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INTRODUCTION

The ongoing armed conflict has caused a dra-
matic increase in traumatic injuries, creating un-
precedented challenges for healthcare systems. 
Eye injuries are particularly concerning, as they 
often lead to irreversible vision loss if not diag-
nosed and treated quickly [1]. While artificial 

intelligence (AI), including machine learning 
(ML) and deep learning (DL), has shown great
promise in ophthalmology, particularly in ana-
lyzing fundus and optical coherence tomogra-
phy (OCT) images, existing studies have largely
been conducted under controlled laboratory or
hospital conditions. This leaves a significant re-
search gap: little is known about the feasibility of
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AI-based diagnostic tools in resource-limited and 
wartime settings, where conventional equipment 
is unavailable and medical staff face urgent time 
constraints. Our study addresses this gap by eval-
uating AI-assisted fundus image analysis in real-
world wartime conditions in Ukraine, highlighting 
both the challenges and the potential clinical value 
of such tools in emergency and field medicine. 

Military operations put a strain on the health 
care system. New military technologies contrib-
ute to permanent damage to health. The health 
care system becomes inefficient and helping the 
injured is difficult. Eyes are exposed to a wide 
range of damage from impact, heat, chemistry, 
radiation, or laser. The rise of new military tech-
nologies is accelerating the increase in eye inju-
ries. The most common are penetrating and perfo-
rating injuries, often accompanied by intraocular 
diseases that create specific diagnostic and treat-
ment challenges. Modern weapons are great risk 
for ophthalmic injuries. Soldiers and civilians are 
at risk of injury from ammunition fragments, ex-
plosions and chemical burns during armed con-
flicts [2]. Technology and the growing advance-
ment of weapons increases combat effectiveness, 
but also causes more damage, including to the 
eye. In the research, we want to develop faster 
methods of diagnosing eye diseases that will save 
the eyesight of the injured even in difficult condi-
tions. By applying artificial neural network meth-
ods, diagnostics can be performed more rapidly 
and with greater accuracy, enabling physicians 
to provide timely and effective treatment for pa-
tients with injuries [3, 4].

In contrast to peacetime ophthalmic diagnos-
tics, which typically benefit from stable infrastruc-
ture, advanced imaging technologies such as OCT, 
and access to specialized medical teams, wartime 
conditions impose severe limitations. Medical pro-
fessionals must often rely on portable, less sophis-
ticated equipment, operate under time pressure, 
and deliver care in environments where resources 
and safety are compromised. These constraints 
create a distinct research gap, as most prior AI-
based ophthalmology studies have been conducted 
in controlled, resource-rich settings. Our study ad-
dresses this gap by evaluating the feasibility and 
effectiveness of AI-assisted fundus diagnostics 
under wartime conditions, providing insights into 
how AI can support medical decision-making in 
extreme and resource-limited environments.

Artificial Intelligence is a multidimensional 
technology that encompasses various components, 

including advanced algorithms, ML, and DL. DL 
employs representation-learning techniques with 
multiple levels of abstraction, enabling the pro-
cessing of input data without manual feature en-
gineering, for example in tasks such as recogniz-
ing complex structures [5, 6]. Compared to con-
ventional techniques, DL provides significantly 
higher accuracy which can be used for medical 
imaging analysis with highly effective results in 
detection of various diseases. In ophthalmology, 
DL is most commonly used for fundus analysis 
and optical coherence tomography (OCT) [7]. In 
fact, with the advent of the Internet, ML has be-
come an important part of the information revo-
lution. AI, ML, DL is expected to provide oph-
thalmologists with an automated device for early 
diagnosis and timely treatment [8].

The study highlights that hybrid machine 
learning models can significantly accelerate the 
diagnosis of eye diseases using OCT images. 
However, a major challenge remains the limited 
availability of costly ophthalmic equipment in 
conflict zones. The lack of appropriate equip-
ment makes diagnosis difficult. Correct diagno-
sis is key to introducing appropriate treatment. 
It is not just the price that matters. The size of 
the medical device is also important. Equipment 
must be lightweight and mobile, must be ready to 
be transported at any time due to different situa-
tions on the front line [9]. Previous studies [10, 
11] have shown that neural networks can substan-
tially enhance medical diagnostics. These studies 
focus on the accurate analysis of OCT images. 
Although OCT imaging offers greater diagnostic 
accuracy than fundus photography, its high cost 
and limited availability significantly constrain its 
use in resource-limited settings. Studies with fun-
dus cameras, despite their lower resolution and 
accuracy are generally available. The availability 
and ease of taking images is significant during 
difficult conditions [12].

