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ABSTRACT

In the era of increasing industrial internet of things (IloT) devices, effective and efficient anomaly detection in
network traffic is crucial for ensuring the security and reliability of industrial systems. This paper introduces a
systematic methodology for optimizing machine learning models by focusing on the critical trade-off between
detection accuracy and computational efficiency for resource-constrained IIoT environments. The methodology
was evaluated using decision tree-based algorithms (RandomForest, ExtraTrees, AdaBoost, XGBoost, CatBoost)
on a realistic dataset with simulated network attacks. The analysis involved a comprehensive evaluation of data
preparation strategies, including class balancing, data aggregation, sampling, feature selection, and hyperparam-
eter tuning, with a specific focus on the XGBoost model. The results demonstrate that this holistic optimization
enables high detection accuracy (over 92% for binary classification and 87% for multi-class classification) while
simultaneously maintaining high computational efficiency (short training time, small model size). This approach
provides a practical pathway for developing resilient and resource-aware cybersecurity systems for industry, smart
city, and IloT environments.

Keywords: cybersecurity, random forest, XGBoost, network intrusion detection, anomaly detection, Industrial
IoT (IToT), machine learning optimization, decision tree algorithms

INTRODUCTION

infrastructures necessitates robust and intelligent
anomaly detection systems capable of identifying

The proliferation of internet of things (IoT)
and industrial internet of things (IloT) devices
has led to a significant increase in the volume and
complexity of data generated within interconnect-
ed systems. While these technologies drive inno-
vation and efficiency across various sectors, they
also introduce new vulnerabilities and expand the
attack surface for cyber threats[27]. The number
of security incidents in IT systems is growing an-
nually. Threats such as phishing and malware pose
a significant and well-documented risk [28], while
distributed denial-of-service (DDoS) attacks con-
tinue to increase in scale and frequency [29]. En-
suring the security and reliability of these critical

subtle deviations from normal behavior that may
indicate malicious activity or system faults.

Multi-parameter anomaly detection methods,
which analyze multiple variables simultaneously,
offer the potential for more precise and effective
threat identification compared to single-parameter
approaches. These methods can uncover complex
dependencies between variables, leading to a bet-
ter understanding of system behavior and more
accurate detection of unusual patterns. However,
they also present challenges, including increased
complexity, potential for model overfitting, and
sensitivity to outliers, which require careful data
preprocessing and model tuning.
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This paper focuses on the application and
optimization of machine learning (ML) models,
specifically those based on decision tree algo-
rithms, for multi-parameter anomaly detection in
10T network traffic. The research investigates the
efficacy of models such as RandomForest, Ex-
traTrees, AdaBoost, XGBoost, and CatBoost in
identifying various network attacks. A key aspect
of this work is the systematic evaluation of data
preparation techniques, including class balancing
strategies (OverSampling and UnderSampling),
data aggregation within time windows, and data
sampling methods. Furthermore, the study em-
phasizes the optimization of the XGBoost model
through meticulous feature selection and hyper-
parameter tuning to achieve high detection accu-
racy while maintaining computational efficiency.

The primary contribution of this work lies in
presenting a systematic optimization methodolo-
gy that explicitly addresses the trade-off between
detection accuracy and computational cost, a crit-
ical challenge in resource-constrained IloT envi-
ronments. Unlike previous studies that often fo-
cus singularly on maximizing accuracy, this paper
demonstrates a practical pathway involving data
reduction strategies (aggregation and sampling),
feature selection, and hyperparameter tuning. The
research proves that this holistic approach allows
for the development of lightweight yet robust
anomaly detection systems, significantly lower-
ing the barrier for real-world deployment.

The general system model is presented in
Figure 1. It consists of three main areas: IloT,

Network, and Processing. The IloT Area is re-
sponsible for data aggregation, control operations,
and the initial preprocessing of collected data. In
the next step, data is transmitted through the Net-
work Area using various communication proto-
cols such as HTTP, MQTT, gRPC, and others. Fi-
nally, the data reaches the Processing Area, where
it is stored and used by machine learning mod-
els for anomaly detection. In the traditional ap-
proach, the anomaly detection process for a large
number of [IoT elements is highly complex due to
the volume of transmitted data and the significant
demand for computational power. This paper pro-
poses a set of optimization methods that reduce
both bandwidth usage and computational require-
ments, thereby enabling support for a greater
number of IoT devices without the need to scale
the communication or processing infrastructure.
Particular attention should be paid to the bound-
ary between the IIoT and Network areas. Net-
work gateways are most commonly deployed at
this point, and they can also serve as aggregation
points for IoT data. If equipped with data prepro-
cessing capabilities, these gateways can perform
operations such as data aggregation, sampling,
and feature selection. This approach aligns with
the Edge Computing paradigm, which enables the
distribution of processing across the entire sys-
tem, thereby increasing its reliability and reduc-
ing operational costs. To verify the feasibility of
the proposed approach, a series of experiments
were conducted using the CIC-IoT 2023 dataset
[1], which provides realistic network traffic data,
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Figure 1. General model of an anomaly detection system in industrial IoT systems
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including various simulated IoT attacks such as
DDoS, DoS, Recon, and Spoofing. The findings
indicate that through appropriate data preparation
and rigorous model optimization, particularly for
XGBoost, it is possible to achieve high anomaly
detection rates: over 92% accuracy for binary
classification and 87% for multi-class classifica-
tion after optimization. Importantly, these results
are achievable with reduced data requirements
and lower computational overhead, making the
proposed approach suitable for real-world de-
ployment in resource-constrained IloT environ-
ments. The insights gained from this research can
contribute to the development of more resilient,
efficient, and scalable cybersecurity solutions
for industrial control systems, smart cities, and
broader [IoT ecosystems.

This study makes several contributions to the
field of anomaly detection in Industrial IoT. First,
we propose a unified optimisation pipeline that
integrates feature selection, class rebalancing,
and hyperparameter tuning, all tailored for IloT
deployment scenarios. While each of these com-
ponents has been explored separately in the litera-
ture, our novelty lies in systematically combining
them to address resource constraints typical of
edge devices, including limited memory, compu-
tation power, and latency tolerance. Second, we
provide a detailed analysis of trade-offs between
model accuracy, training time, and model size,
which are rarely considered jointly in prior stud-
ies. Finally, we demonstrate that optimised tree-
based models can achieve competitive accuracy
with a significantly smaller computational foot-
print, highlighting their practical suitability for
real-time 10T anomaly detection.

