipped with an Intel i3 10th 
generation processor and 32GB of RAM. Model 
performance was evaluated using a comprehen-
sive set of metrics suitable for classification tasks, 
particularly in the context of imbalanced data: ac-
curacy, precision, recall, F1-score, confusion ma-
trix, ROC AUC (area under the receiver operating 
characteristic curve)

Metrics

To evaluate model performance, several stan-
dard classification metrics were employed [31]:
	• Accuracy – the ratio of correctly classified in-

stances to the total number of instances. While 
widely used, it can be misleading in imbalanced 
datasets, as a model predicting only the major-
ity class may still achieve high accuracy [32].

	• Precision – the proportion of correctly pre-
dicted positive instances among all predicted 
positives. High precision indicates few false 
alarms [33].

	• Recall (sensitivity) – the proportion of correct-
ly predicted positive instances among all ac-
tual positives. Recall is particularly critical in 
anomaly detection, as false negatives (missed 
attacks) may have severe consequences in 
IIoT environments [34].

	• F1-score – the harmonic mean of precision 
and recall, balancing the two and providing 
a single measure that is less sensitive to class 
imbalance than accuracy alone [35].

	• ROC AUC (area under the receiver operating 
characteristic curve) – measures the trade-off 
between true positive and false positive rates 
across thresholds. While useful, ROC AUC 
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may overestimate performance in imbalanced 
settings [36].

	• PR AUC (area under the precision-recall 
curve) – especially informative for imbal-
anced data, as it focuses on the performance 
with respect to the minority class [36].

Given the strongly imbalanced nature of IIoT 
traffic data, we emphasised metrics beyond accu-
racy, particularly recall, F1-score, and PR AUC, 
to better capture the model’s ability to detect mi-
nority-class attacks.

Optimization strategies

The environment of IoT and IIoT devices 
very often combines hardware limitations and a 
large amount of data transmitted over the network 
coming from a very large number of sources. In 
order to effectively detect anomalous situations - 
including threats – in such an environment, it is 
necessary to apply a two-pronged approach to the 
design of this class of systems. On the one hand, 
we need to limit the amount of data sent to the 
detection system and, on the other hand, optimize 
the use of hardware resources. To achieve optimal 
performance, four main optimization strategies 
were employed:
	• Data aggregation – data aggregation: is a strat-

egy for reducing the number of records used in 
the process of learning and exploiting the ML 
model. Its use allows it to determine a single 
representative record for a group of rows from 
the analyzed dataset. This approach reduces 
the time required for learning and anomaly 
detection while maintaining good quality pa-
rameters of the ML model. 

	• Sampling – is a technique involving random 
or periodic selection of rows from a data set. 
It reduces the learning time of the ML model, 
and reduces the demand of the anomaly de-
tection system for hardware system resources. 
However, too “rare” sampling of data can lead 
to a drastic degradation of the quality param-
eters of the anomaly detection model.

	• Feature selection – identifying and selecting the 
most relevant features to reduce dimensionali-
ty, improve model training time, and potentially 
enhance generalization by removing irrelevant 
or redundant features. (Specific methods used 
will be detailed in the results section).

	• Hyperparameter tuning – systematically 
searching for the best combination of model 

hyperparameters using techniques such as 
Grid Search or Randomized Search with 
cross-validation. This was a critical step, es-
pecially for complex models like XGBoost, to 
maximize their predictive power.

The models were evaluated for both binary 
classification (distinguishing between ‘Benign’ 
and any ‘Attack’) and multi-class classification 
(identifying specific attack categories).

PROPOSED APPROACH AND 
DISCUSSION 

This section presents the experimental re-
sults obtained from applying the methodologies 
described in Section 3. It includes an initial anal-
ysis of the dataset, baseline performance of the 
selected machine learning models, and a detailed 
account of the impact of various optimization 
strategies, including class balancing, feature se-
lection, and hyperparameter tuning. The discus-
sion will focus on the effectiveness of these strat-
egies in improving anomaly detection in IIoT 
network traffic.