Research shows that the combination of ar-
tificial intelligence and retinal images can im-
prove diagnostics. Easier diagnosis can make it 
significantly easier for doctors to diagnose a dis-
ease. The main goal of this study is to develop 
diagnostic tools that are reliable and easy to use 
in places with limited hospital access [13]. In the 
recent years, the combination of neural networks 
(CNN) and vision transformers (ViT) has become 
increasingly important medical imagine analysis. 
Combining these two methods has helped im-
prove the precision of diagnosing ophthalmologic 
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diseases. The article concentrated on triple stream 
features from OCT images which had advantages 
over single stream models. The triple stream had 
very high test accuracy [14].

The fast development of AI technology en-
ables quicker and simpler diagnostics. Most of 
the research is based on laboratory conditions. 
This research is innovative because it is conduct-
ed in war conditions. The new image analysis 
techniques introduced in this article help doctors 
make rapid diagnoses. Combining camera fun-
dus with AI can solve many problems. In recent 
years, advances in artificial intelligence (AI) have 
significantly accelerated the development of im-
age analysis, thereby facilitating more efficient 
and accurate medical image interpretation. 

The main aim of the study is to develop a new 
method for diagnosing different eye injuries us-
ing convolution neural networks (CNN). The use 
of advanced image analysis techniques that allow 
consideration of texture and intensity based on 
images obtained from the fundus camera allows 
significant improvements in the accuracy of injury 
classification. Modern image processing methods, 
based on ML and deep learning algorithms, allow 
more precise extraction of features characteris-
tic of different types of injuries. Texture analy-
sis makes it possible to identify even very subtle 
changes in tissue structure, which can indicate in-
juries even in the form of microdamage, as well as 
degenerative changes or pathological processes. 
These tools are designed to operate quickly and 
effectively, assisting physicians in diagnosing 
groups of eye injuries, including normal findings, 
trauma-related injuries, optic nerve disc changes, 
vascular lesions, and macular degeneration. This 
means that many injured people are not given the 
chance for a quick diagnosis, which can lead to 
permanent vision loss. We want to create a sim-
pler and more easily accessible tool that can de-
tect eye damage, even in the difficult conditions of 
war. This technology enables accurate verification 
of specific eye injuries. Doctors will be able to 
implement better diagnostics and faster treatment.

The remainder of this article is organized as 
follows. Next section presents the materials and 
methods, including details on patient data, imaging 
devices, and machine learning approaches. Then 
we report the experimental results obtained from 
the three AI-based classification methods. In next 
section we discuss the findings in the context of ex-
isting literature, highlights limitations such as data-
set size and imbalance, and outlines future research 

directions. Final section concludes the study by 
emphasizing the unique contribution of AI-assist-
ed fundus diagnostics in wartime conditions com-
pared to conventional peacetime healthcare.

MATERIALS AND METHODS

The war in Ukraine has exposed a new threat. 
The hybrid war on Ukraine carries with it the 
direct threat of using unconventional weapons. 
Modern military technologies have an impact on 
public health. The authors of the article [15] dis-
cuss the immediate as well as the long-term con-
sequences. The majority of patients at risk were 
men between 25 and 63 years of age. The most 
common injuries were to the stomach, face and 
limbs. Limited transportation conditions made it 
difficult to help the injured. The ongoing conflict 
poses new challenges for health care workers, 
who must be prepared to deal with the complexi-
ties of dealing with victims [16]. 

Information about patients and location

The research was conducted during the war in 
Ukraine. The analyses included 570 patients who 
presented with eye injuries. The majority of eye 
injuries resulted from bombings, shrapnel, and 
battlefield clashes. Participants were recruited at 
the Lviv Regional Clinical Hospital. The patients 
then had specialized eye examinations. Patients 
whose health status allowed for full medical re-
cord were examined first. Each patient signed an 
informed consent for the eye examination. Ethi-
cal approval was granted by the Bioethics Com-
mittee of the Medical University of Lublin. The 
criteria for including patients in the study is that 
participants had to have experienced an eye inju-
ry directly to military operations and be in stable 
health during the study. Patients were excluded 
from the study if their condition was unstable or if 
they did not provide informed consent. Reported 
cases included eye injuries, orbital trauma, and 
post-traumatic ocular pain. Some patients pre-
sented with only superficial injuries, with no de-
tectable changes in the ocular fundus.

Data acquisition

The fundus images were primarily collected 
using Optomed Aurora portable cameras, which 
are independent, lightweight devices capable of 
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producing diagnostic-quality images (50-degree 
field of view, 5-megapixel resolution) without 
requiring a computer. These cameras were used 
both in hospital settings and in more challenging 
wartime environments. Although the equipment 
was consistent, there were introduced effects 
knows from the wartime conditions, such as vari-
able lighting, operator experience, and urgency of 
examinations, introduced heterogeneity in image 
quality, resolution, and color distribution. This 
explains why, despite standardized hardware, the 
dataset displays significant variability. Images 
were saved in JPEG format to ensure data integ-
rity and facilitate straightforward analysis [17].