This paper is structured as follows: Section 2
will briefly review related work in anomaly de-
tection. Section 3 will describe the methodology,
including the dataset, machine learning models,
and optimization techniques. Section 4 will pres-
ent and discuss the experimental results. Finally,
Section 5 will conclude the paper and suggest fu-
ture research directions.

RELATED WORK

The detection of anomalies in network traffic,
particularly within IoT and IloT environments,
has become a critical area of research due to the
increasing sophistication and volume of cyber
threats. Effective anomaly detection systems are

paramount for maintaining the security and oper-
ational integrity of these interconnected systems.
This section reviews relevant literature concern-
ing datasets, detection methodologies, and spe-
cific research efforts in this domain.

Datasets for anomaly detection

In this subsection, we provide an overview of
publicly available datasets that have been used in
the literature for anomaly detection in networked
and [oT/IloT environments. The aim is to posi-
tion our choice of dataset in the broader research
landscape by briefly summarising how earlier
works relied on benchmarks such as KDD’99,
NSL-KDD, or [0T-23, and why the CICI0T2023
dataset offers a more realistic and up-to-date ba-
sis for evaluating anomaly detection methods in
IToT systems.

The availability of representative datasets is
crucial for the development and evaluation of
anomaly detection models. Several publicly avail-
able datasets have been utilized by the research
community. Early datasets, such as KDD’99 and
its successor NSL-KDD, served as benchmarks
for network intrusion detection [2]. However,
with the rise of IoT, more specific datasets have
emerged. TON_IoT, for instance, includes data
from various IoT devices and simulated attacks
such as DoS, DDoS, and ransomware [24]. The
[0T-23 dataset provides traffic from real IoT de-
vices, capturing activity from 2018-2019 [25].
Other notable datasets include CIDDS, focusing
on anomaly-based intrusion detection in virtual
environments, and CIC-IDS2017, which aimed
to generate realistic network traffic data [26].

For this study, the CIC-IoT Dataset 2023
[1] was selected. This dataset is particularly rel-
evant as it was generated by simulating attacks
on a large topology of 105 IoT devices and in-
cludes seven categories of modern attacks such
as DDoS, DoS, Reconnaissance, Brute Force,
and Spoofing, with malicious activities originat-
ing from loT devices themselves. The recency
and specificity of this dataset to [oT environments
make it well-suited for evaluating the proposed
multi-parameter anomaly detection methods.

Anomaly detection methodologies

This subsection reviews the main methodolog-
ical approaches to anomaly detection as presented
in the literature, including statistical, time-series,
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and Al-based techniques. By highlighting the
range of methods adopted in previous studies, we
place our own focus on supervised, tree-based ma-
chine learning models into context and underline
why they are particularly relevant for tabular net-
work traffic data in [loT environments.

Various approaches have been proposed for
anomaly detection, broadly categorized into sta-
tistical methods, time-series analysis, and artifi-
cial intelligence (Al) techniques. Statistical meth-
ods, both parametric and non-parametric, analyze
data distributions to identify outliers. Time-series
analysis focuses on identifying deviations from
established patterns, seasonality, or trends, often
employing models like ARMA or ARIMA.

Al-based methods, which are the focus of this
paper, encompass machine learning (ML) and
Neural Networks (NN). Machine learning algo-
rithms learn patterns from data to classify normal
and anomalous behavior. Popular ML algorithms
include decision trees, support vector machines
(SVM), and ensemble methods like random for-
ests. Neural networks, with their flexible architec-
tures, have also shown promise, with deep neural
networks (DNNs), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs)
being applied to anomaly detection. These Al
methods can be trained using supervised, unsuper-
vised, semi-supervised, or reinforcement learning
paradigms, depending on the availability of la-
beled data and the specific problem requirements.
This work specifically explores supervised ML
algorithms based on decision trees due to their in-
terpretability and effectiveness with tabular data.

Recent works in IoT/IloT anomaly detec-
tion have shown promising results with neural
models. For example, Chen et al. [37] propose
a hybrid XGBoost-LSTM architecture, named
MIX LSTM, that combines feature selection
and sequence modeling for balanced, accurate
detection on UNSW-NB15 and NSL-KDD data-
sets. Ayad et al. [38] achieve high detection rates
with a lightweight autoencoder-DNN pipeline
designed for real-time IoT traffic. Xin et al. [39]
compare convolutional neural networks and vari-
ational autoencoders, finding CNN excels in ac-
curacy (~95.9 %) while VAE effectively captures
anomalies via reconstruction error. Kusumastuti
et al. [40] benchmark transformer, 1D-CNN, and
GrowNet architectures against classical models,
including assessing inference latency and training
time — important considerations for deployment.
Finally, Al-Qudah and AlMahamid [41] provide
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a multi-step evaluation framework comparing
RNN-LSTM, autoencoders, and Gradient Boost-
ing under varied preprocessing, demonstrating
that tree-based methods often outperform deep
models under limited resources.

Relevant studies

Numerous studies have explored anomaly
detection in network and IoT environments. For
instance, Poornima and Paramasivan [3] pro-
posed a model based on linear weighted projec-
tion regression (OLWPR) combined with PCA
for dimensionality reduction, achieving 86%
accuracy in detecting anomalies in wireless sen-
sor networks. Suthaharan et al. [4] discussed the
challenges of obtaining labeled data for anomaly
detection in wireless sensor networks and pro-
posed an ellipse-based detection system, high-
lighting issues with adapting such models to di-
verse environmental data.

Zhou and Li [5] developed a network traffic
anomaly detection model using multilevel autore-
gression based on information entropy, report-
ing 95% effectiveness inDDoS attack detection
by analyzing data in time windows. Fouad and
Abdel-Hamid [6] utilized hidden Markov models
(HMM) to model power consumption patterns of
IoT sensor nodes to detect attacks and hardware
trojans, deploying their system in a cloud envi-
ronment. More recently, Kisanga et al. [7] pro-
posed a graph neural network (GNN) for anom-
aly detection, achieving accuracies of 76% on a
DDoS dataset and 88% on a TOR-nonTOR data-
set, demonstrating the application of deep learn-
ing on graph-structured data.

