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INTRODUCTION

Queueing theory has long been recognized as 
a powerful mathematical tool for analyzing and 
optimizing service systems. Originally devel-
oped to improve the efficiency of telephone op-
erations, it has since been applied across diverse 
domains. Recently, in [1] queueing models were 
used to simulate and analyze fog-computing ar-
chitectures in order to guide the design of systems 
that meet Quality of Service requirements; in tele-
communications, they are used to analyze com-
plex network architectures [2]. They can also re-
duce the waiting time of patients in healthcare ser-
vice [3]. In [4], queueing theory is applied to port 
operations, modeling ship arrivals, waiting times, 
and loading processes. Moreover, [5] uses queue-
based analysis to evaluate how replica selection 
algorithms in distributed systems are affected 
by queue delays. Building on this foundation, a 

queueing model with heterogeneous servers and 
strategic customer behavior is explored – condi-
tions often encountered in real systems but rarely 
captured in classical models (compare to [6]). 
In the studies of multiserver queueing systems 
it is customarily assumed that servers are homo-
geneous, that is, that they serve customers at the 
same rate (as in [7], where service times are i.i.d 
random variables, or in [8], where servers are 
identical and independent of each other). How-
ever, in real life queues, this assumption is, more 
often than not, violated, especially in queueing 
systems with human servers, but also in systems 
that are automatic in nature. Nevertheless, as re-
cently observed in [9], modeling the individual 
characteristics of servers has received little atten-
tion. Since it is common to observe servers pro-
viding service to identical jobs at different rates, 
a mathematical study of heterogeneous queue-
ing scenarios is warranted. More specifically, a 
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two-server system in which service rates differ 
substantially and customers can choose which 
server to use is investigated. 

In classical models, customers arriving when 
multiple servers are available typically choose 
one at random (see [10] for a discussion of queue 
disciplines in such cases). However, if customers 
are aware of differences in service rates, they may 
prefer the faster server. This preference could re-
sult in a situation where later-arriving customers, 
served by the faster server, exit the system before 
earlier arrivals who chose the slower server. In 
such cases, if only the slower server is idle, a cus-
tomer may opt to wait for the faster server rather 
than accept immediate service – thus deviating 
from the assumptions of classical queueing dis-
ciplines. Such behavior is rational when the per-
formance gap between servers is significant, and 
may even justify maintaining a first-come, first-
served (FCFS) policy in certain scenarios.

Generally, customers involved in queues can 
exhibit different types of behavior, including 
balking (a decision not to join the queue if it is 
too long), reneging (a decision to leave the queue 
if service waiting time is too long) or jockeying 
(switching between queues in the hope of receiv-
ing the service quickly). Moreover, many queu-
ing situations with discouragement are encoun-
tered in real life in which customers get hesitating 
or impatient. Thus there are numerous cases in 
which those awaiting service may be allowed to 
make choices which affect the time spent in the 
system, as in [11], where a customer who, upon 
arrival, finds at least two customers in the system 
may decide not to enter the queue. 

In this study, the complex nature of both 
servers and customers is taken into account, 
and a specific two-server queueing model for 
heterogeneous servers is derived that incorpo-
rates important behavioral factors. Specifical-
ly, the scenario is considered in which a cus-
tomer at the head of the queue, noticing that 
a slow server is available, chooses to wait for 
the faster server to become free, thereby effec-
tively blocking the queue. However, the same 
customer may eventually lose patience and, af-
ter some time, decide to be served by the slow 
server. Thus model captures this nuanced deci-
sion-making process and contributes to a more 
realistic understanding of queue dynamics in 
systems with heterogeneous servers.

A key challenge and innovation in for-
mulating our model lies in the careful and 

appropriate definition of the state space. This 
step is crucial, as stochastic processes in queue-
ing theory are typically described by N(t), the 
number of customers in the system, which of-
ten results in non-Markovian behavior. To ad-
dress this, the method of supplementary vari-
ables is used, embedding the non-Markovian 
process into an augmented Markov process – 
a technique introduced in [12] and applied to 
single-server systems in [13]. The main idea is 
to introduce the notion of configuration, which 
extends the state to include indices of active 
clocks, grouped into an appropriately defined 
pair. This ensures that the future evolution of 
the process depends solely on its current state. 
It is worth emphasizing that our model also 
provides a foundation for modeling more com-
plex server and customer behaviors. Next, the 
Kolmogorov forward equations governing the 
probability densities of the underlying process 
are derived. This approach is consistent with 
recent work [14] on transient behavior in multi-
channel queueing systems, where analytical 
solutions of Kolmogorov equations have been 
used to study time-dependent probabilities. 

