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INTRODUCTION

Vibrations are an inherent phenomenon in 
almost all mechanical systems, arising from dy-
namic interactions between system components, 
external excitations, and environmental factors. 
If not properly controlled, excessive vibrations 
can significantly reduce the fatigue life of struc-
tural elements, accelerate the wear of components, 
and compromise operational reliability and safety 
[1–2]. For example, cyclic stresses induced by vi-
brations can cause the initiation and propagation 
of cracks in metal structures or delamination of 
composite materials [3]. Consequently, vibration 
damping has become a crucial aspect of engineer-
ing design, particularly in fields such as aerospace, 
automotive, civil engineering, and precision man-
ufacturing [4–5]. An additional challenge arises 
from the fact that the excitations to which me-
chanical systems are subjected often vary in real 

time. Typical examples include changing road 
conditions that affect vehicle suspensions, fluctu-
ating aerodynamic loads acting on the wings of the 
aircraft or variable forces encountered by robotic 
manipulators during interaction with dynamic en-
vironments [6–7]. In such scenarios, fixed damp-
ing solutions may not provide an optimal perfor-
mance in all operating conditions.

Therefore, there is a growing interest in the 
development of adaptive structures and materials 
capable of adjusting their damping properties in 
response to changing external conditions. Such 
systems can improve vibration suppression in 
a wide range of applications, thereby enhancing 
structural durability and operational safety [8–11]. 
One of the intriguing solutions is vacuum packed 
particles (VPP), which is classified as a type of 
a smart materials. A core composed of granular 
material can alter its properties depending on the 
underpressure [9–11]. By adjusting this pressure, 
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it becomes possible to control the contact forces 
between individual grains, which in turn affects 
the damping characteristics of the system. In pa-
per [12], the theoretical potential of using VPP 
dampers in blast-resistant seats was explored. 
Numerical simulations, based on prior research, 
confirmed the effectiveness of this technology in 
vibration attenuation in machinery [13]. VPP sys-
tems have also found applications in soft robot-
ics. In [14], a shape-adaptive composite was pre-
sented, consisting of a granular core and a silicone 
shell embedded with channels containing liquid 
metal. Electromagnetic forces induce a change 
in the structure’s shape, while the granular core 
stabilizes the newly formed geometry. This design 
was proposed as a gripper for industrial robots. 
Previous studies primarily focused on the behav-
ior of VPP structures under compression, tension, 
and bending. The paper presented in [11] and [15] 
extended this research to include torsional loads, 
thereby contributing to a broader understanding 
of the properties of this innovative material tech-
nology. The proposed VPP system constitutes a 
more cost-effective, environmentally friendly, and 
operationally simpler alternative to magneto- or 
electrorheological fluids. The application of VPPs 
in rotary vibration dampers is a novel topic, and 
apart from the authors’ earlier works [15], it has 
not been addressed in the international literature.

Experimental studies have shown that the be-
havior of the described VPP devices can be rep-
resented by either symmetric or asymmetric hys-
teresis loops. To analyze system behavior under 
conditions that cannot be replicated in laboratory 
experiments, or for the purpose of developing 
control algorithms, various theoretical models 
are proposed. These models effectively capture 
the operational principles of the devices. In the 
global literature, a range of mathematical mod-
els is utilized. The simulation process is always 
accompanied by the challenge of identifying the 
parameters of the selected model. Numerous es-
tablished methods exist for determining the values 
of individual model components, ranging from the 
Monte Carlo method, through techniques such as 
the Levenberg–Marquardt algorithm, to genetic 
algorithms. Despite many years of advancement in 
hysteresis modeling and parameter identification 
techniques, there remains a continuous need for 
new solutions or novel combinations of existing 
methods to improve the efficiency and accuracy 
of theoretical simulation procedures. A particular-
ly rapidly developing field of science is artificial 

intelligence and its applications in mechanical 
engineering. Artificial neural networks can be uti-
lized to predict mechanical properties [16, 17] or 
to optimize [18] various mechanical systems.

The present article focuses precisely on this 
topic, exploring novel approaches to adaptive 
vibration damping based on underpressure-de-
pendent devices presented in paper [15] and data-
driven modeling techniques. The main novelty of 
this work lies in the use of a Physics-Informed 
Neural Network (PINN) for fast and efficient 
identification of the proposed theoretical model.

