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INTRODUCTION 

Welding technologies play a crucial role in the 
construction of structures such as steel buildings, 
ships, offshore structures, steel bridges, heavy 

machinery, pressure vessels, power generation 
machinery and other various products using metal 
[1]. The welding structures commonly face chal-
lenging operating conditions during in-services, 
such as structural stresses, environmental aspects, 
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ABSTRACT
Nowadays, deep learning and machine vision technologies are power artificial intelligence tools based on indus-
trial welding defect detection operations in manufacturing and require superior automated inspection systems. 
YOLOv8 represents the advanced stage of YOLO deep neural network architecture which brings powerful object 
detection features to fusion welding applications resulting in high accuracy for computer vision quality control 
technology. The integration between artificial intelligence and traditional inspection approaches now provides a 
viable route for reducing the dependency on humans through automated methods that inspect conventional welds. 
The research executes YOLOv8 as a leading-edge deep learning structure which detects welding flaws auto-
matically through machine vision systems for potential remote welding surface assessments. The proposed system 
stands apart from previously described systems because it combines high-resolution machine vision cameras (ad-
vanced webcam 7022 ultrasharp 4K UHD) with sophisticated convolutional neural network structure of YOLOv8. 
Standardized remote visual inspection configurations were implemented to gather datasets from steel weld inspec-
tions while testing the system for various typical carbon steel welding defect shapes. The training portion of the 
deep learning model underwent evaluations in detail to assess both its real time deployment suitability as well as 
its defect identification and categorization abilities.  The study has revealed a mean average precision of 97.2% 
in identifying common defects in welding of alloy carbon steel (e.g. porosity, undercut and good surface profile). 
Evaluation on a dataset of 1,200 annotated images of welds revealed the inference speed of 42 FPS (frames per 
second) on NVIDIA GeForce RTX 4050 Laptop GPU, which allows the process to operate in real-time inspection. 
Precision and recall rates amounted to 97.3% and 97.1% correspondingly. A comparative examination indicated 
there was a reduction of about 30-35% in inspection time compared to the manual methods but sustained the 97% 
accuracy levels in defect classifications across multiple inspection conditions.The testing process verified remark-
able system performance with high accuracy reaching 97% confidence for its complex deep learning algorithms. 
The system offers better assessment speed than traditional inspection methods and simultaneously lowers the need 
for human involvement as well as offers total digital documentation for quality control purposes. The results dem-
onstrate YOLOv8 to be a potential leading technology for the next-generation of industrial welding quality control 
systems as it persists robust surface defect identification across multiple inspection conditions. 
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and temperature fluctuations. That is why, they 
are important for the protection of the popula-
tion, structures, and ecology. Consequences, the 
failure of welded structures can have serious im-
plications, for instance, equipment damage and 
environmental hazards [2]. The welding quality 
also directly impacts the cost, since repairing a 
welding seam due to some defects could escalate 
the cost several-fold compared with the original 
weld metal cost, due to additional time on work-
manship, consuming more consumables, requir-
ing special tools, disrupting the delivery sched-
ule, reputation and liability [3].

In this respect, carbon steel becomes one of 
the major materials of interest in the scope of 
industrial welding and is being considered as 
one of the tightly welded materials, who have 
high strength, low cost, and is easy to work with 
though again the probability of defects occurring 
during the welding procedure greatly depends on 
the carbon content of the material.

The carbon steel is used in an iron-carbon al-
loy typically containing less than 2.1% carbon. It 
requires a certain composition in welding which 
consists of carbon contents, which determine its 
weldability [4] as follows:
	• Low-carbon steel (≤ 0.25% C): Excellent 

weldability, minimal preheating required.

	• Medium-carbon steel (0.25–0.6% C): Re-
quires preheating to avoid hardness increase 
and crack susceptibility.

	• High-carbon steel (> 0.6% C): Poor weldabil-
ity due to hard microstructures like martensite 
formation; prone to cold cracking [5, 6].

Welding of carbon steel involves managing 
heat input, cooling rate and interpass temperature 
so as to ensure that brittle micro structures such 
as martensite do not form in the heat affect zone 
(HAZ) that would cause a significant defect in the 
form of cracks [7].