In the third section, the analytical develop-
ments are complemented with an extensive com-
putational study. Beyond the classical performance 
indicators as average queue length, mean sojourn 
time, and busy-period distributions, fairness mea-
sures are also examined such as the proportion of 
first-come-first-served (FCFS) violations and the 
utilisation gap between servers. Exploring a wide 
swath of parameter regimes, behavioural patterns 
are revealed like impatience-induced load balanc-
ing and congestion tipping points, that cannot be 
replicated by homogeneous-server or non-stra-
tegic customer models. This illustrates both the 
practical relevance and the methodological nov-
elty of our framework.

This study aims to formulate and analyze a 
two-server queueing model with heterogeneous 
servers that accounts for customers’ strategic 
waiting, impatience, and switching behavior. 
Relative to classical heterogeneous-server mod-
els, our framework introduces a new state-space 
construction embedding strategic hesitancy 
through supplementary clock configurations. 
This approach allows embedding non-Markov-
ian dynamics into an augmented Markov pro-
cess, enabling tractable analysis. 
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MODEL WITH TWO SERVERS

Queue’s discipline and the state-space of the 
related Markov process

A queueing system with two servers  and 
 is considered, where  gives a significantly 

faster service than , and customers are aware 
of this difference. The resulting queue discipline 
is as follows: 
	• one customer can be served at a given time 

in one service point and unserved customers 
line up in order of arrival keeping in a single 
queue; 

	• the customer at the head of the queue is mov-
ing forward as soon as the server  becomes 
vacant; 

	• if service point  becomes available, the cus-
tomer ignores this fact, as he prefers to wait 
for service at , 

	• as time passes, the customer becomes impa-
tient and may choose to be served by the slow 
server  anyway. 

More precisely, our model is a modification of 
the standard M/G/2 queue: customers are assumed 
to arrive according to a Poisson process with rate 

, and service times are independently distributed 
random variables, say, T1 and T2, with probabil-
ity density functions α1 and α2 for the servers  
and , respectively. Moreover, a random variable 
T3 is introduced, describing impatience of a cus-
tomer waiting at the head of the queue when the 
fast server  is occupied and the slow server  
is free. The probability density function of T3 is 
denoted α3. Functions  defined by 

 (1)

formula (1) are thus hazard rate functions for ser-
vice times at the servers (i = 1,2) and patience 
time of the customer waiting (i = 3). 

Provided that  is still not free, at  T3 the cus-
tomer at the head of the queue loses his patience 
and decides to be served by .

The problem of choosing a convenient state-
space  for a process describing a queue with this 
discipline is not as simple as it may appear. In 
particular, we want  to contain enough informa-
tion so that the process gains Markovian nature. 
To solve the problem, we extend the main idea of 
Cox [12], and include in  time-type variables. In 
the models with single queue and one server one 
such variable is used and it represents the time 

that has passed since the last customer started to 
be served (as it was done in [15]). It might seem 
that in the case of a number of servers, one should 
simply deal with several variables, each related 
to a different server. As it turns out, however, 
it is better to think in the terms of the time, in 
what follows denoted by , that has passed since 
the last time the system underwent a jump-like 
change (see below for more details). 

The process is determined by the following 
factors.
	• The counter that tells us the total number of 

customers present in the system: including 
those waiting in the queue and those currently 
being served on  and .

	• Three regular clocks, say,  and . 
−	  tells us how long ago the last service at 

 started, 
−	  – how long ago the last service at  

started, and 
−	  – how long has the hesitating customer 

been blocking the queue. 
	• The special clock, denoted , that tells us 

how long ago the last customer arrived in the 
system. 