Data analysis and initial observations

The CIC-IoT Dataset 2023 [1], after pre-
processing and sampling (10% of the original ), 
consisted of 3,132,327 records and 44 features. A 
critical initial step was to analyze the distribution 
of classes within the dataset. The dataset exhibited 
a significant class imbalance, which is common in 
network traffic data where benign traffic usually 
dominates. For instance, in the multi-class sce-
nario (Figure 2c), the ‘Benign’ (labeled 1) class 
was overwhelmingly prevalent, while some at-
tack classes like ‘Spoofing’ or ‘Recon’ (detailed 
in Figure 2a and grouped in Figure 2b) were sig-
nificantly less represented. This imbalance can 
bias machine learning models towards the major-
ity class, leading to poor detection of minority at-
tack classes. A visual representation of the class 
distribution for binary and multi-class labels is 
shown in Figure 2.

Feature importance analysis was also conduct-
ed. Tree-based models, such as XGBoost, provide 
inherent mechanisms to rank features. An initial 
assessment of feature importance revealed that fea-
tures related to packet timing, flow duration, and 
packet sizes were among the most discriminative. 
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The dataset also contained categorical features, 
such as application layer protocols (Figure 3), 
which were numerically encoded. Certain columns 
like timestamps and IP/MAC addresses were re-
moved as they were not deemed essential for the 
research focus or could lead to overfitting in a gen-
eral context. A correlation matrix (Figure 4) was 
also examined to understand relationships between 
features and reveals several important patterns. 
A subset of features, particularly those related to 
UDP header statistics, show strong correlations, 
indicating potential redundancy in the dataset. At 
the same time, most other features are weakly cor-
related, suggesting that they contribute distinct 

information useful for classification. Such redun-
dancy can increase training time without necessar-
ily improving accuracy; however, tree-based mod-
els are relatively robust to correlated inputs. These 
observations motivated the later use of feature se-
lection to reduce dimensionality and highlight the 
most informative variables.

The correlation analysis confirmed that al-
though the dataset contains groups of redundant 
features, the majority of variables are comple-
mentary. This justified the application of feature 
selection methods, which contributed to im-
proving both the efficiency and interpretability 
of the final models.

Figure 2. Class distribution in the sampled CIC-IoT Dataset 2023

Figure 3. Distribution of application layer protocols (Service Name)
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Baseline model performance

Before applying any optimization tech-
niques, the selected machine learning models 
(RandomForest, ExtraTrees, AdaBoost, XG-
Boost, CatBoost) were trained and evaluated 
using their default hyperparameters on the full, 
initially imbalanced 10% dataset sample. Cross-
validation (3-fold) was used to assess baseline 
accuracy. The results showed that models based 
on decision trees are generally insensitive to data 
normalization, yielding identical accuracy scores 
with and without it (Figure 5 and Figure 6). For 
binary classification (Attack vs. Benign), Ran-
domForest and ExtraTrees achieved the highest 
baseline cross-validated accuracy at 96%, while 
AdaBoost performed the worst at 86% (Fig-
ure 5). For multi-class classification, a similar 
trend was observed, with RandomForest and Ex-
traTrees again leading, though overall accuracies 
were lower, and AdaBoost showed a significant 
drop of over 10% (Figure 6). 

Impact of class balancing techniques

To address class imbalance, various overs-
ampling (RandomOverSampler, SMOTE [13], 

Borderline-SMOTE [14], ADASYN [15]) and un-
dersampling (RandomUnderSampler, NearMiss 
[16], One-Sided Selection [17]) techniques were 
applied and their processing times recorded (Ta-
ble 1, Table 2).

RandomOverSampler and RandomUnder-
Sampler were the fastest due to their simpler 
mechanisms. ADASYN and BorderlineSMOTE 
were the most time-consuming oversamplers, 
while OneSidedSelection took the longest among 
undersamplers. The effect of these techniques on 
class distribution is shown in Table 3. 

Most methods aimed to equalize class counts, 
except ADASYN and OneSidedSelection, which 
resulted in differing class proportions based on 
their algorithms.

