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ABSTRACT

Artificial intelligence (Al) has become an important tool for recognizing changes in the ocular fundus, but most
existing studies are conducted in peacetime clinical environments with advanced diagnostic equipment and stable
infrastructure. In contrast, wartime conditions impose severe constraints, including limited access to sophisticated
imaging devices, reduced medical resources, and the urgent need for rapid decision-making. This article addresses
this research gap by examining Al-assisted classification of retinal fundus images collected under conflict conditions
in Ukraine. Three approaches were employed: feature extraction combined with deep neural networks, convolu-
tional neural network (CNN)-based models, and Microsoft’s Custom Vision platform. The dataset consisted of 448
retinal images divided into five groups: normal findings, trauma-related injuries, optic nerve disc changes, vascular
lesions, and macular degeneration. Despite the small and imbalanced dataset, and the challenging acquisition envi-
ronment, each pre-processing method achieved at least 80% classification accuracy, with the CLAHE method yield-
ing the best results. This study demonstrates, for the first time, that Al can provide reliable ophthalmic diagnostics
in extreme and resource-limited wartime settings, bridging the gap between peacetime and conflict healthcare.

Keywords: retinal fundus imaging, wartime healthcare, automated diagnosis, ophthalmology, artificial intelligence.

INTRODUCTION intelligence (Al), including machine learning
(ML) and deep learning (DL), has shown great
promise in ophthalmology, particularly in ana-
lyzing fundus and optical coherence tomogra-
precedented challenges for healthcare systems. phy (OCT) images, existing studies have largely
Eye injuries are particularly concerning, as they ~ been conducted under controlled laboratory or
often lead to irreversible vision loss if not diag- ~ hospital conditions. This leaves a significant re-
nosed and treated quickly [1]. While artificial search gap: little is known about the feasibility of

The ongoing armed conflict has caused a dra-
matic increase in traumatic injuries, creating un-
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Al-based diagnostic tools in resource-limited and
wartime settings, where conventional equipment
is unavailable and medical staff face urgent time
constraints. Our study addresses this gap by eval-
uating Al-assisted fundus image analysis in real-
world wartime conditions in Ukraine, highlighting
both the challenges and the potential clinical value
of such tools in emergency and field medicine.

Military operations put a strain on the health
care system. New military technologies contrib-
ute to permanent damage to health. The health
care system becomes inefficient and helping the
injured is difficult. Eyes are exposed to a wide
range of damage from impact, heat, chemistry,
radiation, or laser. The rise of new military tech-
nologies is accelerating the increase in eye inju-
ries. The most common are penetrating and perfo-
rating injuries, often accompanied by intraocular
diseases that create specific diagnostic and treat-
ment challenges. Modern weapons are great risk
for ophthalmic injuries. Soldiers and civilians are
at risk of injury from ammunition fragments, ex-
plosions and chemical burns during armed con-
flicts [2]. Technology and the growing advance-
ment of weapons increases combat effectiveness,
but also causes more damage, including to the
eye. In the research, we want to develop faster
methods of diagnosing eye diseases that will save
the eyesight of the injured even in difficult condi-
tions. By applying artificial neural network meth-
ods, diagnostics can be performed more rapidly
and with greater accuracy, enabling physicians
to provide timely and effective treatment for pa-
tients with injuries [3, 4].

In contrast to peacetime ophthalmic diagnos-
tics, which typically benefit from stable infrastruc-
ture, advanced imaging technologies such as OCT,
and access to specialized medical teams, wartime
conditions impose severe limitations. Medical pro-
fessionals must often rely on portable, less sophis-
ticated equipment, operate under time pressure,
and deliver care in environments where resources
and safety are compromised. These constraints
create a distinct research gap, as most prior Al-
based ophthalmology studies have been conducted
in controlled, resource-rich settings. Our study ad-
dresses this gap by evaluating the feasibility and
effectiveness of Al-assisted fundus diagnostics
under wartime conditions, providing insights into
how Al can support medical decision-making in
extreme and resource-limited environments.

Artificial Intelligence is a multidimensional
technology that encompasses various components,

including advanced algorithms, ML, and DL. DL
employs representation-learning techniques with
multiple levels of abstraction, enabling the pro-
cessing of input data without manual feature en-
gineering, for example in tasks such as recogniz-
ing complex structures [5, 6]. Compared to con-
ventional techniques, DL provides significantly
higher accuracy which can be used for medical
imaging analysis with highly effective results in
detection of various diseases. In ophthalmology,
DL is most commonly used for fundus analysis
and optical coherence tomography (OCT) [7]. In
fact, with the advent of the Internet, ML has be-
come an important part of the information revo-
lution. Al, ML, DL is expected to provide oph-
thalmologists with an automated device for early
diagnosis and timely treatment [8].