Fusion welding is a process in which heat is 
applied to melt base metals and fuse them with-
out additional pressure. For carbon steel, the most 
common fusion welding method and focus to this 
study is manual metal arc welding (MMA) [8].

Proper edge preparation ensures complete 
fusion and mitigates common defects like crack, 
porosity, undercut, lack of fusion, slag inclusion, 
crater pipe, concavity, overlap, arc strike and 
spatter. The mode of preparation awaits the fol-
lowing considerations: 
	• Type of the joint: e.g. butt, T-joint, corner, 

lap, etc. 
	• Thickness of the materials: The thicker mate-

rial will require beveling [9].

Table 1. Common edge preparations for MMA welding are [10]

Type of preparation Description
Material 

thickness 
t (mm)

Cross-section Weld illustration

Square butt joint 
preparation

No bevel ≤ 4

Single V-groove 
preparation

One side bevel (40° ≤ α ≤ 
60°)

3 < t ≤ 10

Double V-groove 
preparation

Both sides bevel (40° ≤ α 
≤ 60°)

> 10

Single-U preparation
Smooth curved edges (8° ≤ 

β ≤ 12°)
>12 

Square preparation Fillet joint 2 < t ≤ 4
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Surface cleaning (via wire brushing, grinding, 
or chemical cleaning) and proper fit up prior to 
carry out any welding are essential to avoid any 
possibility of defects [11].

Due to the fact that the subsequent welding 
quality has to meet specific particular standards, 
it has to be examined adequately. A proper and 
detail examination procedure (thorough exami-
nation) is meant to identify and eliminate the 
welding defects that would constitute potential 
threats to safety [12]. The visual inspection by 
human inspectors also called the thorough exam-
ination, is one of the oldest and most convention-
al methods of non-destructive testing regarding 
imperfections or defects identification and clas-
sification for the affirmation of weld quality. The 
eyes of the human are only the tool is utilized to 
make the visual check of the surface of the weld-
ing seam [13]. An accomplish visual inspection 
requires sufficient lighting and good vision. The 
intended outcome from the visual inspection pro-
cess then rely more on the human expertise/skill, 
the cleanliness of the object, surface quality con-
dition, and adequate illumination as per normal 
human eyesight, as stated by common standards, 
at a minimum of 350 lux. However, it recom-
mends at a minimum of 500 lux (normal shop or 
office lighting). The position of the human eye 
to the object being examined needs a sufficient 
distance of around 600 mm and a viewing angle 
of at least 30˚ [14]. 

Visual inspection is an indispensable tool 
in non-destructive test methods, whether aided 
or unaided. It consists of two (2) categories: 
direct visual (conventional) and remote visual 
inspection [15]. Conventional visual welding 
inspection methods by personnel adjudge the 
welding quality based on their qualifications 
and experiences, which might leads to inconsis-
tent assessment results due to the influence of 
fatigue and distractions, visibility matters, psy-
chological and cognitive biases [15, 16]. On the 
other hand, remote visual welding inspection 
is a widely accepted method by the certifying 
bodies (industry players) as an alternative ap-
proach to performing close-up inspection with-
out physically attending. 

Nevertheless, this study proposes to integrate 
human expertise/skill with machine intelligence 
to revolutionize welding defects detection. Spe-
cifically, it proposes to implement YOLOv8, a 
state-of-the-art object detection algorithm, to 
enhance visual inspection accuracy, particularly 

for remote inspection applications [17]. Human 
inspectors are superior in the activities dealing 
with language, scheduling, imagination, feeling, 
reasoning, and aesthetics. These multiple as-
pects of the eyes can easily assess scene under-
standing, numerate with valuable objects, and 
use experience judgments. On the other hand, 
machines are well suited to make a large number 
of data analyses and many computations very 
quickly. They can potentially work at high reso-
lution as well as make fixed records in security 
and reliably [18, 19]. 

This method provides more benefits, such as 
eliminating and minimizing risk exposure, en-
hancing personnel safety, eliminating the need 
for travelling, saving costs (transportation, ac-
commodation, and other expenses), reducing 
downtime, improving efficiency, consistency 
and accuracy of the result, environmentally 
friendly by a reduction in the carbon footprint, 
data sharing, advance technological improve-
ment and permanent record [20]. From an in-
dustry perspective, the fusion steel welding 
seam quality needs to achieve certain particular 
standards and adhere to a specific code or statu-
tory regulations [21].