Model selection

For subsequent experiments, RandomUnder-
Sampler was chosen due to its speed and sim-
plicity, creating balanced datasets for binary (ap-
prox. 864k samples per class) and multi-class 
(approx. 168k samples per class) scenarios. After 
applying the undersampling procedure, the data-
set ach13ieved a balanced distribution between 
classes, reducing the dominance of the benign 

Figure 4. Feature correlation matrix
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traffic and making the minority attack categories 
more comparable in size. 

On these balanced datasets (without cross-
validation for this phase), RandomForest gener-
ally showed the highest F1-scores (0.950 for bi-
nary, 0.890 for multi-class) but had long training 
times and large model sizes (Table 4 and Table 5). 

XGBoost demonstrated the fastest training 
times (8.27 s for binary, 23.56 s for multi-class) 

with good F1-scores (0.912 for binary, 0.832 for 
multi-class) and smaller model sizes compared 
to RandomForest/ExtraTrees. AdaBoost had the 
smallest model size but lower performance met-
rics. RandomForest and ExtraTrees showed signs 
of overfitting, with training accuracy at 0.999 
while test accuracy was lower. Due to its effi-
ciency and strong performance, XGBoost was 
selected for further optimization.

Figure 5. Baseline mean accuracy of models for binary (0/1) classification with 3-fold cross-validation,
with and without data normalization.

Figure 6. Baseline mean accuracy of models for multi-class (grouped attacks) classification
with 3-fold cross-validation, with and without data normalization.
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Impact of data aggregation and sampling 
strategies for XGBoost

Data aggregation

A data aggregation strategy was tested where 
the original dataset (31,323,200 rows) was di-
vided into 100-element windows, from which 10 
records were randomly sampled. Various aggre-
gation functions (sum, mean, std, variance, me-
dian) were applied per column, and the label was 
determined by a threshold on the sum of attack 
labels in the window. This resulted in a dataset 
of 313,232 rows. A schematic of this process is 
shown in Figure 7. 

For better understanding and visualization 
of this process, the diagram above has been 

prepared. It should be read from left to right, and 
the individual symbols represent:
	• n – the number of selected rows for aggregation,
	• m – the number of randomly selected rows 

from the n rows,
	• k₁, k₂,..., kᵢ – columns in the dataset,
	• ani – values in the selected n rows; where aₙ = 

1, 2,..., n and aᵢ = 1, 2,..., i,
	• ami – values in the m randomly selected rows 

from the n rows; where aₘ = 1, 2,..., m and aᵢ 
= 1, 2,..., i,

	• AGRᵢ – the chosen aggregation operation ap-
plied to the m rows for each column kᵢ; where 
k = 1, 2,..., i and AGR = 1, 2,..., i,

	• ∑ – the summation symbol, which can be ex-
pressed with the formula ∑

𝑚𝑚

𝑖𝑖=1
𝑖𝑖 , and it represents 

the operation of summing m rows of a column 
with a label to determine the threshold indicat-
ing the occurrence of a threat.

The aggregated dataset was compared against 
a randomly sampled 10% subset of the original 3 
million row dataset (313,232 rows) using 5-fold 
cross-validation. Aggregation positively impact-
ed model accuracy, especially for AdaBoost, with 
average accuracies around 95% for (Figure 8a) 
compared to generally lower scores for 10% sam-
pled dataset (Figure 8b). 

Application of the approach to reduce the size 
of data sets in the process of anomaly detection 
contributes to lower demand for computing pow-
er of anomaly detection systems. It also allows 
the use of local data aggregation systems, which 

Table 1. Oversampling methods
Oversampling

Model Time [s]

RandomOverSampler 1.94

SMOTE 1045.63

BorderlineSMOTE 5240.32

ADASYN 6082.01

Table 2. Undersampling methods
Undersampling

Model Time [s]

OneSidedSelection 9395.79

RandomUnderSampler 0.87

NearMiss 491.00

Table 3. Results of over-sampling and under-sampling methods applied to CICIoT2023 dataset

Method Model Class distribution  
(number of samples)