The study highlights that hybrid machine
learning models can significantly accelerate the
diagnosis of eye diseases using OCT images.
However, a major challenge remains the limited
availability of costly ophthalmic equipment in
conflict zones. The lack of appropriate equip-
ment makes diagnosis difficult. Correct diagno-
sis is key to introducing appropriate treatment.
It is not just the price that matters. The size of
the medical device is also important. Equipment
must be lightweight and mobile, must be ready to
be transported at any time due to different situa-
tions on the front line [9]. Previous studies [10,
11] have shown that neural networks can substan-
tially enhance medical diagnostics. These studies
focus on the accurate analysis of OCT images.
Although OCT imaging offers greater diagnostic
accuracy than fundus photography, its high cost
and limited availability significantly constrain its
use in resource-limited settings. Studies with fun-
dus cameras, despite their lower resolution and
accuracy are generally available. The availability
and ease of taking images is significant during
difficult conditions [12].

Research shows that the combination of ar-
tificial intelligence and retinal images can im-
prove diagnostics. Easier diagnosis can make it
significantly easier for doctors to diagnose a dis-
ease. The main goal of this study is to develop
diagnostic tools that are reliable and easy to use
in places with limited hospital access [13]. In the
recent years, the combination of neural networks
(CNN) and vision transformers (ViT) has become
increasingly important medical imagine analysis.
Combining these two methods has helped im-
prove the precision of diagnosing ophthalmologic
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diseases. The article concentrated on triple stream
features from OCT images which had advantages
over single stream models. The triple stream had
very high test accuracy [14].

The fast development of Al technology en-
ables quicker and simpler diagnostics. Most of
the research is based on laboratory conditions.
This research is innovative because it is conduct-
ed in war conditions. The new image analysis
techniques introduced in this article help doctors
make rapid diagnoses. Combining camera fun-
dus with Al can solve many problems. In recent
years, advances in artificial intelligence (Al) have
significantly accelerated the development of im-
age analysis, thereby facilitating more efficient
and accurate medical image interpretation.

The main aim of the study is to develop a new
method for diagnosing different eye injuries us-
ing convolution neural networks (CNN). The use
of advanced image analysis techniques that allow
consideration of texture and intensity based on
images obtained from the fundus camera allows
significant improvements in the accuracy of injury
classification. Modern image processing methods,
based on ML and deep learning algorithms, allow
more precise extraction of features characteris-
tic of different types of injuries. Texture analy-
sis makes it possible to identify even very subtle
changes in tissue structure, which can indicate in-
juries even in the form of microdamage, as well as
degenerative changes or pathological processes.
These tools are designed to operate quickly and
effectively, assisting physicians in diagnosing
groups of eye injuries, including normal findings,
trauma-related injuries, optic nerve disc changes,
vascular lesions, and macular degeneration. This
means that many injured people are not given the
chance for a quick diagnosis, which can lead to
permanent vision loss. We want to create a sim-
pler and more easily accessible tool that can de-
tect eye damage, even in the difficult conditions of
war. This technology enables accurate verification
of specific eye injuries. Doctors will be able to
implement better diagnostics and faster treatment.

The remainder of this article is organized as
follows. Next section presents the materials and
methods, including details on patient data, imaging
devices, and machine learning approaches. Then
we report the experimental results obtained from
the three Al-based classification methods. In next
section we discuss the findings in the context of ex-
isting literature, highlights limitations such as data-
set size and imbalance, and outlines future research
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directions. Final section concludes the study by
emphasizing the unique contribution of Al-assist-
ed fundus diagnostics in wartime conditions com-
pared to conventional peacetime healthcare.

MATERIALS AND METHODS

The war in Ukraine has exposed a new threat.
The hybrid war on Ukraine carries with it the
direct threat of using unconventional weapons.
Modern military technologies have an impact on
public health. The authors of the article [15] dis-
cuss the immediate as well as the long-term con-
sequences. The majority of patients at risk were
men between 25 and 63 years of age. The most
common injuries were to the stomach, face and
limbs. Limited transportation conditions made it
difficult to help the injured. The ongoing conflict
poses new challenges for health care workers,
who must be prepared to deal with the complexi-
ties of dealing with victims [16].

Information about patients and location

The research was conducted during the war in
Ukraine. The analyses included 570 patients who
presented with eye injuries. The majority of eye
injuries resulted from bombings, shrapnel, and
battlefield clashes. Participants were recruited at
the Lviv Regional Clinical Hospital. The patients
then had specialized eye examinations. Patients
whose health status allowed for full medical re-
cord were examined first. Each patient signed an
informed consent for the eye examination. Ethi-
cal approval was granted by the Bioethics Com-
mittee of the Medical University of Lublin. The
criteria for including patients in the study is that
participants had to have experienced an eye inju-
ry directly to military operations and be in stable
health during the study. Patients were excluded
from the study if their condition was unstable or if
they did not provide informed consent. Reported
cases included eye injuries, orbital trauma, and
post-traumatic ocular pain. Some patients pre-
sented with only superficial injuries, with no de-
tectable changes in the ocular fundus.

