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ABSTRACT

The study investigates the dynamics of heterogeneous multiserver queueing systems, where servers operate at
different service rates-a scenario often encountered in practice but not captured by classical models. In traditional
models, servers are assumed to be homogeneous, serving customers at the same rate, and customers are expected
to select servers at random when multiple options are available. However, these assumptions often fail in real-
world systems. This research develops a mathematical framework to model and analyze queues where servers have
different service speeds. In such systems, a customer at the head of the queue may strategically choose to wait for
a faster server, even when slower servers are idle, effectively blocking the queue. This decision-making behavior
can improve system efficiency and preserve the “first-come, first-served” principle. However, customers may lose
patience over time and opt to be served by the slow server, adding further complexity to the system. In this article,
a two-server model that incorporates server preferences and customer hesitation is proposed, and Kolmogorov’s
forward equations for the corresponding transition probability functions are derived. Simulation experiments are
used to illustrate behaviour of the system under various parameter settings. The impact of server heterogeneity and

customer decision-making on overall system efficiency is explored.

Keywords: heterogeneus queue, Markov process.

INTRODUCTION

Queueing theory has long been recognized as
a powerful mathematical tool for analyzing and
optimizing service systems. Originally devel-
oped to improve the efficiency of telephone op-
erations, it has since been applied across diverse
domains. Recently, in [1] queueing models were
used to simulate and analyze fog-computing ar-
chitectures in order to guide the design of systems
that meet Quality of Service requirements; in tele-
communications, they are used to analyze com-
plex network architectures [2]. They can also re-
duce the waiting time of patients in healthcare ser-
vice [3]. In [4], queueing theory is applied to port
operations, modeling ship arrivals, waiting times,
and loading processes. Moreover, [5] uses queue-
based analysis to evaluate how replica selection
algorithms in distributed systems are affected
by queue delays. Building on this foundation, a
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queueing model with heterogeneous servers and
strategic customer behavior is explored — condi-
tions often encountered in real systems but rarely
captured in classical models (compare to [6]).
In the studies of multiserver queueing systems
it is customarily assumed that servers are homo-
geneous, that is, that they serve customers at the
same rate (as in [7], where service times are i.i.d
random variables, or in [8], where servers are
identical and independent of each other). How-
ever, in real life queues, this assumption is, more
often than not, violated, especially in queueing
systems with human servers, but also in systems
that are automatic in nature. Nevertheless, as re-
cently observed in [9], modeling the individual
characteristics of servers has received little atten-
tion. Since it is common to observe servers pro-
viding service to identical jobs at different rates,
a mathematical study of heterogeneous queue-
ing scenarios is warranted. More specifically, a
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two-server system in which service rates differ
substantially and customers can choose which
server to use is investigated.

In classical models, customers arriving when
multiple servers are available typically choose
one at random (see [10] for a discussion of queue
disciplines in such cases). However, if customers
are aware of differences in service rates, they may
prefer the faster server. This preference could re-
sult in a situation where later-arriving customers,
served by the faster server, exit the system before
earlier arrivals who chose the slower server. In
such cases, if only the slower server is idle, a cus-
tomer may opt to wait for the faster server rather
than accept immediate service — thus deviating
from the assumptions of classical queueing dis-
ciplines. Such behavior is rational when the per-
formance gap between servers is significant, and
may even justify maintaining a first-come, first-
served (FCFS) policy in certain scenarios.

Generally, customers involved in queues can
exhibit different types of behavior, including
balking (a decision not to join the queue if it is
too long), reneging (a decision to leave the queue
if service waiting time is too long) or jockeying
(switching between queues in the hope of receiv-
ing the service quickly). Moreover, many queu-
ing situations with discouragement are encoun-
tered in real life in which customers get hesitating
or impatient. Thus there are numerous cases in
which those awaiting service may be allowed to
make choices which affect the time spent in the
system, as in [11], where a customer who, upon
arrival, finds at least two customers in the system
may decide not to enter the queue.

In this study, the complex nature of both
servers and customers is taken into account,
and a specific two-server queueing model for
heterogeneous servers is derived that incorpo-
rates important behavioral factors. Specifical-
ly, the scenario is considered in which a cus-
tomer at the head of the queue, noticing that
a slow server is available, chooses to wait for
the faster server to become free, thereby effec-
tively blocking the queue. However, the same
customer may eventually lose patience and, af-
ter some time, decide to be served by the slow
server. Thus model captures this nuanced deci-
sion-making process and contributes to a more
realistic understanding of queue dynamics in
systems with heterogeneous servers.