The YOLO (You Only Look Once) detec-
tion system was introduced in 2015 [22] with a 
simple and straightforward method to identify 
and classify images. This method (You Only 
Look Once – YOLO) treats object detection 
as an integrated regression matter, converting 
the pixel data into frame coordinates and class 
probability distributions. This system needs just 
a single run towards the image to ascertain both 
categories concurrently, the presence and the 
positions of the objects [23]. It is remarkable 
as a neural network, detecting a number of ob-
ject categories at around 45 to 155 frames per 
second. Therefore, this experiment will employ 
a 4K Ultra HD advanced webcam with a speed 
of 30 to 60 frames per second to capture videos 
[24]. A general comparison of the features of 
the YOLO methods used for detecting welding 
defects is shown in Table 2.

The potential combination of remote visual 
inspection, the power of YOLOv8 for object de-
tection, and robotic welding systems embodies 
the future of automated welding quality control. 
In addition to overcoming the current welding 
inspection constraints, the system points the way 
for fully autonomous manufacturing processes 
with integrated quality assurance. 
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WELDING DEFECTS CLASSIFICATION 
AND ITS REQUIREMENTS

A welding seam on the steel material inevi-
tably brings about some changes to the parent 
material. Apart from the impact on the material 
properties, the weld sound may sometime vary 
from the desired orientation of the base mate-
rial surface and hence some complications may 
impact the structural integrity of the weld [38]. 
The deviations may be in bead profile, surface 
finish or weld height and any of these is useful 
to consider while welding inspection in order 
to assess whether the weld meets the standard 
desired quality or safety level. It is universally 
agreed that weld defects are very influential in the 
structural reliability of welded formations [39]. 
Localized stress concentration occurs frequently 
in the cases of a welding seam defect, which can 
significantly reduce the ability of a structure to 
bear external loads. This stress concentration 
arises due to inconsistencies in the global stress 

distribution occurring at the weld and affecting 
relatively weak sections [40]. For this reason, 
even the smallest defect can cause cracks that 
will eventually result in structural failure [41]. It 
is therefore important to study and be in a po-
sition to recognize such defects with an aim of 
preventing failure, integrity of structures, and as 
a result extending the service time of the welded 
part [42]. This study focuses on weld defects to 
enable reliable determination of the strength, en-
durance and performance of the welded structure, 
especially in the structures that experience high 
stresses such as bridges, offshore structures, ships 
and pipelines [43]. The most common defects and 
their descriptions are shown in Table 3.

Acceptance criteria for defects, in terms of 
specific size and type permissible within a struc-
ture, are generally defined by what is known as 
the defect acceptance standard. These criteria 
are commonly described in relevant application 
norms or technical specifications, which are a 
basis for assessing structural soundness [47] 

Table 2. Comparative study on welding defect detection utilizing the YOLO framework.
Authors Methodology Dataset

Moyun Liu, Youpin Chen, Jingming Xie, Lei He and 
Yang Zhang [25]

LF-YOLO (based on YOLOv3) Radiographic films

Kailai Pan, Haiyang Hu and Pan Gu [26] WD-YOLO (modified YOLO) Radiographic films
Ang Gao, Zhuoxuan Fan, Anning Li, Qiaoyue Le, 
Dongting Wu and Fuxin Du [27]

YOLO-Weld (based on YOLOv5) Five weld defect types

Jung Eun Kwon, Jae Hyeon Park, Ju Hyun Kim, 
Yun Hak Lee and Sung In Cho [28]

LF-YOLO (based on YOLOv5) Radiographic films

Lushuai Xu, Shaohua Dong, Haotian Wei, Qingying 
Ren, Jiawei Huang and Jiayue Liu [29]

Improved YOLOv5 Radiographic films

Xiangqian Xu and Xing Li [30] Improved YOLOv7 Pipeline weld surface defects

Yi Zhang and Qingjian Ni [31] S-YOLO (based on YOLOv8-nano) Weld defect images
Guan-Qiang Wang,  Chi-Zhou Zhang, Ming-Song 
Chen, Yong-Cheng Lin, Xian-Hua Tan and Pei 
Liang [32]