EXPERIMENTAL INVESTIGATION

The experimental tests were carried out on 
a specially developed prototype of a vacuum 
packed particles torsional damper (VPPTD). The 
damper and the test stand are shown in Figure 
1 (1 – VPPTD; 2 – torque transducer; 3 – ro-
tary encoder; 4 – electric motor; 5 – excitation 
mechanism; 6 – fixation point; 7 – hollow shaft). 
The device consists of several key components: 
an outer ring, an inner ring, two flexible sealing 
membranes creating a chamber. The chamber is 
filled with a granular mixture composed of ABS 
(acrylonitrile butadiene styrene) and NBR (nitrile 
butadiene rubber) 1:3 granulate (25\% ABS and 
75\% NBR). During operation, an air is evacu-
ated from the chamber through holes in the in-
ner ring and the air is removed through a hollow 
shaft using a vacuum pump, which reduces the 
internal pressure. This underpressure causes the 
membranes to compress the granular core, alter-
ing its macroscopic structure and consequently 
changing the damper’s mechanical response. The 
vacuum level is controlled dynamically by the 
pump. In this prototype, rotational input is ap-
plied through a clamping sleeve fixed to the outer 
ring, transferring motion through the deformable 
granular core to the inner ring. The excitation 
system was constructed as a dedicated mechani-
cal setup consisting of an electric motor, an ec-
centric disc, a four-bar linkage, and an inverter. 
This arrangement made it possible to generate a 
harmonic excitation with a prescribed amplitude 
and an adjustable excitation frequency across a 
broad range. The measurement system included 
an encoder (HY38-1024HS), a torque transducer 
(Dataflex KTR 32/100), and a data acquisition 
card (Labjack T7), which together ensured pre-
cise recording of the angular displacement and 
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torque during the experiments. Both the mechani-
cal excitation subsystem and the measurement in-
strumentation were carefully calibrated and vali-
dated prior to the main experimental campaign. 
The calibration procedure guaranteed that the 
imposed excitation corresponded to the intended 
amplitude and frequency, while the validation 
confirmed the reliability of the recorded signals. 
As a result, the authors could be confident in the 
accuracy and reproducibility of the experimental 
data used for the subsequent modeling and iden-
tification process.

The VPPTD damper is designed as a system 
composed of an inner and an outer ring, which 
are interconnected by a flexible rubber mem-
brane. This structural feature ensures the integrity 
and tightness of the device, but at the same time 
imposes mechanical constraints on its operational 
range. In particular, the presence of the mem-
brane prevents a full relative rotation of the two 
rings. On the basis of preliminary examinations, 
the maximum allowable torsional angle was de-
termined to be harmonic with amplitude 20°. Ex-
ceeding this limit could compromise the tightness 
of the system and potentially lead to its failure. 
To remain safely within this range and to avoid 
introducing undesired nonlinearities associated 
with extreme deformations of the membrane, the 
present investigation was carried out using a tor-
sional amplitude of 10°. In previous work [15], a 
damper of identical construction was filled with a 
comparable type of granular material and studied 
under a range of excitation frequencies. The out-
comes of that study indicated that, within the ex-
amined frequency range, the excitation frequency 
had no measurable influence on the global dy-
namic response of the damper. This observation 

suggests that, for this type of device, the dissipa-
tion mechanisms are dominated primarily by the 
internal structure of the granular medium rather 
than by frequency-dependent effects. Building 
upon these findings, the current study adopts a 
fixed excitation frequency of 0.8 Hz. This value 
was intentionally selected in order to approximate 
quasi-static operating conditions, thereby allow-
ing the focus to remain on the intrinsic energy 
dissipation characteristics of the VPPTD damper. 
By reducing the influence of inertial and rate-de-
pendent effects, the study isolates the role of the 
granular medium and the membrane coupling in 
shaping the overall torque response of the device.

During the tests, the vacuum pressure inside 
the chamber was systematically varied in dis-
crete steps, ranging from 0.01 MPa to 0.09 MPa. 
Throughout each test, the torque response of the 
damper was continuously measured as a function 
of both time and angular displacement of the out-
er ring. This allowed to collecting characteristics 
of the dynamic behaviour of the system under dif-
ferent vacuum levels, with particular attention to 
identifying the presence of hysteresis effects. The 
experimentally obtained torque – angle hysteresis 
curves for the full range of tested underpressures 
are presented in the Figure 2. 

The curves exhibit two dominant features. 
First, at extreme angular displacements (near 
±10°), there is a sudden change in torque curve 
for a relatively small change in angle, indicating 
a highly frictional behaviour during the changes 
of the direction rotation. Second, the intermedi-
ate portion of the curves displays a complex re-
sponses, suggesting a transition from a compli-
ant to a stiffer regime as the angle increases. The 
maximum torque achieved varies significantly 

Figure 1. VPPTD prototype and test stand
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with the applied underpressure: at the lowest 
pressure (0.01 MPa), the peak torque slightly ex-
ceeds 20 Nm, while at the highest pressure (0.09 
MPa), it approaches 40 Nm. Despite this clear de-
pendence of torque magnitude on underpressure, 
the overall shape of the hysteresis loops remains 
consistent across all tested conditions, indicating 
that the fundamental deformation mechanisms of 
the material are preserved regardless of the ap-
plied pressure. This consistent loop shape sug-
gests stable material behaviour under varying 
operational conditions, with the primary effect 
of underpressure being a changes of stiffness and 
torque capacity. In study [15], analogous experi-
ments were conducted on a system containing a 
1:1 mixture of ABS-NBR granulate and pure rub-
ber grains. A comparison of the results indicates 
that a higher proportion of plastic granulate leads 
to more highlights nonlinear behavior. The results 
obtained in this work, presented in Figure 2, not 
only confirm these observations but also extend 
the previous research by including mixtures that 
had not been investigated until now.

