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INTRODUCTION

Composite materials have transformed aero-
space structure design thanks to their high stiffness-
to-weight ratios and design flexibility. However, 
the interaction of structural dynamics and aerody-
namic forces, known as aeroelasticity, imposes sig-
nificant design constraints such as flutter and diver-
gence. Improving aeroelastic performance without 
increasing weight remains a major challenge [1]. 
Several studies looked into the aeroelastic behav-
ior of composite wings, focusing on fiber orienta-
tion and geometric tailoring. The aeroelastic analy-
sis of composite panels highlights their potential 
for passive flutter in flexible control [2]. The fun-
damentals of divergence and flutter for flexible air-
foils were developed using panel methods. How-
ever, few studies have examined the use of addi-
tive materials such as rubber or ceramic particles 
in composite structures [3]. These questions have 
been widely used to forecast the effective material 
properties of composites containing inclusions. 
They investigated the effect of Nano-inclusion on 

vibration properties but discovered no correlation 
with aeroelastic metrics [4, 5]. This study investi-
gates how the inclusion of materials such as Al2O3 
(stiff ceramic), rubber (damping-enhancing elas-
tomer), and silica (moderate filler) affects the ef-
fective stiffness and this study bridges the gap by 
explicitly modeling the effects of volume fraction-
based inclusions on both dynamic and static aero-
elastic instabilities in a composite wing. To evalu-
ate the effect of different material inclusions and 
fiber orientations on the natural frequency, flutter 
speed, and damping behavior of composite panels, 
and to recommend the best configurations for im-
proved aeroelastic performance.

MATHEMATICAL MODEL

A mathematical model and analysis of the 
vibration and flutter speed behavior of a com-
posite wing panel with fiber orientation and 
material inclusions. The formulation analysis 
consists of [6, 7].
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Effective elastic modulus with includes

To define a three-phase composite, we use the 
Voigt (rule of mixtures) approach. The longitu-
dinal modulus E1 and effective density ρ are as 
follows:

	 𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (1)

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (2)

where:	vf, vm, vi – volume fraction of fiber, matrix 
and inclusion; Ef, Em, Ei – elastic moduli 
of fiber, matrix and inclusion; pf, pm, pi – 
densities of each phase.

The total stiffness matrices [A], [B], [D] [8]:

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (3)

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  
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2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (4)

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  
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𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (5)

For a laminate with layers oriented at θi calcu-
late the transformed stiffness matrix for each ply.

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (6)

where:	T – transformation matrix for rotation an-
gle θi, for a swept and tapered wing, using 
geometric transformations;

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (7)

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (8)

where:	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

 – sweep angle; λ – taper ratio.

Aerelastic flutter equations

In matrix form, the generalized equations of 
motion can be expressed in three dimensions [9]:

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
  

 
 

[𝐵𝐵] = 1/3 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
3 − 𝑧𝑧𝑘𝑘−1

3 )
𝑁𝑁

𝑘𝑘=1
  

 
 

𝜃𝜃𝑖𝑖 = 𝑇𝑇−1|𝑄𝑄|𝑇𝑇−𝑇𝑇 (6) 
 
 

𝑥̅𝑥 = 𝑥𝑥 cos(𝛬𝛬) 
 
 

y = y (1 − λ
b x + λ)  
 
 

[
𝑀𝑀ℎ 0 0
0 𝑀𝑀𝜃𝜃 0
0 0 𝑀𝑀∅

] [
ℎ̈
𝜃̈𝜃
∅̈

] + [
𝐶𝐶ℎ 0 0
0 𝐶𝐶𝜃𝜃 0
0 0 𝐶𝐶∅

] [
ℎ̇
𝜃̇𝜃
∅̇

]+ 

+ [
𝐾𝐾ℎ 0 0
0 𝐾𝐾𝜃𝜃 0
0 0 𝐾𝐾∅

] [
ℎ
𝜃𝜃
∅

] = [
𝐿𝐿
𝑀𝑀
𝑁𝑁

] 