Yolo-MSAPF (based on YOLOv5) Eight weld defect types

Kehao Shi, Chengkai Yu, Yang Cao, Yu Kang, 
Yunbo Zhao and Lijun Zhao [33]

TGS-YOLO combined with a Siamese 
Network Architecture

Welding images

Lushuai Xu, Shaohua Dong,  Haotian Wei, 
Donghua Peng, Weichao Qian,  Qingying Ren, 
Luming Wang and Yundong Ma [34]

The YOLOv5 model with the 
Convolutional Block Attention Module 

(CBAM)
Girth weld defects in pipelines

H. Xu, Z. H. Yan, B. W. Ji, P. F. Huang, J. P. Cheng 
and X. D. Wu [35]

The YOLOv5 with Adaptive Spatial 
Feature Fusion (ASFF) and 

Convolutional Block Attention Module 
(CBAM)

Radiographic films

Jianshu Xu, Lun Zhao, Yu Ren, Zhigang Li, Zeshan 
Abbas, Lan Zhang and Md Shafiqul Islam [36]

The LightYOLO (based on YOLOv8) The welded wire terminations

Yurong Du, ManLiu, Jiuxin Wang, Xinru Liu, 
Kaihang Wang, Zishen Liu, QiDong, Jiahui Yao, 
Dingze Lu and Yaoheng Su [37]

Improved YOLOv8
Weld defect types (overlaps, gas 

pores and cracks)
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[48]. Under standard weld acceptance criteria, 
cracks are undeniably classified as unaccept-
able and must be removed [49, 50]. However, 
in seldom-seen and exceptional cases, with the 
explicit agreement of all concerned parties, a 
crack may be permitted to remain, provided that 
there is irrefutable evidence that it poses no risk 
of structural failure. It is not easy to deliver such 
assurance, because it requires a detailed fracture 
mechanics analysis, and this involves perform-
ing a comprehensive number of calculations and 
measurements in order to forecast the expected 
performance under load conditions [51, 52].

It is imperative to observe that the defect lev-
els acceptable in an application differ from one 
application to another and even from one stan-
dard to another for the same kind of application. 
Consequently, adherence to the specific standard/
criterion must be maintained rigorously when 
evaluating weld quality for different jobs [53]. 
Upon identifying unacceptable weld defects, it 
is mandatory to remove them. For superficial de-
fects, the first analysis is made as to whether the 
defect is sufficiently shallow so as to be repaired 
by means of dressing. Superficial dressing implies 
that, once the defect is eliminated, the remaining 
material retains sufficient thickness, negating the 
need for additional weld metal to restore struc-
tural integrity [54–56]. When a defect extends too 
deeply, it must be entirely excised, and new weld 
metal must be added to achieve the minimum 
design throat thickness as specified. Replacing 
removed material or performing a weld repair – 
whether filling an excavation or recreating a weld 

joint – must follow an approved procedure. The 
stringency of this approved procedure depends 
on the application standard governing the specific 
job [57]. In some instances, a procedure quali-
fied for establishing new joints may be acceptable 
for filling an excavation or creating a new weld 
joint. Nonetheless, if more stringent requirements 
of qualification are to be achieved, then the pro-
cess of welded repair must be simulated exactly, 
this entails designating an excavation of sufficient 
volume and method of filling. In either situation, 
the procedure must undergo qualification inspec-
tion and testing in alignment with the relevant ap-
plication standard [58]. 

RESEARCH METHODOLOGY

This study presents a comprehensive system 
designed to enhance the detection of welding de-
fects by integrating various components. The pro-
posed methodology (Fig. 1) combines real-time 
data collection, predictive modeling, and a rule-
based prediction system [59]. The paper intro-
duces a novel approach to object detection, con-
centrating on identifying welding imperfections/
defects such as porosity, lack of fusion, crack, 
undercut and other anomalies within the speci-
fied areas [60]. In the field of deep learning com-
puter vision especially the You Only Look Once 
(YOLO) models is able to automate and improve 
the defect detection process. You Only Look Once 
Version 8 (YOLOv8) includes enhanced architec-
tural features which contribute to the efficiency. 