Data acquisition

The fundus images were primarily collected
using Optomed Aurora portable cameras, which
are independent, lightweight devices capable of



Advances in Science and Technology Research Journal 2026, 20(1) 510-524

producing diagnostic-quality images (50-degree
field of view, 5-megapixel resolution) without
requiring a computer. These cameras were used
both in hospital settings and in more challenging
wartime environments. Although the equipment
was consistent, there were introduced effects
knows from the wartime conditions, such as vari-
able lighting, operator experience, and urgency of
examinations, introduced heterogeneity in image
quality, resolution, and color distribution. This
explains why, despite standardized hardware, the
dataset displays significant variability. Images
were saved in JPEG format to ensure data integ-
rity and facilitate straightforward analysis [17].

Patients were dropped with 1% tropicamide
solution. When the eyes were dropped, the pupil
dilated so that better photos of the fundus could
be taken. Patients were analyzed on a scale of
0 (no rating) — 2 (excellent). Images that do not
meet standards for clarity, centering or visibility
of key structures are excluded. This rigorous ap-
proach ensures good data quality. The data has
been anonymized in accordance with Polish and
Ukrainian data protection regulations (RODO).
Visual acuity is measured on a decimal scale and
compared with the Eye Trauma Score. Patient de-
mographics such as age, gender, profession and
social status were taken.

Machine learning

Warfare comes with significant challenges,
such as limited equipment and incomplete data
sets. Adaptation of neural networks in terms of
standardizing image analysis and adapting to dif-
ferent input data reduces these difficulties. This
adaptation is particularly important for analyzing
results under difficult conditions.

The research used machine learning. CNN
were mainly used to analyze images of the eye.
CNN automate the image analysis process and
classify fundus injuries. Using these advanced
algorithms, it was possible to reduce diagnostic
time and increase accuracy in condition that re-
quire quick decision making [18, 19].

This study highlights their potential for de-
veloping automated diagnostic tools that support
physicians in making faster and more accurate
diagnoses. Studies have been conducted to en-
able early detection and timely treatment us-
ing deep learning algorithms for fundus images.
Quick diagnosis and treatment planning can be
made easier with the Deep learning techniques

have revolutionized medical imaging, markedly
enhancing the accuracy of eye disease detection
and classification. ability of deep learning models
to process images quickly and deliver results im-
mediately. Our research aims to provide a non-in-
vasive method for early detection and rapid treat-
ment of eye diseases using a CNN. This article
presents practical applications of artificial intel-
ligence for the analysis of various retinal injuries
under challenging conditions. Furthermore, it dis-
cusses specific applications of Al in the classifica-
tion of retinal diseases [20-22].

RESULTS

The analyzed dataset contained 448 retinal
images categorized into five groups: normal im-
ages, trauma-related injuries, optic disc changes,
vascular changes, and macular degeneration. The
images were collected under extremely chal-
lenging conditions during wartime using various
devices, resulting in images with varying reso-
lutions and inconsistent color distributions. The
initial resolution of the images ranged from 436
x 333 pixels to 2368 x 1776 pixels. The color his-
tograms for six randomly selected images from
class normal only are presented in Figure 1.

Additionally, the individual image classes
contain different numbers of images, with the nor-
mal class having 25 images, trauma-related inju-
ries 24, optic disc changes 192, vascular changes
197, and macular degeneration 295 [20].

The retinal fundus images are being analyzed
using binary classification models in three different
approaches: based on feature extraction and deep
neural networks, convolutional neural networks,
and utilizing Microsoft Azure’s Custom Vision
tools for image classification. The results from
these methods are being consolidated for compari-
son and analysis providing a foundation for poten-
tial future aggregation using the approach based on
Choquet integral extensions, which is being devel-
oped and was published by our team [22].

Feature based classification

The fundamental task at the beginning of the
analysis is to standardize the input data and to en-
sure that the data set is split in a way that preserves
the distribution of the predicted feature. Because
the acquired images varied substantially in reso-
lution, visual quality, and illumination, they were
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Figure 1. Color histograms for six chosen images from class normal

subjected to a series of preprocessing steps, de-
tailed below. This process included isolating the
retinal area from each image, improving contrast
by separating and adjusting the LAB color chan-
nels by applying CLAHE method to the L (light-
ness) channel, and subsequently cropping the im-
ages. The preprocessing approach similar to pro-
posed in the work [23] is used. It involves four
key steps: (1) removing irrelevant margins, such
as black borders, by identifying the boundary be-
tween these and the retinal region; (2) detecting
the circular retina or, if unsuccessful, estimating
the circle based on the image center and pixel
distribution; (3) cropping the image according
to the detected retina circle, and (4) adding black
borders during training to prevent the accidental
removal of important areas after augmentation,
such as random rotations and cropping. Pre-pro-
cessing is performed on images at their maximum
available resolution to ensure that the process is
as efficient as possible. Subsequently, all images
were resized to a uniform size of 300 x 300 pixels
to create a consistent dataset for training machine
learning models. It should be noted that due to
the poor quality of the input images, selecting the
circle containing the retinal image results in black
borders of varying thickness across different im-
ages, which affects the feature extraction process.