Oversampling

RandomOverSampler 1.0: 1219754 
2.0: 1219754 
3.0: 1219754 
4.0: 1219754

SMOTE

BorderlineSMOTE

ADASYN

0.0: 1225001 
1.0: 1219754 
2.0: 1222312 
3.0: 1236447 
4.0: 1224470

Undersampling

OneSidedSelection

0.0: 821529 
1.0: 1172414 
2.0: 218128 
3.0: 168329 
4.0: 286282

RandomUnderSampler 0.0: 168329 
1.0: 168329 
2.0: 168329 
3.0: 168329 
4.0: 168329

NearMiss
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Table 4. Results of tests for a label with two classes 0 and 1

Model Learning time 
[s]

Accuracy
(train)

Accuracy
(test) F1 Recall Precision Size

[B]
RandomForest 585.10 0.999 0.950 0.950 0.943 0.957 1141M

ExtraTrees 304.10 0.999 0.948 0.948 0.942 0.954 3323M

AdaBoost 174.00 0.826 0.826 0.817 0.774 0.865 28056

XGB 8.27 0.915 0.914 0.912 0.885 0.940 376107

CatBoost 142.24 0.933 0.930 0.928 0.908 0.950 1096591

Table 5. Results of tests for the label with grouped threat

Model Learning time 
[s]

Accuracy
(train)

Accuracy
(test) F1 Recall Precision Size

[B]
RandomForest 278.74 0.999 0.888 0.890 0.888 0.895 1694M

ExtraTrees 136.50 0.999 0.887 0.889 0.887 0.894 4048M

AdaBoost 81.12 0.616 0.617 0.625 0.617 0.648 31890

XGB 23.56 0.832 0.829 0.832 0.829 0.847 1932667

CatBoost 225.65 0.828 0.826 0.828 0.826 0.844 3144255

Figure 7. Schematic of the data aggregation process

Figure 8. Mean accuracy comparison after 5-fold cross-validation: (a) aggregated dataset, 
(b) 10% sampled dataset
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consequently limits the amount of data sent over 
the network to central monitoring systems.

Data sampling

Sampling is the process during which a new 
set of data is obtained, a smaller but still represen-
tative subset. The impact of reducing the training 
and testing set size for XGBoost was investigated 
by iteratively training and testing on decreas-
ing fractions of the balanced dataset (from 1/5th 
down to 1/200th). Only in the first step there is 
a value of 5 and the next steps, starting from 10, 
are 10 more than the previous one, up to the value 
of 200 (i.e. 5, 10, 20, 30,..., 200). Sampling has 
a big advantage over data aggregation - it can be 
realizedon the fly by a dedicated probe, which se-
lects part of the packets and sends it to the detec-
tion system. The rest of the packets are skipped. 
In the case of aggregation, all packets must be 
processed and a record representative of a certain 
group of packets is selected on the basis of their 
analysis. This process is much more computation-
ally complex than sampling data “on the fly”. 

Results (Figure 9 for binary, Figure 10 for 
multi-class) showed that as the number of sam-
ples decreased (moving from left to right on the 
x-axis, which represents the divisor of the en-
tire dataset of size N), test accuracy generally 

declined, and the gap between training and test 
accuracy widened, indicating increased overfit-
ting. Model size predictably decreased with fewer 
samples. It should be noted that in some appli-
cations, anomaly detection accuracy at a reduced 
level of, for example, 75% may be sufficient – 
since AI models are one of the indicators of threat 
occurrence. In both cases considered (Figure 11, 
Figure 12), these types of detection accuracy lev-
els are achieved for up to 100 times reduction of 
analyzed data – which significantly increases the 
potential for implementation of such an approach 
in industrial systems.

Feature selection for XGBoost

Another area that is important from the point 
of view of optimizing the process of anomaly 
detection in IoT systems is related to the selec-
tion of the most relevant features (columns) from 
the perspective of the model. Limiting the set of 
analyzed features reduces the size of the model, 
and limits the amount of data that must be sent 
from monitored elements to the anomaly detec-
tion system. Feature selection was performed 
based on XGBoost’s inherent feature importance 
scores. For binary classification, selecting a sub-
set of the most important features to achieve > 

Figure 9. XGBoost performance for binary (0/1) classification with varying sub-sample sizes:
(a) training vs. test accuracy, (b) test metrics (F1, Precision, Recall), (c) model size

Figure 10. XGBoost performance for multi-class (grouped attacks) classification with varying sub-sample sizes: 
(a) training vs. test accuracy, (b) test metrics (F1, Precision, Recall), (c) model size
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90% test accuracy resulted in slightly lower ac-
curacy but further reduced training time to 0.86 
s and model size to 344 KB (Figure 11). For 
multi-class classification, aiming for > 82% test 
accuracy, feature selection maintained accuracy, 
reduced training time to 6.67 s, but slightly in-
creased model size (Figure 12).