A key challenge and innovation in for-
mulating our model lies in the careful and

appropriate definition of the state space. This
step is crucial, as stochastic processes in queue-
ing theory are typically described by N(t), the
number of customers in the system, which of-
ten results in non-Markovian behavior. To ad-
dress this, the method of supplementary vari-
ables is used, embedding the non-Markovian
process into an augmented Markov process —
a technique introduced in [12] and applied to
single-server systems in [13]. The main idea is
to introduce the notion of configuration, which
extends the state to include indices of active
clocks, grouped into an appropriately defined
pair. This ensures that the future evolution of
the process depends solely on its current state.
It is worth emphasizing that our model also
provides a foundation for modeling more com-
plex server and customer behaviors. Next, the
Kolmogorov forward equations governing the
probability densities of the underlying process
are derived. This approach is consistent with
recent work [14] on transient behavior in multi-
channel queueing systems, where analytical
solutions of Kolmogorov equations have been
used to study time-dependent probabilities.

In the third section, the analytical develop-
ments are complemented with an extensive com-
putational study. Beyond the classical performance
indicators as average queue length, mean sojourn
time, and busy-period distributions, fairness mea-
sures are also examined such as the proportion of
first-come-first-served (FCFS) violations and the
utilisation gap between servers. Exploring a wide
swath of parameter regimes, behavioural patterns
are revealed like impatience-induced load balanc-
ing and congestion tipping points, that cannot be
replicated by homogeneous-server or non-stra-
tegic customer models. This illustrates both the
practical relevance and the methodological nov-
elty of our framework.

This study aims to formulate and analyze a
two-server queueing model with heterogeneous
servers that accounts for customers’ strategic
waiting, impatience, and switching behavior.
Relative to classical heterogeneous-server mod-
els, our framework introduces a new state-space
construction embedding strategic hesitancy
through supplementary clock configurations.
This approach allows embedding non-Markov-
ian dynamics into an augmented Markov pro-
cess, enabling tractable analysis.

465



Advances in Science and Technology Research Journal 2025, 19(12), 464-477

MODEL WITH TWO SERVERS

Queue’s discipline and the state-space of the
related Markov process

A queueing system with two servers X and

Y is considered, where Y gives a significantly

faster service than X, and customers are aware

of this difference. The resulting queue discipline
is as follows:

e one customer can be served at a given time
in one service point and unserved customers
line up in order of arrival keeping in a single
queue;

e the customer at the head of the queue is mov-
ing forward as soon as the server Y becomes
vacant;

e if service point X becomes available, the cus-
tomer ignores this fact, as he prefers to wait
for service at Y,

e as time passes, the customer becomes impa-
tient and may choose to be served by the slow
server X anyway.

More precisely, our model is a modification of
the standard M/G/2 queue: customers are assumed
to arrive according to a Poisson process with rate
o, and service times are independently distributed
random variables, say, 7, and 7,, with probabil-
ity density functions a, and a, for the servers X
and Y/, respectively. Moreover, a random variable
T, is introduced, describing impatience of a cus-
tomer waiting at the head of the queue when the
fast server Y is occupied and the slow server X
is free. The probability density function of 7} is
denoted a,. Functions A; defined by

a; (.’13 )

f:o a;(r)dr’

formula (1) are thus hazard rate functions for ser-
vice times at the servers (i = 1,2) and patience
time of the customer waiting (i = 3).

Provided that Y is still not free, at 7. , the cus-
tomer at the head of the queue loses his patience
and decides to be served by X.

The problem of choosing a convenient state-
space S for a process describing a queue with this
discipline is not as simple as it may appear. In
particular, we want &S to contain enough informa-
tion so that the process gains Markovian nature.
To solve the problem, we extend the main idea of
Cox [12], and include in & time-type variables. In
the models with single queue and one server one
such variable is used and it represents the time

Ai(z) = x>0, i=1,223(1)
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that has passed since the last customer started to

be served (as it was done in [15]). It might seem

that in the case of a number of servers, one should
simply deal with several variables, each related
to a different server. As it turns out, however,
it is better to think in the terms of the time, in
what follows denoted by u, that has passed since
the last time the system underwent a jump-like
change (see below for more details).

The process is determined by the following
factors.

e The counter that tells us the total number of
customers present in the system: including
those waiting in the queue and those currently
being served on X and Y.

e Three regular clocks, say, C1,Cz and Cs.

— Ci tells us how long ago the last service at
X started,

— C2 — how long ago the last service at Y’
started, and

— C3 — how long has the hesitating customer
been blocking the queue.

e The special clock, denoted Co, that tells us
how long ago the last customer arrived in the
system.