While these studies showcase diverse ap-
proaches, there remains a need for optimized ML
models that are both highly accurate and compu-
tationally efficient, especially for the resource-
constrained nature of many IloT systems. This
paper addresses this gap by focusing on the opti-
mization of decision tree-based ensemble models
through data preparation strategies, feature selec-
tion, and hyperparameter tuning, with a particu-
lar emphasis on the XGBoost algorithm, aiming
to provide a practical and effective solution for
anomaly detection in IloT environments. Fur-
thermore, recent research by Sezgin and Boyact
emphasizes the critical role of automated prepro-
cessing and feature selection in enhancing IDS
performance in IloT environments [30]. Their
work on hybrid feature selection aligns with our
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study’s focus on data preparation as a key step
towards building more accurate and computation-
ally efficient detection systems.

METHODOLOGY

This section details the research methodol-
ogy, including the dataset characteristics, data
preparation steps, machine learning models em-
ployed, experimental setup, and the metrics used
for evaluating model performance.

Dataset

The primary dataset used in this study is the
CIC-IoT Dataset 2023 [1], chosen for its rel-
evance to IoT environments and inclusion of
contemporary network attacks. This dataset was
generated from a topology of 105 IoT devices and
includes traffic related to 33 types of attacks, cat-
egorized into seven main groups such as DDoS,
DoS, Reconnaissance, Brute Force, Spoofing,
and Mirai. For this research, a 10% stratified sam-
ple of the original dataset was utilized, resulting
in 3,132,327 records with 44 features, to ensure
manageable processing times while maintaining
class proportions. The attack types specifically
included in our analysis were Benign, DDoS,
Spoofing, Reconnaissance, and a composite ‘oth-
er’ category comprising SQL Injection, cross-site
scripting (XSS), and Dictionary attacks.

Instead of using the pre-processed versions
of the dataset, features were extracted directly
from the raw.pcap files. This was accomplished
using custom Python scripts leveraging the Sca-
py library to parse network packet headers from
various layers of the TCP/IP model, capturing all
available fields. This approach allowed for a more
granular selection of features relevant to multi-
parameter anomaly detection. The extracted fea-
tures were then compiled into CSV files. Standard
preprocessing steps included handling missing
values (if any), converting data to appropriate nu-
merical types, and encoding categorical features
(though tree-based models can often handle cate-
gorical features natively or with specific encoding
strategies). Numerical features were scaled using
standardization (Z-score normalization) to en-
sure that features with larger value ranges did not
dominate those with smaller ranges, which can be
beneficial for some algorithms and for consistent
interpretation of feature importance.

The CICIoT2023 dataset used in our ex-
periments did not contain missing values in the
selected features; therefore, no imputation pro-
cedure was required. All attributes were numer-
ic, and categorical encoding was unnecessary.
Feature standardisation was applied to ensure
comparability across different models. While
tree-based classifiers are generally insensitive
to feature scaling, algorithms such as logistic
regression, SVM, and kNN require normalised
input for stable training. By applying the same
preprocessing pipeline across all models, we
ensured consistent evaluation under compara-
ble conditions.

The dataset was divided into training and
testing sets using an 80/20 split, respectively, a
common practice to evaluate model generaliza-
tion on unseen data. Stratified sampling was em-
ployed during the split to maintain the original
proportion of classes in both training and testing
sets. Network traffic datasets are often imbal-
anced, with benign traffic significantly outnum-
bering malicious traffic, or certain attack types
being rare. To address this, various techniques
from the imbalanced-learn library [12] were ex-
plored. These include:

e Oversampling techniques:

— SMOTE (synthetic minority over-sampling
technique) [13]: Generates synthetic sam-
ples for the minority class.

— Borderline-SMOTE [14]: A SMOTE vari-
ant that focuses on samples near the class
border.

— ADASYN (adaptive synthetic sampling)
[15]: Adaptively generates more synthetic
data for minority class samples that are
harder to learn.

e Undersampling techniques:

— NearMiss [16]: Selects majority class sam-
ples based on their distance to minority
class samples.

— One-Sided Selection (OSS) [17]: Removes
noisy and borderline majority class sam-
ples. The impact of these balancing strate-
gies was evaluated as part of the model op-
timization process.

Machine learning models

This research focused on supervised machine
learning algorithms based on decision trees,
known for their effectiveness on tabular data and
interpretability. The selected models were:
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e Random forest: An ensemble method that
constructs multiple decision trees on different
sub-samples of the dataset and features, and
aggregates their predictions (e.g., by voting) to
improve accuracy and control overfitting [18].

e ExtraTrees (extremely randomized trees):
Similar to random forest, but introduces more
randomness by selecting random thresholds
for splitting nodes and using the whole train-
ing sample to grow trees [19]. This can reduce
variance and training time.

e AdaBoost (adaptive boosting): An iterative en-
semble method that combines multiple weak
learners (typically decision trees). It adaptive-
ly reweights samples in each iteration, giving
more weight to misclassified instances, thus
focusing on harder-to-classify samples [20].

e XGBoost (extreme gradient boosting): A
highly efficient and scalable implementation
of gradient boosting, which sequentially adds
predictors, each correcting its predecessor’s
errors. It employs regularization to prevent
overfitting and handles missing values [21].

e (CatBoost (categorical boosting): Another
gradient boosting algorithm that effectively
handles categorical features and is designed
to combat overfitting. It uses a novel approach
for processing categorical data and ordered
boosting [22].

In the initial stage of the experiments, all
models were trained with a set of standard hy-
perparameter values that served as a baseline for
further optimisation. For Decision Trees and Ran-
dom Forests, we adopted the classical gini crite-
rion, no restriction on tree depth, and the default
minimum number of samples required to split
a node. In the case of Random Forest, one hun-
dred trees were used, which represents a common
compromise between accuracy and computation-
al cost. For boosting methods, namely Gradient
Boosting and XGBoost, the initial configuration
consisted of 100 estimators, a learning rate of 0.1,
and maximum tree depths of 3 and 6 respective-
ly. XGBoost additionally used full subsampling
of both observations and features (subsample =
1.0, colsample bytree = 1.0). Logistic Regres-
sion was configured with L2 regularisation, the
Ibfgs solver, and a penalty parameter C = 1.0. Sup-
port Vector Machines employed the radial basis
function kernel (rbf), with C = 1.0 and gamma set
to “scale”. The k-Nearest Neighbours algorithm
was initially run with five neighbours, using the
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Minkowski distance metric with p = 2. These
baseline settings reflect commonly used defaults
in libraries and the literature and provided a trans-
parent and reproducible starting point for the sub-
sequent hyperparameter optimisation process.

