
373

INTRODUCTION

Biebrza National Park, located in Poland, is 
the country’s largest national park, spanning an 
area of 59.223 hectares. This vast wetland eco-
system serves as a critical habitat for wildlife but 
is increasingly vulnerable to various environ-
mental threats, notably wildfires. The devastating 
fire in 2020, which affected approximately 10% 
of the park’s landscape, highlighted this vulnera-
bility. More recently, another wildfire erupted in 
April 2025, further emphasizing the urgent need 
for robust and continuous environmental moni-
toring systems [1, 2]. These recurrent incidents 
have intensified interest in advanced surveil-
lance and rapid-response technologies capable 
of operating in the park’s difficult and diverse 
terrain. A promising direction to address these 

challenges involves the cooperative deployment 
of Unmanned Ground Vehicles and Unmanned 
Aerial Vehicles for reconnaissance and remote 
patrolling tasks. UGVs, equipped with ad-
vanced sensors and imaging systems, are par-
ticularly capable of traversing the park’s hetero-
geneous and often inaccessible terrain, enabling 
close-range data collection where human access 
is limited [3–4]. On the other hand UAVs offer 
expansive aerial surveillance, supporting real-
time monitoring of large areas and enabling early 
identi-fication of environmental hazards such as 
fire outbreaks [5–6]. The integration of these two 
platforms provides complementary perspectives 
– ground-level detail and aerial oversight – essen-
tial for improving situational awareness and fa-
cilitating prompt re-sponses to emerging threats.
Recent advancements in UAV-UGV cooperative
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systems have significantly ex-panded their opera-
tional effectiveness in complex, unstructured en-
vironments. For in-stance, a finite-time coopera-
tive formation control strategy for heterogeneous 
UAV-UGV teams has been proposed, ensuring 
system stability and convergence even under 
actuator faults or external disturbances, thus in-
creasing operational robustness [7–9]. Addition-
ally, a vision-aware cooperative target localiza-
tion framework has been developed, employing 
multi-feature fusion for improved detection ac-
curacy and resil-ience under outdoor conditions. 
This framework effectively merges aerial and 
terres-trial visual inputs to improve environmen-
tal perception [10].

In parallel, considerable progress has been 
made in improving communication ef-ficiency 
and reliability, which is especially critical in dy-
namic and band-width-constrained environments 
like the wetlands of Biebrza National Park. New 
methods and algorithms have been proposed to 
ensure reliable data exchange under fluctuating 
connectivity conditions [11]. Moreover, research-
ers have advanced tele-operation capabilities by 
integrating real-time perception feedback, ad-
dressing chal-lenges posed by limited visibility 
and degraded sensor data in swampy terrain [12].

In addition to cooperative UAV-UGV sys-
tems, recent innovations in computer vi-sion and 
AI-driven perception systems have shown prom-
ise for enhancing fire de-tection and environmen-
tal monitoring. Image-based fire detection tech-
niques, pow-ered by deep learning, have emerged 

as a powerful tool for non-contact sensing in 
complex environments. These technologies, sup-
ported by advances in big data and high-perfor-
mance computing (such as Graphics Processing 
Units or GPUs), enable re-al-time monitoring and 
early detection of fire hazards, even in large, diffi-
cult-to-access areas like Biebrza National Park 
[13]. The integration of these advanced technolo-
gies into UAV-UGV systems can significantly im-
prove the park’s capacity to respond to wildfires, 
poaching, and other threats..

Nevertheless, deploying these technologies 
in wetland environments remains challenging. 
The terrain is often swampy, densely vegetated, 
and irregular, posing se-rious mobility and per-
ception difficulties for both aerial and ground 
platforms. Crucial challenges include managing 
multi-modal perception, achieving efficient real-
time sensor data fusion, and ensuring terrain-
adaptive locomotion.

TERRAIN CHALLENGES AND MISSION 
REQUIREMENTS

Selecting the right platforms for working in 
swampy areas comes with the specific operational 
challenges. These regions have mushy, uneven ter-
rain and dense plants, making it hard for regular 
vehicles to move around. It’s important that these 
platforms can float or move easily in the water, and 
they should be gentle on the environment since 

Figure 1. Example of environmental limitation for patrol missions
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swamps are often delicate ecosystems. Keeping 
them in good shape in the wet and sometimes cor-
rosive environment can be a challenge (Figure 1). 
In addressing these challenges, the application of 
remote-controlled platforms equipped with spe-
cialized sensors and tools, such as thermal cam-
eras, lidars, radars, and ground sampling devices, 
is highly anticipated. Through these un-manned 
plat-forms, comprehensive surveys and data col-
lection can be conducted without exposing indi-
viduals to risk. For instance, potential fire sources 
can be detected by thermal cameras, and vital 
insights into the environment can be gleaned by 
ground samplers. By employing these cutting-
edge technologies, the safety of individuals and 
the preservation of the park, especially during un-
foreseeable events like wildfires, can be ensured.