HYSTERESIS MODELLING BY PHYSICS-
INFORMED NEURAL NETWORK

In the field of intelligent materials and adap-
tive systems, accurately modeling the dynamic 
behavior of components is a key challenge, par-
ticularly when the response exhibits hysteresis. 
Hysteresis loops, similar to those observed in the 
experimental results obtained from the proposed 

device, are a common feature in systems utilizing 
smart materials such as magnetorheological (MR) 
and electrorheological (ER) fluids, shape memory 
alloys (SMA), piezoelectric actuators, and elasto-
mer-based composites [19]. These nonlinear, path-
dependent behaviors arise from internal friction, 
phase transformations, or complex microstructural 
mechanisms, and they must be carefully captured 
for effective design and control.

To describe hysteretic behavior, a variety of 
mathematical models have been developed. One 
of the most widely used is the Bouc-Wen model 
[20]. The Bouc-Wen model offers great flexibil-
ity and can reproduce a wide variety of hyster-
esis shapes; however, its parameters can be dif-
ficult to interpret physically and require careful 
identification. Another popular class of models 
are Preisach models [21], which represent hys-
teresis as a superposition of many elementary 
relay operators with different thresholds. Prei-
sach models are particularly suitable for captur-
ing rate-independent hysteresis and have been 
extensively used in modeling magnetic materials 
and SMA. Their main drawback is computational 
complexity, especially in dynamic simulations. 
Dahl models [22] and LuGre friction models 
[23] are often employed in systems dominated 
by friction-induced hysteresis, such as robotic 
joints and brake systems. These models intro-
duce internal state variables to capture dynamic 
friction effects and are well-suited for real-time 
control applications due to their relatively simple 
structure. Finally, Prandtl-Ishlinskii models [24] 
or Chaboche [25] offer a useful trade-off between 

Figure 2. Experimental hysteresis loops for the various underpressures
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flexibility and computational efficiency. They can 
accurately represent both rate-independent and 
rate-dependent hysteresis and allow for analytical 
inversion, which is particularly advantageous in 
control design. 

Each of these modeling approaches has its 
own strengths and limitations. The choice of 
model depends on the specific characteristics 
of the hysteresis observed in the system, the in-
tended application (e.g., simulation vs. control), 
and computational constraints. In the case of the 
VPPTD-based device analyzed in this study, the 
observed hysteresis behavior, characterized by a 
combination of nonlinear stiffness, viscous damp-
ing, and friction effects, lends itself naturally to 
modeling approaches that incorporate both rate-
dependent and path-dependent terms. The simple 
yet flexible model (Equation 1) adopted in this 
work reflects this philosophy and offers an effec-
tive compromise between physical interpretabil-
ity and modeling accuracy. 

 𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑘𝑘 + 𝑘𝑘2𝜑𝜑3 +𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ) 

(1) 

  
 𝑝𝑝𝑗𝑗 = ln(1 + 𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗) , 𝑗𝑗 ∈ {𝑐𝑐, 𝑘𝑘, 𝑘𝑘2,𝑀𝑀𝑠𝑠} (2) 
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 is an an-
gular velocity, c is a damping coefficient, k and k2 
are a linear and nonlinear stiffness coefficient, re-
spectively and Ms is a moment of a friction force. 

The mathematical model described by the 
Equation 1 is used to predict the torque in me-
chanical systems where both linear and nonlin-
ear effects play a role. The term 
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 captures 
viscous phenomena, modeling the energy dissi-
pation proportional to the angular velocity. The 
component kφ reflects the linear stiffness of the 
system, providing a restoring torque that is di-
rectly proportional to the angular displacement. 
The nonlinear stiffness term k2φ

3 accounts for 
higher-order elastic effects that become signifi-
cant at larger angular displacements, enabling the 
model to represent phenomena such as geometric 
nonlinearities or material nonlinear behavior. 
Additionally, 
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 models friction, in-
troducing a torque component that depends on 
the direction of motion, which is essential for ac-
curately representing systems with dry friction. 
One of the key advantages of this model is its 
balance between simplicity and expressiveness. 
It can effectively capture complex dynamic be-
haviors while remaining computationally effi-
cient and relatively easy to parameterize. This 
makes it highly suitable for real-time simulations, 

control design, and parameter identification tasks 
in a wide range of engineering applications, from 
robotics and automotive systems to aerospace 
mechanisms and precision instruments. Fur-
thermore, the model’s modular structure allows 
for straightforward extensions or adaptations to 
match specific system characteristics, enhancing 
its versatility and practical utility.