Patients were dropped with 1% tropicamide 
solution. When the eyes were dropped, the pupil 
dilated so that better photos of the fundus could 
be taken. Patients were analyzed on a scale of 
0 (no rating) – 2 (excellent). Images that do not 
meet standards for clarity, centering or visibility 
of key structures are excluded. This rigorous ap-
proach ensures good data quality. The data has 
been anonymized in accordance with Polish and 
Ukrainian data protection regulations (RODO). 
Visual acuity is measured on a decimal scale and 
compared with the Eye Trauma Score. Patient de-
mographics such as age, gender, profession and 
social status were taken.

Machine learning

Warfare comes with significant challenges, 
such as limited equipment and incomplete data 
sets. Adaptation of neural networks in terms of 
standardizing image analysis and adapting to dif-
ferent input data reduces these difficulties. This 
adaptation is particularly important for analyzing 
results under difficult conditions. 

The research used machine learning. CNN 
were mainly used to analyze images of the eye. 
CNN automate the image analysis process and 
classify fundus injuries. Using these advanced 
algorithms, it was possible to reduce diagnostic 
time and increase accuracy in condition that re-
quire quick decision making [18, 19].

This study highlights their potential for de-
veloping automated diagnostic tools that support 
physicians in making faster and more accurate 
diagnoses. Studies have been conducted to en-
able early detection and timely treatment us-
ing deep learning algorithms for fundus images. 
Quick diagnosis and treatment planning can be 
made easier with the Deep learning techniques 

have revolutionized medical imaging, markedly 
enhancing the accuracy of eye disease detection 
and classification. ability of deep learning models 
to process images quickly and deliver results im-
mediately. Our research aims to provide a non-in-
vasive method for early detection and rapid treat-
ment of eye diseases using a CNN. This article 
presents practical applications of artificial intel-
ligence for the analysis of various retinal injuries 
under challenging conditions. Furthermore, it dis-
cusses specific applications of AI in the classifica-
tion of retinal diseases [20–22].

RESULTS

The analyzed dataset contained 448 retinal 
images categorized into five groups: normal im-
ages, trauma-related injuries, optic disc changes, 
vascular changes, and macular degeneration. The 
images were collected under extremely chal-
lenging conditions during wartime using various 
devices, resulting in images with varying reso-
lutions and inconsistent color distributions. The 
initial resolution of the images ranged from 436 
× 333 pixels to 2368 × 1776 pixels. The color his-
tograms for six randomly selected images from 
class normal only are presented in Figure 1.

Additionally, the individual image classes 
contain different numbers of images, with the nor-
mal class having 25 images, trauma-related inju-
ries 24, optic disc changes 192, vascular changes 
197, and macular degeneration 295 [20].

The retinal fundus images are being analyzed 
using binary classification models in three different 
approaches: based on feature extraction and deep 
neural networks, convolutional neural networks, 
and utilizing Microsoft Azure’s Custom Vision 
tools for image classification. The results from 
these methods are being consolidated for compari-
son and analysis providing a foundation for poten-
tial future aggregation using the approach based on 
Choquet integral extensions, which is being devel-
oped and was published by our team [22].

Feature based classification

The fundamental task at the beginning of the 
analysis is to standardize the input data and to en-
sure that the data set is split in a way that preserves 
the distribution of the predicted feature. Because 
the acquired images varied substantially in reso-
lution, visual quality, and illumination, they were 
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subjected to a series of preprocessing steps, de-
tailed below. This process included isolating the 
retinal area from each image, improving contrast 
by separating and adjusting the LAB color chan-
nels by applying CLAHE method to the L (light-
ness) channel, and subsequently cropping the im-
ages. The preprocessing approach similar to pro-
posed in the work [23] is used. It involves four 
key steps: (1) removing irrelevant margins, such 
as black borders, by identifying the boundary be-
tween these and the retinal region; (2) detecting 
the circular retina or, if unsuccessful, estimating 
the circle based on the image center and pixel 
distribution; (3) cropping the image according 
to the detected retina circle, and (4) adding black 
borders during training to prevent the accidental 
removal of important areas after augmentation, 
such as random rotations and cropping. Pre-pro-
cessing is performed on images at their maximum 
available resolution to ensure that the process is 
as efficient as possible. Subsequently, all images 
were resized to a uniform size of 300 × 300 pixels 
to create a consistent dataset for training machine 
learning models. It should be noted that due to 
the poor quality of the input images, selecting the 
circle containing the retinal image results in black 
borders of varying thickness across different im-
ages, which affects the feature extraction process.

