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ABSTRACT

This study investigates the dynamic behavior of a vacuum packed particles torsional damper (VPPTD) filled with a
1:3 plastic (ABS — acrylonitrile butadiene styrene) and rubber (NBR — nitrile butadiene rubber) granulate mixture.
Experimental results revealed that the system exhibits a symmetric hysteresis loop, with maximum torque increas-
ing systematically with applied underpressure. The response was characterized by viscous damping, linear and
nonlinear stiffness, and friction-related torque. The main novelty of the paper is the implementation of the physics-
informed neural network (PINN) to accurately identify model parameters based on experimental data. In addition,
to final parameter identification, a detailed analysis of the training process was conducted, revealing how the model
progressively converged toward the experimental hysteresis loop. The identified model showed good agreement
with measured data, and theoretical model. Parametric trends revealed a near-linear dependence of all model pa-
rameters on underpressure. These findings suggest that the model can be generalized by expressing parameters as
functions of underpressure, paving the way for adaptive, pressure-aware control strategies.

Keywords: artificial intelligence, physics-informed neural network, hysteresis model, theoretical modelling, vac-
uum-packed particles torsional damper, adaptive damping.

INTRODUCTION

Vibrations are an inherent phenomenon in
almost all mechanical systems, arising from dy-
namic interactions between system components,
external excitations, and environmental factors.
If not properly controlled, excessive vibrations
can significantly reduce the fatigue life of struc-
tural elements, accelerate the wear of components,
and compromise operational reliability and safety
[1-2]. For example, cyclic stresses induced by vi-
brations can cause the initiation and propagation
of cracks in metal structures or delamination of
composite materials [3]. Consequently, vibration
damping has become a crucial aspect of engineer-
ing design, particularly in fields such as aerospace,
automotive, civil engineering, and precision man-
ufacturing [4-5]. An additional challenge arises
from the fact that the excitations to which me-
chanical systems are subjected often vary in real

time. Typical examples include changing road
conditions that affect vehicle suspensions, fluctu-
ating aerodynamic loads acting on the wings of the
aircraft or variable forces encountered by robotic
manipulators during interaction with dynamic en-
vironments [6—7]. In such scenarios, fixed damp-
ing solutions may not provide an optimal perfor-
mance in all operating conditions.

Therefore, there is a growing interest in the
development of adaptive structures and materials
capable of adjusting their damping properties in
response to changing external conditions. Such
systems can improve vibration suppression in
a wide range of applications, thereby enhancing
structural durability and operational safety [8—11].
One of the intriguing solutions is vacuum packed
particles (VPP), which is classified as a type of
a smart materials. A core composed of granular
material can alter its properties depending on the
underpressure [9-11]. By adjusting this pressure,
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it becomes possible to control the contact forces
between individual grains, which in turn affects
the damping characteristics of the system. In pa-
per [12], the theoretical potential of using VPP
dampers in blast-resistant seats was explored.
Numerical simulations, based on prior research,
confirmed the effectiveness of this technology in
vibration attenuation in machinery [13]. VPP sys-
tems have also found applications in soft robot-
ics. In [14], a shape-adaptive composite was pre-
sented, consisting of a granular core and a silicone
shell embedded with channels containing liquid
metal. Electromagnetic forces induce a change
in the structure’s shape, while the granular core
stabilizes the newly formed geometry. This design
was proposed as a gripper for industrial robots.
Previous studies primarily focused on the behav-
ior of VPP structures under compression, tension,
and bending. The paper presented in [11] and [15]
extended this research to include torsional loads,
thereby contributing to a broader understanding
of the properties of this innovative material tech-
nology. The proposed VPP system constitutes a
more cost-effective, environmentally friendly, and
operationally simpler alternative to magneto- or
electrorheological fluids. The application of VPPs
in rotary vibration dampers is a novel topic, and
apart from the authors’ earlier works [15], it has
not been addressed in the international literature.
Experimental studies have shown that the be-
havior of the described VPP devices can be rep-
resented by either symmetric or asymmetric hys-
teresis loops. To analyze system behavior under
conditions that cannot be replicated in laboratory
experiments, or for the purpose of developing
control algorithms, various theoretical models
are proposed. These models effectively capture
the operational principles of the devices. In the
global literature, a range of mathematical mod-
els is utilized. The simulation process is always
accompanied by the challenge of identifying the
parameters of the selected model. Numerous es-
tablished methods exist for determining the values
of individual model components, ranging from the
Monte Carlo method, through techniques such as
the Levenberg—Marquardt algorithm, to genetic
algorithms. Despite many years of advancement in
hysteresis modeling and parameter identification
techniques, there remains a continuous need for
new solutions or novel combinations of existing
methods to improve the efficiency and accuracy
of theoretical simulation procedures. A particular-
ly rapidly developing field of science is artificial
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intelligence and its applications in mechanical
engineering. Artificial neural networks can be uti-
lized to predict mechanical properties [16, 17] or
to optimize [ 18] various mechanical systems.