Identification of the hysteresis loop

The identification of model parameters de-
scribing hysteresis loops is a challenging task 
due to the nonlinear and path-dependent nature 
of hysteretic behavior. Accurate parameter es-
timation is crucial for reliable modeling and 
simulation of materials and systems exhibiting 
hysteresis. Various identification techniques, in-
cluding optimization algorithms and data-driven 
methods, have been developed to address this 
problem. The complexity of the hysteresis phe-
nomenon often requires balancing model accu-
racy with computational efficiency [26, 27, 28]. 
In recent years, genetic algorithms have emerged 
as one of the popular solutions for identifying pa-
rameters in hysteresis models. These algorithms 
are inspired by the principles of natural evolution 
and offer a robust approach to solving complex 
optimization problems. Genetic algorithms are 
particularly well-suited for dealing with the non-
linear and multidimensional nature of hysteresis 
parameter identification. Their ability to explore 
a wide solution space helps avoid local minima, 
leading to more accurate and reliable parameter 
estimation [29–31]. A notable drawback of genet-
ic algorithms is their relatively high computation-
al cost, especially for complex models or large 
datasets. Due to their stochastic nature and pop-
ulation-based search, they often require a large 
number of function evaluations, which can result 
in long processing times. Additionally, tuning the 
algorithm’s parameters, such as population size, 
mutation rate, and crossover probability, can be 
challenging and significantly affect performance. 
In the literature, there are approaches that replace 
existing models with algorithms based on artifi-
cial intelligence. The paper [32] focuses on mod-
eling the nonlinear behavior of particle dampers 
(PDs), which exhibit hysteresis under dynamic 
excitation. The authors propose using artificial neu-
ral networks to capture this complex phenomenon, 
addressing the issue of spectral bias that affects 
the learning of high-frequency components. To 
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enhance model performance, the study combines 
Fourier feature embedding with transfer learning 
within a neural network framework. The main goal 
is to develop an accurate surrogate model capable 
of representing the PD’s response across a wide 
frequency range. Another interesting approach 
was presented in paper [33] which focuses on im-
proving the modeling of magnetic hysteresis us-
ing neural operator-based approaches. Traditional 
deep learning methods often struggle to generalize 
to previously unseen magnetic field inputs, which 
limits their practical application. To overcome this, 
the authors propose using neural operators, specifi-
cally DeepONet, Fourier neural operator (FNO), 
and wavelet neural operator (WNO), to learn the 
mapping between magnetic fields and material re-
sponses. The study also introduces a rate-indepen-
dent variant of FNO to capture hysteresis behavior 
at different sampling rates. Numerical results show 
that these methods not only outperform conven-
tional recurrent neural networks but also general-
ize well to novel magnetic field scenarios, offering 
a promising direction for the design and analysis of 
magnetic devices. 

An analysis of the literature review reveals 
a lack of intermediate approaches, specifically, 
the application of neural networks to identify 
well-established and widely used phenomeno-
logical models. This study addresses that gap by 
proposing a solution in which the mathematical 
model (Equation 1) is identified using a physics-
informed neural network (PINN), thereby bridg-
ing the existing void between purely data-driven 
and purely theoretical modeling methods.

Physics – informed neural network

Physics-Informed neural networks (PINNs) 
represent a powerful class of machine learning 
methods that integrate physical laws directly into 
the training of neural networks, enabling them to 
learn solutions to complex dynamical systems in 
a data-efficient and physically consistent manner 
[34]. Unlike traditional neural networks, which 
rely solely on data to infer patterns, PINNs in-
corporate the governing equations of the sys-
tem, such as differential equations, conservation 
laws, or constitutive relations, into the loss func-
tion used during training [35]. This approach 
ensures that the learned model not only fits the 
observed data but also respects the underlying 
physical principles, leading to improved gener-
alization and interpretability. PINNs have been 

successfully applied to a wide range of problems, 
including fluid dynamics, solid mechanics, elec-
tromagnetics, and materials science [36–37]. 

One of their key advantages is the ability to 
model systems where experimental data may 
be sparse, noisy, or incomplete, by leveraging 
known physics to guide the learning process. 
Moreover, PINNs are well-suited for modeling 
complex nonlinear behaviors, such as hysteresis, 
as they can naturally incorporate both observed 
data and differential relations governing internal 
states. In this work, PINNs are employed as an 
effective tool for parameter identification in a 
hysteretic system, enabling the construction of a 
physically consistent and accurate model of the 
adaptive damping device.

The PINN architecture was deliberately sim-
plified to focus exclusively on parameter identifi-
cation. The network consisted of a single vector 
of four trainable parameters θ = [craw, kraw, k2raw, 
MSraw] where each parameter was represented in-
ternally as an unconstrained real-valued variable  
praw, j. To ensure that the resulting physical param-
eters remained strictly positive, consistent with 
their physical interpretation, a softplus transfor-
mation was applied [38]: 

	

 
 𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑘𝑘 + 𝑘𝑘2𝜑𝜑3 +𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (

𝑑𝑑𝑑𝑑
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Thus, the network performed unconstrained 
gradient-based optimization on praw, while the 
actual physical parameters pj were guaranteed to 
remain positive.

In our implementation, the starting values of 
the trainable parameters were set close to zero 
and then perturbed by a small random offset, as 
defined in the code by the following initializa-
tion p(0) = softplus-1(max(+N(0,0.1), 10-6)), where 
N(0,0.1) denotes a normally distributed random 
variable with zero mean and a standard devia-
tion of 0.1, and the inverse softplus transforma-
tion was applied to ensure numerical stability and 
positivity of the parameters during training. The 
rationale for this choice was twofold. First, by 
initializing values close to zero, the optimization 
procedure was not biased toward any predefined 
solution, thereby allowing the parameters to be 
determined primarily by the experimental data. 
Second, the small stochastic perturbation ensured 
that the optimization process did not always start 
from identical initial conditions. This feature al-
lowed us to verify the robustness of the proce-
dure and to examine whether the final parameter 
values exhibit consistent trends with respect to 
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vacuum pressure, regardless of the specific ini-
tialization. As a result, the adopted initialization 
strategy provided both flexibility in the optimiza-
tion and confidence that the observed dependen-
cies of the identified parameters on vacuum pres-
sure are inherent to the system and not artifacts of 
initialization. The loss function minimized during 
training was defined as:
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where: Mexp(ti) is the experimentally measured 
torque, and λ is a regularization weight 
(set to 0.01). The first term corresponds to 
the mean absolute error (MAE) between 
predicted and experimental torque values.