 

𝐿𝐿 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 

𝑀𝑀 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝐶𝐶𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 

𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  

 
det(𝜆𝜆2𝑀𝑀 + 𝜆𝜆𝜆𝜆 + 𝐾𝐾) = 0  

 
 

	 (9)

where:	Mh, Mθ, Mø are the mass moments for 
bending, torsion, and yaw, respectively,  
Ch, Cθ, Cø are the damping coefficient, 
Kh, Kθ, Kø are the stiffness coefficients 
for bending, torsion, and yaw modes 
are represented by[10],while L, M, and 
N denote the aerodynamic forces (lift, 
pitching moment, and yawing moment) 
acting on the wing.

Aerodynamic forces

The aerodynamic forces acting on the wing de-
pend on the angle of attack and the yaw angle. The 
lift and moment are influenced by these angles [11]:

	

𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖  
 

 
𝜌𝜌 = 𝑣𝑣𝑓𝑓𝜌𝜌𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜌𝜌𝑚𝑚 + 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖  

 

[𝐴𝐴] = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)
𝑁𝑁

𝑘𝑘=1
  

 

[𝐵𝐵] = 1/2 ∑ 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘
2 − 𝑧𝑧𝑘𝑘−1

2 )
𝑁𝑁

𝑘𝑘=1
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where:	ρ represents the air density, V is the flight 
velocity, S is the wing area, and c is the 
mean aerodynamic chord. The coeffi-
cients CL (α, β), CM (α, β), and CN (α, β) 
refer to the lift, pitch moment, and yaw 
moment, respectively. These coefficients 
are functions of the angle of attack (α) and 
the yaw angle (β(.

Coupled modes in flutter

Flutter is primarily caused by the interac-
tion of bending and torsion modes. When damp-
ing becomes negative, this interaction generates 
dynamic instabilities, resulting in self-sustain-
ing oscillations at the flutter point. The coupled 
equations that describe bending and torsion, tak-
ing into account aerodynamic forces, can be ex-
pressed as [12]:
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The aerodynamic forces L(α,β) and M(α,β) de-
pend on dynamic changes in α and β, which vary 
based on the wing’s motion. The flutter speed can 
be determined by solving the eigenvalue problem 
related to the equations of motion.
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𝑁𝑁 = 1
2 𝜌𝜌𝑉𝑉2𝑆𝑆 𝑐𝑐𝑐𝑐𝑁𝑁(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀ℎℎ̈ + 𝐶𝐶ℎℎ̇ + 𝐾𝐾ℎℎ = 𝐿𝐿(𝛼𝛼, 𝛽𝛽)  

 
𝑀𝑀𝜃𝜃𝜃̈𝜃 + 𝐶𝐶𝜃𝜃𝜃̇𝜃 + 𝐾𝐾𝜃𝜃𝜃𝜃 = 𝑀𝑀(𝛼𝛼, 𝛽𝛽)  
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where:	 λ represents the eigenvalues. The small-
est value of λ determines the flutter speed, 
as the real part of the eigenvalue becomes 
negative, indicating instability.

Case study 

Determine the aeroelastic properties of a 
composite wing using MATLAB’s best analyti-
cal predictions, which are then validated with an 
ANSYS simulation. The geometry and material 
properties of the wing study are presented in 
Table 1 [13–15].