The images were pre-processed using the
standard Contrast Limited Adaptive Histogram
Equalization (CLAHE) approach to enhance local
contrast and improve the visibility of fine details.
In this approach, the image is divided into small
blocks, referred to as tiles, and histogram equal-
ization is applied separately to each region. This
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ensures that contrast enhancement is localized to
specific areas, rather than being applied uniformly
across the entire image. However, if noise is pres-
ent, it can be amplified during this process. To
mitigate this issue, contrast limiting is introduced,
where excessively high histogram bins are clipped
and their values are redistributed before equaliza-
tion. Finally, to smooth transitions between adja-
cent tiles and reduce artifacts at their borders, in-
terpolation is applied. Following this, three linear
combinations of the original image and its Gauss-
ian blurred version were applied to emphasize
relevant features and suppress noise. The Gauss-
ian blur was used to create smoothed versions of
the image, which were then combined in varying
proportions with the original to highlight differ-
ent structural elements. After pre-processing, the
circular border of each image, often introduced
during image acquisition, was removed to ensure
uniformity and to focus solely on the region of
interest. Figure 2 presents four example images
of the fundus from subset normal. In subsequent
rows, the original images are displayed, followed
by those processed using the CLAHE method and
three mentioned linear combinations.

In the first experiment, an attempt is made to
extract features from the obtained images and ap-
ply this data to build models for image classifica-
tion. To enhance the diversity of the dataset and
improve model robustness, data augmentation
techniques were employed. A horizontal flip was
applied randomly to a subset of the images, ef-
fectively doubling the available perspectives. Ad-
ditionally, each image was subjected to a random
rotation by an angle within the range of -20 to 20
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Figure 2. Preprocessed images

degrees, simulating various orientations encoun-
tered in real-world scenarios. These augmenta-
tions helped mitigate overfitting and ensured better
generalization during model training. The gMaZ-
da tool is used for feature extraction [24, 25]. This
program is designed for digital image analysis and
recognition. It calculates features related to color,
texture, and shape in user-defined regions of inter-
est. Color analysis includes models such as RGB,
CMY, HSY, YIQ, YUYV, CIELab, and CIEXYZ.
Texture feature extraction is conducted using
methods like co-occurrence matrices, run-length
matrices, autoregression models, brightness distri-
bution statistics, local binary patterns, histograms
of oriented gradients, Haar, and Gabor transforms.
In addition, morphological features such as inertia
moments, Feret diameters, and various shape de-
scriptors are computed. A script has been prepared
to automate these operations, leveraging the tool’s
advantage of ease in conducting analyses through
script execution. A feature dataset consisting of
567 columns is extracted. The dataset is refined

by removing columns containing only zeros, col-
umns with constant values, and columns exhibit-
ing low data diversity, as measured by their stan-
dard deviation. After these operations, the dataset
contains 420 columns. In the next step, standard
scaling was performed using the Z-score method
to normalize the features values. This approach
ensured that the data had a mean of zero and a
standard deviation of one, promoting consistency
across the dataset and improving the convergence
of the model during training.

Artificial neural networks were employed for
binary classification for each class pair in the da-
taset. For five classes, this resulted in ten pairs
for which networks were built and trained. The
AutoKeras library was utilized for model creation
and training, automating the selection of network
architecture. Training was conducted for up to
2500 epochs, utilizing early stopping with pa-
tience 100 and restoring the best model weights.
The final classification results of this experiment
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Table 1. Classification results using deep neural networks

Parameter Normal Trauma-related Vascular Macular Optic disc
Normal X 0.556 0.956 0.953 0.909
Trauma-related 0.556 X 0.841 0.906 0.907
Vascular 0.956 0.841 X 0.646 0.641
Macular 0.953 0.906 0.646 X 0.612
Optic disc 0.909 0.907 0.641 0.612 X

are presented in Table 1, that contains accuracy
calculated for testing set.