At a given time not all regular clocks are
active; for example, when both servers are oc-
cupied, Cs is ‘switched off” or, if there is a hes-
itating customer at the head of the queue, C1 is
inactive. The shortest time shown on the regular
active clocks will be denoted by the variable 7.
Hence, the set indices of active clocks at a given
time naturally splits into a pair (K, L) where K
is the set of indices of clocks displaying time 1,
and the set L collects the indices of the remaining
active clocks. Of course, not all pairs (K, L) are
permissible; for instance, clocks no. 1 and no. 3
are never switched on simultaneously, and no. 3
can be switched only when no. 2. Additionally,
we want to keep track of the number of customers
in the system. Thus, it seems natural to include Ng
as part of the state space. However, each pair of
active clocks corresponds to a specific number of
customers, 7 > (. For example, (), §) pairs only
with 0, while ({1}, 0) and ({2}, 0) pair merely
with 1. These reasonable triplets

E:=(K,L,n)
will be referred to as configurations. The set of all
configurations is

£:={(0,0,0), ({1},0,1), ({2}.0,1),
({1}, {2}, n), ({2}, {1}, n), )
({3}, {2},n),({2,3},0,n), n > 2}.
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Finally, since besides configurations of clocks
we want to keep the record of the times shown on
these clocks, we define the state-space as

S:={(0,0,0), ({1},0,1,u), ({2},0,1,u),
({1}> {2}v nvu:$2)v ({2}> {1}v nvuyxl)a (3)

({B}v {2}9 n,u, 332)3 ({29 3}» 0, n, U’)!
n>2u>0,r,r0 >0}.

In principle, the coordinates of a point
(K, L,n,u,z;) € S have the following interpre-
tation:

e [ U L is the set of indices of active clocks,

e 71 is the number of customers in the system,

e 1 is the time shown on the clocks C; for i € K,

e the time shown on the clock Ci for [ € L is
U+ I

More specifically, when both servers are idle
and the queue is empty, the process is in the state
(0,0,0). Since K = (, there is no need for a
time-type coordinate in this case. The system is
in the state ({1},0, 1, u) with © > 0 if there is
only one customer, and he is at X with a service
time of w. If the only customer is at Y and his
service time is u, then the corresponding state is
({2},0,1,u).

Next, the system is in a state
({1}, {2}, n,u,22) with n>2,4>0 and
2 > 0 if there are n customers, the one being
served at X has spent the time u there, and anoth-
er one has been served at Y for the time u + T2
, see Figure 1 (left); w2 > 0 is interpreted as the
time server ¥ had already been busy at the mo-
ment when the customer started to be served at
X. An analogous description holds for the state
({2},{1};71,’&,3?1) with n > 2, as shown in
Figure 1 (middle).

Astate ({3}, {2}, n, u, x2) describes the fol-
lowing situation: there is a customer at Y, who
has been served for the time u + 9, server X is
free, and the hesitating customer at the head of the

X| 2 Y| 2 X| 2
9 usz u@ml

Figure 1. Schematic diagram of the system in states:

({2}, {1}, 3, u, 21) in the middle and ({3}, {%

queue has been waiting for the time u, see Figure
1 (right). If the service time at ¥ equals the wait-
ing time of the hesitating customer, the process
is in the state ({2, 3}, D, n, u). We note that the
states of the form ({1,2},0,n,u,0), n > 2, are
not considered as proper elements of S because
they are never attained with probability 1. In con-
trast, there is a scenario that leads to the state
({2,3},0,n,u), as shown in line 13 of Table 1.

Description of the process

The resulting stochastic process in S is a
particular example of a piece-wise deterministic
process of M.H.A. Davis [16] (see also the more
recent [17]), with the following characteristics of
its deterministic and random parts. The determin-
istic part describes what happens between jumps:
if started at a (E,u,z), B € E,u>0,2 >0,
the process will be at (E, u + ¢, z) after time ¢
, provided that no service was completed and no
customer arrived in the meantime.

This deterministic motion is interrupted by
jumps between copies, and these come in two
types. First of all, there are jumps caused by regu-
lar clocks. As Table 1 shows, the copy to which
the process jumps depends on both the clock
that goes off and the current configuration. Since
there are | ' U L|active clocks in a configuration
(K, L, n), there are as many possible jumps from
the copy indexed by this configuration. A change
of configuration is just switching of some of the
clocks and switching on some others. It is worth
noting that clocks that were switched on before
the jump can still be active but reset to zero (as
exemplified by Cz of line 6 or C2 and C3 of line 13
in Table 1), or left intact (as is the case, e.g., with
Ca in line 2, and Cq of line 3 of Figure 1).

Secondly, there are also jumps caused by the
special counter Cp; these are described in Table
2. We observe that Cg always increases the third

Y@ X Y@

U U T2

1}, 42}, 3,4, x2) on the left,
3, U, Z2) on the right
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Table 1. Jumps caused by regular clocks