The present article focuses precisely on this
topic, exploring novel approaches to adaptive
vibration damping based on underpressure-de-
pendent devices presented in paper [15] and data-
driven modeling techniques. The main novelty of
this work lies in the use of a Physics-Informed
Neural Network (PINN) for fast and efficient
identification of the proposed theoretical model.

EXPERIMENTAL INVESTIGATION

The experimental tests were carried out on
a specially developed prototype of a vacuum
packed particles torsional damper (VPPTD). The
damper and the test stand are shown in Figure
1 (I — VPPTD; 2 — torque transducer; 3 — ro-
tary encoder; 4 — electric motor; 5 — excitation
mechanism; 6 — fixation point; 7 — hollow shaft).
The device consists of several key components:
an outer ring, an inner ring, two flexible sealing
membranes creating a chamber. The chamber is
filled with a granular mixture composed of ABS
(acrylonitrile butadiene styrene) and NBR (nitrile
butadiene rubber) 1:3 granulate (25\% ABS and
75\% NBR). During operation, an air is evacu-
ated from the chamber through holes in the in-
ner ring and the air is removed through a hollow
shaft using a vacuum pump, which reduces the
internal pressure. This underpressure causes the
membranes to compress the granular core, alter-
ing its macroscopic structure and consequently
changing the damper’s mechanical response. The
vacuum level is controlled dynamically by the
pump. In this prototype, rotational input is ap-
plied through a clamping sleeve fixed to the outer
ring, transferring motion through the deformable
granular core to the inner ring. The excitation
system was constructed as a dedicated mechani-
cal setup consisting of an electric motor, an ec-
centric disc, a four-bar linkage, and an inverter.
This arrangement made it possible to generate a
harmonic excitation with a prescribed amplitude
and an adjustable excitation frequency across a
broad range. The measurement system included
an encoder (HY38-1024HS), a torque transducer
(Dataflex KTR 32/100), and a data acquisition
card (Labjack T7), which together ensured pre-
cise recording of the angular displacement and
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torque during the experiments. Both the mechani-
cal excitation subsystem and the measurement in-
strumentation were carefully calibrated and vali-
dated prior to the main experimental campaign.
The calibration procedure guaranteed that the
imposed excitation corresponded to the intended
amplitude and frequency, while the validation
confirmed the reliability of the recorded signals.
As a result, the authors could be confident in the
accuracy and reproducibility of the experimental
data used for the subsequent modeling and iden-
tification process.

The VPPTD damper is designed as a system
composed of an inner and an outer ring, which
are interconnected by a flexible rubber mem-
brane. This structural feature ensures the integrity
and tightness of the device, but at the same time
imposes mechanical constraints on its operational
range. In particular, the presence of the mem-
brane prevents a full relative rotation of the two
rings. On the basis of preliminary examinations,
the maximum allowable torsional angle was de-
termined to be harmonic with amplitude 20°. Ex-
ceeding this limit could compromise the tightness
of the system and potentially lead to its failure.
To remain safely within this range and to avoid
introducing undesired nonlinearities associated
with extreme deformations of the membrane, the
present investigation was carried out using a tor-
sional amplitude of 10°. In previous work [15], a
damper of identical construction was filled with a
comparable type of granular material and studied
under a range of excitation frequencies. The out-
comes of that study indicated that, within the ex-
amined frequency range, the excitation frequency
had no measurable influence on the global dy-
namic response of the damper. This observation

suggests that, for this type of device, the dissipa-
tion mechanisms are dominated primarily by the
internal structure of the granular medium rather
than by frequency-dependent effects. Building
upon these findings, the current study adopts a
fixed excitation frequency of 0.8 Hz. This value
was intentionally selected in order to approximate
quasi-static operating conditions, thereby allow-
ing the focus to remain on the intrinsic energy
dissipation characteristics of the VPPTD damper.
By reducing the influence of inertial and rate-de-
pendent effects, the study isolates the role of the
granular medium and the membrane coupling in
shaping the overall torque response of the device.

During the tests, the vacuum pressure inside
the chamber was systematically varied in dis-
crete steps, ranging from 0.01 MPa to 0.09 MPa.
Throughout each test, the torque response of the
damper was continuously measured as a function
of both time and angular displacement of the out-
er ring. This allowed to collecting characteristics
of the dynamic behaviour of the system under dif-
ferent vacuum levels, with particular attention to
identifying the presence of hysteresis effects. The
experimentally obtained torque — angle hysteresis
curves for the full range of tested underpressures
are presented in the Figure 2.