The images were pre-processed using the 
standard Contrast Limited Adaptive Histogram 
Equalization (CLAHE) approach to enhance local 
contrast and improve the visibility of fine details. 
In this approach, the image is divided into small 
blocks, referred to as tiles, and histogram equal-
ization is applied separately to each region. This 

ensures that contrast enhancement is localized to 
specific areas, rather than being applied uniformly 
across the entire image. However, if noise is pres-
ent, it can be amplified during this process. To 
mitigate this issue, contrast limiting is introduced, 
where excessively high histogram bins are clipped 
and their values are redistributed before equaliza-
tion. Finally, to smooth transitions between adja-
cent tiles and reduce artifacts at their borders, in-
terpolation is applied. Following this, three linear 
combinations of the original image and its Gauss-
ian blurred version were applied to emphasize 
relevant features and suppress noise. The Gauss-
ian blur was used to create smoothed versions of 
the image, which were then combined in varying 
proportions with the original to highlight differ-
ent structural elements. After pre-processing, the 
circular border of each image, often introduced 
during image acquisition, was removed to ensure 
uniformity and to focus solely on the region of 
interest. Figure 2 presents four example images 
of the fundus from subset normal. In subsequent 
rows, the original images are displayed, followed 
by those processed using the CLAHE method and 
three mentioned linear combinations.

In the first experiment, an attempt is made to 
extract features from the obtained images and ap-
ply this data to build models for image classifica-
tion. To enhance the diversity of the dataset and 
improve model robustness, data augmentation 
techniques were employed. A horizontal flip was 
applied randomly to a subset of the images, ef-
fectively doubling the available perspectives. Ad-
ditionally, each image was subjected to a random 
rotation by an angle within the range of -20 to 20 

Figure 1. Color histograms for six chosen images from class normal
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degrees, simulating various orientations encoun-
tered in real-world scenarios. These augmenta-
tions helped mitigate overfitting and ensured better 
generalization during model training. The qMaZ-
da tool is used for feature extraction [24, 25]. This 
program is designed for digital image analysis and 
recognition. It calculates features related to color, 
texture, and shape in user-defined regions of inter-
est. Color analysis includes models such as RGB, 
CMY, HSY, YIQ, YUV, CIELab, and CIEXYZ. 
Texture feature extraction is conducted using 
methods like co-occurrence matrices, run-length 
matrices, autoregression models, brightness distri-
bution statistics, local binary patterns, histograms 
of oriented gradients, Haar, and Gabor transforms. 
In addition, morphological features such as inertia 
moments, Feret diameters, and various shape de-
scriptors are computed. A script has been prepared 
to automate these operations, leveraging the tool’s 
advantage of ease in conducting analyses through 
script execution. A feature dataset consisting of 
567 columns is extracted. The dataset is refined 

by removing columns containing only zeros, col-
umns with constant values, and columns exhibit-
ing low data diversity, as measured by their stan-
dard deviation. After these operations, the dataset 
contains 420 columns. In the next step, standard 
scaling was performed using the Z-score method 
to normalize the features values. This approach 
ensured that the data had a mean of zero and a 
standard deviation of one, promoting consistency 
across the dataset and improving the convergence 
of the model during training.

Artificial neural networks were employed for 
binary classification for each class pair in the da-
taset. For five classes, this resulted in ten pairs 
for which networks were built and trained. The 
AutoKeras library was utilized for model creation 
and training, automating the selection of network 
architecture. Training was conducted for up to 
2500 epochs, utilizing early stopping with pa-
tience 100 and restoring the best model weights. 
The final classification results of this experiment 

Figure 2. Preprocessed images
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are presented in Table 1, that contains accuracy 
calculated for testing set.

Artificial neural networks are used for classi-
fication for each subset. Multiclass classification 
was conducted for each preprocessing algorithm 
to evaluate their effectiveness in distinguishing 
between different classes. The study initially ex-
plored larger neural network architectures, starting 
with a configuration of hidden layers with the fol-
lowing number of neurons: (500, 250, 250, 100, 
50, 5), comprising over 430,000 trainable param-
eters. Despite the application of DropOut layers, 
this model exhibited noticeable overfitting. Subse-
quently, the number of neurons in the hidden lay-
ers was gradually reduced, including a configura-
tion of (500, 250, 200, 50, 5) with over 390,000 
parameters, which also failed to generalize well. 
Ultimately, a significantly smaller architecture of 
(300, 50, 5) neurons and additional DropOut lay-
ers, consisting of approximately 130,000 trainable 
parameters, was found to achieve satisfactory ac-
curacy without signs of overfitting. By applying 
the preprocessing techniques individually and as-
sessing their impact on classification performance, 
insights were gained into how each method con-
tributed to feature extraction and model accuracy. 
The fitting process is conducted for up to 2000 ep-
ochs, utilizing early stopping with patience set to 
20 and restoring the best model weights. 