No. Jump from Jump to

1. Ci({1},0,1,u), C2({2},0,1,u) (®,0,0)

2. Ci({1},{2}, 2, u, x2) ({24, 0,1, u + x2)

3. Ca({1},{2},2,u, x2) ({1},0,1,u)

4. Ci({2},{1},2,u, 1) ({2},0,1,u)

5. Co({2},{1},2,u,21) ({1},0,1,u+ 1)

6. C2({2,3},0,2,u), C2({3},{2}, 2, u, x2) ({2},0,1,0)

7. C3({2,3},0,n,u),n > 2 ({1},{2},n,0,u)

8. Cs({3}, {2}, n,u,22),m > 2 ({1},{2},n,0,u + z2)
9. Ci({1}, {2}, n,u,z2),mn >3 {3},{2},n—1,0,u + z2)
10. Co({1},{2},n,u,x2),n >3 ({2}, {1},n —1,0,u)
11. Ci({2},. {1}, n,u,z1),n >3 ({3}, {2},n —1,0,u)
12. Co({2}, {1}, n,u,z1),mn >3 ({2}, {1},n—1,0,u + 1)
13. | C2({2,3},0,n,u), C2({3}, {2}, n,u,x2),n >3 ({2,3},0,n—1,0)

Note: Jumps are determined by configurations and indices of clocks going off.

Table 2. Jumps caused by the special clock Cp that signals the arrival of a new customer

No. Jump from Jump to
1. (0,0,0,u) ({2},0,1,0)
2. ({1},0,1,w) ({2},{1},2,0,u)
3. (21,0, 1, ) ({3}, {21, 2,0, u)
4. ({1}, {2}, n,u,x2),n > 2 {1}, {2}, n+ 1, u, x2)
5. {2}, {1}, n,u,z1),n > 2 {2}, {1}, n+ 1,u, 1)
6. ({2,3},0,n,u),n > 2 ({2,3},0,n + 1, u)
7. {3}, {2}, n,u,x2),n > 2 ({3}, {2}, n+ 1, u,22)
T
A v

({1}, {2} 4w 72)

u

Figure 2. Initially, there are n = 3 customers, both servers are occupied and service time at Y is greater than
at X. Arrival of a new customer results in a process’ jump from one copy of the first quadrant in S to another

coordinate, that is, 72, by 1. On the other hand, the
regular clocks C1 and C2 decrease n by 1, whereas
C3 leaves it intact. Contrary to the previous case,
clocks that were switched on before the jump are
still active and its time is left intact.
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For example, an arrival of a new customer
transfers the process from (0, @, 0)to (2,0, 1, 0);
that is, the customer immediately chooses server
Y and its service time starts from (). (Custom-
ers are aware of the difference in service time.)
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Figure 3. In the situation described in Figure 2, completion of service at X causes the process
to jump to the boundary

Figures 2-4 show where the process can jump
from a point ({1}, {2}, n,u,x2) with n >3
depending on which of the following events
takes place first: (i) arrival of a new customer,
(ii) completion of service at X, and (iii) comple-
tion of service at Y. In the case (i), the process
starts anew from ({1},{2},n+ 1,u,x2); an
arriving customer takes the place at the end of
the queue. In the case (ii), the process recom-
mences at ({3},{2},n —1,0,u+ x2); the
customer at the head of the queue chooses to ig-
nore the fact that X is free and waits for service
at Y. In the case (iii), the process starts anew at
({2}, {1},n — 1,0, u); the customer at the head
of the queue begins to be served at Y, so both
servers are again occupied, but now the shortest
time is shown on the second clock.

Derivation of Kolmogorov equations

Let PE, (t) be the probability that the process
at time 7 is in the state
EU = (03 ®? 0) (4)

corresponding to the empty queue, and denote
E} = ({1}1®:1)1 El2 = ({2}1(2]11)'(5)

Let Pg! (t,-) be the probability density
function of the process in {F]} x Ry and let
Pei(t,) be such a function for the process in
{E7} X R at this time. Kolmogorov equations
for these functions are derived in the usual manner,

that is, by specifying the changes that can occur
in a small time interval At. The system is empty
at time ? if there was no customer present in it at
time £ — At and nobody arrived in the meantime
or there was one customer and its service just
ended. The total probability mass transfer from
Fj to Eq at time t is fR+ A (u)pg: (8, u)du.
Combining this with a similar quantity related to
E2, we obtain the equation

%%WZ—wm@+/

A (@)pgy ( wyu+
JER,

—l—/ Az (u)ppgz (T, w)du. (6)
IR,

Next, let
B} = (1} {2),n),
E:?e = ({2}1 {1}: '”’): n > 2. (7

Accordingly, let Pg1 (t,-,-), pEg'(t, -,) be
the corresponding probability density functions.
The rules listed in Tables 1 and 2 translate into
relations

Oppi(t,u) = =Oupp (t,u) — (0 + Ai(u))pp; (E,u)
+ i Ao(u+ 2)pp: (t, 1, 22)du + /Ou Ao (v)ppz(t v, u —v)dy

+ ®)
Oppz (tu) = =0uppz (t,u) — (@ + Aa(u))pga (, u)
[ Mgt [ N o

) ©)
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X 2N Y| o
Q Q
u 0
%
({1}, {2}, 3, u, z2)