Experimental environment

Experiments were conducted using Python
version 3.11 within the JupyterLab environment.
Key libraries included Scikit-learn [23] for core
ML algorithms and preprocessing, Pandas for
data manipulation, NumPy for numerical opera-
tions, Matplotlib for visualization, Imbalanced-
learn [12] for handling imbalanced datasets, and
the specific libraries for XGBoost and CatBoost.
Computations were performed on a standard
desktop computer equipped with an Intel i3 10th
generation processor and 32GB of RAM. Model
performance was evaluated using a comprehen-
sive set of metrics suitable for classification tasks,
particularly in the context of imbalanced data: ac-
curacy, precision, recall, F1-score, confusion ma-
trix, ROC AUC (area under the receiver operating
characteristic curve)

Metrics

To evaluate model performance, several stan-

dard classification metrics were employed [31]:

e Accuracy — the ratio of correctly classified in-
stances to the total number of instances. While
widely used, it can be misleading in imbalanced
datasets, as a model predicting only the major-
ity class may still achieve high accuracy [32].

e Precision — the proportion of correctly pre-
dicted positive instances among all predicted
positives. High precision indicates few false
alarms [33].

e Recall (sensitivity) — the proportion of correct-
ly predicted positive instances among all ac-
tual positives. Recall is particularly critical in
anomaly detection, as false negatives (missed
attacks) may have severe consequences in
IIoT environments [34].

e Fl-score — the harmonic mean of precision
and recall, balancing the two and providing
a single measure that is less sensitive to class
imbalance than accuracy alone [35].

e ROC AUC (area under the receiver operating
characteristic curve) — measures the trade-off
between true positive and false positive rates
across thresholds. While useful, ROC AUC
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may overestimate performance in imbalanced
settings [36].

e PR AUC (area under the precision-recall
curve) — especially informative for imbal-
anced data, as it focuses on the performance
with respect to the minority class [36].

Given the strongly imbalanced nature of [loT
traffic data, we emphasised metrics beyond accu-
racy, particularly recall, F1-score, and PR AUC,
to better capture the model’s ability to detect mi-
nority-class attacks.

Optimization strategies

The environment of IoT and IloT devices
very often combines hardware limitations and a
large amount of data transmitted over the network
coming from a very large number of sources. In
order to effectively detect anomalous situations -
including threats — in such an environment, it is
necessary to apply a two-pronged approach to the
design of this class of systems. On the one hand,
we need to limit the amount of data sent to the
detection system and, on the other hand, optimize
the use of hardware resources. To achieve optimal
performance, four main optimization strategies
were employed:

e Data aggregation — data aggregation: is a strat-
egy for reducing the number of records used in
the process of learning and exploiting the ML
model. Its use allows it to determine a single
representative record for a group of rows from
the analyzed dataset. This approach reduces
the time required for learning and anomaly
detection while maintaining good quality pa-
rameters of the ML model.

e Sampling — is a technique involving random
or periodic selection of rows from a data set.
It reduces the learning time of the ML model,
and reduces the demand of the anomaly de-
tection system for hardware system resources.
However, too “rare” sampling of data can lead
to a drastic degradation of the quality param-
eters of the anomaly detection model.

e Feature selection — identifying and selecting the
most relevant features to reduce dimensionali-
ty, improve model training time, and potentially
enhance generalization by removing irrelevant
or redundant features. (Specific methods used
will be detailed in the results section).

e Hyperparameter tuning - systematically
searching for the best combination of model

hyperparameters using techniques such as
Grid Search or Randomized Search with
cross-validation. This was a critical step, es-
pecially for complex models like XGBoost, to
maximize their predictive power.

The models were evaluated for both binary
classification (distinguishing between ‘Benign’
and any ‘Attack’) and multi-class classification
(identifying specific attack categories).

PROPOSED APPROACH AND
DISCUSSION

This section presents the experimental re-
sults obtained from applying the methodologies
described in Section 3. It includes an initial anal-
ysis of the dataset, baseline performance of the
selected machine learning models, and a detailed
account of the impact of various optimization
strategies, including class balancing, feature se-
lection, and hyperparameter tuning. The discus-
sion will focus on the effectiveness of these strat-
egies in improving anomaly detection in IloT
network traffic.

Data analysis and initial observations

The CIC-loT Dataset 2023 [1], after pre-
processing and sampling (10% of the original ),
consisted of 3,132,327 records and 44 features. A
critical initial step was to analyze the distribution
of classes within the dataset. The dataset exhibited
a significant class imbalance, which is common in
network traffic data where benign traffic usually
dominates. For instance, in the multi-class sce-
nario (Figure 2c), the ‘Benign’ (labeled 1) class
was overwhelmingly prevalent, while some at-
tack classes like ‘Spoofing’ or ‘Recon’ (detailed
in Figure 2a and grouped in Figure 2b) were sig-
nificantly less represented. This imbalance can
bias machine learning models towards the major-
ity class, leading to poor detection of minority at-
tack classes. A visual representation of the class
distribution for binary and multi-class labels is
shown in Figure 2.