In this context, the development of compre-
hensive solutions is essential to facili-tate the adap-
tation of existing UGV platforms that collaborate 
with UAVs for effective reconnaissance missions.

SELECTION OF GROUND PLATFORM

Patrol missions in environmentally sensitive 
areas such as Biebrza National Park are often 
constrained by challenging terrain and ecological 
considerations. Swampy soils, dense vegetation, 
and low soil-bearing capacity significantly limit 
access to cer-tain regions, necessitating the selec-
tion of ground platforms specifically suited for 
re-connaissance and emergency missions. These 
platforms must not only ensure reliable mobility 
across diverse and difficult terrains but also mini-
mize environmental impact to preserve the park’s 
fragile ecosystems.

Efficient ground platform selection is criti-
cal for addressing these operational constraints. 
Emergency and extraordinary situations often de-
mand access to areas that conventional vehicles 
cannot navigate due to the unstable soil conditions 
and the presence of natural obstacles. This study 
focuses on selecting ground platforms by an-alyz-
ing the effects of tire width, the use of tracks, and 
load mass on nominal ground pressure.

The sensitivity of forest soils to compaction 
requires careful evaluation of multiple factors, 
including vehicle contact pressure, soil texture, 
moisture content, skeletal par-ticle proportion, 
soil structure, bulk density, porosity, and humus 
layer thickness. In areas with restricted ground-
bearing capacity, platforms equipped with 

semi-tracks provide significant advantages. By 
increasing the contact area and reducing contact 
pressure, semi-tracks protect the soil from com-
paction and displacement. They also enhance ve-
hicle mobility by decreasing wheel slippage, rut 
depth, and rolling re-sistance. This leads to op-
erational efficiency by improving payload utiliza-
tion, in-creasing vehicle speed, and lowering fuel 
consumption. Additionally, semi-tracks im-prove 
lateral stability during loading, unloading, and 
travel, particularly on slopes, ensuring safety and 
reliability in challenging conditions.

Beyond the use of semi-tracks, multi-wheel 
platforms provide an additional ad-vantage by 
not only reducing soil damage through even dis-
tribution of contact pres-sure but also enabling 
effective mobility in challenging environments 
like those found in national parks. These configu-
rations are particularly beneficial in fragile eco-
sys-tems, where preserving soil integrity is para-
mount. By minimizing long-term envi-ronmental 
degradation caused by frequent operations, multi-
wheel platforms offer a sustainable solution for 
navigating sensitive terrains [15].

Soil bearing capacity, defined as the soil’s 
resistance to external forces exerted by vehicle 
wheels or tracks, is a critical factor in platform 
suitability. It is assessed by measuring soil set-
tling, often quantified as rut depth, under an ap-
plied load. This ca-pacity depends on constant 
soil parameters, such as texture, humus content, 
and skel-etal particle proportion, as well as vari-
able factors like current soil moisture. Excessive 
contact pressure can lead to significant soil dam-
age, emphasizing the importance of minimizing 
such impacts in sensitive terrains (Table 1).

Mentioned classification system for soil 
strength includes categorizing it into four classes 
with maximum allowable contact pressures for 
each. This framework provides valuable guide-
lines for matching vehicle specifications to the 
soil’s bearing capacity, ensuring both effective 
performance and environmental conservation. 
Nominal ground pressure, calculated using the 
Mellgren equation, serves as a quantitative met-
ric for determining platform suitability in sensi-
tive terrains [17].

Vehicle contact pressure is the ratio of a ve-
hicle’s weight to its contact surface ar-ea with the 
ground, reflecting its environmental suitability for 
operation in fragile ecosystems. Calculating con-
tact pressure in off-road environments is challeng-
ing due to the dependence of the tire-soil contact 
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area on two factors: the elastic deformation of the 
loaded wheel (tire characteristics and air pressure) 
and the plastic-elastic de-formation of the soil 
(granulometric content and moisture) (Figure 2).