The second term introduces an L1 regulariza-
tion that penalizes deviations of the identified pa-
rameters from their initial estimates pj,init thereby 
promoting stability and ensuring physically rea-
sonable solutions. The training process was imple-
mented using the Adam optimizer with a learning 
rate of 0.01. During backpropagation, gradients of 
the loss with respect to each raw parameter praw,j 
were computed by the following equations:
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The parameter identification was performed 
independently for each tested P which corre-
sponds to the underpressure applied to the granu-
lar chamber of the VPPTD. The identification was 
conducted for pressure values ranging from 0.01 
MPa to 0.09 MPa. For each case, the PINN was 
trained for 2000 epochs, and the identified param-
eter values were recorded. This approach provid-
ed a simple and powerful framework for identify-
ing physically consistent parameters in hysteretic 
systems. The use of PINN ensured that the model 
strictly adhered to known physics while achiev-
ing excellent agreement with experimental data 
across varying operating conditions.

THEORETICAL RESULTS

Based on the experimental data presented, a 
PINN was employed to identify the parameters 
of the theoretical model that describe the torque-
angle behaviour of the ABS+NBR 1:3 material. 
In this study, each hysteresis loop correspond-
ing to a single underpressure level consisted of 
approximately 1700 experimental data points. 
These points of angular displacement and torque 
were directly used as the training data for the 
identification procedure. With regard to colloca-
tion points, we acknowledge that in the standard 
physics-informed neural network framework, 
such points are introduced to enforce the residual 
of the governing differential equation across the 
domain. In the present work, however, we inten-
tionally employed a simplified network structure, 
in which the model was formulated as a direct 
parametric regression rather than as a full PINN. 
Consequently, the training relied solely on the ex-
perimental data points, and no collocation points 
were incorporated. We recognize that this repre-
sents a departure from the classical PINN meth-
odology. Nevertheless, this approach was adopted 
to focus the study on capturing the torque–angle 
relationship from experimental measurements 
and on revealing systematic dependencies of the 
identified parameters on underpressure. By in-
corporating both the physical principles govern-
ing the system and the measured data, the PINN 
enabled an accurate estimation of model param-
eters, capturing the observed nonlinear and hys-
teretic response. An example of the prediction 
of the resulting model is illustrated in Figure 3 
which demonstrates good agreement between the 
theoretical and experimental curves.

Figure 3 compares the experimental torque 
response with the corresponding results obtained 
from the theoretical model identified using a 
PINN for the applied underpressure P = 0.09 MPa 
(for the last epoch of the training process). It dem-
onstrates good general agreement between the 
two curves, particularly in capturing the charac-
teristic hysteresis loop shape, the nonlinear stiff-
ening at large angular displacements, and the gen-
eral trend of torque variation with angle. Some 
minor discrepancies are observed near the transi-
tions at extreme angles, where the sharp increase 
in torque is more pronounced in the experimental 
results. Nevertheless, the close correspondence 
between the curves confirms the effectiveness 
of the PINN-based parameter identification in 
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accurately modeling the complex dynamic be-
havior of the composite material.

To provide a clearer understanding of the 
identification process, the evolution of the model 
fitting was illustrated by presenting hysteresis 
curves corresponding to intermediate sets of iden-
tified parameters at different stages of training. 
Specifically, the torque – angle curves obtained 
after 1, 400, 1000, and 2000 training epochs of 

the PINN were plotted. This step-by-step visuali-
sation highlights how the model progressively im-
proves its representation of the experimental data 
as the training advances. Initially, the theoretical 
response shows significant deviations from the 
measured curve, but with increasing epochs, the 
fit becomes progressively more accurate, even-
tually capturing both the overall shape and the 
detailed features of the experimental hysteresis 

Figure 3. Comparison of the experimental and numerical results for the P = 0.09 MPa

Figure 4. Evolution of the theoretical hysteresis loop for the various epochs during the identification process
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loop. This approach provides valuable informa-
tion on the learning dynamics of the PINN and 
the convergence of the parameter identification 
process (Figure 4).

In Figure 5, the evolution of the identified 
model parameters - specifically the damping coef-
ficient c, the linear stiffness k, the nonlinear stiff-
ness k2 and the friction torque MS – is presented 
as a function of training epochs. This visualisa-
tion provides insight into the dynamics of the 
parameter optimisation process performed by the 
Physics-Informed Neural Network. Initially, the 
parameters exhibit significant fluctuations as the 
network explores the parameter space to mini-
mise the loss function. As training progresses, the 
parameter values gradually stabilise, indicating 
convergence toward an optimal set that best rep-
resents the experimental data. The plots clearly 
demonstrate how the PINN balances the contribu-
tions of different physical effects (damping, stiff-
ness, and friction) throughout training, ultimately 
resulting in a physically consistent and accurate 
model of the dynamic behaviour of the system.