At a given time not all regular clocks are 
active; for example, when both servers are oc-
cupied,  is ‘switched off’ or, if there is a hes-
itating customer at the head of the queue,  is 
inactive. The shortest time shown on the regular 
active clocks will be denoted by the variable . 
Hence, the set indices of active clocks at a given 
time naturally splits into a pair  where  
is the set of indices of clocks displaying time , 
and the set  collects the indices of the remaining 
active clocks. Of course, not all pairs  are 
permissible; for instance, clocks no.  and no. 3 
are never switched on simultaneously, and no. 3 
can be switched only when no. 2. Additionally, 
we want to keep track of the number of customers 
in the system. Thus, it seems natural to include  
as part of the state space. However, each pair of 
active clocks corresponds to a specific number of 
customers, . For example,  pairs only 
with , while  and  pair merely 
with . These reasonable triplets
	
will be referred to as configurations. The set of all 
configurations is 

	 	 (2)
 



467

Advances in Science and Technology Research Journal 2025, 19(12) 464–477

Finally, since besides configurations of clocks 
we want to keep the record of the times shown on 
these clocks, we define the state-space as

 
 (3)

In principle, the coordinates of a point 
 have the following interpre-

tation: 
	•  is the set of indices of active clocks,
	•  is the number of customers in the system, 
	•  is the time shown on the clocks  for ,
	• the time shown on the clock  for  is 

. 

More specifically, when both servers are idle 
and the queue is empty, the process is in the state 

. Since , there is no need for a 
time-type coordinate in this case. The system is 
in the state  with  if there is 
only one customer, and he is at  with a service 
time of . If the only customer is at  and his 
service time is , then the corresponding state is 

. 
Next, the system is in a state 

 with  and 
 if there are  customers, the one being 

served at  has spent the time  there, and anoth-
er one has been served at  for the time 
, see Figure 1 (left);  is interpreted as the 
time server  had already been busy at the mo-
ment when the customer started to be served at 

. An analogous description holds for the state 
 with , as shown in 

Figure 1 (middle).
A state  describes the fol-

lowing situation: there is a customer at , who 
has been served for the time , server  is 
free, and the hesitating customer at the head of the 

queue has been waiting for the time , see Figure 
1 (right). If the service time at  equals the wait-
ing time of the hesitating customer, the process 
is in the state . We note that the 
states of the form , , are 
not considered as proper elements of  because 
they are never attained with probability . In con-
trast, there is a scenario that leads to the state 

, as shown in line 13 of Table 1. 

Description of the process

The resulting stochastic process in  is a 
particular example of a piece-wise deterministic 
process of M.H.A. Davis [16] (see also the more 
recent [17]), with the following characteristics of 
its deterministic and random parts. The determin-
istic part describes what happens between jumps: 
if started at a , , 
the process will be at  after time 
, provided that no service was completed and no 
customer arrived in the meantime. 

This deterministic motion is interrupted by 
jumps between copies, and these come in two 
types. First of all, there are jumps caused by regu-
lar clocks. As Table 1 shows, the copy to which 
the process jumps depends on both the clock 
that goes off and the current configuration. Since 
there are  active clocks in a configuration 

, there are as many possible jumps from 
the copy indexed by this configuration. A change 
of configuration is just switching of some of the 
clocks and switching on some others. It is worth 
noting that clocks that were switched on before 
the jump can still be active but reset to zero (as 
exemplified by  of line 6 or  and  of line 13 
in Table 1), or left intact (as is the case, e.g., with 

 in line 2, and  of line 3 of Figure 1). 
Secondly, there are also jumps caused by the 

special counter ; these are described in Table 
2. We observe that  always increases the third 

Figure 1. Schematic diagram of the system in states:  on the left, 
 in the middle and  on the right
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coordinate, that is, , by . On the other hand, the 
regular clocks  and  decrease  by , whereas 

 leaves it intact. Contrary to the previous case, 
clocks that were switched on before the jump are 
still active and its time is left intact.

For example, an arrival of a new customer 
transfers the process from  to ; 
that is, the customer immediately chooses server 

 and its service time starts from . (Custom-
ers are aware of the difference in service time.) 

Table 2. Jumps caused by the special clock  that signals the arrival of a new customer

Table 1. Jumps caused by regular clocks

Note: Jumps are determined by configurations and indices of clocks going off.

 

No. Jump from Jump to 
1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   

  

 

No. Jump from Jump to 
1.   
2.   
3.   
4.   
5.   
6.   
7.   