Feature importance analysis was also conduct-
ed. Tree-based models, such as XGBoost, provide
inherent mechanisms to rank features. An initial
assessment of feature importance revealed that fea-
tures related to packet timing, flow duration, and
packet sizes were among the most discriminative.
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a) - The number of individual attacks

b) - Grouped number of individual attacks

c) - Labels with the type of sample

DDoS-ACK_Fragmentation
Benign_Final DDoS
VulnerabilityScan -je—
MITM-ArpSpoofing -je
DDoS-SlowLoris -jmmmm
DNS_Spoofing -jmmmm
DDoS-HTTP_Flood mm
Recon-OSScan
Recon-HostDiscovery
Recon-PortScan
DDoS-UDP_Fragmentation
DictionaryBruteForce Other
Sqllnjection
XSS A
Recon-PingSweep - Recon
Uploading_Attack

Benign

Spoofing

Type of attack

Type of sample

0.0 0.2 0.4 0.6 0.8 1.0
Number of samples ( 1- 10° )

0.00 0.25 050 0.75 1.00 1.25 0.0 0.5 1.0 15 2.0
Number of samples ( 1+ 10%)

Number of samples { 1- 109 )

Figure 2. Class distribution in the sampled CIC-IoT Dataset 2023
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The dataset also contained categorical features,
such as application layer protocols (Figure 3),
which were numerically encoded. Certain columns
like timestamps and IP/MAC addresses were re-
moved as they were not deemed essential for the
research focus or could lead to overfitting in a gen-
eral context. A correlation matrix (Figure 4) was
also examined to understand relationships between
features and reveals several important patterns.
A subset of features, particularly those related to
UDP header statistics, show strong correlations,
indicating potential redundancy in the dataset. At
the same time, most other features are weakly cor-
related, suggesting that they contribute distinct
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information useful for classification. Such redun-
dancy can increase training time without necessar-
ily improving accuracy; however, tree-based mod-
els are relatively robust to correlated inputs. These
observations motivated the later use of feature se-
lection to reduce dimensionality and highlight the
most informative variables.

The correlation analysis confirmed that al-
though the dataset contains groups of redundant
features, the majority of variables are comple-
mentary. This justified the application of feature
selection methods, which contributed to im-
proving both the efficiency and interpretability
of the final models.
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Figure 4. Feature correlation matrix

Baseline model performance

Before applying any optimization tech-
niques, the selected machine learning models
(RandomForest, ExtraTrees, AdaBoost, XG-
Boost, CatBoost) were trained and evaluated
using their default hyperparameters on the full,
initially imbalanced 10% dataset sample. Cross-
validation (3-fold) was used to assess baseline
accuracy. The results showed that models based
on decision trees are generally insensitive to data
normalization, yielding identical accuracy scores
with and without it (Figure 5 and Figure 6). For
binary classification (Attack vs. Benign), Ran-
domForest and ExtraTrees achieved the highest
baseline cross-validated accuracy at 96%, while
AdaBoost performed the worst at 86% (Fig-
ure 5). For multi-class classification, a similar
trend was observed, with RandomForest and Ex-
traTrees again leading, though overall accuracies
were lower, and AdaBoost showed a significant
drop of over 10% (Figure 6).

Impact of class balancing techniques

To address class imbalance, various overs-
ampling (RandomOverSampler, SMOTE [13],

Borderline-SMOTE [14], ADASYN [15]) and un-
dersampling (RandomUnderSampler, NearMiss
[16], One-Sided Selection [17]) techniques were
applied and their processing times recorded (Ta-
ble 1, Table 2).

RandomOverSampler and RandomUnder-
Sampler were the fastest due to their simpler
mechanisms. ADASYN and BorderlineSSMOTE
were the most time-consuming oversamplers,
while OneSidedSelection took the longest among
undersamplers. The effect of these techniques on
class distribution is shown in Table 3.

Most methods aimed to equalize class counts,
except ADASYN and OneSidedSelection, which
resulted in differing class proportions based on
their algorithms.

Model selection

For subsequent experiments, RandomUnder-
Sampler was chosen due to its speed and sim-
plicity, creating balanced datasets for binary (ap-
prox. 864k samples per class) and multi-class
(approx. 168k samples per class) scenarios. After
applying the undersampling procedure, the data-
set achl3ieved a balanced distribution between
classes, reducing the dominance of the benign
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a) - Average accuracy values of models - class 0 and 1

101 0.6 0.96
0.92 0.94
0.86
0.8
3 0.6
g
=3
S
<
0.4
0.2
0.0-
X o & B X
& «& S © S
«© é & o
s & ¥ S
Q:b(\
Model

b) - Average accuracy values of models (norm) - class 0 and 1

1.0 A
0.96 0.96 002 0.94
0.86
0.8 1
0.6
0.4
0.2
0.0 -
X 2 & P S
((o,\z ‘&& ,3b°° Q <b°°
606\ Q;\s' V‘b &
&
Model

Figure 5. Baseline mean accuracy of models for binary (0/1) classification with 3-fold cross-validation,
with and without data normalization.
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Figure 6. Bascline mean accuracy of models for multi-class (grouped attacks) classification
with 3-fold cross-validation, with and without data normalization.

traffic and making the minority attack categories
more comparable in size.

On these balanced datasets (without cross-
validation for this phase), RandomForest gener-
ally showed the highest F1-scores (0.950 for bi-
nary, 0.890 for multi-class) but had long training
times and large model sizes (Table 4 and Table 5).

XGBoost demonstrated the fastest training
times (8.27 s for binary, 23.56 s for multi-class)
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with good F1-scores (0.912 for binary, 0.832 for
multi-class) and smaller model sizes compared
to RandomForest/ExtraTrees. AdaBoost had the
smallest model size but lower performance met-
rics. RandomForest and ExtraTrees showed signs
of overfitting, with training accuracy at 0.999
while test accuracy was lower. Due to its effi-
ciency and strong performance, XGBoost was
selected for further optimization.
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Table 1. Oversampling methods

prepared. It should be read from left to right, and
the individual symbols represent:

Oversampling
Model Time [s]
RandomOverSampler 1.94
SMOTE 1045.63
BorderlineSMOTE 5240.32
ADASYN 6082.01
Table 2. Undersampling methods
Undersampling
Model Time [s]
OneSidedSelection 9395.79
RandomUnderSampler 0.87
NearMiss 491.00

n—the number of selected rows for aggregation,
m — the number of randomly selected rows
from the n rows,

ki, kz,..., ki — columns in the dataset,

a ,— values in the selected n rows; where a, =
1,2,...,nanda;=1, 2,..., i,

a . — values in the m randomly selected rows
from the n rows; where a,, = 1, 2,..., m and a;
=1,2,.,1,

AGR; — the chosen aggregation operation ap-
plied to the m rows for each column k;; where
k=1,2,..,iand AGR=1,2,..., i,

2. — the summation symbol, which can be ex-

Impact of data aggregation and sampling
strategies for XGBoost

Data aggregation

A data aggregation strategy was tested where
the original dataset (31,323,200 rows) was di-
vided into 100-element windows, from which 10
records were randomly sampled. Various aggre-
gation functions (sum, mean, std, variance, me-
dian) were applied per column, and the label was
determined by a threshold on the sum of attack
labels in the window. This resulted in a dataset
of 313,232 rows. A schematic of this process is
shown in Figure 7.