The presented plots illustrate the evolution 
of the model parameters over the course of 2000 
training epochs. Each parameter exhibits a dis-
tinct convergence behavior, providing valuable 
insights into the learning dynamics of the PINN-
based identification process. The damping coeffi-
cient c remains close to zero up to approximately 
epoch 1000, after which it rapidly increases and 
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 within the first 500 epochs, followed by a 
gradual stabilization with a slight upward trend to-
ward 2.0 
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 by epoch 2000. Similarly, the nonlin-
ear stiffness k2 rapidly decreases from about 0.14 
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 to below 0.02 
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 during the early epochs 
and remains relatively stable thereafter, indicating 
that the network quickly adjusted this parameter 
to reflect the material’s weak nonlinear elastic re-
sponse. The friction torque Ms exhibits a distinct 
growth phase, increasing steadily from approxi-
mately 5 Nm to a peak value of about 17.5 Nm at 
epoch 1100, followed by a slight decline to around 
14 Nm by the end of training. This behavior sug-
gests that the network initially overcompensated 
for friction effects and subsequently refined the 
estimate for better overall model accuracy. These 
parameter trajectories highlight how the PINN 
progressively balances the different physical con-
tributions in the model to achieve an accurate rep-
resentation of the observed hysteresis behavior.

The loss function used in the Physics-In-
formed Neural Network training process quan-
tifies the discrepancy between the model pre-
dictions and the experimental data, guiding the 

Figure 5. Evolution of the model parameters during the identification process
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optimization of model parameters toward an ac-
curate representation of the system’s behavior. 
It typically combines terms reflecting both data 
fidelity and adherence to the underlying physical 
laws. In Figure 6, the loss function value over the 
course of training epochs is presented and illus-
trating how the model progressively reduces the 
error as the training proceeds. A decreasing loss 
curve indicates effective learning, while its final 
flattening suggests that the network has reached 
an optimal or near-optimal set of parameters cor-
responding to a well-fitted theoretical model.

In an analogous manner, the parameter iden-
tification process using the PINN was conducted 
for the remaining cases corresponding to different 
levels of applied underpressure. For each under-
pressure, the network was trained to optimise the 
model parameters to accurately capture the dis-
tinct torque–angle response observed experimen-
tally. The comparative results of these identifica-
tion processes are presented in the following, il-
lustrating the effectiveness and consistency of the 
proposed approach across the full range of under 
conditions tested. These results also provide valu-
able information on how the dynamic behaviour 
of the material and the corresponding model pa-
rameters evolve as a function of the applied un-
derpressure (Figure 7).

The general results demonstrate that the identi-
fication process was successful in all cases tested. 
The error between the experimentally measured 
torque–angle curves and the corresponding numer-
ical predictions obtained from the PINN is consis-
tently small for each level of applied underpres-
sure. This indicates that the identified models ac-
curately capture the key features of the response of 
the material. Moreover, the proposed PINN-based 

identification method has proven to be robust, ef-
fective, and versatile, enabling the reliable estima-
tion of physically meaningful parameters even in 
the presence of nonlinearities and hysteresis ef-
fects. In general, the approach offers a promising 
and practical tool for modelling complex dynamic 
systems based on experimental data. It should also 
be emphasized that the proposed model (Equa-
tion 1), combined with PINN-based identification, 
serves as an effective alternative to the phenom-
enological Bouc–Wen model used in paper [15], 
where the hysteresis loops exhibited similar char-
acteristics and reached comparable values.

In Figure 8, the values of the identified model 
parameters are presented for different levels of ap-
plied underpressure. This visualisation provides a 
clear overview of how the key physical properties 
of the ABS+NBR 1:3 material changes as a func-
tion of pressure. By analysing these trends, valu-
able information can be gained about the influ-
ence of pressure on the damping characteristics, 
stiffness (both linear and non-linear), and friction 
behaviour of the material. The presented results 
further confirm the consistency and reliability of 
the parameter identification process in the full 
range of tested conditions.

The presented set of figures illustrates how 
the identified model parameters c, k, k2, and Ms 
vary as a function of the applied underpressure P. 
Across all parameters, a clear trend of increasing 
values with rising vacuum pressure is observed, 
although some fluctuations are present. For the 
damping coefficient c, values range from approxi-
mately 6.7 
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 at P = 0.01 MPa to a maximum 
of about 8.3 
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 at P = 0.07 MPa, with an over-
all increasing tendency across the pressure range. 