Artificial neural networks are used for classi-
fication for each subset. Multiclass classification
was conducted for each preprocessing algorithm
to evaluate their effectiveness in distinguishing
between different classes. The study initially ex-
plored larger neural network architectures, starting
with a configuration of hidden layers with the fol-
lowing number of neurons: (500, 250, 250, 100,
50, 5), comprising over 430,000 trainable param-
eters. Despite the application of DropOut layers,
this model exhibited noticeable overfitting. Subse-
quently, the number of neurons in the hidden lay-
ers was gradually reduced, including a configura-
tion of (500, 250, 200, 50, 5) with over 390,000
parameters, which also failed to generalize well.
Ultimately, a significantly smaller architecture of
(300, 50, 5) neurons and additional DropOut lay-
ers, consisting of approximately 130,000 trainable
parameters, was found to achieve satisfactory ac-
curacy without signs of overfitting. By applying
the preprocessing techniques individually and as-
sessing their impact on classification performance,
insights were gained into how each method con-
tributed to feature extraction and model accuracy.
The fitting process is conducted for up to 2000 ep-
ochs, utilizing early stopping with patience set to
20 and restoring the best model weights.

The final classification results of this experi-
ment are presented in Table 2, which presents the
validation accuracy and loss obtained on datasets
with different preprocessing methods for multi-
class classification. Each analyzed preprocessing
method achieved at least 80% accuracy. Notably,

Table 2. Classification results using deep neural networks

Preprocessing Accuracy Loss

CLAHE 0.833 0.227
Combination 1 0.800 0.251
Combination 2 0.810 0.264
Combination 3 0.816 0.224
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the CLAHE method yielded the highest accuracy,
while the third linear combination approach re-
sulted in the minimum loss function value.

Image-based classification

Inthe second model, images were likewise used
as the input data. This time, however, we use the
visual information contained in them directly and
after multistep preprocessing. Nowadays, in most
cases, when building classifiers for an image, deep
networks based on convolution are used. Their ar-
chitectures can be different, which largely depend
on the characteristics of images, their diversity,
and expected effectiveness. In our case, imaged
data are transferred both at the training stage and
for later inference to the multilayer convolutional
network. This approach is relatively common in
the case of retinal change classification, and the
proposed processing pipelines differ in way how
input images are treated, selected model architec-
ture, and used hyperparameters values [21, 23].
The images are processed based on a modified
method proposed by B. Graham for the Diabetic
Retinopathy Detection competition [26, 27]. After
finding the region representing the captured retinal
image, scaling and cropping is applied and Gauss-
ian blurred version of image is created (Figure 3).

The image was then normalized to the maxi-
mum range of pixel values using the levels func-
tion. The two variants are then added together.
Finally processed 224 x 224 pixel color im-
ages are used as input for the model (Figure 4).
The model selected for this task was Imagenet [28].
SSD-based object detection model trained on Open
Images V4 with ImageNet pre-trained MobileNet
V2 as image feature extractor, which is lightweight
convolutional neural network providing high qual-
ity features for downstream classifications [29].
This version of the model improves upon the origi-
nal MobileNet by introducing inverted residual
blocks and a linear bottleneck, which reduce com-
putational complexity while maintaining accuracy.
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Captured retinal image

Y

Region detection (find
retinal area)

Scaling and cropping

Gaussian blur

A 4

Normalization (level
function)

A

Combine (add both
images)

Scaling to 224x224 pixels

Figure 3. Preprocessing flow

Total over 1.3 M, from total number of 3.6 M, of
parameters was used during training.

ImageNet pre-trained MobileNet V2 use input
as 224 x 224 x 3 RGB images. Initial layers are
convolutive 3 x 3 with striding 2 and 32 filters, then
there are inverted residual blocks series of blocks
with varying expansion factors ¢, output channels
¢, number of repetitions 7, and stride s (Table 3).
Final convolution layer is 1 % 1 and global aver-
age pooling layer which reduces feature map to
1280 channels vector. Fully connected dense lay-
ers with 1000 units with softmax functions forms
outputs. During training and validation, the data
were split into sets at a ratio of 1:5. Pretraining on
a large, diverse dataset gives the model a rich set
of general features. When fine-tuning on smaller
datasets, this acts as a strong regularizer, reduc-
ing overfitting. Learning process was split in two

Table 3. Inverted residual block configuration

t (expansion) c?hgonur:gll:) n (repeats) s (stride)
1 16 1 1
6 24 2 2
6 32 3 2
6 64 4 2
6 96 3 1
6 160 3 2
6 320 1 1

main steps. The first model was trained using the
Soft Fl-score loss function, which is differen-
tiable and derived from the F1-score, taking into
account both precision and recall:

Soft F1 Loss = 1-2-TP/(2-TP+FP+FN}y (D)

where: TP is true positive value, FP is false posi-
tive and FN is false negative.

In case of multilabel classification selection
of'this loss function is quite typical for step which
is focused on preparation of set of features.