The final classification results of this experi-
ment are presented in Table 2, which presents the 
validation accuracy and loss obtained on datasets 
with different preprocessing methods for multi-
class classification. Each analyzed preprocessing 
method achieved at least 80% accuracy. Notably, 

the CLAHE method yielded the highest accuracy, 
while the third linear combination approach re-
sulted in the minimum loss function value.

Image-based classification

In the second model, images were likewise used 
as the input data. This time, however, we use the 
visual information contained in them directly and 
after multistep preprocessing. Nowadays, in most 
cases, when building classifiers for an image, deep 
networks based on convolution are used. Their ar-
chitectures can be different, which largely depend 
on the characteristics of images, their diversity, 
and expected effectiveness. In our case, imaged 
data are transferred both at the training stage and 
for later inference to the multilayer convolutional 
network. This approach is relatively common in 
the case of retinal change classification, and the 
proposed processing pipelines differ in way how 
input images are treated, selected model architec-
ture, and used hyperparameters values [21, 23]. 
The images are processed based on a modified 
method proposed by B. Graham for the Diabetic 
Retinopathy Detection competition [26, 27]. After 
finding the region representing the captured retinal 
image, scaling and cropping is applied and Gauss-
ian blurred version of image is created (Figure 3). 

The image was then normalized to the maxi-
mum range of pixel values using the levels func-
tion. The two variants are then added together. 
Finally processed 224 × 224 pixel color im-
ages are used as input for the model (Figure 4). 
The model selected for this task was Imagenet [28]. 
SSD-based object detection model trained on Open 
Images V4 with ImageNet pre-trained MobileNet 
V2 as image feature extractor, which is lightweight 
convolutional neural network providing high qual-
ity features for downstream classifications [29]. 
This version of the model improves upon the origi-
nal MobileNet by introducing inverted residual 
blocks and a linear bottleneck, which reduce com-
putational complexity while maintaining accuracy. 

Table 1. Classification results using deep neural networks
Parameter Normal Trauma-related Vascular Macular Optic disc

Normal X 0.556 0.956 0.953 0.909

Trauma-related 0.556 X 0.841 0.906 0.907

Vascular 0.956 0.841 X 0.646 0.641

Macular 0.953 0.906 0.646 X 0.612

Optic disc 0.909 0.907 0.641 0.612 X

Table 2. Classification results using deep neural networks
Preprocessing Accuracy Loss

CLAHE 0.833 0.227

Combination 1 0.800 0.251

Combination 2 0.810 0.264

Combination 3 0.816 0.224
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Total over 1.3 M, from total number of 3.6 M, of 
parameters was used during training. 

ImageNet pre-trained MobileNet V2 use input 
as 224 × 224 × 3 RGB images. Initial layers are 
convolutive 3 × 3 with striding 2 and 32 filters, then 
there are inverted residual blocks series of blocks 
with varying expansion factors t, output channels 
c, number of repetitions n, and stride s (Table 3). 
Final convolution layer is 1 × 1 and global aver-
age pooling layer which reduces feature map to 
1280 channels vector. Fully connected dense lay-
ers with 1000 units with softmax functions forms 
outputs. During training and validation, the data 
were split into sets at a ratio of 1:5. Pretraining on 
a large, diverse dataset gives the model a rich set 
of general features. When fine-tuning on smaller 
datasets, this acts as a strong regularizer, reduc-
ing overfitting. Learning process was split in two 

main steps. The first model was trained using the 
Soft F1-score loss function, which is differen-
tiable and derived from the F1-score, taking into 
account both precision and recall:

	 	 (1)

where: TP is true positive value, FP is false posi-
tive and FN is false negative.

In case of multilabel classification selection 
of this loss function is quite typical for step which 
is focused on preparation of set of features.

In the second step, pairs of data from different 
labels were used to train the same model with the 
binary cross-entropy loss function. This resulted 
in a multilabel classifier. The outcomes of the pro-
cessed images are presented in Figure 5. Training 
was conducted in two rounds, each consisting of 
200 epochs with a batch size of 256. 

After first, feature extraction, round we got 
finally F1 score for training set equal to 0.69 and 
0.53 for validation set. In case of second, binary 
classification round, F1 score for training set was 
equal to 0.78 and 0.53 for validation set. Results, 
are quite average, but probably there is still space 
for improvement which could be made by model 
tuning, modification or extension to data set to get 
more balanced input. Figure 6 shows training and 
validation for a round of binary loss functions.