The curves exhibit two dominant features.
First, at extreme angular displacements (near
+10°), there is a sudden change in torque curve
for a relatively small change in angle, indicating
a highly frictional behaviour during the changes
of the direction rotation. Second, the intermedi-
ate portion of the curves displays a complex re-
sponses, suggesting a transition from a compli-
ant to a stiffer regime as the angle increases. The
maximum torque achieved varies significantly

Figure 1. VPPTD prototype and test stand
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Figure 2. Experimental hysteresis loops for the various underpressures

with the applied underpressure: at the lowest
pressure (0.01 MPa), the peak torque slightly ex-
ceeds 20 Nm, while at the highest pressure (0.09
MPa), it approaches 40 Nm. Despite this clear de-
pendence of torque magnitude on underpressure,
the overall shape of the hysteresis loops remains
consistent across all tested conditions, indicating
that the fundamental deformation mechanisms of
the material are preserved regardless of the ap-
plied pressure. This consistent loop shape sug-
gests stable material behaviour under varying
operational conditions, with the primary effect
of underpressure being a changes of stiffness and
torque capacity. In study [15], analogous experi-
ments were conducted on a system containing a
1:1 mixture of ABS-NBR granulate and pure rub-
ber grains. A comparison of the results indicates
that a higher proportion of plastic granulate leads
to more highlights nonlinear behavior. The results
obtained in this work, presented in Figure 2, not
only confirm these observations but also extend
the previous research by including mixtures that
had not been investigated until now.

HYSTERESIS MODELLING BY PHYSICS-
INFORMED NEURAL NETWORK

In the field of intelligent materials and adap-
tive systems, accurately modeling the dynamic
behavior of components is a key challenge, par-
ticularly when the response exhibits hysteresis.
Hysteresis loops, similar to those observed in the
experimental results obtained from the proposed
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device, are a common feature in systems utilizing
smart materials such as magnetorheological (MR)
and electrorheological (ER) fluids, shape memory
alloys (SMA), piezoelectric actuators, and elasto-
mer-based composites [ 19]. These nonlinear, path-
dependent behaviors arise from internal friction,
phase transformations, or complex microstructural
mechanisms, and they must be carefully captured
for effective design and control.

To describe hysteretic behavior, a variety of
mathematical models have been developed. One
of the most widely used is the Bouc-Wen model
[20]. The Bouc-Wen model offers great flexibil-
ity and can reproduce a wide variety of hyster-
esis shapes; however, its parameters can be dif-
ficult to interpret physically and require careful
identification. Another popular class of models
are Preisach models [21], which represent hys-
teresis as a superposition of many elementary
relay operators with different thresholds. Prei-
sach models are particularly suitable for captur-
ing rate-independent hysteresis and have been
extensively used in modeling magnetic materials
and SMA. Their main drawback is computational
complexity, especially in dynamic simulations.
Dahl models [22] and LuGre friction models
[23] are often employed in systems dominated
by friction-induced hysteresis, such as robotic
joints and brake systems. These models intro-
duce internal state variables to capture dynamic
friction effects and are well-suited for real-time
control applications due to their relatively simple
structure. Finally, Prandtl-Ishlinskii models [24]
or Chaboche [25] offer a useful trade-off between
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flexibility and computational efficiency. They can
accurately represent both rate-independent and
rate-dependent hysteresis and allow for analytical
inversion, which is particularly advantageous in
control design.

Each of these modeling approaches has its
own strengths and limitations. The choice of
model depends on the specific characteristics
of the hysteresis observed in the system, the in-
tended application (e.g., simulation vs. control),
and computational constraints. In the case of the
VPPTD-based device analyzed in this study, the
observed hysteresis behavior, characterized by a
combination of nonlinear stiffness, viscous damp-
ing, and friction effects, lends itself naturally to
modeling approaches that incorporate both rate-
dependent and path-dependent terms. The simple
yet flexible model (Equation 1) adopted in this
work reflects this philosophy and offers an effec-
tive compromise between physical interpretabil-
ity and modeling accuracy.

do . (de
Mpym = ¢ — + ko + k03 + Mgsign (—) 1)
dt dt

where: ¢ is an angle of rotation, 2% is an an-
gular velocity, ¢ is a damping coefficient, £ and £,
are a linear and nonlinear stiffness coefficient, re-
spectively and M| is a moment of a friction force.

The mathematical model described by the
Equation 1 is used to predict the torque in me-
chanical systems where both linear and nonlin-
ear effects play a role. The term cd_(p captures
viscous phenomena, modeling the entergy dissi-
pation proportional to the angular velocity. The
component k¢ reflects the linear stiffness of the
system, providing a restoring torque that is di-
rectly proportional to the angular displacement.
The nonlinear stiffness term k¢’ accounts for
higher-order elastic effects that become signifi-
cant at larger angular displacements, enabling the
model to represent phenomena such as geometric
nonlinearities or material nonlinear behavior.
Additionally, M¢sign (2—‘:) models friction, in-
troducing a torque component that depends on
the direction of motion, which is essential for ac-
curately representing systems with dry friction.
One of the key advantages of this model is its
balance between simplicity and expressiveness.
It can effectively capture complex dynamic be-
haviors while remaining computationally effi-
cient and relatively easy to parameterize. This
makes it highly suitable for real-time simulations,

control design, and parameter identification tasks
in a wide range of engineering applications, from
robotics and automotive systems to aerospace
mechanisms and precision instruments. Fur-
thermore, the model’s modular structure allows
for straightforward extensions or adaptations to
match specific system characteristics, enhancing
its versatility and practical utility.