To standardize the calculation of contact 
pressures and enable comparisons be-tween ve-
hicles and equipment configurations, the con-
cept of nominal ground pressure was introduced. 
This metric represents static pressure when the 

vehicle is at rest, based on a rigid wheel on plas-
tic-elastic ground.

For reconnaissance purposes in the challeng-
ing environment of Biebrza National Park, the 
ARGO 8 × 8 platform was analyzed as a versa-
tile amphibious utility vehicle. Widely employed 
in demanding terrains, including swampy areas, 
this platform offers adaptability through the op-
tion to operate on wheels or tracks, significantly 

Table 1. Classification of soil types [16]
Soil strength 

classes
General description 

of the soil Cone index Cl, kPa Young’s moduls E, 
MPa

Shear strenght τ, 
kPa

Ground bearing 
capacity GBC, kPa

Strong soil Dry sand, gravel, >500 >60 >60 >80

Average soil Soft mineral or iron-
pan soil 300–500 20–60 20–60 60–80

Soft soil Wet gleys and peaty 
soils <300 <20 <20 40–60

Very soft soil Wet peats <<300 <<20 <<20 <40

Figure 2. Calculation of ground pressure -wheels and tracks [18]

Figure 3. View of ARGO 8 × 8 platform: (a) and available rubber track kits (b-c)
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enhancing its operational capabilities in such en-
vironments (Figure 3).

Below are listed main parameters of ARGO 8 
× 8 platform [19]:
	• vehicle curb weight: 603 kg,
	• payload: 485 kg,
	• total weight (gross): 1.088 kg (10.673 N),
	• dimensions: 3023 mm (length) × 1524 mm 

(width) × 1169 mm (height),
	• contact area:

−	 wheels: assumed 0.03 m² per wheel (8 
wheels in total),

−	 tracks: each 2.6 m (length) × 0.45 m (width), 
2 × (2.6 × 0.45) = 2.34 m²,

	• ground pressure:
−	 wheels: 2.1 PSI (14.5 kPa),
−	 tracks: 0.67 PSI (4.6 kPa).

To evaluate platform performance on wheels 
and tracks the below analysis in-corporates ve-
hicle specifications, ground pressure, and contact 
area calculations to determine its suitability for 
such challenging terrains (Table 2).

The nominal ground pressure (NGP) of the 
ARGO 8 × 8 was computed using the Mellgren 
equation, considering tracked and wheeled config-
urations. Figure 4 illus-trates the pressure distribu-
tion differences between the two configurations, 
with tracked operation significantly reducing soil 
displacement and improving vehicle sta-bility.

Tracks provide significantly lower ground 
pressure and higher traction, allowing the vehicle 
to traverse swampy terrain with ease. In contrast, 
wheels, due to higher ground pressure, generate 
greater soil resistance and much lower traction, 
making the vehicle more prone to getting bogged 

Figure 4. UGV nominal ground pressure for wheels and tracks against soil bearing capacity

Table 2. Missing title
Type of mode Wheels Tracks

Specific ground pressure P = W / A

Total contact area 8 × 0.03 m² = 0.24 m² 2 × (2.6 m × 0.45 m) = 2.34 m²

Pressure Pwheels = 10,673 N / 0.24 m² = 44,445.8 Pa (≈ 
2.1 PSI) Ptracks = 10,673 N / 2.34 m² = 4,564.1 Pa (≈ 0.67 PSI)

Soil resistance 𝐹soil = Csoil × P

Resistance 0.5 × 44,445.8 Pa = 22,222.9 N 0.5 × 4,564.1 Pa = 2,282.05 N

Traction force Ftraction = 𝜇 × W 

Traction force 0.6 × 10,673 N = 6,402.0 N 0.8 × 10,673 N = 8,538.4 N

Vehicle mobility evaluation
Traction force: 6,402.0 N < soil resistance: 

22,222.9 N Traction force: 8,538.4 N > soil resistance: 2,282.05 N

Vehicle is likely to get bogged down using 
wheels Vehicle can successfully move using tracks
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down in swamp conditions. Consequently, tracks 
are the preferred configuration for operating in 
challenging, swampy environments.