Figure 4. In the situation described in Figure 2, completion of service at ¥ causes the process to jump
from the interior of one copy of the first quadrant to the boundary of another copy of this quadrant

and
Ope (t,u, v2) = —0upp: (t,u, T2) —
— (a+ A1(u) + Ae(u+ 22))pp: (L, u, 22)
+appr_ (tu,w2)[n > 3] (10)

atpEE (tauaxl) = —OuPE2 (tauaxl) o
—(a+ A (u+z1) + Aa(u))ppz (1, u, 1)
‘|‘05PE;21_1(t: u, z1)[n > 3, (11)

where the Iverson brackets are used for notational

simplicity. For example, equation (10) says that

the process is in a state (E, u, 2) in one of the
two following cases:

a) At units of time ago it was in
(E},n,u— At,z5) and nothing has hap-
pened in the meantime (i.e., no service was
completed, and no customer arrived), or

b)ifn > 3, At units of time ago the process was
at (E} |, u — At,x5), and a new customer
arrived in the meantime. Let

E;, = ({3}, {2}, n),
Ei = ({21 3}1&”):” > 2. (12)

Givenn > 2, we define pps (2, -, -) to be the
probability density function for the process in
the quadrant { £} x R? and pgs (t, -) be such
a function for the process in { E2} x Ri at this
time. The mechanism governing this quantities is
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rather similar to that visible in Equations 10-11,
and consequently

atpEi (ta U, 372) = —OyupPEs (ta U, ':C?) -
— (a+ Aa(u +w2) + A3(u))pgs (,u, z2)
+(1'PE;{_1(t: u, x2)[n > 3 (13)
atpE',ﬁ (ta ’LL) == upE;‘ﬁ,(ta U‘) -
— o+ Ao(on) + N () (1, )
+apgs_ (t,u)[n > 3]. (14)

Derivation of boundary conditions for
Kolmogorov equations

Equations 8—11 and 13—14 express the rules
pertaining to the states in & with u > 0, where
u is interpreted to be ‘the time from the last sig-
nificant change’ in the system. To explain, if, for
example, there are already 2 customers in the sys-
tem, an arrival of a new customer, even though it
lengthens the queue, does not change the nature
of the situation: the arrival does not affect the cru-
cial parameter w.

On the other hand, suppose there are at least
three customers in the system and two of them are
being served: one at X, the other at Y. For defi-
niteness, suppose the process is at (E, u, xo)
with 1 > 2. If the service at X is completed, the
counter w is reset to u = (), and the process starts
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V.Q

X bg

Figure 5. Equation 17 for 7 = 3: the hesitating customer runs out of his patience,
decides not to wait any longer and chooses the slow server X

anew from (E>_,,0,u + x3), that is, from a
point at the boundary. Similarly, if the service at Y
is completed, the process jumps to (Ei,l .0, U)
The jumps that involve resetting u are seen as ‘sig-
nificant’, and, more importantly, lead to the follow-
ing boundary conditions that accompany (8)—(11):

el (t,0) =0 (15)

Pz (t,0) = apr, (1) +

-+ // Az(u + z2)pps (T, u, v2)dudzs
JJez

+/ Ao(u)pps(t,u)du (16)
JRy

and

pe:(t,0,12) = / - As(u)pps (8 u, o9 — u)du +
Jo

+ Az(z2)pps (t, 22) (17)

\A
@Y/

pez(t,0,21) = apg: (t,21)[n = 2] +

+/ Ao(u+z1)ppr  (t, 21, u)du
. R+ n+1

)

+ Ag(u)pg_ﬁJrl(t,u,ml —u)du (18)
0

for n > 2 and t > 0. To explain Equation 16:
there are two possibilities for a process to start
anew at (E/ f, 0). Either there were two customers
in the system: one at X and one hestitaning, and
the service at ¥ was completed or the system was
empty and a new customer arrived. The Equation
17 says that the process starts anew at (Ei 0,xs)
with n > 2, when a hesitating customer lost his
patience and decided to be served at X anyway,
see Figure 5. Finally, the three terms on the right-
hand side of Equation 18 come from the follow-
ing three possibilities for the process to start anew
at(E2,0, 1) (Figure 6):

Figure 6. Explanation of Equation 18 for 72 = 2. The left server is busy, and meanwhile: either the service
on the fast server Y ends and the only customer waiting in the queue takes it over, or a new customer
comes to the system, finds the fast server idle and immediately takes it. After each of these events

2
the process starts anew at (F3, 0, 21).
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1) the process was at (E,, 1,21, u) for some
u 2> 0, and the service at Y was completed,

2) the process was at (E , |, u, 21 — u)for some
u between 0 and 1 and the service at Y was
completed, and

3) this case is possible only if 7 =2, the process was
at(EL, x;)and then a new customer arrived.