Identification of the hysteresis loop

The identification of model parameters de-
scribing hysteresis loops is a challenging task
due to the nonlinear and path-dependent nature
of hysteretic behavior. Accurate parameter es-
timation is crucial for reliable modeling and
simulation of materials and systems exhibiting
hysteresis. Various identification techniques, in-
cluding optimization algorithms and data-driven
methods, have been developed to address this
problem. The complexity of the hysteresis phe-
nomenon often requires balancing model accu-
racy with computational efficiency [26, 27, 28].
In recent years, genetic algorithms have emerged
as one of the popular solutions for identifying pa-
rameters in hysteresis models. These algorithms
are inspired by the principles of natural evolution
and offer a robust approach to solving complex
optimization problems. Genetic algorithms are
particularly well-suited for dealing with the non-
linear and multidimensional nature of hysteresis
parameter identification. Their ability to explore
a wide solution space helps avoid local minima,
leading to more accurate and reliable parameter
estimation [29-31]. A notable drawback of genet-
ic algorithms is their relatively high computation-
al cost, especially for complex models or large
datasets. Due to their stochastic nature and pop-
ulation-based search, they often require a large
number of function evaluations, which can result
in long processing times. Additionally, tuning the
algorithm’s parameters, such as population size,
mutation rate, and crossover probability, can be
challenging and significantly affect performance.
In the literature, there are approaches that replace
existing models with algorithms based on artifi-
cial intelligence. The paper [32] focuses on mod-
eling the nonlinear behavior of particle dampers
(PDs), which exhibit hysteresis under dynamic
excitation. The authors propose using artificial neu-
ral networks to capture this complex phenomenon,
addressing the issue of spectral bias that affects
the learning of high-frequency components. To
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enhance model performance, the study combines
Fourier feature embedding with transfer learning
within a neural network framework. The main goal
is to develop an accurate surrogate model capable
of representing the PD’s response across a wide
frequency range. Another interesting approach
was presented in paper [33] which focuses on im-
proving the modeling of magnetic hysteresis us-
ing neural operator-based approaches. Traditional
deep learning methods often struggle to generalize
to previously unseen magnetic field inputs, which
limits their practical application. To overcome this,
the authors propose using neural operators, specifi-
cally DeepONet, Fourier neural operator (FNO),
and wavelet neural operator (WNO), to learn the
mapping between magnetic fields and material re-
sponses. The study also introduces a rate-indepen-
dent variant of FNO to capture hysteresis behavior
at different sampling rates. Numerical results show
that these methods not only outperform conven-
tional recurrent neural networks but also general-
ize well to novel magnetic field scenarios, offering
a promising direction for the design and analysis of
magnetic devices.

An analysis of the literature review reveals
a lack of intermediate approaches, specifically,
the application of neural networks to identify
well-established and widely used phenomeno-
logical models. This study addresses that gap by
proposing a solution in which the mathematical
model (Equation 1) is identified using a physics-
informed neural network (PINN), thereby bridg-
ing the existing void between purely data-driven
and purely theoretical modeling methods.

Physics - informed neural network

Physics-Informed neural networks (PINNs)
represent a powerful class of machine learning
methods that integrate physical laws directly into
the training of neural networks, enabling them to
learn solutions to complex dynamical systems in
a data-efficient and physically consistent manner
[34]. Unlike traditional neural networks, which
rely solely on data to infer patterns, PINNs in-
corporate the governing equations of the sys-
tem, such as differential equations, conservation
laws, or constitutive relations, into the loss func-
tion used during training [35]. This approach
ensures that the learned model not only fits the
observed data but also respects the underlying
physical principles, leading to improved gener-
alization and interpretability. PINNs have been
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successfully applied to a wide range of problems,
including fluid dynamics, solid mechanics, elec-
tromagnetics, and materials science [36—37].

One of their key advantages is the ability to
model systems where experimental data may
be sparse, noisy, or incomplete, by leveraging
known physics to guide the learning process.
Moreover, PINNs are well-suited for modeling
complex nonlinear behaviors, such as hysteresis,
as they can naturally incorporate both observed
data and differential relations governing internal
states. In this work, PINNs are employed as an
effective tool for parameter identification in a
hysteretic system, enabling the construction of a
physically consistent and accurate model of the
adaptive damping device.

The PINN architecture was deliberately sim-
plified to focus exclusively on parameter identifi-
cation. The network consisted of a single vector
of four trainable parameters 0 = [c, ., k .k, .
M, 1 where each parameter was represented in-
ternally as an unconstrained real-valued variable
P, To ensure that the resulting physical param-
eters remained strictly positive, consistent with
their physical interpretation, a sofiplus transfor-
mation was applied [38]:

p] = ln(l + ep‘raw,]') 1j € {C’ k' kZ'MS} (2)

Thus, the network performed unconstrained
gradient-based optimization on p . while the
actual physical parameters p; were guaranteed to
remain positive.