For better understanding and visualization
of this process, the diagram above has been

pressed with the formula Z !, and it represents
the operation of summing m rows of a column
with a label to determine the threshold indicat-
ing the occurrence of a threat.

The aggregated dataset was compared against
a randomly sampled 10% subset of the original 3
million row dataset (313,232 rows) using 5-fold
cross-validation. Aggregation positively impact-
ed model accuracy, especially for AdaBoost, with
average accuracies around 95% for (Figure 8a)
compared to generally lower scores for 10% sam-
pled dataset (Figure 8b).

Application of the approach to reduce the size
of data sets in the process of anomaly detection
contributes to lower demand for computing pow-
er of anomaly detection systems. It also allows
the use of local data aggregation systems, which

Table 3. Results of over-sampling and under-sampling methods applied to CICIoT2023 dataset

Class distribution

Method

Model

(number of samples)

Oversampling

RandomOverSampler

SMOTE

BorderlineSMOTE

1.0:
2.0:
3.0:
4.0:

1219754
1219754
1219754
1219754

ADASYN

0.0:
1.0:
2.0:
3.0:
4.0:

1225001
1219754
1222312
1236447
1224470

Undersampling

OneSidedSelection

0.0:
1.0:
2.0:
3.0:
4.0:

821529
1172414
218128
168329
286282

RandomUnderSampler

NearMiss

0.0:
1.0:
2.0:
3.0:
4.0:

168329
168329
168329
168329
168329
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Table 4. Results of tests for a label with two classes 0 and 1

Model Learn;g}g time A((;t(; :::;; Y Ac((t:::)cy F1 Recall Precision Sig]e
RandomForest 585.10 0.999 0.950 0.950 0.943 0.957 1141M
ExtraTrees 304.10 0.999 0.948 0.948 0.942 0.954 3323M
AdaBoost 174.00 0.826 0.826 0.817 0.774 0.865 28056
XGB 8.27 0.915 0.914 0.912 0.885 0.940 376107
CatBoost 142.24 0.933 0.930 0.928 0.908 0.950 1096591

Table 5. Results of tests for the label with grouped threat

Learning time Accuracy Accuracy . Size
Model [s] (train) (test) F1 Recall Precision Bl
RandomForest 278.74 0.999 0.888 0.890 0.888 0.895 1694M
ExtraTrees 136.50 0.999 0.887 0.889 0.887 0.894 4048M
AdaBoost 81.12 0.616 0.617 0.625 0.617 0.648 31890
XGB 23.56 0.832 0.829 0.832 0.829 0.847 1932667
CatBoost 225.65 0.828 0.826 0.828 0.826 0.844 3144255
— ki ke ki — ki Kk ki
A1 || 12 Ay A1 || A12 Ay
Az (| A22 i Q21 (| 322 ;i
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Figure 7. Schematic of the data aggregation process
a) - Average accuracy values of models - aggregation b) - Average accuracy values of models - 10% of the dataset
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Figure 8. Mean accuracy comparison after 5-fold cross-validation: (a) aggregated dataset,
(b) 10% sampled dataset
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consequently limits the amount of data sent over
the network to central monitoring systems.

Data sampling

Sampling is the process during which a new
set of data is obtained, a smaller but still represen-
tative subset. The impact of reducing the training
and testing set size for XGBoost was investigated
by iteratively training and testing on decreas-
ing fractions of the balanced dataset (from 1/5th
down to 1/200th). Only in the first step there is
a value of 5 and the next steps, starting from 10,
are 10 more than the previous one, up to the value
of 200 (i.e. 5, 10, 20, 30,..., 200). Sampling has
a big advantage over data aggregation - it can be
realizedon the fly by a dedicated probe, which se-
lects part of the packets and sends it to the detec-
tion system. The rest of the packets are skipped.
In the case of aggregation, all packets must be
processed and a record representative of a certain
group of packets is selected on the basis of their
analysis. This process is much more computation-
ally complex than sampling data “on the fly”.

Results (Figure 9 for binary, Figure 10 for
multi-class) showed that as the number of sam-
ples decreased (moving from left to right on the
x-axis, which represents the divisor of the en-
tire dataset of size N), test accuracy generally

a) - Accuracy of the model for the next number of samples

b) - Model parameters for the next number of samples

declined, and the gap between training and test
accuracy widened, indicating increased overfit-
ting. Model size predictably decreased with fewer
samples. It should be noted that in some appli-
cations, anomaly detection accuracy at a reduced
level of, for example, 75% may be sufficient —
since Al models are one of the indicators of threat
occurrence. In both cases considered (Figure 11,
Figure 12), these types of detection accuracy lev-
els are achieved for up to 100 times reduction of
analyzed data — which significantly increases the
potential for implementation of such an approach
in industrial systems.

Feature selection for XGBoost

Another area that is important from the point
of view of optimizing the process of anomaly
detection in IoT systems is related to the selec-
tion of the most relevant features (columns) from
the perspective of the model. Limiting the set of
analyzed features reduces the size of the model,
and limits the amount of data that must be sent
from monitored elements to the anomaly detec-
tion system. Feature selection was performed
based on XGBoost’s inherent feature importance
scores. For binary classification, selecting a sub-
set of the most important features to achieve >

c) - Model size for the next number of samples
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Figure 9. XGBoost performance for binary (0/1) classification with varying sub-sample sizes:
(a) training vs. test accuracy, (b) test metrics (F1, Precision, Recall), (¢c) model size
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Figure 10. XGBoost performance for multi-class (grouped attacks) classification with varying sub-sample sizes:
(a) training vs. test accuracy, (b) test metrics (F1, Precision, Recall), (¢c) model size
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Learning
time[s]

['IP_flags’, 'Service_name’, 'IP_id’, 'TCP_flags’,
‘IP_tos’, 'TCP_window’, ‘UDP_len’, ‘IP_ttl", 086

‘TCP_sport’, ‘Frame_size', ‘UDP_sport’,
"TCP_dport’]
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Figure 11. Metrics for XGBoost (binary classification) after feature selection

90% test accuracy resulted in slightly lower ac-
curacy but further reduced training time to 0.86
s and model size to 344 KB (Figure 11). For
multi-class classification, aiming for > 82% test
accuracy, feature selection maintained accuracy,
reduced training time to 6.67 s, but slightly in-
creased model size (Figure 12).