Custom Vision classification

We also tested as third possible solution 
Microsoft Azure AI Custom Vision service. We 
employed a model and workflow designed for 
multi-tag classification. This Microsoft service 
employs deep learning-based architectures, pri-
marily CNNs. The specific model architectures 
may vary depending on the chosen configuration, 
but Microsoft does not disclose the exact mod-
els used. From the available information, Custom 

Figure 3. Preprocessing flow

Table 3. Inverted residual block configuration

t (expansion) c (output 
channels) n (repeats) s (stride)

1 16 1 1

6 24 2 2

6 32 3 2

6 64 4 2

6 96 3 1

6 160 3 2

6 320 1 1
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Figure 4. Eight processed images from training set with assigned labels

Figure 5. Training and validation loss and F1-score for first training round
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Figure 6. Training and validation for binary loss function round

Figure 7. Graphical representation of results generated bu Custom Vision

Vision utilizes optimized CNN models similar to 
ResNet, MobileNet, and EfficientNet and allows 
training models on custom datasets by employ-
ing transfer learning, enabling the adaptation of 
pre-trained networks to new applications. Custom 
Vision offers different levels of accuracy and per-
formance (fast vs. more precise models) corelated 
with payment for training process. It is possible 
to export the trained model into various formats, 
such as ONNX, TensorFlow, or Core ML. In our 
case we started with images preprocessed the 

same way as in case of image based classification. 
This method could be treated as a kind of ad hoc 
solution because of limited configuration possi-
bilities. Custom Vision reports classifier perfor-
mance in terms of average precision; therefore, 
accuracy was calculated independently based on 
the content of the test subsets. 

The results from the Custom Vision model in-
dicate above-average performance, with metrics 
such as recall and accuracy. The results shown 
in Figure 7 represent of the Microsoft Azure AI 
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Custom Vision service test – average precision 
0.89, recall 0.87 and accuracy 0.85.We could com-
pare this results with F1 score because the later is 
a balance between precision and recall. Of course 
for imbalanced datasets or cases where both preci-
sion and recall are critical, the F1 score is a better 
metric than accuracy alone. It means that despite 
the fact that Custom Vision is a closed, proprietary 
solution provided by Microsoft for building and 
deploying image classification and object detec-
tion models it could be treated as a practical start-
ing point for many applications or basic perfor-
mance level. The results in Table 4 show scores 
for Custom Vision multilabel classification.

As you can see on Figure 8 the red outline 
points out misclassifications in validation set. Im-
age should have been classified as a pigment clus-
ter class with probability equal to 98.8% and as 
a vascular changes with probability 40.4%. The 
second class was correct; however, in this case, 
the model also recalled pigment cluster images, 
which is not unexpected.

Overall, the feature-based approach combined 
with CLAHE preprocessing achieved the highest 
multiclass accuracy (0.833), indicating strong 
performance despite the limited and imbalanced 
dataset. The image-based CNN approach (Mo-
bileNet V2) achieved lower validation F1-scores 
(0.53), though it demonstrated the advantage of 
an end-to-end pipeline without manual feature en-
gineering. The Custom Vision service performed 
comparably (average precision 0.89, recall 0.87, 
accuracy 0.85), confirming the viability of trans-
fer learning with pre-trained CNN architectures. 
It should be noted that these results are not strictly 
equivalent, since each method used a slightly dif-
ferent setup, handcrafted features with ANN clas-
sification, MobileNet-based deep learning, and 
Microsoft’s proprietary transfer learning frame-
work. Therefore, the outcomes should be inter-
preted as complementary evidence rather than 
directly comparable benchmarks.

DISCUSSION

The aim of this study was to investigate the 
potential clinical applications of AI-based algo-
rithms for the detection of retinal injuries during 
armed conflict. We found that CNNs can accu-
rately identify different types of retinal injuries. 
Importantly, the results of our analysis are com-
parable to those obtained using more advanced 
technologies, such as optical coherence tomogra-
phy (OCT). Although we used less sophisticated 

Table 4. Scores for Custom Vision multilabel classifi-
cation

Tag Presion Recall Average precision

Pigment clusters 1.00 0.67 0.68

Normal 1.00 1.00 1.00
Vascular changes 
with hemorrhages 0.91 0.86 0.98

Retinal changes 0.82 0.92 0.88

Optic disc changes 0.80 0.76 0.84

Figure 8. Part of performance test for model trained in Custom Vision
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equipment, AI has shown that it can provide very 
precise diagnoses. This information is particu-
larly valuable in situations where access to mod-
ern diagnostic tools is limited. Previous works 
discusses current applications of artificial intel-
ligence in ophthalmic diagnostics. Some articles 
like [30], highlights how quickly AI can analyze 
images of the eye. The article also provides a 
broader picture of deep learning, in the context 
of eye diseases as well as highlights challenges in 
ethics and integration with traditional treatments. 
Additionally, previous articles [30–32] mainly 
focus on the use of deep learning and AI in the 
diagnosis of eye diseases. They point to the use 
of neural networks in analyzing fundus images 
to accurately detect pathological changes. These 
studies underscore the effectiveness of artificial 
intelligence in speeding up the diagnostic process 
and improving the precision of diagnoses.