VALIDATION OF RESULT

A thorough finite element analysis using AN-
SYS was performed to validate the analytical 
predictions and investigate the composite wing 
panels’ detailed dynamic behavior. The proce-
dure was as follows: The wing panel geometry 
was modeled as a tapered, swept shell structure. 
Key dimensions such as span root and tip chord 
lengths, thickness, sweep angle, and aspect ratio 
were parametrically defined to match the study 
cases. Composite material properties were as-
signed based on orthotropic elasticity, and multi-
ple material definitions were created to represent 
different inclusion configurations and fiber orien-
tations. The model utilized Shell 181 elements, 
which are well-suited for composite layered 
structures. A mapped mesh was generated along 
the surface, with local mesh refinement near the 
root to capture high stress gradients. Mesh inde-
pendence was verified by refining the model until 
the change in the first natural frequency was less 
than 2%. Cantilever boundary conditions were 
imposed, with the root edge of the wing fully fixed 
and the remaining edges free to simulate realistic 

wing mounting. A block Lanczos eigenvalue 
extraction method was used to solve for natural 
frequencies, and the first five mode shapes were 
computed, with the first bending mode frequency 
recorded for comparison against the analytical re-
sults. Figure 1 shows the total deformation plot 
of the composite tapered wing panel’s first bend-
ing mode shape at a natural frequency of 8.1 Hz, 
which was extracted from ANSYS modal analy-
sis. The deformation pattern exhibits a typical 
first bending mode, with maximum displacement 
near the tip and minimal displacement at the root, 
consistent with cantilevered boundary conditions. 
The frequency obtained is consistent with the ex-
pected values for composite wing structures of 
comparable dimensions and stiffness properties. 
This visualization supplemented the numerical 
results by demonstrating that both material tailor-
ing and geometric features are considered.

The wing panel has an aspect ratio of 6, and 
the fiber orientations range from 0° to 90°, as rep-
resented in Figure 2. The MATLAB model uses 
an analytical approach based on the Rayleigh-
Ritz method, whereas ANSYS results are ob-
tained through finite element model analysis. The 
results are plotted against fiber orientation, and 
as expected, both MATLAB and ANSYS results 
show a monotonic decrease in the first natural 
frequency as the fiber orientation angle increases. 
This behavior is explained by the gradual reduc-
tion in axial stiffness resulting from fiber mis-
alignment in the principal load direction. At 0° 
orientation, the fibers are aligned with the load-
ing axis, yielding a maximum natural frequency 
of approximately 8.1 Hz in ANSYS and 7.5 Hz 
in MATLAB. In contrast, at 90° degrees, the stiff-
ness is reduced and the frequency falls to around 
8.1 Hz in ANSYS and 2.0 Hz in MATLAB. The 
results show a high level of agreement between 
the two methods, with deviations of less than 7% 
over the entire orientation range. The greatest dif-
ference is observed at extreme fiber angles (0° and 

Table 1. Shows the geometry and material properties of wing panels
Geometry and configuration Material properties

Span length, L= 6 m Elastic modulus, E1 = 135 GPa

Root chord, Cr = 1 m Elastic modulus, E2 = 10 GPa

Tip chord, Ct = 0.6 m Shear modulus, G12 = 5 GPa

Sweep angle, 
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 = 0° to 45° Poisson’s ratio, v12 = 0.3

Thickness, t = 0.057 m Density,p = 1600 kg/m 

Inclusion reinforcement 5% Al2O3, rubber and silica
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90°), which is most likely due to the analytical 
MATLAB model’s simplified assumptions, such 
as uniform material distribution and ideal bound-
ary conditions. Overall, the MATLAB model is 
useful for quick prediction and parametric stud-
ies, as well as getting accurate estimates of the 
first natural frequency for fiber orientation. The 
close match with ANSYS confirms the analyti-
cal approach, making it a valuable tool during the 
preliminary design phase. 

Figure 3 compares the first five natural fre-
quencies obtained from the MATLAB analyti-
cal model to those from ANSYS finite element 

simulations. Each mode’s frequencies are pre-
sented as bar charts. The figure clearly shows 
a strong correlation between all mode shapes. 
Notably, for the first mode, the frequencies are 
7.5 Hz (MATLAB) versus 8.1 Hz (ANSYS), 
with minor differences that gradually increase 
for higher modes. However, these differences re-
main within a typical range of 2–5% variation, 
owing to the Rayleigh-Ritz method’s simplified 
assumptions as opposed to detailed 3D finite el-
ement modeling. This strong agreement across 
multiple mode shapes validates the MATLAB 
approach’s accuracy, demonstrating its suitability 

Figure 1. Counter for total deformation of the swept tapered wing

Figure 2. Natural frequency comparison MATLAB versus ANSYS
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for rapid parametric and optimization studies be-
fore engaging in computationally intensive finite 
element analyses. 