Hyperparameter optimization of XGBoost

The final optimization step involved hyper-
parameter tuning for XGBoost using GridSearch-
CV on the datasets with the selected number of
rows and features. Parameters tuned included eta
(learning_rate), gamma (min_split_loss), max
depth, lambda (reg lambda), and alpha (reg al-
pha). The parameter grid searched is exemplified
in Figure 13.

The selected grid was designed to cover both
conservative and aggressive parameter values,
ensuring that the optimisation captured a wide
spectrum of possible configurations while re-
maining computationally feasible. The learning
rate (1) was varied between 0.1 and 0.99 to exam-
ine thel7 trade-off between gradual convergence
and rapid training, with lower values expected to
improve generalisation and higher values provid-
ing faster training at the risk of overshooting. The
minimum split loss (y) was tested in the range 03
to assess the effect of regularisation on control-
ling unnecessary splits. The maximum depth pa-
rameter was set between 6 and 18, which allows
comparison between relatively shallow trees that
reduce overfitting and deeper trees that may cap-
ture more complex patterns but increase model
size and training time. Finally, the regularisation

Learning
time[s]

['IP_flags’, ‘'TCP_flags’, 'IP_tos', 'UDP_len’,
‘Frame_size', ‘Service_name', 'TCP_window', 'IP_ttI’, 6.67

'IP_len’, 'TCP_sport’, ‘TCP_dport’, ‘TCP_dataofs’,
‘TCP_ack’, ‘'TCP_seq’, 'IP_id", "UDP_sport’]

terms A (L2) and o (L1) were varied from 0 to
3, following recommendations from related stud-
ies, to evaluate their role in penalising model
complexity. These ranges ensured that the tuning
process considered both model performance and
practical constraints, such as training time and
memory consumption, which are crucial in [IoT
deployment scenarios.

The results are summarized in Table 6. For bi-
nary classification, test accuracy improved from
0.904 (optimized rows/features, default params)
to 0.924 after tuning, with training accuracy in-
creasing to 0.973. For multi-class classification,
test accuracy rose from 0.825 to 0.871, with train-
ing accuracy reaching 0.957. While this indicates
some increase in overfitting (higher training ac-
curacy compared to test), the improvement in test
accuracy was significant. The tuning process itself
was time-consuming, taking from approximately
1 to 5 hours. These final accuracies (92.4% for
binary, 87.1% for multi-class) represent the best
performance achieved for XGBoost, aligning
with the figures cited in the abstract.

DISCUSSION

The final hyperparameter optimization of the
XGBoost model yielded a significant improve-
ment in performance, achieving over 92% accu-
racy for binary classification and 87% for multi-
class classification. These results are compel-
ling within the context of existing research on
anomaly detection in [oT and IIoT. At the same
time, it is important to acknowledge that direct
Cross-paper comparisons are not appropriate, as

Accurac.y- Accuracy- F1-score Recall Precision Size [B]
train test
0.83134 0.822183 0.825511 0.822183 0.841987 1851556

Figure 12. Metrics for XGBoost (multi-class classification) after feature selection

216



Advances in Science and Technology Research Journal 2026, 20(1) 203-221

params = {
"eta" : np.linspace(®.1l, 8.99, 5),
"gamma” : np.linspace(®, 1, 3),
"max_depth" : [6, 8, 18, 12, 14, 16, 18],
"lambda" : np.linspace(e, 1, 3),
"glpha” : np.linspace(®, 1, 3),

Figure 13. Example hyperparameter grid for
XGBoost tuning

prior studies have relied on different datasets
and experimental setups. For example, Poorni-
ma and Paramasivan [3] reported 86% accuracy
in wireless sensor networks, Zhou and Li [5]
achieved a 95% detection rate on a DDoS-spe-
cific dataset using time-window analysis, and
Kisanga et al. [7] obtained 76% accuracy with
a Graph Neural Network applied only to DDoS
scenarios. Because these works employed dif-
ferent traffic traces, protocols, and attack cat-
egories, their results cannot be numerically
contrasted with ours. Our intention is therefore
not to claim superiority over [3], [5], or [7], but
to situate our findings within the broader IloT
anomaly-detection literature. What can be ob-
served consistently is that ensemble tree meth-
ods, including RandomForest, ExtraTrees, and
XGBoost, show robustness under class imbal-
ance and deliver competitive accuracy without
excessive computational cost. This trend is con-
firmed in our experiments on the CICloT2023
dataset. In future research, we plan to extend
our evaluation to multiple benchmark datasets
such as NSL-KDD, CIC-IDS2017, TON_IoT,
and [oT-23, using a unified experimental pro-
tocol that will allow for direct and statistically
meaningful cross-study comparisons.

The journey to this optimized model also un-
derscores the critical trade-offs in designing IloT
security systems. While models like Random-
Forest initially showed high F1-scores, their ten-
dency to overfit and larger resource requirements
made them less practical than the leaner, regular-
ized XGBoost model. The success of data reduc-
tion strategies provides a viable path to creating

Table 6. Comparison of model performance

lightweight detection systems that reduce data
loads and align with the Edge Computing para-
digm. While the results are promising, the study’s
focus on a single dataset and tree-based algo-
rithms highlights the need for future validation
on diverse datasets and comparative analysis with
neural network architectures.

Deployment implications and limitations

Beyond the numerical results, several prac-
tical aspects are critical for deploying anomaly
detection models in Industrial IoT systems.
First, resource-awareness is essential: models
must operate under strict constraints of memory,
processing power, and latency at the network
edge. The optimised XGBoost configuration
demonstrated competitive accuracy while main-
taining relatively small model size and fast train-
ing, which supports its applicability in such con-
strained environments.

At the same time, some limitations must be
acknowledged. The evaluation relied solely on
the CICIoT2023 dataset, which, while compre-
hensive, may not fully capture the heterogeneity
of real-world IloT traffic. Further validation on
additional datasets and diverse deployment sce-
narios would strengthen the generalisability of
the findings.