  

Figure 2. Initially, there are  customers, both servers are occupied and service time at  is greater than 
at . Arrival of a new customer results in a process’ jump from one copy of the first quadrant in  to another
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Figures 2–4 show where the process can jump 
from a point  with  
depending on which of the following events 
takes place first: (i) arrival of a new customer, 
(ii) completion of service at , and (iii) comple-
tion of service at . In the case (i), the process 
starts anew from ; an 
arriving customer takes the place at the end of 
the queue. In the case (ii), the process recom-
mences at ; the 
customer at the head of the queue chooses to ig-
nore the fact that  is free and waits for service 
at . In the case (iii), the process starts anew at 

; the customer at the head 
of the queue begins to be served at , so both 
servers are again occupied, but now the shortest 
time is shown on the second clock.

Derivation of Kolmogorov equations

Let  be the probability that the process 
at time  is in the state
	  	 (4)
corresponding to the empty queue, and denote

 (5)

Let  be the probability density 
function of the process in  and let 

 be such a function for the process in 
 at this time. Kolmogorov equations 

for these functions are derived in the usual manner, 

that is, by specifying the changes that can occur 
in a small time interval . The system is empty 
at time  if there was no customer present in it at 
time  and nobody arrived in the meantime 
or there was one customer and its service just 
ended. The total probability mass transfer from 

 to  at time  is . 
Combining this with a similar quantity related to 

, we obtain the equation 

	 	 (6) 

Next, let

	
	  	 (7)

Accordingly, let ,  be 
the corresponding probability density functions. 
The rules listed in Tables 1 and 2 translate into 
relations

	 (8) 

	 (9)

Figure 3. In the situation described in Figure 2, completion of service at  causes the process 
to jump to the boundary
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and 

	 	 (10)

	 	 (11)

where the Iverson brackets are used for notational 
simplicity. For example, equation (10) says that 
the process is in a state  in one of the 
two following cases:
a)	  units of time ago it was in 

 and nothing has hap-
pened in the meantime (i.e., no service was 
completed, and no customer arrived), or 

b)	if ,  units of time ago the process was 
at , and a new customer 
arrived in the meantime. Let 

	 	 (12)

Given , we define  to be the 
probability density function for the process in 
the quadrant  and  be such 
a function for the process in  at this 
time. The mechanism governing this quantities is 

rather similar to that visible in Equations 10–11, 
and consequently

	 	 (13)

	 	 (14)

Derivation of boundary conditions for 
Kolmogorov equations 

Equations 8–11 and 13–14 express the rules 
pertaining to the states in  with , where 

 is interpreted to be ‘the time from the last sig-
nificant change’ in the system. To explain, if, for 
example, there are already  customers in the sys-
tem, an arrival of a new customer, even though it 
lengthens the queue, does not change the nature 
of the situation: the arrival does not affect the cru-
cial parameter . 

On the other hand, suppose there are at least 
three customers in the system and two of them are 
being served: one at , the other at . For defi-
niteness, suppose the process is at  
with . If the service at  is completed, the 
counter  is reset to , and the process starts 

Figure 4. In the situation described in Figure 2, completion of service at  causes the process to jump 
from the interior of one copy of the first quadrant to the boundary of another copy of this quadrant
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anew from , that is, from a 
point at the boundary. Similarly, if the service at  
is completed, the process jumps to . 
The jumps that involve resetting  are seen as ‘sig-
nificant’, and, more importantly, lead to the follow-
ing boundary conditions that accompany (8)–(11): 

	 	 (15)

	 	 (16)

and 

	 	 (17)

	  	 (18)

for  and . To explain Equation 16: 
there are two possibilities for a process to start 
anew at . Either there were two customers 
in the system: one at  and one hestitaning, and 
the service at  was completed or the system was 
empty and a new customer arrived. The Equation 
17 says that the process starts anew at  
with , when a hesitating customer lost his 
patience and decided to be served at  anyway, 
see Figure 5. Finally, the three terms on the right-
hand side of Equation 18 come from the follow-
ing three possibilities for the process to start anew 
at  (Figure 6): 

Figure 5. Equation 17 for : the hesitating customer runs out of his patience, 
decides not to wait any longer and chooses the slow server 

Figure 6. Explanation of Equation 18 for . The left server is busy, and meanwhile: either the service 
on the fast server  ends and the only customer waiting in the queue takes it over, or a new customer 

comes to the system, finds the fast server idle and immediately takes it. After each of these events 
the process starts anew at .
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1)	the process was at  for some 
, and the service at  was completed, 

2)	the process was at  for some 
 between  and  and the service at  was 

completed, and 
3)	this case is possible only if n = 2, the process was 

at  and then a new customer arrived.