Hyperparameter optimization of XGBoost

The final optimization step involved hyper-
parameter tuning for XGBoost using GridSearch-
CV on the datasets with the selected number of 
rows and features. Parameters tuned included eta 
(learning_rate), gamma (min_split_loss), max_
depth, lambda (reg_lambda), and alpha (reg_al-
pha). The parameter grid searched is exemplified 
in Figure 13. 

The selected grid was designed to cover both 
conservative and aggressive parameter values, 
ensuring that the optimisation captured a wide 
spectrum of possible configurations while re-
maining computationally feasible. The learning 
rate (η) was varied between 0.1 and 0.99 to exam-
ine the17 trade-off between gradual convergence 
and rapid training, with lower values expected to 
improve generalisation and higher values provid-
ing faster training at the risk of overshooting. The 
minimum split loss (γ) was tested in the range 0–3 
to assess the effect of regularisation on control-
ling unnecessary splits. The maximum depth pa-
rameter was set between 6 and 18, which allows 
comparison between relatively shallow trees that 
reduce overfitting and deeper trees that may cap-
ture more complex patterns but increase model 
size and training time. Finally, the regularisation 

terms λ (L2) and α (L1) were varied from 0 to 
3, following recommendations from related stud-
ies, to evaluate their role in penalising model 
complexity. These ranges ensured that the tuning 
process considered both model performance and 
practical constraints, such as training time and 
memory consumption, which are crucial in IIoT 
deployment scenarios.

The results are summarized in Table 6. For bi-
nary classification, test accuracy improved from 
0.904 (optimized rows/features, default params) 
to 0.924 after tuning, with training accuracy in-
creasing to 0.973. For multi-class classification, 
test accuracy rose from 0.825 to 0.871, with train-
ing accuracy reaching 0.957. While this indicates 
some increase in overfitting (higher training ac-
curacy compared to test), the improvement in test 
accuracy was significant. The tuning process itself 
was time-consuming, taking from approximately 
1 to 5 hours. These final accuracies (92.4% for 
binary, 87.1% for multi-class) represent the best 
performance achieved for XGBoost, aligning 
with the figures cited in the abstract.

DISCUSSION

The final hyperparameter optimization of the 
XGBoost model yielded a significant improve-
ment in performance, achieving over 92% accu-
racy for binary classification and 87% for multi-
class classification. These results are compel-
ling within the context of existing research on 
anomaly detection in IoT and IIoT. At the same 
time, it is important to acknowledge that direct 
cross-paper comparisons are not appropriate, as 

Figure 11. Metrics for XGBoost (binary classification) after feature selection

Figure 12. Metrics for XGBoost (multi-class classification) after feature selection
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prior studies have relied on different datasets 
and experimental setups. For example, Poorni-
ma and Paramasivan [3] reported 86% accuracy 
in wireless sensor networks, Zhou and Li [5] 
achieved a 95% detection rate on a DDoS-spe-
cific dataset using time-window analysis, and 
Kisanga et al. [7] obtained 76% accuracy with 
a Graph Neural Network applied only to DDoS 
scenarios. Because these works employed dif-
ferent traffic traces, protocols, and attack cat-
egories, their results cannot be numerically 
contrasted with ours. Our intention is therefore 
not to claim superiority over [3], [5], or [7], but 
to situate our findings within the broader IIoT 
anomaly-detection literature. What can be ob-
served consistently is that ensemble tree meth-
ods, including RandomForest, ExtraTrees, and 
XGBoost, show robustness under class imbal-
ance and deliver competitive accuracy without 
excessive computational cost. This trend is con-
firmed in our experiments on the CICIoT2023 
dataset. In future research, we plan to extend 
our evaluation to multiple benchmark datasets 
such as NSL-KDD, CIC-IDS2017, TON_IoT, 
and IoT-23, using a unified experimental pro-
tocol that will allow for direct and statistically 
meaningful cross-study comparisons.