In our implementation, the starting values of
the trainable parameters were set close to zero
and then perturbed by a small random offset, as
defined in the code by the following initializa-
tion p© = sofiplus™(max(+N(0,0.1), 10°)), where
N(0,0.1) denotes a normally distributed random
variable with zero mean and a standard devia-
tion of 0.1, and the inverse softplus transforma-
tion was applied to ensure numerical stability and
positivity of the parameters during training. The
rationale for this choice was twofold. First, by
initializing values close to zero, the optimization
procedure was not biased toward any predefined
solution, thereby allowing the parameters to be
determined primarily by the experimental data.
Second, the small stochastic perturbation ensured
that the optimization process did not always start
from identical initial conditions. This feature al-
lowed us to verify the robustness of the proce-
dure and to examine whether the final parameter
values exhibit consistent trends with respect to
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vacuum pressure, regardless of the specific ini-
tialization. As a result, the adopted initialization
strategy provided both flexibility in the optimiza-
tion and confidence that the observed dependen-
cies of the identified parameters on vacuum pres-
sure are inherent to the system and not artifacts of
initialization. The loss function minimized during
training was defined as:

N
1
Loss = NZ'Mnum(ti) - Mexp(ti)| +
i=1

4
+ AZ lpj — Pjinicl (3)
=1

where: Mexp(ti) is the experimentally measured
torque, and /4 is a regularization weight
(set to 0.01). The first term corresponds to
the mean absolute error (MAE) between
predicted and experimental torque values.

The second term introduces an L1 regulariza-
tion that penalizes deviations of the identified pa-
rameters from their initial estimates Pini thereby
promoting stability and ensuring physically rea-
sonable solutions. The training process was imple-
mented using the Adam optimizer with a learning
rate of 0.01. During backpropagation, gradients of
the loss with respect to each raw parameter p
were computed by the following equations:

rawj

dLoss _ dLoss op;
apraw, j ap j apTaWJ @

vy Provi) = T o

) (%)

The parameter identification was performed
independently for each tested P which corre-
sponds to the underpressure applied to the granu-
lar chamber of the VPPTD. The identification was
conducted for pressure values ranging from 0.01
MPa to 0.09 MPa. For each case, the PINN was
trained for 2000 epochs, and the identified param-
eter values were recorded. This approach provid-
ed a simple and powerful framework for identify-
ing physically consistent parameters in hysteretic
systems. The use of PINN ensured that the model
strictly adhered to known physics while achiev-
ing excellent agreement with experimental data
across varying operating conditions.

THEORETICAL RESULTS

Based on the experimental data presented, a
PINN was employed to identify the parameters
of the theoretical model that describe the torque-
angle behaviour of the ABS+NBR 1:3 material.
In this study, each hysteresis loop correspond-
ing to a single underpressure level consisted of
approximately 1700 experimental data points.
These points of angular displacement and torque
were directly used as the training data for the
identification procedure. With regard to colloca-
tion points, we acknowledge that in the standard
physics-informed neural network framework,
such points are introduced to enforce the residual
of the governing differential equation across the
domain. In the present work, however, we inten-
tionally employed a simplified network structure,
in which the model was formulated as a direct
parametric regression rather than as a full PINN.
Consequently, the training relied solely on the ex-
perimental data points, and no collocation points
were incorporated. We recognize that this repre-
sents a departure from the classical PINN meth-
odology. Nevertheless, this approach was adopted
to focus the study on capturing the torque—angle
relationship from experimental measurements
and on revealing systematic dependencies of the
identified parameters on underpressure. By in-
corporating both the physical principles govern-
ing the system and the measured data, the PINN
enabled an accurate estimation of model param-
eters, capturing the observed nonlinear and hys-
teretic response. An example of the prediction
of the resulting model is illustrated in Figure 3
which demonstrates good agreement between the
theoretical and experimental curves.

Figure 3 compares the experimental torque
response with the corresponding results obtained
from the theoretical model identified using a
PINN for the applied underpressure P = 0.09 MPa
(for the last epoch of the training process). It dem-
onstrates good general agreement between the
two curves, particularly in capturing the charac-
teristic hysteresis loop shape, the nonlinear stiff-
ening at large angular displacements, and the gen-
eral trend of torque variation with angle. Some
minor discrepancies are observed near the transi-
tions at extreme angles, where the sharp increase
in torque is more pronounced in the experimental
results. Nevertheless, the close correspondence
between the curves confirms the effectiveness
of the PINN-based parameter identification in
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Figure 3. Comparison of the experimental and numerical results for the P =0.09 MPa

accurately modeling the complex dynamic be-
havior of the composite material.

To provide a clearer understanding of the
identification process, the evolution of the model
fitting was illustrated by presenting hysteresis
curves corresponding to intermediate sets of iden-
tified parameters at different stages of training.
Specifically, the torque — angle curves obtained
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the PINN were plotted. This step-by-step visuali-
sation highlights how the model progressively im-
proves its representation of the experimental data
as the training advances. Initially, the theoretical
response shows significant deviations from the
measured curve, but with increasing epochs, the
fit becomes progressively more accurate, even-
tually capturing both the overall shape and the
detailed features of the experimental hysteresis
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Figure 4. Evolution of the theoretical hysteresis loop for the various epochs during the identification process
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loop. This approach provides valuable informa-
tion on the learning dynamics of the PINN and
the convergence of the parameter identification
process (Figure 4).