Figure 6. Changes of the loss function during the identification process
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Figure 7. Comparison of the theoretical and experimental hysteresis loops for various underpressures 
(from 0.08 to 0.01 MPa)

The linear stiffness k also increases, starting from 
around 0.65 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑   
 

𝑐𝑐 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑   

 
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 )  
 
7.5 Nm∙s

deg   
 
5.5 Nm

deg  
 
1.8 Nm

deg  
 
2.0 Nm

deg  
 
 0.14 Nm

deg3  
 
 
Nm

deg3  
 
6.7 Nm∙s

deg   
 
8.3 Nm∙s

deg   
 
0.65 Nm

deg  
 
1.65 Nm

deg at P = 0.08 MPa 
 
 0.0055 Nm

deg3  
 
0.0145 Nm

deg3  
 

 at P = 0.01 MPa and reaching 
up to approximately 1.65 
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The nonlinear stiffness k2 follows a similar trend, 

with values ranging from about 0.0055 
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= 0.08 MPa to a peak of approximately 0.0145 
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 at P = 0.09 MPa. Finally, the friction torque 
Ms shows a strong positive correlation with vac-
uum pressure, increasing from roughly 9.5 Nm at 
P = 0.01 MPa to over 15 Nm at P = 0.08 MPa. 
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Despite minor nonlinearities and local variations, 
the general upward trend of all four parameters 
with increasing underpressure suggests that the 
dynamic behavior of the ABS+NBR 1:3 grains 
mixture becomes progressively stiffer and more 
dissipative as underpressure rises. These ob-
served relationships indicate that the parameters 
could potentially be expressed as functions of 
underpressure, enabling the generalization of the 
theoretical model to predict the system’s behav-
ior continuously across different operating con-
ditions. This would further enhance the model’s 
applicability in practical engineering contexts.

In the subsequent analyses, a more detailed 
investigation was conducted to examine the 
evolution of each identified model parameter 
throughout the training process, across all tested 
levels of underpressure. By analyzing how these 
parameters evolved over the course of training 
epochs for each pressure value, it was possible 
to gain deeper insights into the learning dynam-
ics of the PINN and the stability of the identifi-
cation process. This approach also allowed for 
an assessment of how consistently and robustly 
the network adapted to different physical condi-
tions, providing a comprehensive understanding 
of how underpressure influences not only the 

final parameter values, but also their convergence 
behavior during training. The following figures 
present the results of these analyses.

Figure 9 shows the changes of the c as a func-
tion of training epochs for each tested level of 
underpressure P, ranging from 0.01 MPa to 0.09 
MPa. Across all cases, the parameter c remains 
near zero during the initial phase of training (up to 
approximately 1000 epochs), indicating that the 
network initially prioritises fitting other aspects 
of the model. After this point, a rapid increase in 
c is observed for all pressure levels, followed by a 
more gradual growth phase. This behaviour sug-
gests that the contribution of damping becomes 
significant only after the primary structural pa-
rameters are roughly established. Despite slight 
variations in the rate of increase, the general 
trends for different pressure levels are similar. In 
particular, higher final c values are consistently 
associated with higher underpressures. The con-
sistency of the curves also indicates a stable and 
robust convergence behaviour of the network un-
der all conditions (Figure 10). 

In all cases, k exhibits a characteristic conver-
gence pattern: it starts with a relatively high initial 
value (around 5.5–6.0) and undergoes a steep de-
cline during the first 500–600 epochs, indicating 

Figure 8. Identified model parameters for various underpessures
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that the network quickly adjusts this parameter 
to better fit the experimental data. After this ini-
tial drop, the parameter gradually stabilises, with 
slight differences emerging between the curves 
corresponding to different vacuum pressures. In 
particular, higher underpressures tend to be asso-
ciated with higher final values of k. The relatively 
smooth and monotonic evolution of the parameter 
across all pressure levels indicates a stable and 
consistent learning dynamics. The slight upward 
adjustments seen after 1000 epochs, particularly 
at higher pressures, suggest that the network con-
tinues to refine the stiffness contribution to opti-
mize the overall model fit during the later training 
stages (Figure 11). 

Across all cases, the parameter k2 exhibits a 
very consistent and characteristic convergence 
pattern. It starts from relatively high initial val-
ues, between approximately 0.08 and 0.35, and 
undergoes a rapid and steep decrease within 
the first 500 epochs. After this initial phase, the 
curves gradually flatten out and stabilize near 
small positive values close to zero. The conver-
gence behavior is highly similar across different 
underpressure levels, with only minor varia-
tions in the final values. This suggests that while 
the nonlinear stiffness component plays an im-
portant role during the early stages of training, 
likely compensating initially for the lack of tun-
ing in other parameters, its relative contribution 

Figure 9. Evolution of the damping coefficient c during the identification process for various underpressures

Figure 10. Evolution of the linear stiffness k during the identification process for various underpressures
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becomes less dominant as the model converges. 
The consistent flattening of the curves indicates 
that the network robustly identifies a weak but 
non-negligible nonlinear stiffness component 
across all tested underpressures. Notably, there 
is no clear monotonic trend of final k2 values with 
increasing underpressure, in contrast to the linear 
stiffness k and damping c. This suggests that the 
influence of underpressure on the nonlinear stiff-
ness of the system is either weak or more com-
plex than a simple linear relationship. 