PROPOSED UGV/UAV COOPERATION 
STRUCTURE

The selected ARGO 8 × 8 ground platform, 
equipped with a rubber track kit, is well-suited for 
navigating challenging swampy terrains. Howev-
er, certain areas of Biebrza National Park remain 
inaccessible even to this vehicle, necessitating 
alterna-tive reconnaissance methods to identify 
potential threats and enable appropriate re-spons-
es. A highly promising solution involves utilizing 
UAVs, which can operate along predefined routes 
to collect valuable data through onboard cameras 
or other suitable sensors. In the proposed frame-
work, UGVs and UAVs work in tandem, forming 
a dy-namic and complementary team. Advanced 
communication systems enable real-time data ex-
change be-tween the ground and aerial units. The 
collaboration is orchestrated by sophisticated AI 
algorithms that facilitate decision-making and 
coordination based on the information gathered 
by both platforms. UGVs, with their specialized 

capabili-ties for ground-level navigation, venture 
into areas with restricted human access, navigat-
ing through wetlands, dense vegetation, and peat 
bogs. Simultaneously, UAVs provide a compre-
hensive aerial perspective, covering larger areas 
efficiently and cap-turing high-resolution imagery 
crucial for situational awareness (Figure 5).

The interaction between UGVs and UAVs is not 
only limited to data sharing but extends to coopera-
tive maneuvers. The system is designed to adapt to 
evolving mission requirements, with the UGVs and 
UAVs adjusting their routes and focus areas based 
on real-time environmental feedback and potential 
threats detected by the AI algo-rithms. This dynamic 
cooperation structure ensures a comprehensive and 
adaptive approach to reconnaissance in the diverse 
and challenging terrains of the park.

According to proposed scenario unmanned 
ground platform plays an important role in navi-
gating the challenging terrain of Biebrza National 
Park, conducting ground-level reconnaissance, 
data collection, and observation. The selected 
Argo 8 × 8 platform is well-suited for such de-
manding environments, offering exceptional off-
road capabilities, as detailed in Section 3. This ver-
satile amphibious vehicle is ca-pable of traversing 
swamps, muddy terrain, water bodies, and rug-
ged landscapes. The Argo 8 × 8 is widely used in 

Figure 5. Reconnaissance mission scenario
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outdoor applications like agricultural operations, 
and search-and-rescue missions due to its ability 
to access remote and hard-to-reach areas. Its ro-
bust design and proven durability make it ideal for 
enduring harsh environmen-tal conditions.

To adapt the Argo 8 × 8 for unmanned mis-
sions, it is necessary to integrate an ad-vanced 
control system equipped with perception sensors. 
These sensors improve the platform’s situational 
awareness and environmental assessment capa-
bilities, even in adverse weather conditions such 
as fog or dense smoke. This feature is particularly 
critical when passive sensors, like cameras, face 
limitations in visibility. The seamless combina-
tion of the Argo 8 × 8’s rugged platform with these 
advanced active sensors ensures adaptability and 
resilience in complex operational scenarios, en-
abling the re-liable acquisition of critical data 
under challenging conditions. The already prov-
en on-board system (Figure 6) of the unmanned 
platform relies on a modular design, that is robust 
against operational temperature variations [20]. 
Pro-posed architecture enables the seamless inte-
gration of additional modules, such as a recon-
naissance aircraft, thereby further broadening the 
platform’s adaptability and functionality. 

This ground-based platform serves as a 
docking and loading system for UAVs equipped 
with daytime and thermal cam-eras for visual 
analysis. The advantage of incorporating drones 
lies in their exceptional agility and flight speed, 

which comple-ments the capabilities of the 
unmanned ground vehicle. While the primary 
function of the unmanned ground vehicle is to 
transport heavy loads and install sensing devic-
es, drones ex-tend capabilities in delivering real-
time situation awareness. Their ability to swiftly 
traverse the terrain and transmit data significant-
ly amplifies mission effec-tiveness. Utilizing 
state-of-the-art technologies such as computer 
vision and machine learning, UAVs can scruti-
nize transmitted images and identify potential 
threats. This crucial data empowers operators to 
make informed decisions, adjust routes, or take 
essential actions to overcome both natural and 
deliberately positioned obstacles. This integra-
tion not only heightens situational awareness but 
also streamlines responses to unforeseen chal-
lenges, ultimately enhancing the safety and ef-
ficacy of missions.

In response to the specific mission require-
ments and the intricate challenges pre-sented by 
the environment of Biebrza National Park, the 
developed Falcon V5 coaxial quadrotor (Figure 
7) was selected as UAV platform. This choice 
is driven by the platform’s ability to address the 
critical issues inherent to the mission. The Falcon 
V5 excels in drive efficiency and lift capacity, en-
suring optimal manoeuvrability through the chal-
lenging terrains, including wetlands and dense 
vegetation, while providing payload capacity for 
advanced sensors and equipment.