In Figure 5, the evolution of the identified
model parameters - specifically the damping coef-
ficient ¢, the linear stiffness 4, the nonlinear stiff-
ness k, and the friction torque M, — is presented
as a function of training epochs. This visualisa-
tion provides insight into the dynamics of the
parameter optimisation process performed by the
Physics-Informed Neural Network. Initially, the
parameters exhibit significant fluctuations as the
network explores the parameter space to mini-
mise the loss function. As training progresses, the
parameter values gradually stabilise, indicating
convergence toward an optimal set that best rep-
resents the experimental data. The plots clearly
demonstrate how the PINN balances the contribu-
tions of different physical effects (damping, stiff-
ness, and friction) throughout training, ultimately
resulting in a physically consistent and accurate
model of the dynamic behaviour of the system.

The presented plots illustrate the evolution
of the model parameters over the course of 2000
training epochs. Each parameter exhibits a dis-
tinct convergence behavior, providing valuable
insights into the learning dynamics of the PINN-
based identification process. The damping coeffi-
cient ¢ remains close to zero up to approximately
epoch 1000, after which it rapidly increases and
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continues to grow, reaching a value of about 7.5
Nms by epoch 2000. This suggests that damp-
1ng was initially underrepresented in the model
but became more significant in the later stages of
training. The linear stiffness k shows a steep initial

decrease from around 5.5 —2 to approximately

1. 8 — within the first 500 epochs, followed by a
gradua% stablllzatlon with a slight upward trend to-

ward 2.0 E by epoch 2000. Similarly, the nonlin-
ear stiffness k, rapidly decreases from about 0.14

;e—; to below 0.02 :e_r; during the early epochs
and remains relatively stable thereafter, indicating
that the network quickly adjusted this parameter
to reflect the material’s weak nonlinear elastic re-
sponse. The friction torque M_ exhibits a distinct
growth phase, increasing steadily from approxi-
mately 5 Nm to a peak value of about 17.5 Nm at
epoch 1100, followed by a slight decline to around
14 Nm by the end of training. This behavior sug-
gests that the network initially overcompensated
for friction effects and subsequently refined the
estimate for better overall model accuracy. These
parameter trajectories highlight how the PINN
progressively balances the different physical con-
tributions in the model to achieve an accurate rep-
resentation of the observed hysteresis behavior.
The loss function used in the Physics-In-
formed Neural Network training process quan-
tifies the discrepancy between the model pre-
dictions and the experimental data, guiding the

o
N
a
S
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b) Linear stiffness k
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Figure 5. Evolution of the model parameters during the identification process
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optimization of model parameters toward an ac-
curate representation of the system’s behavior.
It typically combines terms reflecting both data
fidelity and adherence to the underlying physical
laws. In Figure 6, the loss function value over the
course of training epochs is presented and illus-
trating how the model progressively reduces the
error as the training proceeds. A decreasing loss
curve indicates effective learning, while its final
flattening suggests that the network has reached
an optimal or near-optimal set of parameters cor-
responding to a well-fitted theoretical model.

In an analogous manner, the parameter iden-
tification process using the PINN was conducted
for the remaining cases corresponding to different
levels of applied underpressure. For each under-
pressure, the network was trained to optimise the
model parameters to accurately capture the dis-
tinct torque—angle response observed experimen-
tally. The comparative results of these identifica-
tion processes are presented in the following, il-
lustrating the effectiveness and consistency of the
proposed approach across the full range of under
conditions tested. These results also provide valu-
able information on how the dynamic behaviour
of the material and the corresponding model pa-
rameters evolve as a function of the applied un-
derpressure (Figure 7).

The general results demonstrate that the identi-
fication process was successful in all cases tested.
The error between the experimentally measured
torque—angle curves and the corresponding numer-
ical predictions obtained from the PINN is consis-
tently small for each level of applied underpres-
sure. This indicates that the identified models ac-
curately capture the key features of the response of
the material. Moreover, the proposed PINN-based

identification method has proven to be robust, ef-
fective, and versatile, enabling the reliable estima-
tion of physically meaningful parameters even in
the presence of nonlinearities and hysteresis ef-
fects. In general, the approach offers a promising
and practical tool for modelling complex dynamic
systems based on experimental data. It should also
be emphasized that the proposed model (Equa-
tion 1), combined with PINN-based identification,
serves as an effective alternative to the phenom-
enological Bouc—Wen model used in paper [15],
where the hysteresis loops exhibited similar char-
acteristics and reached comparable values.

In Figure 8, the values of the identified model
parameters are presented for different levels of ap-
plied underpressure. This visualisation provides a
clear overview of how the key physical properties
of the ABS+NBR 1:3 material changes as a func-
tion of pressure. By analysing these trends, valu-
able information can be gained about the influ-
ence of pressure on the damping characteristics,
stiffness (both linear and non-linear), and friction
behaviour of the material. The presented results
further confirm the consistency and reliability of
the parameter identification process in the full
range of tested conditions.