Finally, an analogous analysis of Figures 7
and 8 leads to the boundary conditions

pes (t,0,22) = appz (t, 32)[n = 2] +
T2
+ /0 M(Wpg | (6w, 22 — u)du

+ [ Nt g (s e (9
JR,

pE;‘L (t: 0) = //2 AQ(U"I' $2)pEﬁ+l(t:U:x2)dud-’r2
JRY

b [ deluey, (e o
JR,

which are to be satisfied forn > 2and t > (.

T

\
® / Qo

TWO APPROACHES TO SIMULATING
THE QUEUING SYSTEM

Two complementary computational ap-
proaches are employed to characterize the queue-
ing system: first, an event-driven Monte—Carlo
simulation [18], and second, a finite-difference,
operator-splitting solver for the age-structured
PDE system [19]. All of our numerical experi-
ments and figures are fully reproducible using the
open-source code available at GitHub [20].

Monte Carlo simulation

The stochastic model of the queue is simu-
lated by an event-driven Monte Carlo algorithm.
In each run, customers arrive according to a
Poisson process of rate x, and two servers oper-
ate at exponential rates A1 (slow) and A (fast).
Waiting customers facing an occupied fast serv-
er may abandon their wait after an exponential
patience time of rate A3 and enter service at the
slow server. Time is advanced by scheduling
the next event (arrival, service completion, or

8
N

Figure 7. Equation 19 for n = 2. For the process to start anew at (ES, 0, x2), either the server X becomes
vacant but the customer at the front of the queue waits to be served at ', or there was only one customer
present in the system (being served at ¥') and a new client arrives.

@

Qo

Figure 8. Equation 20 for 77 = 2. After the fast server Y is released,
the hesitating customer starts to be served there
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patience expiry) via a min-heap priority queue.
After each event the system state is updated and
any newly enabled events are scheduled. We
collect, over 10° independent runs up to a fixed
time £, the empirical distribution of the number
of customers in system.

PDE with boundary conditions numerical
solution

The age-structured PDE system (Equations
6, 811 and 13-14) with boundary conditions
(Equations 15-20) is numerically solved by a
finite-difference, operator-splitting scheme com-
bined with composite Simpson quadrature. The
aim is to compute the probability distribution of
the number of customers in the system at a given
time. More specifically, for ¢ > 0, N(t) is de-
fined as the number of customers in the system
at time ¥ and

Put) = P(N(H) =n).  n>0. @

is calculated. To this end, we fix positive reals
Umax and Xmax as upper bounds for age vari-
ables u and x, and we express the probability
P, n(t) as marginals (Eq. 22).

Here, we truncate the customer-countatfixed
positive integer N, thatisn =10,1,..., Nyax.
We introduce a ,.tail bucket” at m = N + 1, so
that any probability flux into 7 > Nyay is ab-
sorbed without spurious feedback. The variables
u € [0, Upax)and € [0, X ay] are discretized
on uniform grids of N, and N, points, with
spacings

Umax A_'E _ max

Au= . .
TN, -1 N, — 1

(23)

Time is discretized into Ny steps of size
At = 0.5Au, ensuring the advective Courant-
Friedrichs-Lewy (CFL) condition At/Au < 0.5.

The computations are split into advect
and react parts. In each time-step from fj to
tie1 = tr + At, first we solve

Op = —0up (24)

pEo(t)%
Llnax
/ [pp: + pp2] () du,

Xl'ﬂl)( 'Dm ax
/ / [pEJ. + pE:2 +[)Ea] (t,u

by an explicit upwind discretization. At each grid-
point, indexed by i, we let
At
Au

ddV -k

(Y}
with inflow boundary values pu " given by the
boundary conditions (Equations 15-20). Here, p?
is the value at t} and i-th grid-point. Then, the re-
maining ordinary differential equation of the form

dp

dt

is solved by implicit-Euler at each (u, z)-grid
point, as

—(a+A)p+S (26)

kbl P 4+ SAt
1+ (a+ A)AE

p 27

Here, A is the local total departure rate (e.g.
Ar(u) + Ao(u + ) for p1), and S'is the source
term (either the arrival from n — 1 or the service-
completion integrals from n + 1). All one- and
two-dimensional integrals are approximated by
composite Simpson’s rule.

At each grid point, the advective step is fol-
lowed by a reaction update governed by a local
ordinary differential equation. This ODE arises
naturally from the decomposition of the Kol-
mogorov forward equations into transport and
reaction parts. The ODE solution corresponds to
the probability mass transfer due to arrivals, ser-
vice completions, or reneging. The initial condi-
tion is provided by the empirical distribution of
the system at time t=0, where all probability mass
is concentrated at the empty state.

F mally, after each full step the total probabil-
ity mass E neo " P is computed and all densities
are renormalized to enforce mass conservation.

This scheme combines the simplicity of ex-
plicit upwind transport with the robustness of im-
plicit reaction updates and higher-order quadra-
ture, yielding numerical solution in reasonable
CPU time.