RESULT AND DISCUSSION

This section presents a detailed investigation 
into the dynamic response of composite wing 
panels with varying fiber orientations and mate-
rial inclusions. The study employs both an ana-
lytical approach implemented in MATLAB and 
finite element simulations carried out in ANSYS. 
It investigates how key parameters such as fiber 
angle, aspect ratio, taper ratio, sweep angle, and 
the inclusion of materials like Al2O3, rubber, and 
silica influence the composite structure’s first nat-
ural frequency, flutter speed, and damping ratio. 
Figure 4 depicts how aspect ratio (AR = 4, 6, 8 
and 10) affects the first frequency of a compos-
ite wing panel as a function of fiber orientation 
angle (0 – 90°). The results show a clear inverse 
relationship between fiber orientation angle and 
natural frequency across all aspect ratios. For 
each AR, the maximum frequency is observed at 
0° fiber orientation (when the fibers align with the 
principal load direction), followed by a gradual 
decrease as the orientation approaches 90°, indi-
cating a reduced contribution from the fibers in 
the bending direction. Lower aspect ratio wings 
(AR = 4) have significantly higher natural fre-
quencies than higher aspect ratio wings (AR = 
10), demonstrating the stiffening effect of shorter, 

stubbier wings. For example, at 0° fiber orienta-
tion, AR = 4 generates a natural frequency greater 
than 10 Hz, whereas AR = 10 produces a fre-
quency less than 1.5 Hz. This trend indicates that 
increasing the span relative to the chord leads to 
higher AR, greater structural flexibility, and thus 
lower vibrational stiffness. Furthermore, lower 
aspect ratios exhibit a faster rate of frequency de-
cay with increasing fiber orientation. This implies 
that low AR structures are more prone to fiber 
misalignment, necessitating precise control over 
layup angles to maintain structural performance. 

Figure 5 depicts the effect of taper ratio on 
the first natural frequency of a composite wing 
panel at various fiber orientation angles (0° to 
90°). The taper configurations were 0.4, 0.6, 0.8, 
and 1.0. The results clearly show that for all ta-
per ratios, the natural frequency decreases with 
increasing fiber orientation angle, which corre-
sponds to a decrease in longitudinal stiffness as 
fibers deviate from the primary load direction. 
Natural frequencies were highest in the most ta-
pered configuration (λ = 0.4), in which the wing 
narrows significantly near the tip. For example, 
at 0° fiber orientation, the natural frequency is 
approximately 2.17 Hz for the 0.4 taper case but 
decreases to around 1.5 Hz for the untapered 
(λ = 1) case. The increased frequency of more 
tapered wings can be attributed to a reduction 
in mass at the tip, which results in a stiffer dy-
namic response. Furthermore, as the taper ratio 
decreases, the natural frequency becomes more 
sensitive to fiber orientation. At 90° degrees 

Figure 3. Bar chart for natural frequency in MATLAB versus ANSYS
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fiber orientation, the frequency variation among 
different tapers is narrower (ranging between 0.4 
and 0.7 Hz ), indicating that taper stiffening is 
more effective when fibers are aligned longitu-
dinally. These findings indicate that incorporat-
ing taper into wing geometry can help increase 
natural frequency while potentially raising flut-
ter margins. Designers should, however, care-
fully select taper ratios and fiber orientation to 
achieve the desired dynamic performance while 
maintaining aerolastic stability. 