Figure 6. Block diagram of proposed control system for Argo 8 × 8 650
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The UAV’s reliability is fortified by the Fal-
con V5’s automatic fault and damage detection 
system, swiftly identifying potential issues. This 
capability facilitates prompt maintenance ac-
tions, effectively minimizing the risk of opera-
tional disruptions. Furthermore, the Falcon V5’s 
remarkable fast reconfigurability plays a central 
role in seamlessly adapting to the dynamic envi-
ronmental conditions within the national park and 
evolving mission requirements. This adaptability 
ensures that the UAV can swiftly and effectively 
respond to changes, contributing to the over-all 
success of the mission in Biebrza National Park.

Communication between all units is managed 
through a decentralized Mesh net-work (Fig-
ure 8), which is essential for missions conducted 
in GPS-denied or signal-degraded environments. 
Each UAV or UGV acts as a network node capa-
ble of re-laying information, enabling multi-hop 
communication without a central control unit. 

This structure guarantees network resilience, 
maintaining system integrity even if a node be-
comes non-functional or exits the coverage area.

Network topologies differ depending on vehi-
cle type. UAVs typically use hierar-chical or hybrid 
mesh networks that support longer-range commu-
nication and maintain line-of-sight connectivity 
(Figure 9) through airborne relays. Conversely, 
UGVs rely on flat mesh architectures, which pri-
oritize fault tolerance in terrain-constrained envi-
ronments, although at the cost of higher latency. 
A unified mission control interface is proposed 
incorporating ROS-based software modules and 
MAVLink data input. This setup enables high-
level mission planning, including UAV flight path 
definition, UGV route coordination, and real-time 
network status visualization, thereby reducing the 
need for continuous operator input.

The integration of ARGO 8 × 8 UGVs with 
Falcon V5 UAVs, supported by AI-based coor-
dination and decentralized communication, pro-
vides a scalable and re-silient system for environ-
mental monitoring and threat detection in Biebrza 
National Park.

Figure 7. View of developed Falcon V5 coaxial 
quadrotor

Figure 8. Mesh network structure for communication with unmanned platforms

Figure 9. Fresnel zone requirements for line of sight 
communication
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RELIABILITY REQUIREMENTS FOR UAV 
FIRE FIGHTING MISSIONS 

The UAV’s reliability is fortified by the Fal-
con V5’s automatic fault and damage detection 
system, swiftly identifying potential issues. This 
capability facilitates prompt maintenance ac-
tions, effectively minimizing the risk of opera-
tional disruptions. Furthermore, the Falcon V5’s 
remarkable fast reconfigurability plays a central 
role in seamlessly adapting to the dynamic envi-
ronmental conditions within the national park and 
evolving mission requirements. This adaptability 
ensures that the UAV can swiftly and effectively 
respond to changes, contributing to the over-all 
success of the mission in Biebrza National Park.

Based on the experience of the AeroLAB 
Drone Laboratory of Poznan University of Tech-
nology, to ensure the highest reliability require-
ments for UAV autonomous missions, the Falcon 
V5 drone is proposed, where an attention to fol-
lowing features, was paid:
a)	Propulsion efficiency & maximum payload [21]:
	• Falcon V5 is a custom-built aerial research 

platform based on the X8 plat-form quadrotor 
configuration (Figure 10) and custom-built avi-
onics system. The dual propeller system allows 
one to continue the mission/land safely in the 
unexpected situation of losing one of them.

	• The coaxial propulsion system is protected 
with carbon covers, minimizing damage of 
propellers and the risk of sudden landing in 
the event of contact with environmental ele-
ments during outdoor flights.

	• The selection of propulsion units and verifica-
tion of their efficiency (thrust force, lifting ca-
pacity) were carried out through experiments 
on a special testbed. After that self-tuning of 
controllers has been performed (Figure 11).

b)	AI-based automatic fault and damage detection 
system [22]:

	• The current level of robot’s autonomy allows 
one to effectively detect damage of particular 
propeller, as well as anomalies (even at an 
early stage) in the system of the drone’s pro-
pulsion units.

	• Falcon is equipped with an array of directional 
micro-phones, the infor-mation from which is 
continuously processed using neural networks 
of long short-term memory (LSTM) type in-
dicating the location and nature of detected 
problems.

c)	Fast and easy reconfigurability [23]:
	• The on-board avionics of the Falcon V5 robot 

has been made in a “sandwich” architecture, 
which allows it to be effectively adapted to the 
current fire fighting mission.