Such age-structured PDEs, after reduction
to ODEs, can in be solved by other high-accu-
racy techniques for initial and boundary value
problems [21], or by optimization with respect

n =0,
n=1,
E"max (22)
;) dudr + / pes(t,u)du, n>2
0
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to convergence-control parameters in iterative
schemes [22]. Our choice of finite-difference op-
erator-splitting is guided by its simplicity, mass
conservation, and computational efficiency.

RESULTS

First, the probability distributions obtained
by Monte Carlo simulations and numerical solu-
tions are compared. Four sets of parameters are
selected (Table 3).

Then the following distances between distri-
butions psim and pPDE are calculated:

e Total variation distance:

rIl ax

V=3 Z |PSm(t) — PPPE(1)]. (28)
n=0
e Sup-norm distance:
00 . sim PD[}
L= pmax, [P = BPEHD[9)
e Kolmogorov-Smirnov distance:
KS = sup |F“m — FFPPE()] 30

teR
where: 5™ and FFPE gre cumulative distribu-
tion functions.
e Expected value distance:

AE = ‘ESIII] EPDE( )‘3 (31)

where: E5™ and EFPE are expected values.
e Variance distance:
AVar = |Var®™™(t)

— Var"PE()]. (32)

The results are presented in Table 4. The em-
pirical histograms are shown in Figure 9. It is

Table 3. Parameters sets for comparing distributions

observed that the Monte Carlo histograms and

the PDE solutions align closely across all traffic

regimes, confirming consistency between the sto-
chastic simulation and PDE formulation.

A total of 24 distinct parameter configurations
were considered. For each configuration, see Ta-
ble 5, 100000 independent Monte—Carlo runs
of length 7' = 1000 time-units were performed.
From each run the following performance met-
rics were extracted and then averaged them over
replications:

e E(N) and Var(N): the time-average mean
and variance of the total number of customers
in the system;

o E(W): the average waiting time until service
begins;

o max[N]: the maximum instantaneous system
size observed in any single run;

e px and PY: the steady-state utilizations of
server X (slow) and server Y (fast);

e Aout: throughput, the long-run departure rate
(departures per unit time);

e Dy blocking probability, the fraction of time
that server X is idle while server Y is busy
and the queue is non-empty;

e [y: fraction of service by Y, the share of all
service completions processed on the fast
server;

e P_pcFs: the proportion of departures that vi-
olate first-come-first-served order (i.e. depart
before an earlier arrival).

These metrics provide a comprehensive char-
acterization of congestion, delay, server-level
load, capacity waste, and fairness under each pa-
rameter regime.

Parameter o A, A, A, t
Light traffic 1.0 2.0 3.0 0.8 100
Balanced traffic 2.0 0.8 1.2 2.0 5
Overload traffic 15.0 3.0 4.0 3.0 1
Highly asymmetric servers 4.0 2.0 6.0 3.0 5

Table 4. Comparison of distributions psim and pPDE

Parameter TV Leo KS AE AVar
Light traffic 0.0019 0.0019 0.0017 0.0048 0.0224
Balanced traffic 0.0633 0.0328 0.0633 0.3127 1.0735
Overload traffic 0.0471 0.0357 0.0471 0.2313 1.2251
Highly asymmetric servers 0.0806 0.0127 0.0806 0.8226 0.4742
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Table 5. Simulation results for selected parameter sets

Queue size at time ¢t = 100.

(A) Light traffic.

Figure 9. Comparison of the queue-length distribution from Monte Carlo simulations and PDE

HEl Simulation

PDE

15

20

Queue size at time ¢ = 5.

(C) Overload traffic.

25

0.10

Probability

0.00

Queue size at time ¢ = 5.