Research [33–35] focuses on artificial intel-
ligence in the diagnosis of retinal diseases. They 
mainly study the macula and on using neural net-
works to analyze fundus images. This research 
highlights the challenges of accessing technology 
in a constrained environment. Comparing our re-
search, this too is conducted under limited con-
ditions. These solutions aim to create diagnostic 
tools that are effective in difficult field conditions. 

Our results confirm previous findings that 
AI has great potential in medical image analysis. 
For example, the Hemalakshmi et al. study [36] 
showed how advanced techniques such as sparse 
vision transformer (SViT) can be used in medical 
diagnosis. Although we focused on fundus cam-
era images, our results clearly show that CNNs 
speed up diagnosis and improve accuracy. This 
is crucial when making quick decisions matters. 
Similar observations appeared in a study [10] 
that dealt with the classification of OCT images 
in diabetic retinopathy. The results from this ar-
ticle, which dealt with the classification of retinal 
trauma caused by war trauma, overlap with the 
article [10]. This shows that AI-based techniques 
can be used not only for the diagnosis of classic 
retinal diseases, but also for the analysis of inju-
ries in conflict zones. Our observations are also in 
line with studies that combine CNN techniques 
with feature extraction methods, significantly im-
proving the precision of diagnosis [11]. This is 
especially important in situations where access to 
advanced diagnostic tools such as OCT is severe-
ly limited. Thus, we see that CNNs can provide 
valuable support in the analysis of eye injuries 

resulting from warfare, offering an effective diag-
nostic solution even with limited resources.

In addition to these observations, several 
practical and ethical considerations must be em-
phasized. One is data variability. Retinal fundus 
images collected in conflict zones often differ in 
resolution, illumination, and overall quality due to 
diverse acquisition devices and unstable environ-
mental conditions. Moreover, demographic vari-
ability across patient populations (e.g., age, eth-
nicity, comorbidities) can affect retinal presenta-
tion and may influence the robustness of AI mod-
els. While our current dataset provides valuable 
proof-of-concept evidence, future studies should 
incorporate larger and more diverse datasets from 
multiple centers to enhance generalizability. 
Another important issue is patient safety. AI-assist-
ed diagnostics in ophthalmology must be viewed 
strictly as decision-support tools rather than au-
tonomous diagnostic systems. Clinicians should 
remain responsible for final medical decisions, us-
ing AI outputs as supportive evidence. Safeguards 
such as clear uncertainty quantification, fail-safe 
mechanisms when input quality is inadequate, 
and clinician training on model interpretability 
are essential to mitigate risks of misdiagnosis. 
Finally, limitations in generalization should be 
acknowledged. Models trained on data from 
specific populations or conflict-affected regions 
may not fully capture variations present in other 
geographic or socioeconomic contexts. Ensuring 
equitable performance across different patient 
groups requires further validation, ideally through 
multicenter collaborations and prospective clini-
cal trials. Addressing these aspects will be crucial 
for safe and reliable integration of AI-assisted 
pipelines into real-world healthcare workflows, 
particularly in fragile healthcare systems.

In the context of medical image segmenta-
tion, UTNet’s hybrid transform architecture, dis-
cussed in [12], shows promise in separating areas 
of interest in images, even under difficult condi-
tions. Although we did not address segmentation 
in our study, we believe that in the future it could 
further improve the precision of diagnoses by 
allowing more accurate assessment of damaged 
areas of the retina. Similarly, a study [13] sug-
gesting combining CNNs with transformers for 
medical image segmentation highlights that hy-
brid approaches can improve diagnostic perfor-
mance. Although our work has focused primarily 
on classification, we see potential in extending 
the study to include segmentation to obtain even 
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more detailed information about retinal injuries 
from warfare.

Regarding the application of AI in the diag-
nosis of eye injuries in conflict zones, our study 
clearly shows that CNNs can effectively identify 
and classify retinal damage, even under extreme 
conditions. Moreover, the results suggest that 
AI’s potential may extend beyond the retina itself. 
In the future, we could extend diagnostics to oth-
er structures of the eye, such as the cornea. This 
expansion of the diagnostic system could signifi-
cantly improve the efficiency of emergency care.