One limitation of this study is the use of a
10% dataset extraction for evaluation. This deci-
sion was made to balance experimental feasibility
with the large size of CICIoT2023 and the com-
putational resources available during the study.
While this strategy allowed us to complete a com-
prehensive set of experiments within the project
scope, it restricts direct comparability with some
works that report results on the full dataset. In fu-
ture research, we plan to extend the analysis to
the entire dataset to provide even more robust and
generalisable results.

Another limitation relates to preprocessing
choices. The uniform pipeline of standardisa-
tion, while ensuring comparability, may not
be equally optimal for all algorithms. In future

Model Model Tuned model
Accuracy Accuracy Accuracy Accuracy N
Label (train) (test) (train) (test) Tuning time [s]
Class 0 and 1 0.910 0.904 0.973 0.924 2441.61
Grouped threats 0.831 0.825 0.957 0.871 18737,34
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research, algorithm-specific preprocessing strat-
egies could be explored to further improve mod-
el performance and efficiency. It should be noted
that normalisation had no impact on tree-based
models, which are scale-invariant by design. Its
inclusion in the preprocessing pipeline was pri-
marily motivated by the need for consistent in-
put across all algorithms.

Moreover, potential risks need to be consid-
ered. False negatives remain critical, as missed
attacks could have severe operational and security
consequences. Conversely, excessive false posi-
tives may overwhelm monitoring systems and
reduce trust in the detector. Finally, model drift
is a realistic challenge in I1oT, where traffic pat-
terns evolve over time. Without periodic retrain-
ing or adaptive mechanisms, model performance
may degrade. These challenges represent natural
directions for future work and highlight the im-
portance of continuous monitoring and adaptive
learning strategies in practical deployments.

Practical translation of efficiency gains

The improvements observed in training time
and model size have direct implications for deploy-
ment in [IoT environments. Reduced training time
allows for more frequent model updates, which is
important for mitigating model drift and adapting
to evolving traffic patterns. A smaller model size
lowers the memory footprint, enabling deploy-
ment on resource-constrained edge devices such as
gateways or embedded controllers. Furthermore,
optimised tree depth and learning rate configura-
tions yielded reduced inference latency, which is
crucial for near real-time anomaly detection in in-
dustrial settings where delays cannot be tolerated.
At the same time, it is important to acknowledge
the trade-off between model complexity and effi-
ciency: deeper trees may provide marginally high-
er accuracy but at the cost of increased latency and
resource consumption. By balancing these aspects,
the proposed optimisation pipeline supports the
practical requirements of IIoT deployments.

CONCLUSIONS

This paper presented a systematic methodol-
ogy for optimizing machine learning models for
anomaly detection in Industrial IoT (IloT) traf-
fic, demonstrating that a practical balance be-
tween high detection accuracy and computational
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efficiency is achievable. The research focused on
decision tree-based algorithms and proved that
through a holistic optimization pipeline - encom-
passing data preparation, feature selection, and
hyperparameter tuning - it is possible to develop
resilient and resource-aware cybersecurity solu-
tions for the growing I1oT landscape.

The research utilized the CIC-IoT Dataset
2023, with features extracted directly from.pcap
files to provide a granular view of network be-
havior. Key findings demonstrate that meticulous
data preparation is paramount. Techniques such as
class balancing (specifically, RandomUnderSam-
pler was chosen for its efficiency in later stages),
appropriate data sampling, feature selection, and
data aggregation significantly impact model per-
formance. For instance, data aggregation showed
a positive influence on the accuracy of all tested
models, particularly AdaBoost. Experiments on
reducing the dataset size by selecting an optimal
number of rows and features for the XGBoost
model proved that it’s possible to maintain high
performance while considerably decreasing train-
ing times and model footprint.

The study placed a particular emphasis on
the XGBoost model. Through systematic optimi-
zation, including the selection of approximately
270,000-315,000 rows for training (depending
on the classification task) and a reduced feature
set, followed by rigorous hyperparameter tun-
ing, the XGBoost model achieved notable results.
Post-optimization, it yielded detection accuracies
exceeding 92% for binary classification (distin-
guishing attack vs. benign) and 87% for multi-
class classification (identifying specific attack
types). These results were achieved with signifi-
cantly reduced data requirements and improved
computational efficiency, such as shorter train-
ing times (e.g., binary XGBoost training time re-
duced from over 8 s to under 1 s after row/feature
selection) and smaller model sizes.

A significant contribution of this work lies in
highlighting that refining existing, well-under-
stood machine learning algorithms through care-
ful data handling and parameter tuning can lead to
highly effective and efficient anomaly detection
systems, often outperforming or matching more
complex approaches without the need for design-
ing entirely new architectures. The findings un-
derscore the critical role of dataset selection and
tailored feature engineering in the success of ML-
based security solutions.



Advances in Science and Technology Research Journal 2026, 20(1) 203-221

While the results are promising, this study pri-
marily focused on decision tree-based algorithms.
Neural networks, with their distinct architectures
and learning capabilities, were not explored but
represent a potential avenue for future compari-
son. The current findings are based on a specific,
albeit comprehensive, dataset; further validation
on other diverse IloT datasets or real-world de-
ployments would be beneficial.

Future research could extend this work by:

e Investigating the application and optimization
of various neural network architectures (e.g.,
CNNs, RNNs, Autoencoders) for this task and
comparing their performance against the opti-
mized tree-based models.

e Exploring more advanced feature engineering
and automated feature selection techniques.

e Developing adaptive or online learning mod-
els capable of evolving with changing network
patterns and new attack vectors in dynamic
IIoT environments.

e Conducting real-world deployment and per-
formance analysis of the optimized models in
operational IIoT systems.

In conclusion, this research successfully dem-
onstrated that optimized machine learning mod-
els, particularly XGBoost, can achieve a strong
balance of high detection accuracy and compu-
tational efficiency for anomaly detection in [IoT
systems. The presented methodologies for data
preparation and model tuning offer practical path-
ways to developing more resilient and resource-
aware cybersecurity solutions for the growing
IIoT landscape.

To our knowledge, this is one of the first
works to systematically evaluate the optimisation
of tree-based models for anomaly detection in
IIoT environments, explicitly balancing detection
performance with resource-awareness, which is
crucial for deployment at the network edge.
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