Finally, an analogous analysis of Figures 7 
and 8 leads to the boundary conditions 

	 	 (19)

 

	 	 (20)

which are to be satisfied for  and . 

TWO APPROACHES TO SIMULATING 	
THE QUEUING SYSTEM

Two complementary computational ap-
proaches are employed to characterize the queue-
ing system: first, an event‐driven Monte–Carlo 
simulation [18], and second, a finite‐difference, 
operator-splitting solver for the age‐structured 
PDE system [19]. All of our numerical experi-
ments and figures are fully reproducible using the 
open‐source code available at GitHub [20].

Monte Carlo simulation

The stochastic model of the queue is simu-
lated by an event-driven Monte Carlo algorithm. 
In each run, customers arrive according to a 
Poisson process of rate , and two servers oper-
ate at exponential rates  (slow) and  (fast). 
Waiting customers facing an occupied fast serv-
er may abandon their wait after an exponential 
patience time of rate  and enter service at the 
slow server. Time is advanced by scheduling 
the next event (arrival, service completion, or 

Figure 7. Equation 19 for . For the process to start anew at , either the server  becomes 
vacant but the customer at the front of the queue waits to be served at , or there was only one customer 

present in the system (being served at ) and a new client arrives.

Figure 8. Equation 20 for . After the fast server  is released, 
the hesitating customer starts to be served there
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patience expiry) via a min-heap priority queue. 
After each event the system state is updated and 
any newly enabled events are scheduled. We 
collect, over  independent runs up to a fixed 
time , the empirical distribution of the number 
of customers in system.

PDE with boundary conditions numerical 
solution

The age‐structured PDE system (Equations 
6, 8–11 and 13–14) with boundary conditions 
(Equations 15–20) is numerically solved by a 
finite‐difference, operator‐splitting scheme com-
bined with composite Simpson quadrature. The 
aim is to compute the probability distribution of 
the number of customers in the system at a given 
time. More specifically, for ,  is de-
fined as the number of customers in the system 
at time  and

	 	 (21)

is calculated. To this end, we fix positive reals 
 and  as upper bounds for age vari-

ables  and , and we express the probability 
 as marginals (Eq. 22).

Here, we truncate the customer-count at fixed 
positive integer Nmax, that is .
We introduce a „tail bucket” at , so 
that any probability flux into  is ab-
sorbed without spurious feedback. The variables 

 and  are discretized 
on uniform grids of  and  points, with 
spacings

	  	 (23)

Time is discretized into  steps of size 
, ensuring the advective Courant-

Friedrichs-Lewy (CFL) condition . 
The computations are split into advect 

and react parts. In each time-step from  to 
, first we solve

	 	 (24)

by an explicit upwind discretization. At each grid-
point, indexed by , we let

	 	 (25)

with inflow boundary values  given by the 
boundary conditions (Equations 15–20). Here,  
is the value at  and -th grid-point. Then, the re-
maining ordinary differential equation of the form

	 	 (26)

is solved by implicit-Euler at each -grid 
point, as

	 	 (27)

Here,  is the local total departure rate (e.g. 
 for ), and  is the source 

term (either the arrival from  or the service-
completion integrals from ). All one- and 
two-dimensional integrals are approximated by 
composite Simpson’s rule.

At each grid point, the advective step is fol-
lowed by a reaction update governed by a local 
ordinary differential equation. This ODE arises 
naturally from the decomposition of the Kol-
mogorov forward equations into transport and 
reaction parts. The ODE solution corresponds to 
the probability mass transfer due to arrivals, ser-
vice completions, or reneging. The initial condi-
tion is provided by the empirical distribution of 
the system at time t=0, where all probability mass 
is concentrated at the empty state.

Finally, after each full step the total probabil-
ity mass  is computed and all densities 
are renormalized to enforce mass conservation.

This scheme combines the simplicity of ex-
plicit upwind transport with the robustness of im-
plicit reaction updates and higher-order quadra-
ture, yielding numerical solution in reasonable 
CPU time.

Such age-structured PDEs, after reduction 
to ODEs, can in be solved by other high-accu-
racy techniques for initial and boundary value 
problems [21], or by optimization with respect 

    (22)
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to convergence-control parameters in iterative 
schemes [22]. Our choice of finite-difference op-
erator-splitting is guided by its simplicity, mass 
conservation, and computational efficiency.