In the second step, pairs of data from different
labels were used to train the same model with the
binary cross-entropy loss function. This resulted
in a multilabel classifier. The outcomes of the pro-
cessed images are presented in Figure 5. Training
was conducted in two rounds, each consisting of
200 epochs with a batch size of 256.

After first, feature extraction, round we got
finally F1 score for training set equal to 0.69 and
0.53 for validation set. In case of second, binary
classification round, F1 score for training set was
equal to 0.78 and 0.53 for validation set. Results,
are quite average, but probably there is still space
for improvement which could be made by model
tuning, modification or extension to data set to get
more balanced input. Figure 6 shows training and
validation for a round of binary loss functions.

Custom Vision classification

We also tested as third possible solution
Microsoft Azure Al Custom Vision service. We
employed a model and workflow designed for
multi-tag classification. This Microsoft service
employs deep learning-based architectures, pri-
marily CNNs. The specific model architectures
may vary depending on the chosen configuration,
but Microsoft does not disclose the exact mod-
els used. From the available information, Custom
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{'optic disc changes'} {'vascular changes with hemorrhages'} {'retinal changes'} {'vascular changes with hemorrhages'}

{'optic disc changes'} {'vascular changes with hemorrhages'} {'retinal changes'} {'optic disc changes'}
g,

Figure 4. Eight processed images from training set with assigned labels

Training and Validation Loss
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0.5

Soft F1-score

0.4
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Figure 5. Training and validation loss and F1-score for first training round
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Training and Validation Loss

0.6 1

0.5 1

Loss

0.4 1

—— Training Loss
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Figure 6. Training and validation for binary loss function round

Precision ®

Recall ®

AP®

Figure 7. Graphical representation of results generated bu Custom Vision

Vision utilizes optimized CNN models similar to
ResNet, MobileNet, and EfficientNet and allows
training models on custom datasets by employ-
ing transfer learning, enabling the adaptation of
pre-trained networks to new applications. Custom
Vision offers different levels of accuracy and per-
formance (fast vs. more precise models) corelated
with payment for training process. It is possible
to export the trained model into various formats,
such as ONNX, TensorFlow, or Core ML. In our
case we started with images preprocessed the

same way as in case of image based classification.
This method could be treated as a kind of ad hoc
solution because of limited configuration possi-
bilities. Custom Vision reports classifier perfor-
mance in terms of average precision; therefore,
accuracy was calculated independently based on
the content of the test subsets.

The results from the Custom Vision model in-
dicate above-average performance, with metrics
such as recall and accuracy. The results shown
in Figure 7 represent of the Microsoft Azure Al
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Custom Vision service test — average precision
0.89, recall 0.87 and accuracy 0.85.We could com-
pare this results with F1 score because the later is
a balance between precision and recall. Of course
for imbalanced datasets or cases where both preci-
sion and recall are critical, the F1 score is a better
metric than accuracy alone. It means that despite
the fact that Custom Vision is a closed, proprietary
solution provided by Microsoft for building and
deploying image classification and object detec-
tion models it could be treated as a practical start-
ing point for many applications or basic perfor-
mance level. The results in Table 4 show scores
for Custom Vision multilabel classification.

As you can see on Figure 8 the red outline
points out misclassifications in validation set. Im-
age should have been classified as a pigment clus-
ter class with probability equal to 98.8% and as
a vascular changes with probability 40.4%. The
second class was correct; however, in this case,
the model also recalled pigment cluster images,
which is not unexpected.

Table 4. Scores for Custom Vision multilabel classifi-
cation

Tag Presion | Recall | Average precision
Pigment clusters 1.00 0.67 0.68
Normal 1.00 1.00 1.00
Retinal changes 0.82 0.92 0.88
Optic disc changes | 0.80 0.76 0.84

Overall, the feature-based approach combined
with CLAHE preprocessing achieved the highest
multiclass accuracy (0.833), indicating strong
performance despite the limited and imbalanced
dataset. The image-based CNN approach (Mo-
bileNet V2) achieved lower validation F1-scores
(0.53), though it demonstrated the advantage of
an end-to-end pipeline without manual feature en-
gineering. The Custom Vision service performed
comparably (average precision 0.89, recall 0.87,
accuracy 0.85), confirming the viability of trans-
fer learning with pre-trained CNN architectures.
It should be noted that these results are not strictly
equivalent, since each method used a slightly dif-
ferent setup, handcrafted features with ANN clas-
sification, MobileNet-based deep learning, and
Microsoft’s proprietary transfer learning frame-
work. Therefore, the outcomes should be inter-
preted as complementary evidence rather than
directly comparable benchmarks.