The presented set of figures illustrates how
the identified model parameters c, &, k,, and M
vary as a function of the applied underpressure P.
Across all parameters, a clear trend of increasing
values with rising vacuum pressure is observed,
although some fluctuations are present. For the

damping coefficient c, values range from approxi-
Nm-'s

mately 6.7 deg at P=0.01 MPa to a maximum

of about 8.3 > at P=0.07 MPa, with an over-
all increasing tendency across the pressure range.
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Figure 6. Changes of the loss function during the identification process
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Figure 7. Comparison of the theoretical and experimental hysteresis loops for various underpressures
(from 0.08 to 0.01 MPa)

The linear stiffness k also increases, starting from
N
around 0.65 d—:; at P = 0.01 MPa and reaching

up to approximately 1.65 :—en; at P = 0.08 MPa.
The nonlinear stiffness k, follows a similar trend,

N
with values ranging from about 0.0055 FI; atP

= 0.08 MPa to a peak of approximately 0.0145

Nm

deg?

at P =0.09 MPa. Finally, the friction torque

M_ shows a strong positive correlation with vac-

uum pressure, increasing from roughly 9.5 Nm at
P =0.01 MPa to over 15 Nm at P = 0.08 MPa.
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Figure 8. Identified model parameters for various underpessures

Despite minor nonlinearities and local variations,
the general upward trend of all four parameters
with increasing underpressure suggests that the
dynamic behavior of the ABS+NBR 1:3 grains
mixture becomes progressively stiffer and more
dissipative as underpressure rises. These ob-
served relationships indicate that the parameters
could potentially be expressed as functions of
underpressure, enabling the generalization of the
theoretical model to predict the system’s behav-
ior continuously across different operating con-
ditions. This would further enhance the model’s
applicability in practical engineering contexts.

In the subsequent analyses, a more detailed
investigation was conducted to examine the
evolution of each identified model parameter
throughout the training process, across all tested
levels of underpressure. By analyzing how these
parameters evolved over the course of training
epochs for each pressure value, it was possible
to gain deeper insights into the learning dynam-
ics of the PINN and the stability of the identifi-
cation process. This approach also allowed for
an assessment of how consistently and robustly
the network adapted to different physical condi-
tions, providing a comprehensive understanding
of how underpressure influences not only the
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final parameter values, but also their convergence
behavior during training. The following figures
present the results of these analyses.

Figure 9 shows the changes of the ¢ as a func-
tion of training epochs for each tested level of
underpressure P, ranging from 0.01 MPa to 0.09
MPa. Across all cases, the parameter ¢ remains
near zero during the initial phase of training (up to
approximately 1000 epochs), indicating that the
network initially prioritises fitting other aspects
of the model. After this point, a rapid increase in
c is observed for all pressure levels, followed by a
more gradual growth phase. This behaviour sug-
gests that the contribution of damping becomes
significant only after the primary structural pa-
rameters are roughly established. Despite slight
variations in the rate of increase, the general
trends for different pressure levels are similar. In
particular, higher final ¢ values are consistently
associated with higher underpressures. The con-
sistency of the curves also indicates a stable and
robust convergence behaviour of the network un-
der all conditions (Figure 10).

In all cases, k exhibits a characteristic conver-
gence pattern: it starts with a relatively high initial
value (around 5.5-6.0) and undergoes a steep de-
cline during the first 500-600 epochs, indicating
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Figure 10. Evolution of the linear stiffness & during the identification process for various underpressures

that the network quickly adjusts this parameter
to better fit the experimental data. After this ini-
tial drop, the parameter gradually stabilises, with
slight differences emerging between the curves
corresponding to different vacuum pressures. In
particular, higher underpressures tend to be asso-
ciated with higher final values of k. The relatively
smooth and monotonic evolution of the parameter
across all pressure levels indicates a stable and
consistent learning dynamics. The slight upward
adjustments seen after 1000 epochs, particularly
at higher pressures, suggest that the network con-
tinues to refine the stiffness contribution to opti-
mize the overall model fit during the later training
stages (Figure 11).

Across all cases, the parameter k, exhibits a
very consistent and characteristic convergence
pattern. It starts from relatively high initial val-
ues, between approximately 0.08 and 0.35, and
undergoes a rapid and steep decrease within
the first 500 epochs. After this initial phase, the
curves gradually flatten out and stabilize near
small positive values close to zero. The conver-
gence behavior is highly similar across different
underpressure levels, with only minor varia-
tions in the final values. This suggests that while
the nonlinear stiffness component plays an im-
portant role during the early stages of training,
likely compensating initially for the lack of tun-
ing in other parameters, its relative contribution
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becomes less dominant as the model converges.
The consistent flattening of the curves indicates
that the network robustly identifies a weak but
non-negligible nonlinear stiffness component
across all tested underpressures. Notably, there
is no clear monotonic trend of final &, values with
increasing underpressure, in contrast to the linear
stiffness k£ and damping c. This suggests that the
influence of underpressure on the nonlinear stiff-
ness of the system is either weak or more com-
plex than a simple linear relationship.