RESULTS

First, the probability distributions obtained 
by Monte Carlo simulations and numerical solu-
tions are compared. Four sets of parameters are 
selected (Table 3).

Then the following distances between distri-
butions  and  are calculated:
	• Total variation distance:

	 	 (28)

	• Sup-norm distance:
 (29)

	• Kolmogorov-Smirnov distance: 
	 ,	 (30)

where:  and  are cumulative distribu-
tion functions.

	• Expected value distance:

	 	 (31)

where:  and  are expected values.
	• Variance distance:

	  	 (32)

The results are presented in Table 4. The em-
pirical histograms are shown in Figure 9. It is 

observed that the Monte Carlo histograms and 
the PDE solutions align closely across all traffic 
regimes, confirming consistency between the sto-
chastic simulation and PDE formulation.

A total of  distinct parameter configurations 
were considered. For each configuration, see Ta-
ble 5,  independent Monte–Carlo runs 
of length  time‐units were performed. 
From each run the following performance met-
rics were extracted and then averaged them over 
replications:
	•  and : the time‐average mean 

and variance of the total number of customers 
in the system;

	• : the average waiting time until service 
begins;

	• : the maximum instantaneous system 
size observed in any single run;

	•  and : the steady‐state utilizations of 
server  (slow) and server  (fast);

	• : throughput, the long‐run departure rate 
(departures per unit time);

	• : blocking probability, the fraction of time 
that server  is idle while server  is busy 
and the queue is non‐empty;

	• : fraction of service by , the share of all 
service completions processed on the fast 
server;

	• : the proportion of departures that vi-
olate first‐come‐first‐served order (i.e. depart 
before an earlier arrival).

These metrics provide a comprehensive char-
acterization of congestion, delay, server-level 
load, capacity waste, and fairness under each pa-
rameter regime.

Table 3. Parameters sets for comparing distributions
Parameter α λ1 λ2 λ3 t

Light traffic 1.0 2.0 3.0 0.8 100

Balanced traffic 2.0 0.8 1.2 2.0 5

Overload traffic 15.0 3.0 4.0 3.0 1

Highly asymmetric servers 4.0 2.0 6.0 3.0 5

Table 4. Comparison of distributions  and 

Parameter TV L∞ KS ΔE ΔVar

Light traffic 0.0019 0.0019 0.0017 0.0048 0.0224

Balanced traffic 0.0633 0.0328 0.0633 0.3127 1.0735

Overload traffic 0.0471 0.0357 0.0471 0.2313 1.2251

Highly asymmetric servers 0.0806 0.0127 0.0806 0.8226 0.4742
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Table 5. Simulation results for selected parameter sets
α λ1 λ2 λ3 E [N] Var [N] Max N E [W] ρx ρy λout Pblk βy P~FCFS