	• Each module (e.g. equipped with electronic 
odor/smoke sensors) is plugged/unplugged into 
specially prepared mounting pins above the 
drone’s on-board controller, on-board computer 
module, etc. – creating following layers of the 
sandwich. Furthermore, the Falcon V5 archi-
tecture allows for the use of RGB and infrared 
cameras.

d)	A reliable model of drone dynamics [24]
	• Rapid prototyping of new solutions is enabled 

by a devel-oped mathemati-cal model describ-
ing the drone flight dynamics.

PEAT BOG FIRE THREAT DETECTION

Efficient approaches for evaluating the fire risk 
in peat bogs and determining the directions of their 
spread have been under exploration. Peat fires, 
characterized by their prolonged duration (lasting 

Figure 10. View on dual propeller system 
of Falcon V5

Figure 11. Testbed for UAV control system 
prototyping
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several to multiple days), extensive reach (often 
cov-ering hundreds of hectares), and rapid spread 
at speeds of up to 20 km/h, have spurred the explo-
ration of advanced and nuanced techniques.

In this paper, a solution that utilizes an UAV 
equipped with both RGB and infrared cameras to 
conduct meticulous missions in designated park 
sectors, is proposed. The integration of different 
sensors allows for a comprehen-sive capture of both 
visible and thermal information. The RGB imagery 
provides high-fidelity visual data, while the infrared 
component is responsible for detecting temperature 
variations associated with smoldering or actively 
burning peat. This syn-thesis of visual and thermal 
information significantly heightens the accuracy 
and reli-ability of the fire detection pro-cess.

Effective analysis can be carried out using 
pre-defined neural networks, enabling the auto-
matic detection of areas with smoke (highlighted 
by yellow bounding boxes in Figure 8) and active 
fires (depicted in red). 

These detections depend on sophisticated im-
aging methods carefully tailored for precise fire 
detection and thorough risk assessment within the 
distinctive environ-mental context of peat bogs. 
The rise of deep learning in fire detection has been 
driven by the increasing volume of data, advanc-
es in big data technology, and improvements in 
GPU performance. Deep-learning-based methods 
in fire detection require a substan-tial variety of 
samples to effectively train deep neural networks, 
allowing them to de-tect fire-related information 
at different levels of detail.

A variety of classification networks, such 
as CNNs (e.g., AlexNet, GoogLeNet, VGGNet, 
ResNet, MobileNet, and DenseNet), have been 
widely adopted for fire detec-tion tasks. These 
networks are instrumental in enhancing model 
robustness, enabling the identification of environ-
mental characteristics with greater accuracy, and 
signifi-cantly reducing false cases (Figure 12). 

A method based on the lightweight network 
SqueezeNet [25] was incorporated as the back-
bone network for video fire detection. The archi-
tecture was fine-tuned with smaller convo-lution-
al kernels and the exclusion of dense fully con-
nected layers, demonstrating increased efficiency 
in model size and inference speed. Additionally, 
an algorithm was developed to extract fire-sensi-
tive feature maps from the convolutional layers, 
facilitating a detailed analysis of flame propa-
gation and helping assess the fire’s intensity. A 
deep multi-scale CNN (DMCNN) for smoke 

recognition [20] was proposed to incorporate the 
multi-scale convolutional structure of Inception 
for scale invariance. This model employed multi-
scale additive fusion layers to lower computation-
al cost while maintaining both dynamic and static 
smoke features.

A lightweight fire-detection model, Light-Fi-
reNet, was introduced, drawing in-spiration from 
the hard Swish (HSwish) activation function [26]. 
This network inte-grated a more efficient convo-
lution mechanism with an innovative architectur-
al de-sign, resulting in a reduced model size while 
maintaining high detection performance.

In addition, the dynamic CNN model DCN_
Fire [27] was developed for evaluat-ing the risk 
of forest fires. It employed principal component 
analysis (PCA) transfor-mation methods to im-
prove inter-class discriminability and incorpo-
rated saliency de-tection to segment flame images 
into uniform sizes for training the model. Experi-
mental results showed that DCN_Fire achieved 
an accuracy of 98.3% on the test da-taset.

A CNN model with an attention mechanism for 
fire detection employing GRAD-CAM visualiza-
tion to illustrate the contribution distribution of the 
model’s flame predictions [23]. These diverse ap-
proaches highlight ongoing efforts to enhance the 
effective-ness of fire-detection models through in-
novative network architectures and methodologies.