This Figure 12 presents the evolution of the
friction torque parameter. An initial steady in-
crease in M up to approximately 1000 epochs,
followed by a gradual decrease during the later
stages of training. Initially, M grows linearly
from about 5 to 6 Nm to its peak values. The max-
imum values of M_vary depending on the pres-
sure level: at higher pressures (e.g. p=0.08 MPa
and p = 0.09 MPa. The observed trend confirms
that the friction torque parameter M is strongly
influenced by the underpressure, with higher P
consistently leading to higher final values of M .
The initial rise and subsequent fine-tuning phase
reflect the network’s effort to accurately capture
the friction-related hysteresis behaviour of the
system. In general, the stability and systematic
variation of M at different pressures further re-
inforce the conclusion that underpressure plays
a significant and predictable role in shaping the
frictional dynamics of the system (Figure 13).
In all cases, the loss exhibits a very similar and
well-behaved convergence pattern. Initially, the
loss values are relatively high, exceeding 150
for several cases, but decrease rapidly within the

first 500 epochs, reflecting the network’s ability
to quickly reduce the discrepancies between the
predictions of the model and the experimental
data. Beyond approximately 750-1000 epochs,
the loss curves flatten and approach small val-
ues (below 10), indicating that the network has
effectively converged to an optimal or near-op-
timal solution for all tested pressures. The final
loss values in all cases are very similar, with no
significant differences attributable to underpres-
sure, demonstrating the robustness and stability
of the identification process.

In the identification process it was observed
that not all model parameters exhibit clear con-
vergence during training. This applies in partic-
ular to the parameters ¢ (viscous damping) and
Ms (static friction torque), whose values do not
stabilize around a single constant number but
may show increasing, decreasing, or oscillatory
behavior across epochs. This phenomenon arises
from the fact that there exist multiple combina-
tions of these two parameters that lead to almost
identical agreement between the theoretical
torque and the experimental torque. However,
the lack of strict parameter convergence does not
pose a significant problem for the identification
process. The primary goal of the procedure is to
determine parameter values that ensure the theo-
retical torque curve matches the experimental one
as closely as possible. From this perspective, it
is not essential for each parameter to converge
individually; what matters is that the parameter
set as a whole enables faithful reproduction of the
observed response. Moreover, even though ¢ and
Ms do not converge in a strict numerical sense
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Figure 11. Evolution of the nonlinear stiffness k, during the identification process for various underpressures
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Figure 13. Evolution of the loss function Loss during the identification process for various underpressures

during training, their final identified values still
exhibit a meaningful physical characteristic: they
show a dependency on the applied underpres-
sure. This indicates that, while these parameters
may partially compensate for each other during
optimization, their final values nevertheless carry
information about how the operating conditions
influence the behavior of the system.

In summary, the absence of full convergence
in some parameters does not diminish the qual-
ity of the model identification. The model suc-
cessfully fulfills its main objective, accurately
reproducing the torque response, and highlights
relevant physical trends through the pressure de-
pendence of the identified parameters.

CONCLUSIONS

In this paper, the dynamic behaviour of a vac-
uum packed particles torsional damper based on a
1:3 ABS-NBR granulate mixture was systemati-
cally investigated. Based on experimentally cap-
tured characteristics, an appropriate mathemati-
cal model was proposed, consisting of four key
parameters: the viscous damping coefficient c, the
linear stiffness k, the nonlinear stiffness ,, and the
friction torque M . The main novelty of this article
is the implementation of an artificial intelligence
algorithm within the numerical simulation pro-
cess. To accurately identify parameters, a physics-
informed neural network approach was employed,
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ensuring that the theoretical torque model was op-
timally fitted to the experimentally obtained hys-
teresis curves. In addition to final parameter identi-
fication, a detailed analysis of the evolution of the
theoretical hysteresis loop during the PINN train-
ing process was conducted. This analysis revealed
how the shape of the model-based hysteresis loop
progressively converged toward the experimental
one over successive training epochs. Furthermore,
the identification dynamics were studied in detaila.
It was observed that in the early stages of train-
ing, the PINN primarily adjusted the components
related to friction torque and stiffness in order to
match the gross shape of the hysteresis loop. Only
in later epochs did the network begin to increase
the contribution of the viscous damping and linear
stiffness terms to refine the loop’s smoothness and
accuracy. At convergence, it was also observed that
the nonlinear stiffness component had the smallest
influence on the final loop shape compared to the
other three model terms. Overall, the final identi-
fied hysteresis loops showed very close agreement
with the experimental results, validating both the
accuracy of the model and the effectiveness of the
PINN-based identification method. Parametric
analysis demonstrated that all identified param-
eters systematically increased with underpressure
and exhibited an approximately linear trend. This
observation suggests that the proposed model
could be generalised by explicitly expressing the
parameters as functions of vacuum pressure, there-
by enhancing its predictive capacity.

Future work will focus on extending the pro-
posed modelling approach by explicitly formulat-
ing the model parameters as continuous functions
of underpressure, enabling real-time adaptive
control of the VPPTD system. In addition, further
studies will explore the application of more ad-
vanced hysteresis modelling techniques and the
integration of PINN-based models into closed-
loop control architectures. Experimental valida-
tion will also be performed under dynamic oper-
ating conditions and varying excitation profiles to
assess the practical performance and robustness
of the system in real-world applications.
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