DISCUSSION

The aim of this study was to investigate the
potential clinical applications of Al-based algo-
rithms for the detection of retinal injuries during
armed conflict. We found that CNNs can accu-
rately identify different types of retinal injuries.
Importantly, the results of our analysis are com-
parable to those obtained using more advanced
technologies, such as optical coherence tomogra-
phy (OCT). Although we used less sophisticated

open image detail

Figure 8. Part of performance test for model trained in Custom Vision
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equipment, Al has shown that it can provide very
precise diagnoses. This information is particu-
larly valuable in situations where access to mod-
ern diagnostic tools is limited. Previous works
discusses current applications of artificial intel-
ligence in ophthalmic diagnostics. Some articles
like [30], highlights how quickly Al can analyze
images of the eye. The article also provides a
broader picture of deep learning, in the context
of eye diseases as well as highlights challenges in
ethics and integration with traditional treatments.
Additionally, previous articles [30—32] mainly
focus on the use of deep learning and Al in the
diagnosis of eye diseases. They point to the use
of neural networks in analyzing fundus images
to accurately detect pathological changes. These
studies underscore the effectiveness of artificial
intelligence in speeding up the diagnostic process
and improving the precision of diagnoses.
Research [33-35] focuses on artificial intel-
ligence in the diagnosis of retinal diseases. They
mainly study the macula and on using neural net-
works to analyze fundus images. This research
highlights the challenges of accessing technology
in a constrained environment. Comparing our re-
search, this too is conducted under limited con-
ditions. These solutions aim to create diagnostic
tools that are effective in difficult field conditions.
Our results confirm previous findings that
Al has great potential in medical image analysis.
For example, the Hemalakshmi et al. study [36]
showed how advanced techniques such as sparse
vision transformer (SViT) can be used in medical
diagnosis. Although we focused on fundus cam-
era images, our results clearly show that CNNs
speed up diagnosis and improve accuracy. This
is crucial when making quick decisions matters.
Similar observations appeared in a study [10]
that dealt with the classification of OCT images
in diabetic retinopathy. The results from this ar-
ticle, which dealt with the classification of retinal
trauma caused by war trauma, overlap with the
article [10]. This shows that Al-based techniques
can be used not only for the diagnosis of classic
retinal diseases, but also for the analysis of inju-
ries in conflict zones. Our observations are also in
line with studies that combine CNN techniques
with feature extraction methods, significantly im-
proving the precision of diagnosis [11]. This is
especially important in situations where access to
advanced diagnostic tools such as OCT is severe-
ly limited. Thus, we see that CNNs can provide
valuable support in the analysis of eye injuries

resulting from warfare, offering an effective diag-
nostic solution even with limited resources.

In addition to these observations, several
practical and ethical considerations must be em-
phasized. One is data variability. Retinal fundus
images collected in conflict zones often differ in
resolution, illumination, and overall quality due to
diverse acquisition devices and unstable environ-
mental conditions. Moreover, demographic vari-
ability across patient populations (e.g., age, eth-
nicity, comorbidities) can affect retinal presenta-
tion and may influence the robustness of AI mod-
els. While our current dataset provides valuable
proof-of-concept evidence, future studies should
incorporate larger and more diverse datasets from
multiple centers to enhance generalizability.
Another importantissue is patient safety. Al-assist-
ed diagnostics in ophthalmology must be viewed
strictly as decision-support tools rather than au-
tonomous diagnostic systems. Clinicians should
remain responsible for final medical decisions, us-
ing Al outputs as supportive evidence. Safeguards
such as clear uncertainty quantification, fail-safe
mechanisms when input quality is inadequate,
and clinician training on model interpretability
are essential to mitigate risks of misdiagnosis.
Finally, limitations in generalization should be
acknowledged. Models trained on data from
specific populations or conflict-affected regions
may not fully capture variations present in other
geographic or socioeconomic contexts. Ensuring
equitable performance across different patient
groups requires further validation, ideally through
multicenter collaborations and prospective clini-
cal trials. Addressing these aspects will be crucial
for safe and reliable integration of Al-assisted
pipelines into real-world healthcare workflows,
particularly in fragile healthcare systems.

In the context of medical image segmenta-
tion, UTNet’s hybrid transform architecture, dis-
cussed in [12], shows promise in separating areas
of interest in images, even under difficult condi-
tions. Although we did not address segmentation
in our study, we believe that in the future it could
further improve the precision of diagnoses by
allowing more accurate assessment of damaged
areas of the retina. Similarly, a study [13] sug-
gesting combining CNNs with transformers for
medical image segmentation highlights that hy-
brid approaches can improve diagnostic perfor-
mance. Although our work has focused primarily
on classification, we see potential in extending
the study to include segmentation to obtain even
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more detailed information about retinal injuries
from warfare.

Regarding the application of Al in the diag-
nosis of eye injuries in conflict zones, our study
clearly shows that CNNs can effectively identify
and classify retinal damage, even under extreme
conditions. Moreover, the results suggest that
Al’s potential may extend beyond the retina itself.
In the future, we could extend diagnostics to oth-
er structures of the eye, such as the cornea. This
expansion of the diagnostic system could signifi-
cantly improve the efficiency of emergency care.