The journey to this optimized model also un-
derscores the critical trade-offs in designing IIoT 
security systems. While models like Random-
Forest initially showed high F1-scores, their ten-
dency to overfit and larger resource requirements 
made them less practical than the leaner, regular-
ized XGBoost model. The success of data reduc-
tion strategies provides a viable path to creating 

lightweight detection systems that reduce data 
loads and align with the Edge Computing para-
digm. While the results are promising, the study’s 
focus on a single dataset and tree-based algo-
rithms highlights the need for future validation 
on diverse datasets and comparative analysis with 
neural network architectures.

Deployment implications and limitations

Beyond the numerical results, several prac-
tical aspects are critical for deploying anomaly 
detection models in Industrial IoT systems. 
First, resource-awareness is essential: models 
must operate under strict constraints of memory, 
processing power, and latency at the network 
edge. The optimised XGBoost configuration 
demonstrated competitive accuracy while main-
taining relatively small model size and fast train-
ing, which supports its applicability in such con-
strained environments.

At the same time, some limitations must be 
acknowledged. The evaluation relied solely on 
the CICIoT2023 dataset, which, while compre-
hensive, may not fully capture the heterogeneity 
of real-world IIoT traffic. Further validation on 
additional datasets and diverse deployment sce-
narios would strengthen the generalisability of 
the findings.

One limitation of this study is the use of a 
10% dataset extraction for evaluation. This deci-
sion was made to balance experimental feasibility 
with the large size of CICIoT2023 and the com-
putational resources available during the study. 
While this strategy allowed us to complete a com-
prehensive set of experiments within the project 
scope, it restricts direct comparability with some 
works that report results on the full dataset. In fu-
ture research, we plan to extend the analysis to 
the entire dataset to provide even more robust and 
generalisable results.

Another limitation relates to preprocessing 
choices. The uniform pipeline of standardisa-
tion, while ensuring comparability, may not 
be equally optimal for all algorithms. In future 

Figure 13. Example hyperparameter grid for 
XGBoost tuning

Table 6. Comparison of model performance
Model Model Tuned model

Label Accuracy
(train)

Accuracy
(test)

Accuracy
(train)

Accuracy
(test) Tuning time [s]

Class 0 and 1 0.910 0.904 0.973 0.924 2441.61

Grouped threats 0.831 0.825 0.957 0.871 18737,34
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research, algorithm-specific preprocessing strat-
egies could be explored to further improve mod-
el performance and efficiency. It should be noted 
that normalisation had no impact on tree-based 
models, which are scale-invariant by design. Its 
inclusion in the preprocessing pipeline was pri-
marily motivated by the need for consistent in-
put across all algorithms.

Moreover, potential risks need to be consid-
ered. False negatives remain critical, as missed 
attacks could have severe operational and security 
consequences. Conversely, excessive false posi-
tives may overwhelm monitoring systems and 
reduce trust in the detector. Finally, model drift 
is a realistic challenge in IIoT, where traffic pat-
terns evolve over time. Without periodic retrain-
ing or adaptive mechanisms, model performance 
may degrade. These challenges represent natural 
directions for future work and highlight the im-
portance of continuous monitoring and adaptive 
learning strategies in practical deployments.

Practical translation of efficiency gains

The improvements observed in training time 
and model size have direct implications for deploy-
ment in IIoT environments. Reduced training time 
allows for more frequent model updates, which is 
important for mitigating model drift and adapting 
to evolving traffic patterns. A smaller model size 
lowers the memory footprint, enabling deploy-
ment on resource-constrained edge devices such as 
gateways or embedded controllers. Furthermore, 
optimised tree depth and learning rate configura-
tions yielded reduced inference latency, which is 
crucial for near real-time anomaly detection in in-
dustrial settings where delays cannot be tolerated. 
At the same time, it is important to acknowledge 
the trade-off between model complexity and effi-
ciency: deeper trees may provide marginally high-
er accuracy but at the cost of increased latency and 
resource consumption. By balancing these aspects, 
the proposed optimisation pipeline supports the 
practical requirements of IIoT deployments.