Convolutional neural networks (CNNs), re-
current neural networks (RNNs), and their vari-
ous iterations have become foundational tools for 
the construction of com-prehensive end-to-end 
fire-detection systems. The continuous advance-
ment of deep learning models is a key area of 

Figure 12. Example of detection of peat bog fire risk 
using machine learning based on vision methods
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focus, with researchers continually investigating 
new adaptations tailored to particular image char-
acteristics. This ongoing exploration significantly 
contributes to advancing the field of fire detection, 
highlighting the dynamic nature of development 
in response to evolving technological landscapes. 
The iterative progression of these advancements 
underscores the unwavering commitment of the 
scientific community to consistently enhance the 
efficacy and applicability of fire-detection sys-
tems. This dedication reinforces their main role in 
safeguarding against environmental threats, em-
phasizing the importance of adaptive and innova-
tive approaches in the realm of fire detection.

METRICS FOR FIRE RECOGNITION

The effectiveness of neural networks in the 
detection of threats, specifically in fire recogni-
tion, is assessed using various metrics. In multi-
classification scenarios, metrics such as true 
positives TPs (correctly identified fires), false 
positives FPs (instances mistakenly identified as 
fires), true negatives TNs (correctly identified 
non-fires), and false negatives FNs (non-fires 
mistakenly identified) play a main role. They are 
used in the Equations 1–5. Typical evaluation 
metrics are: accuracy rate (AR), detection rate 
(DR), precision rate (PR), false alarm rate (FAR), 
and false negative rate (FNR) [30].

The Accuracy Rate (1) measures how often 
the model correctly identifies both positive and 
negative samples in fire-detection tasks. It pro-
vides an assessment of the model’s recognition 
performance and is a key indicator of the algo-
rithm’s effectiveness.

	 AR = (TPs + TNs)/(TPs + 
	 TNs + FPs + FNs) × 100%	  (1)

The detection rate (2) shows how well the al-
gorithm accurately identifies all fire samples as 
fires.

	 DR = TPs/(TPs + FNs) × 100%	 (2)

Precision Rate (3) is the percentage of cor-
rectly identified fires out of all the samples 
marked as fires.

	 PR = TPs/(TPs + FPs) × 100%	 (3)
False Alarm Rate (4) and False Negative 

Rate (5) are essential in fire detection. The False 
Alarm Rate (FAR) shows how often non-fire 

things are mistakenly thought to be fires, while 
the False Negative Rate (FNR) reveals how often 
fires are missed.
	 FAR = FPs/(FPs + TNs) × 100%	 (4)

	 FNR = FNs/(FPs + TNs) × 100%	 (5)
The F-measure approach (6) is a widely used 

metric that merges the Detection Rate (DR) and 
Precision Rate (PR), acting as the harmonic mean 
between these two measures. A higher F-measure, 
approaching 1 (7), signifies enhanced accuracy, 
providing a useful means to assess the algorithm’s 
strengths and weaknesses effectively. The param-
eter 𝛽 in 𝐹𝛽 (signifies the degree of bias toward 
either the Precision Rate or Detection Rate during 
the algorithm evaluation.

	 Fβ = (1 + β^2) × PR × DR)/		
	 /(β^2 × PR + DR) × 100%	 (6)

	 F1 = (2 × PR × DR)/(PR + DR) × 100%	 (7)

Taking into consideration a available dataset, 
the evaluation of CNN performance for fire de-
tection models was conducted to verify it useful-
ness in diverse environmental conditions. The fire 
detection model is based on convolutional neural 
network (CNN) trained on a dataset comprising 
aerial and ground-based wildfire images. The da-
taset sources include:
	• publicly available wildfire datasets: FLAME 

and FireNet;
	• synthetic data augmentation techniques, con-

sidering smoke overlays, varying illumination 
conditions, and background clutter simulations.

For model training, a YOLOv5-based CNN 
was selected due to its efficiency in real-time 
object detection and adaptability to dynamic fire 
propagation patterns. The training was conducted 
over 50 epochs using the Adam optimizer, with a 
learning rate of 0.001 and a batch size of 32, le-
veraging an NVIDIA GPU-based computing en-
vironment to accelerate processing. To improve 
the model’s robustness to environmental varia-
tions, data augmentation techniques were imple-
mented, including:
	• random rotations and flips,
	• gaussian noise simulating distortions in UAV-

acquired images,
	• contrast variations related to low-visibility 

nighttime scenarios.