0.8 1.0 3.0 0.5 0.36 0.47 13 0.10 0.03 0.26 0.80 0.06 0.97 0.03

1.2 1.0 3.0 0.5 0.64 0.97 18 0.17 0.06 0.38 1.20 0.12 0.95 0.06

1.6 1.0 3.0 0.5 1.04 1.90 25 0.28 0.10 0.50 1.60 0.20 0.94 0.09

2.0 1.0 3.0 0.5 1.65 3.87 35 0.44 0.14 0.62 2.00 0.29 0.93 0.13

2.4 1.0 3.0 0.5 2.74 9.04 50 0.75 0.20 0.73 2.40 0.39 0.92 0.16

2.8 1.0 3.0 0.5 5.36 29.95 97 1.52 0.25 0.85 2.79 0.50 0.91 0.20

3.2 1.0 3.0 0.5 19.84 265.68 280 5.78 0.31 0.96 3.18 0.62 0.90 0.24

3.0 1.0 3.0 0.1 30.60 491.17 320 9.82 0.04 0.97 2.96 0.90 0.98 0.04

3.0 1.0 3.0 0.1 23.69 340.72 256 7.51 0.08 0.96 2.97 0.84 0.97 0.07

3.0 1.0 3.0 0.3 12.30 128.75 202 3.71 0.20 0.93 2.99 0.67 0.93 0.16

3.0 1.0 3.0 1.0 6.11 36.93 89 1.61 0.40 0.86 2.99 0.40 0.87 0.30

3.0 1.0 3.0 2.0 4.71 22.31 85 1.12 0.52 0.83 2.99 0.26 0.83 0.38

3.0 1.0 3.0 5.0 3.92 15.60 70 0.83 0.63 0.79 3.00 0.13 0.79 0.45

2.0 0.5 3.0 0.5 1.82 4.30 38 0.47 0.25 0.62 2.00 0.25 0.94 0.23

2.0 2.0 3.0 0.5 1.55 3.56 32 0.43 0.08 0.61 2.00 0.31 0.92 0.08

2.0 1.0 2.0 0.5 6.02 35.86 93 2.44 0.26 0.87 1.99 0.52 0.87 0.20

2.0 1.0 5.0 0.5 0.68 1.05 19 0.11 0.06 0.39 2.00 0.13 0.97 0.06

3.5 1.0 3.0 0.0 246.42 20375.69 808 70.08 0.02 1.00 3.01 0.98 0.99 0.02

3.5 1.0 3.0 4.0 11.36 111.42 171 2.76 0.73 0.92 3.49 0.18 0.79 0.49

4.8 1.0 3.0 0.5 735.77 180573.66 1885 152.96 0.33 1.00 3.33 0.67 0.90 0.25

1.8 0.5 1.2 0.5 179.17 10728.17 586 98.62 0.50 1.00 1.45 0.50 0.83 0.34

2.4 0.5 5.0 1.0 1.04 1.68 23 0.14 0.25 0.45 2.40 0.12 0.95 0.24

5.0 3.0 4.0 2.0 21.30 324.95 286 3.98 0.37 0.96 4.98 0.56 0.77 0.26

10.0 4.0 5.0 5.0 1391.76 646022.87 3392 138.99 0.56 1.00 7.22 0.44 0.69 0.35

Figure 9. Comparison of the queue-length distribution from Monte Carlo simulations and PDE
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CONCLUSIONS

A heterogeneous two-server queue with an 
impatient head‐of‐line customer has been ana-
lyzed using both event‐driven Monte–Carlo sim-
ulation and a finite‐difference, operator‐splitting 
PDE solver. It is demonstrated how the interplay 
between arrival rate, service‐rate asymmetry, and 
reneging behavior governs key performance met-
rics—mean queue length, sojourn time, blocking 
probability, and fairness as measured by FCFS 
violations. It has been shown that increased impa-
tience can both alleviate and exacerbate conges-
tion, depending on system load. In short, larger 
the impatience (more willingness to take slow 
service) and higher arrival rate push load onto the 
slow server, while low arrival rate or impatience 
leave the slow server barely used. The effect is 
moderated by service-rate asymmetry (a much 
faster Y​ suppresses the utilization of X​ unless im-
patience is large).

Relative to the classical heterogeneous-server 
studies, the model introduces a new state-space 
construction that embeds strategic hesitancy 
through supplementary clock configurations. This 
device permits general service-time distributions 
while preserving Markovian tractability. Across 
moderate utilisation levels, the simulations con-
sistently report shorter waiting times and fewer 
FCFS violations than these benchmark models.

Under pronounced service-rate asymmetry, 
our policy remains close to the ideal throughput 
bound while maintaining high fairness, thereby 
combining efficiency and equity over a broad 
range of practical conditions.

By coupling a flexible stochastic description 
with a scalable PDE solver, a tool is provided to 
practitioners that can be calibrated to empirical 
service-time distributions and patience profiles. 
Consequently, our framework offers a practical 
alternative to existing M/M/2 models for environ-
ments ranging from call-centre staffing to cloud-
service load balancing, where both heterogeneity 
and impatience are pervasive.

To summarize, the novelty of our work lies 
in introducing a flexible stochastic description 
of heterogeneous two-server queues with a state-
space construction that embeds strategic hesitancy 
and patience dynamics without losing Markovian 
tractability. This extends existing analyses of stra-
tegic or impatient customers in single-server set-
tings to a richer multiserver environment. In prac-
tical terms, the model and numerical approach 

can be calibrated to empirical service-time and 
patience distributions, offering system designers 
a tool analogous to recent estimation frameworks 
for unobserved balking to optimise staffing, load 
balancing, and policy design in heterogeneous 
service systems. 
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