CONCLUSIONS

This paper presented a systematic methodol-
ogy for optimizing machine learning models for 
anomaly detection in Industrial IoT (IIoT) traf-
fic, demonstrating that a practical balance be-
tween high detection accuracy and computational 

efficiency is achievable. The research focused on 
decision tree-based algorithms and proved that 
through a holistic optimization pipeline - encom-
passing data preparation, feature selection, and 
hyperparameter tuning - it is possible to develop 
resilient and resource-aware cybersecurity solu-
tions for the growing IIoT landscape.

The research utilized the CIC-IoT Dataset 
2023, with features extracted directly from.pcap 
files to provide a granular view of network be-
havior. Key findings demonstrate that meticulous 
data preparation is paramount. Techniques such as 
class balancing (specifically, RandomUnderSam-
pler was chosen for its efficiency in later stages), 
appropriate data sampling, feature selection, and 
data aggregation significantly impact model per-
formance. For instance, data aggregation showed 
a positive influence on the accuracy of all tested 
models, particularly AdaBoost. Experiments on 
reducing the dataset size by selecting an optimal 
number of rows and features for the XGBoost 
model proved that it’s possible to maintain high 
performance while considerably decreasing train-
ing times and model footprint.

The study placed a particular emphasis on 
the XGBoost model. Through systematic optimi-
zation, including the selection of approximately 
270,000–315,000 rows for training (depending 
on the classification task) and a reduced feature 
set, followed by rigorous hyperparameter tun-
ing, the XGBoost model achieved notable results. 
Post-optimization, it yielded detection accuracies 
exceeding 92% for binary classification (distin-
guishing attack vs. benign) and 87% for multi-
class classification (identifying specific attack 
types). These results were achieved with signifi-
cantly reduced data requirements and improved 
computational efficiency, such as shorter train-
ing times (e.g., binary XGBoost training time re-
duced from over 8 s to under 1 s after row/feature 
selection) and smaller model sizes.

A significant contribution of this work lies in 
highlighting that refining existing, well-under-
stood machine learning algorithms through care-
ful data handling and parameter tuning can lead to 
highly effective and efficient anomaly detection 
systems, often outperforming or matching more 
complex approaches without the need for design-
ing entirely new architectures. The findings un-
derscore the critical role of dataset selection and 
tailored feature engineering in the success of ML-
based security solutions.
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While the results are promising, this study pri-
marily focused on decision tree-based algorithms. 
Neural networks, with their distinct architectures 
and learning capabilities, were not explored but 
represent a potential avenue for future compari-
son. The current findings are based on a specific, 
albeit comprehensive, dataset; further validation 
on other diverse IIoT datasets or real-world de-
ployments would be beneficial.

Future research could extend this work by:
	• Investigating the application and optimization 

of various neural network architectures (e.g., 
CNNs, RNNs, Autoencoders) for this task and 
comparing their performance against the opti-
mized tree-based models.

	• Exploring more advanced feature engineering 
and automated feature selection techniques.

	• Developing adaptive or online learning mod-
els capable of evolving with changing network 
patterns and new attack vectors in dynamic 
IIoT environments.

	• Conducting real-world deployment and per-
formance analysis of the optimized models in 
operational IIoT systems.

In conclusion, this research successfully dem-
onstrated that optimized machine learning mod-
els, particularly XGBoost, can achieve a strong 
balance of high detection accuracy and compu-
tational efficiency for anomaly detection in IIoT 
systems. The presented methodologies for data 
preparation and model tuning offer practical path-
ways to developing more resilient and resource-
aware cybersecurity solutions for the growing 
IIoT landscape.

To our knowledge, this is one of the first 
works to systematically evaluate the optimisation 
of tree-based models for anomaly detection in 
IIoT environments, explicitly balancing detection 
performance with resource-awareness, which is 
crucial for deployment at the network edge.
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