This Figure 12 presents the evolution of the 
friction torque parameter. An initial steady in-
crease in Ms up to approximately 1000 epochs, 
followed by a gradual decrease during the later 
stages of training. Initially, Ms grows linearly 
from about 5 to 6 Nm to its peak values. The max-
imum values of Ms vary depending on the pres-
sure level: at higher pressures (e.g. p = 0.08 MPa 
and p = 0.09 MPa. The observed trend confirms 
that the friction torque parameter Ms is strongly 
influenced by the underpressure, with higher P 
consistently leading to higher final values of Ms. 
The initial rise and subsequent fine-tuning phase 
reflect the network’s effort to accurately capture 
the friction-related hysteresis behaviour of the 
system. In general, the stability and systematic 
variation of Ms at different pressures further re-
inforce the conclusion that underpressure plays 
a significant and predictable role in shaping the 
frictional dynamics of the system (Figure 13). 
In all cases, the loss exhibits a very similar and 
well-behaved convergence pattern. Initially, the 
loss values are relatively high, exceeding 150 
for several cases, but decrease rapidly within the 

first 500 epochs, reflecting the network’s ability 
to quickly reduce the discrepancies between the 
predictions of the model and the experimental 
data. Beyond approximately 750–1000 epochs, 
the loss curves flatten and approach small val-
ues (below 10), indicating that the network has 
effectively converged to an optimal or near-op-
timal solution for all tested pressures. The final 
loss values in all cases are very similar, with no 
significant differences attributable to underpres-
sure, demonstrating the robustness and stability 
of the identification process.

In the identification process it was observed 
that not all model parameters exhibit clear con-
vergence during training. This applies in partic-
ular to the parameters c (viscous damping) and 
Ms (static friction torque), whose values do not 
stabilize around a single constant number but 
may show increasing, decreasing, or oscillatory 
behavior across epochs. This phenomenon arises 
from the fact that there exist multiple combina-
tions of these two parameters that lead to almost 
identical agreement between the theoretical 
torque and the experimental torque. However, 
the lack of strict parameter convergence does not 
pose a significant problem for the identification 
process. The primary goal of the procedure is to 
determine parameter values that ensure the theo-
retical torque curve matches the experimental one 
as closely as possible. From this perspective, it 
is not essential for each parameter to converge 
individually; what matters is that the parameter 
set as a whole enables faithful reproduction of the 
observed response. Moreover, even though c and 
Ms do not converge in a strict numerical sense 

Figure 11. Evolution of the nonlinear stiffness k2 during the identification process for various underpressures
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during training, their final identified values still 
exhibit a meaningful physical characteristic: they 
show a dependency on the applied underpres-
sure. This indicates that, while these parameters 
may partially compensate for each other during 
optimization, their final values nevertheless carry 
information about how the operating conditions 
influence the behavior of the system.

In summary, the absence of full convergence 
in some parameters does not diminish the qual-
ity of the model identification. The model suc-
cessfully fulfills its main objective, accurately 
reproducing the torque response, and highlights 
relevant physical trends through the pressure de-
pendence of the identified parameters.

CONCLUSIONS

In this paper, the dynamic behaviour of a vac-
uum packed particles torsional damper based on a 
1:3 ABS-NBR granulate mixture was systemati-
cally investigated. Based on experimentally cap-
tured characteristics, an appropriate mathemati-
cal model was proposed, consisting of four key 
parameters: the viscous damping coefficient c, the 
linear stiffness k, the nonlinear stiffness k2, and the 
friction torque Ms. The main novelty of this article 
is the implementation of an artificial intelligence 
algorithm within the numerical simulation pro-
cess. To accurately identify parameters, a physics-
informed neural network approach was employed, 

Figure 12. Evolution of the friction torque MS during the identification process for various underpressures

Figure 13. Evolution of the loss function Loss during the identification process for various underpressures
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ensuring that the theoretical torque model was op-
timally fitted to the experimentally obtained hys-
teresis curves. In addition to final parameter identi-
fication, a detailed analysis of the evolution of the 
theoretical hysteresis loop during the PINN train-
ing process was conducted. This analysis revealed 
how the shape of the model-based hysteresis loop 
progressively converged toward the experimental 
one over successive training epochs. Furthermore, 
the identification dynamics were studied in detaila. 
It was observed that in the early stages of train-
ing, the PINN primarily adjusted the components 
related to friction torque and stiffness in order to 
match the gross shape of the hysteresis loop. Only 
in later epochs did the network begin to increase 
the contribution of the viscous damping and linear 
stiffness terms to refine the loop’s smoothness and 
accuracy. At convergence, it was also observed that 
the nonlinear stiffness component had the smallest 
influence on the final loop shape compared to the 
other three model terms. Overall, the final identi-
fied hysteresis loops showed very close agreement 
with the experimental results, validating both the 
accuracy of the model and the effectiveness of the 
PINN-based identification method. Parametric 
analysis demonstrated that all identified param-
eters systematically increased with underpressure 
and exhibited an approximately linear trend. This 
observation suggests that the proposed model 
could be generalised by explicitly expressing the 
parameters as functions of vacuum pressure, there-
by enhancing its predictive capacity. 

Future work will focus on extending the pro-
posed modelling approach by explicitly formulat-
ing the model parameters as continuous functions 
of underpressure, enabling real-time adaptive 
control of the VPPTD system. In addition, further 
studies will explore the application of more ad-
vanced hysteresis modelling techniques and the 
integration of PINN-based models into closed-
loop control architectures. Experimental valida-
tion will also be performed under dynamic oper-
ating conditions and varying excitation profiles to 
assess the practical performance and robustness 
of the system in real-world applications.
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