The initial results (Figure 13) demonstrate the 
potential usefulness of AI models in supporting 
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wildfire monitoring, improving the reliability of 
UAV-based reconnaissance missions in high-risk 
ecosystems. The comparison of fire detection 
CNN models, showing their accuracy, recall, and 
false alarm rate. The results suggest that YOLOv5 
performs best, achieving 92.3% ac-curacy and the 
lowest false alarm rate (4.1%), making it a strong 
candidate for re-al-time wildfire detection.

The preliminary results indicate that the CNN 
model’s capability to process aerial and thermal 
imagery is suitable for fire detection, even in chal-
lenging environmental conditions such as low vis-
ibility, dense smoke, and varying illumination. The 
integra-tion of multi-spectral data allows for better 
differentiation between actual fire hazards and false 
positives, contributing to a more reliable fire de-
tection framework for UAV-based reconnaissance 
missions. Despite these promising outcomes, fur-
ther improvements are essential to increase model 
robustness across diverse terrains and weather 
conditions. Variations in at-mospheric conditions, 
terrain features, and seasonal changes may impact 
detection accuracy, requiring the adaptation of AI 
models to dynamic environmental factors.

Future research will focus on expanding 
the dataset with real-world related to scenarios 
similar to Biebrza National Park as well as fire 
incidents to improve gener-alization, optimizing 
sensor fusion techniques by integrating thermal, 
RGB, and Li-DAR data, and refining AI-driven 
UAV-UGV collaboration for enhanced autono-
mous wildfire monitoring and response. These 
advancements aim to develop a more resilient and 
adaptive system for real-time fire detection and 
risk assessment in high-risk eco-systems

CONCLUSIONS

This research describes the collaborative de-
ployment of a UGV and UAV for reconnaissance 
missions within Biebrza National Park. The pro-
posed integration offers a novel and multifaceted 
solution, combining the strengths of autonomous 
ground-based and aerial platforms with advanced 
AI capabilities.

UGVs, equipped with sophisticated sensors 
and cameras, are capable of navigating challeng-
ing terrains with precision, providing real-time 
observations and data collection. Their ability to 
traverse areas that may be difficult for human pa-
trols makes them invaluable for surveillance and 
threat detection in expansive and intricate land-
scapes like Biebrza National Park.

Simultaneously, UAVs contribute to aerial re-
connaissance, covering vast areas efficiently and 
swiftly identifying potential threats such as fire haz-
ards or illegal activities. Equipped with advanced 
sensors, these aerial platforms provide real-time 
environmental data, aiding in the early detection of 
potential risks and facilitating rapid response strate-
gies. The integration of remote sensing technologies 
further augments this comprehensive safety frame-
work. These technologies enable the acquisition of 
valuable data related to environmental conditions, 
vegetation health, and potential fire-prone areas. 
The study emphasizes the role of vehicle contact 
pressure analysis for determining where UGVs can 
safely operate in swampy or ecologically sensitive 
terrains and where UAV deployment is more suit-
able, particularly for rescue or emergency missions.

Figure 13. Comparison of fire detection CNN models
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The initial version of this study provides a 
comprehensive overview of scenarios in which 
the proposed system can be applied, along with an 
analysis of peat bog fire threat detection. It high-
lights the importance of precise, efficient, and early 
wildfire detection and demonstrates how modern 
vision systems and deep learning methods can 
significantly outperform conventional approaches 
in specific scenarios. This paper thus contributes 
valuable insights into integrating robotics, remote 
sensing, and deep learning for advanced reconnais-
sance and wildfire monitoring in challenging envi-
ronments. The operational performance of the pro-
posed system is influenced by environmental fac-
tors such as weather variability, vegetation density, 
and the presence of water bodies. These conditions 
affect UAV flight stability, AI-based fire detection 
reliability, and communication network quality. 
Addressing these challenges in future research will 
require environmental modeling, multi-modal sen-
sor fusion, and adaptive communication strategies 
to enhance resilience under diverse conditions.

This study is conceptual as a preliminary 
framework to support an application for national 
or international research funding exclusively for 
system components development and deep inves-
tigation. The final project will be carried out with 
the involve-ment of Poznan University of Technol-
ogy, which has contributed to the development of 
the UAV platform described in this study. Their ex-
pertise in this field plays a crucial role in advanc-
ing the proposed system toward real-world appli-
cation. Future work will involve implementing the 
proposed system in simulation environments, val-
idat-ing UAV-UGV communication and task plan-
ning strategies, and applying AI methods for adap-
tive decision-making in complex environments.
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