The main limitation of our study was the qual-
ity of the fundus camera images, which was some-
times compromised by unfavorable conditions
and the limitations of the equipment itself. Still,
the use of CNNs for automated image analysis
made it possible to standardize the diagnostic pro-
cess and reduce the impact of variability in image
quality. Although some images were not suitable
for analysis, the vast majority of data were good
enough to confirm the validity of our approach.

This study attempts to create a diagnostic
model to facilitate the work of doctors. Data for
the model was taken under wartime conditions. It
is worth noting that similar research under war-
time conditions has not been conducted before,
which makes our project unique and adapted to
the realities of battlefield operations. It should be
noted that earlier works did not address the re-
alities of war, which makes our approach particu-
larly valuable [10-14]. We would like to empha-
size that the presented research represents the first
stage of clinical work to evaluate the usefulness
of the diagnostic system in a field setting. In addi-
tion, the expanded analysis of error rates provides
a better understanding of the potential limitations
of the model in terms of practical application.

To ensure the highest ethical standards, all
participants in the study were fully informed
about the objectives and methodology, and the
research produres were conducted in accordance
with applicable ethical standards. Each patient
gave informed consent for the tests conducted.

Limitations

A limitation of this study is the relatively
small dataset of 448 images, which may restrict
the generalizability of the findings. Larger datas-
ets are typically required to fully capture the vari-
ability of retinal injuries and to train deep learning
models with stronger robustness across diverse
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patient populations. Furthermore, the dataset is
imbalanced, with some diagnostic categories be-
ing underrepresented (e.g., only 24 trauma-relat-
ed cases compared to 295 macular degeneration
cases). This imbalance may have biased the clas-
sification outcomes toward the majority classes
and reduced the reliability of results for rarer but
clinically critical categories such as trauma-relat-
ed injuries. Nevertheless, the dataset presented
here is unique, as it was collected under actual
wartime conditions, where access to medical
facilities and diagnostic tools was severely con-
strained. This makes it not only a valuable proof-
of-concept resource but also one of the first such
datasets available from conflict zones. While the
limited size and imbalance may have introduced
biases and constrained the statistical power of the
models, the consistently high accuracy across dif-
ferent approaches suggests that Al-based fundus
analysis can still provide meaningful diagnos-
tic support. Future research should expand the
dataset, incorporate multicenter collaborations,
and apply advanced techniques such as transfer
learning, data augmentation, and class rebalanc-
ing strategies to improve the generalizability and
clinical applicability of the models. The quality of
images was sometimes compromised due to unfa-
vorable acquisition conditions and the limitations
of portable fundus cameras used in the field. Fi-
nally, the wartime setting constrained the range of
available diagnostic data and limited opportuni-
ties for repeated examinations.

CONCLUSIONS

Our study confirms that the use of fundus
cameras combined with Artificial Intelligence,
particularly artificial neural networks, serves as an
effective clinical diagnostic alternative in wartime
conditions where access to advanced equipment,
such as OCT, is limited. Convolutional and Deep
Networks prove efficient in classifying retinal inju-
ries, such as vessel damage, detachments, and for-
eign bodies, significantly speeding up diagnoses.
Despite variability in image quality under chal-
lenging conditions, Al-based automation enables
the standardization of diagnostic procedures. The
study demonstrates that even less advanced tech-
nologies yield satisfactory results. Image segmen-
tation and hybrid Al architectures further enhance
precision. These findings highlight the potential
of Al applications in conflict and crisis situations
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with limited resources, guiding future research in
both military and civilian contexts.

It is important to stress the differences between
diagnostics in wartime and peacetime contexts.
In peacetime, ophthalmologists usually have ac-
cess to advanced technologies, comprehensive
patient records, and adequate time for thorough
examinations. In contrast, wartime diagnostics are
constrained by scarce resources, reliance on por-
table devices, and the urgent need for rapid deci-
sion-making, often under stressful and hazardous
conditions. Our study demonstrates that, despite
these challenges, Al-assisted fundus analysis can
provide meaningful diagnostic support and help
bridge the gap created by the absence of advanced
equipment. These findings highlight the potential
of Al not only as a complementary tool in con-
ventional healthcare systems but also as a critical
resource in crisis and conflict settings where con-
ventional diagnostic pathways are disrupted. The
future clinical work directions will, among other,
the application of multiple classifiers in the process
of aggregation of their results to improve the ac-
curacy measure. Moreover, we are going to inves-
tigate other algorithms dedicated to medical image
classification. Finally, a larger collection of eye in-
juries coming from the war conflicts areas would
be helpful to improve the quality of methods.
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