The main limitation of our study was the qual-
ity of the fundus camera images, which was some-
times compromised by unfavorable conditions 
and the limitations of the equipment itself. Still, 
the use of CNNs for automated image analysis 
made it possible to standardize the diagnostic pro-
cess and reduce the impact of variability in image 
quality. Although some images were not suitable 
for analysis, the vast majority of data were good 
enough to confirm the validity of our approach.

This study attempts to create a diagnostic 
model to facilitate the work of doctors. Data for 
the model was taken under wartime conditions. It 
is worth noting that similar research under war-
time conditions has not been conducted before, 
which makes our project unique and adapted to 
the realities of battlefield operations. It should be 
noted that earlier works did not address the re-
alities of war, which makes our approach particu-
larly valuable [10–14]. We would like to empha-
size that the presented research represents the first 
stage of clinical work to evaluate the usefulness 
of the diagnostic system in a field setting. In addi-
tion, the expanded analysis of error rates provides 
a better understanding of the potential limitations 
of the model in terms of practical application. 

To ensure the highest ethical standards, all 
participants in the study were fully informed 
about the objectives and methodology, and the 
research produres were conducted in accordance 
with applicable ethical standards. Each patient 
gave informed consent for the tests conducted. 

Limitations

A limitation of this study is the relatively 
small dataset of 448 images, which may restrict 
the generalizability of the findings. Larger datas-
ets are typically required to fully capture the vari-
ability of retinal injuries and to train deep learning 
models with stronger robustness across diverse 

patient populations. Furthermore, the dataset is 
imbalanced, with some diagnostic categories be-
ing underrepresented (e.g., only 24 trauma-relat-
ed cases compared to 295 macular degeneration 
cases). This imbalance may have biased the clas-
sification outcomes toward the majority classes 
and reduced the reliability of results for rarer but 
clinically critical categories such as trauma-relat-
ed injuries. Nevertheless, the dataset presented 
here is unique, as it was collected under actual 
wartime conditions, where access to medical 
facilities and diagnostic tools was severely con-
strained. This makes it not only a valuable proof-
of-concept resource but also one of the first such 
datasets available from conflict zones. While the 
limited size and imbalance may have introduced 
biases and constrained the statistical power of the 
models, the consistently high accuracy across dif-
ferent approaches suggests that AI-based fundus 
analysis can still provide meaningful diagnos-
tic support. Future research should expand the 
dataset, incorporate multicenter collaborations, 
and apply advanced techniques such as transfer 
learning, data augmentation, and class rebalanc-
ing strategies to improve the generalizability and 
clinical applicability of the models. The quality of 
images was sometimes compromised due to unfa-
vorable acquisition conditions and the limitations 
of portable fundus cameras used in the field. Fi-
nally, the wartime setting constrained the range of 
available diagnostic data and limited opportuni-
ties for repeated examinations.

CONCLUSIONS

Our study confirms that the use of fundus 
cameras combined with Artificial Intelligence, 
particularly artificial neural networks, serves as an 
effective clinical diagnostic alternative in wartime 
conditions where access to advanced equipment, 
such as OCT, is limited. Convolutional and Deep 
Networks prove efficient in classifying retinal inju-
ries, such as vessel damage, detachments, and for-
eign bodies, significantly speeding up diagnoses. 
Despite variability in image quality under chal-
lenging conditions, AI-based automation enables 
the standardization of diagnostic procedures. The 
study demonstrates that even less advanced tech-
nologies yield satisfactory results. Image segmen-
tation and hybrid AI architectures further enhance 
precision. These findings highlight the potential 
of AI applications in conflict and crisis situations 
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with limited resources, guiding future research in 
both military and civilian contexts.

It is important to stress the differences between 
diagnostics in wartime and peacetime contexts. 
In peacetime, ophthalmologists usually have ac-
cess to advanced technologies, comprehensive 
patient records, and adequate time for thorough 
examinations. In contrast, wartime diagnostics are 
constrained by scarce resources, reliance on por-
table devices, and the urgent need for rapid deci-
sion-making, often under stressful and hazardous 
conditions. Our study demonstrates that, despite 
these challenges, AI-assisted fundus analysis can 
provide meaningful diagnostic support and help 
bridge the gap created by the absence of advanced 
equipment. These findings highlight the potential 
of AI not only as a complementary tool in con-
ventional healthcare systems but also as a critical 
resource in crisis and conflict settings where con-
ventional diagnostic pathways are disrupted. The 
future clinical work directions will, among other, 
the application of multiple classifiers in the process 
of aggregation of their results to improve the ac-
curacy measure. Moreover, we are going to inves-
tigate other algorithms dedicated to medical image 
classification. Finally, a larger collection of eye in-
juries coming from the war conflicts areas would 
be helpful to improve the quality of methods.
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