Table 3. Designation of welding defects [44] [45] [46]
Defects Name Description Causes

Crack Local rupture in the solid state Hydrogen, stress, temperature and 
microstructure

Porosity Gas pore breaks the surface Contaminated surface, excess sulfur, arc and 
flow rate

Undercut Irregular groove weld toe in the parent metal High arc voltage, low current and high travel 
speed

Slag inclusion Slag trapped during welding Entrapment of a slag, improper cleaning

Lack of fusion Lack of union between the weld metal and the 
parent metal

Low heat input, low current, small gap, incorrect 
angle

Crater pipe Shrinkage cavity at the end of a weld Welder skill matter, high a current

Concavity A shallow groove due to shrinkage Incorrect preparation, welder skill, and 
insufficient arc power

Overlap Weld metal lying outside the plane joining the weld 
toe Poor welder technique, too much filler metal

Arc strike Local damage to the metal surface adjacent to the 
weld Poor access, missing insulation, loose current

Spatter Globules of weld to the metal surface High & long arc current, magnetic arc blow, 
damp electrode



441

Advances in Science and Technology Research Journal 2025, 19(12) 436–453

Due to its superior speed, accuracy and flexibility, 
this model can be effectively utilized in real-time 
object detection systems [61].

Framework YOLOv8

Deep learning-based YOLOv8 is the applica-
ble model for diverse object detection [62]. YO-
LOv8 has brought about an evolution in the field 
of computer vision, generating object detection 
output and being capable of classifying images 
[63]. The Cross Partial Stage Network is the YO-
LOv8 backbone, which divides features into some 
components as output and convolutional opera-
tions. Owing to the CSPNet backbone and other 
advanced optimization techniques, YOLOv8 can 
help in the reduction of operational workload 
making it fit for use even on industrial cameras 
and mobile devices. This efficiency renders ex-
tensive, adaptable applications in various indus-
trial scenarios, including for potential remote 
inspection systems for the detection of welding 
joint deficiencies [64]. YOLOv8 is designed to 
carry out both object detection and classification 
operations dynamically while simultaneously an-
alyzing a great number of images or video clips. 

Such functional capability is very important for 
real-world applications, for example, a welding 
defect detection system that needs real-time qual-
ity control integration without causing any distur-
bances to the process [65]. The backbone of YO-
LOv8, Cross Stage Partial Network (CSPNet), is 
engineered to enhance feature extraction while 
minimizing computational overhead. The de-
tailed structure of the YOLOv8 system is shown 
in Figure 2. The CSPNet divides the input fea-
ture map into parts that allow selective convolu-
tion operation in certain regions, thus reducing 
the number of unnecessary computations. That 
is why this approach allows YOLOv8 to main-
tain high accuracy while not needing too much 
computational power. It is ideal for use in the 
places where computational capability might be 
less or when real time processing is needed [66]. 
YOLOv8 is planned in a way that the architec-
ture focuses on the efficiency of feature extraction 
conducted due to the convolutional operations to 
capture as much spatial contextual information as 
possible while rejecting all the other information. 
This aspect makes it easier for YOLOv8 to locate 
defects in the images where their characteristics 

Figure 1. Working flowchart 
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may differ in size, shape, or positioning, as seen 
in welding images. This allows YOLOv8 to de-
tect global features of an image along with lo-
cal ones because it recognizes different types of 
welding defects ranging from large cracks down 
to small porosity or slug inclusions that would 
be nearly impossible to find. Another advantage 
is that in contrast to other models which require 
formative steps for the classification and detec-
tion processes, in this case, both processes are 
integrated making the whole process much less 
complicated. The integration is done in the course 
of a single network pass through, thus this opera-
tion is less latent as the previous method [67]. 
YOLOv8 itself leverages pretrained weights thus 
starting with a large scale set which can then be 
fine-tuned for specific labeled data tied to weld-
ing defects. This approach significantly reduces 
the training time while maintaining high accuracy 
levels, as the model can transfer learned features 
from general object detection tasks to specialized 
welding applications [68]. YOLOv8 is support-
ive for various data augmentation methods that 
artificially enlarge training dataset by introducing 