Figure 6 depicts the variation in the first 
natural frequency of a composite wing panel as 

a function of fiber orientation angle at sweep 
angles of 0°, 15°, 30°, and 45°. In all cases, in-
creasing the fiber orientation angle from 0° to 
90° significantly reduces natural frequency. 
The most notable finding is a clear trend toward 
higher natural frequencies and wider sweep 
angles. At fiber orientation 0°, the natural fre-
quency increases from about 2 Hz (no sweep) 
to around 4.8 Hz for a 45° sweep wing. This im-
provement is due to geometric stiffening caused 
by the swept plan form, which more evenly re-
distributes structural mass and stiffness in the 
chordwise and spanwise directions. Sweep has 

Figure 4. Effect of aspect ratio on natural frequency versus fiber orientation 

Figure 5. Effect of taper ratio on natural frequency versus fiber orientation
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an especially strong effect at lower fiber angles. 
These findings indicate that sweep angle is an 
important design parameter not only for aerody-
namics but also for structural dynamics, particu-
larly in composite wings where fiber tailoring 
allows for finer tuning of vibrational properties. 

Figure 7 depicts how flutter speed varies with 
fiber orientation angle for four configurations: 
pure composite and composites with Al2O3, rub-
ber, and silica inclusions. The analysis reveals 
significant trends in aeroelastic stability across 
the entire fiber orientation range (0° – 90°). Flut-
ter speed decreases monotonically with increasing 

fiber orientation across all material configura-
tions. This is due to the gradual loss of axial and 
bending stiffness as fibers shift from longitudinal 
(0°) to transverse (90°) orientation, lowering the 
structural stiffness required to resist flutter. This 
configuration consistently has the highest flutter 
speed across all fiber angles, reaching up to 180 
m/s at 0°. Al2O3 increases stiffness due to its high 
elastic modulus, which improves aeroelastic per-
formance. While using rubber, the lowest flutter 
speeds are observed here, starting at 110 m/s and 
decreasing significantly with increased orienta-
tion. This is because rubber has high damping but 

Figure 6. Effect of sweep angle on natural frequency versus fiber orientation

Figure 7. Flutter speed versus fiber orientation for various composite materials
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low stiffness, which reduces structural rigidity 
and lowers the flutter threshold. The addition of 
stiff particles Al2O3 significantly improves flutter 
resistance, especially at lower fiber angles. 

Figure 8 illustrates the correlation between 
fiber orientation angles and estimated damping 
ratio for different composite material configura-
tions, such as pure composites, composites with 
Al2O3, rubber, and silica inclusions. The damping 
ratio is a critical parameter that influences vibra-
tion attenuation and flutter margin in aeroelastic 
structures. The damping ratio for all material 
types gradually rises from 0° to 90° degrees of fi-
ber orientation. This trend can be explained by the 
matrix’s increased contribution in the transverse 
direction as fibers move away from the load-bear-
ing axis, which enhances viscoelastic effects and 
energy dissipation. Rubber improves damping the 
most, but it may decrease flutter resistance.  Al2O3 
is ideal for high stiffness and natural frequency, 
but has limited damping capability. This study 
demonstrates that fiber orientation and inclusion 
type have a significant impact on the damping 
properties of composite structures. 

CONCLUSIONS 

This work investigated how fiber orienta-
tion and additive inclusions affect the aeroelas-
tic response of composite wings. The MATLAB 
and ANSYS simulations yield several signifi-
cant conclusions.

	• Stiff inclusions (Al2O3) increase flutter speed 
and natural frequencies, making them ideal for 
high-speed, aeroelastic-sensitive applications.

	• Rubber inclusions significantly improve 
damping for vibration suppression while de-
creasing critical speeds.

	• Silica strikes a balance between stiffness and 
damping, providing moderate performance 
in both.

Furthermore, the interaction of fiber orien-
tation and inclusion type can be used to design 
structural dynamics. To delay the onset of flutter, 
the best configurations strike a balance between 
stiffness, weight, and damping. As a result, the 
composite configuration can be customized to 
meet specific aeroelastic performance goals based 
on flight regime and structural constraints.
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