o )‘1 7‘2 x3 E [N] Var [N] Max N | E [W] PX py Aout P By P rcrs
0.8 1.0 3.0 0.5 0.36 0.47 13 0.10 0.03 0.26 0.80 0.06 0.97 0.03
1.2 1.0 3.0 0.5 0.64 0.97 18 0.17 0.06 0.38 1.20 0.12 0.95 0.06
1.6 1.0 3.0 0.5 1.04 1.90 25 0.28 0.10 0.50 1.60 0.20 0.94 0.09
2.0 1.0 3.0 0.5 1.65 3.87 35 0.44 0.14 0.62 2.00 0.29 0.93 0.13
2.4 1.0 3.0 0.5 2.74 9.04 50 0.75 0.20 0.73 2.40 0.39 0.92 0.16
2.8 1.0 3.0 0.5 5.36 29.95 97 1.52 0.25 0.85 2.79 0.50 0.91 0.20
3.2 1.0 3.0 0.5 19.84 265.68 280 5.78 0.31 0.96 3.18 0.62 0.90 0.24
3.0 1.0 3.0 0.1 30.60 491.17 320 9.82 0.04 0.97 2.96 0.90 0.98 0.04
3.0 1.0 3.0 0.1 23.69 340.72 256 7.51 0.08 0.96 2.97 0.84 0.97 0.07
3.0 1.0 3.0 0.3 12.30 128.75 202 3.71 0.20 0.93 2.99 0.67 0.93 0.16
3.0 1.0 3.0 1.0 6.11 36.93 89 1.61 0.40 0.86 2.99 0.40 0.87 0.30
3.0 1.0 3.0 2.0 4.71 22.31 85 1.12 0.52 0.83 2.99 0.26 0.83 0.38
3.0 1.0 3.0 5.0 3.92 15.60 70 0.83 0.63 0.79 3.00 0.13 0.79 0.45
2.0 0.5 3.0 0.5 1.82 4.30 38 0.47 0.25 0.62 2.00 0.25 0.94 0.23
2.0 2.0 3.0 0.5 1.55 3.56 32 0.43 0.08 0.61 2.00 0.31 0.92 0.08
2.0 1.0 2.0 0.5 6.02 35.86 93 2.44 0.26 0.87 1.99 0.52 0.87 0.20
2.0 1.0 5.0 0.5 0.68 1.05 19 0.1 0.06 0.39 2.00 0.13 0.97 0.06
3.5 1.0 3.0 0.0 246.42 | 20375.69 808 70.08 0.02 1.00 3.01 0.98 0.99 0.02
3.5 1.0 3.0 4.0 11.36 111.42 171 2.76 0.73 0.92 3.49 0.18 0.79 0.49
4.8 1.0 3.0 0.5 735.77 | 180573.66 | 1885 | 152.96 | 0.33 1.00 3.33 0.67 0.90 0.25
1.8 0.5 1.2 0.5 179.17 | 10728.17 586 98.62 0.50 1.00 1.45 0.50 0.83 0.34
2.4 0.5 5.0 1.0 1.04 1.68 23 0.14 0.25 0.45 2.40 0.12 0.95 0.24
5.0 3.0 4.0 2.0 21.30 324.95 286 3.98 0.37 0.96 4.98 0.56 0.77 0.26
10.0 4.0 5.0 5.0 |1391.76 | 646022.87 | 3392 | 138.99 | 0.56 1.00 7.22 0.44 0.69 0.35

HEl Simulation 0.15 HEl Simulation
PDE . 272 PDE
&
E 0.10
=
o
A 0.05
50 75 w0 135 0 5 20

(B) Balanced traffic.
HEl Simulation
PDE
dnﬂﬂl Hhhhn..
0 10 20 30

(D) Highly asymmetric servers.

Queue size at time t = 1.
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CONCLUSIONS

A heterogeneous two-server queue with an
impatient head-of-line customer has been ana-
lyzed using both event-driven Monte—Carlo sim-
ulation and a finite-difference, operator-splitting
PDE solver. It is demonstrated how the interplay
between arrival rate, service-rate asymmetry, and
reneging behavior governs key performance met-
rics—mean queue length, sojourn time, blocking
probability, and fairness as measured by FCFS
violations. It has been shown that increased impa-
tience can both alleviate and exacerbate conges-
tion, depending on system load. In short, larger
the impatience (more willingness to take slow
service) and higher arrival rate push load onto the
slow server, while low arrival rate or impatience
leave the slow server barely used. The effect is
moderated by service-rate asymmetry (a much
faster Y suppresses the utilization of X unless im-
patience is large).

Relative to the classical heterogeneous-server
studies, the model introduces a new state-space
construction that embeds strategic hesitancy
through supplementary clock configurations. This
device permits general service-time distributions
while preserving Markovian tractability. Across
moderate utilisation levels, the simulations con-
sistently report shorter waiting times and fewer
FCFS violations than these benchmark models.

Under pronounced service-rate asymmetry,
our policy remains close to the ideal throughput
bound while maintaining high fairness, thereby
combining efficiency and equity over a broad
range of practical conditions.

By coupling a flexible stochastic description
with a scalable PDE solver, a tool is provided to
practitioners that can be calibrated to empirical
service-time distributions and patience profiles.
Consequently, our framework offers a practical
alternative to existing M/M/2 models for environ-
ments ranging from call-centre staffing to cloud-
service load balancing, where both heterogeneity
and impatience are pervasive.

To summarize, the novelty of our work lies
in introducing a flexible stochastic description
of heterogeneous two-server queues with a state-
space construction that embeds strategic hesitancy
and patience dynamics without losing Markovian
tractability. This extends existing analyses of stra-
tegic or impatient customers in single-server set-
tings to a richer multiserver environment. In prac-
tical terms, the model and numerical approach
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can be calibrated to empirical service-time and
patience distributions, offering system designers
a tool analogous to recent estimation frameworks
for unobserved balking to optimise staffing, load
balancing, and policy design in heterogeneous
service systems.
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