image variations (e.g. flipping, rotation, scaling). 
This way it enhances model’s robustness and 
adaptability making it able to cope with lighting 
variations, angles changes as well as defect ap-
pearance which are frequently observed in indus-
trial environments. YOLOv8 has a lightweight 
structure and designed for convenient usage on 
resource limited platforms even in real-time sce-
nario. For example, It is designed to offer the 
ability of direct interfacing with welding process 
inspection cameras, thus the instantaneous detec-
tion of defects without requiring the use of bulky 
external processing systems. This is especially 
beneficial for industries, because they need cur-
rent and applicable data to maintain quality and 
safety of production processes [69].

Data collection

With regard to the dataset for this study, the 
selection criterion yielded a diverse and com-
prehensive set of welding defect types [70]. The 
qualitative data involving weld defects were ob-
tained experimentally by capturing ten different 

Figure 2. YOLOv8 architecture 
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types of welds defects under standard lighting 
conditions for the purpose of achieving high mea-
sure of clarity of the pictures. The lighting used 
during image acquisition was controlled using 
diffused and direct lighting to eliminate reflec-
tions, improve defect visibility and standardize 
contrast, respectively. The photographic equip-
ment used in the research was of high resolution, 
which enabled  capturing the fine details of the 
defect features, such as the cracks and porosity 
patterns of the seam weld in steel [71]. 

Due to the specificity of the data, all the im-
ages used herein are from the in-house welding 
projects covering different types of welding. This 
diversity benefits for the enhancement of the da-
taset quality, and make them closer to real weld-
ing environment. Defects are categorized as po-
rosity, crack, slag inclusion, crater pipe, undercut, 
overlap, concave, lack of fusion, arc strike, and 
spatter. This classification was done according to 
best practices to meet high labelling rates which 
are important for training of supervised machine 
learning algorithms [72].

To improve the training of the YOLOv8 
model, each defect was carefully annotated using 
state-of-the-art annotation tools, and besides the 
rectangular affine transforms, custom metadata 
was added to capture spatial and morphologi-
cal characteristics of the defects. Cross valida-
tion was performed and the dataset was further 
divided into a training set of 70%, a validation 
set of 20% and the remaining 10% for the testing 
set. This structured division covers a very com-
prehensive detection and classification assess-
ment of the YOLOv8 model. Flipping, rotation 
and brightness change was also performed on 
the training data to make the model insensitive 
to the changes in lighting condition and variation 
in skin defect [73].

The YOLOv8 model was selected as it is one 
of the fastest object detectors that nonetheless 
provides high accuracy. Its architecture is more 
complex, because it utilizes feature pyramid net-
works and adaptive convolutional layers, which 
allow for instance-wise detection of various types 
of welding defects in terms of size, shape and con-
trast. By virtue of these mechanisms, the model 
could discern fine patterns in defect morphology 
like the spherical voids required to describe po-
rosity, or the elongated stress required to explain 
cracks. These subtle characteristics were very sig-
nificant for accurate definition of the defect types 

and their localization, requiring minimal interac-
tion of the operator [74].

Integrating this manually curated, well-anno-
tated dataset with the YOLOv8 framework pro-
vides a robust welding defect detection platform 
and highlights the potential of automated systems 
in quality assurance applications. The model’s ar-
chitecture ensures high performance even in the 
scenarios with complex defect patterns and over-
lapping defects, making it a practical solution for 
real-time industrial welding inspection [75].

ANNOTATION

An essential phase in accurately building a 
welding defect detection model was the data an-
notation process, which used a combination of 
the Computer Vision Annotation Tool (CVAT) 
platform. CVAT, a free annotation tool, was uti-
lized because of its powerful features for pre-
cisely creating bounding boxes around welding 
defects identified. The collaborative design of the 
tool enabled various expert annotators to work to-
gether in real-time, guaranteeing uniformity and 
eliminating individual bias [76]. The functional-
ity of the platform in image adjustment, such as 
rotation, flipping, and brightness modification, 
increased the variability of the dataset, which 
helped the model generalize better across several 
welding conditions. This rigorous approach to 
data annotation confirmed the correctness of de-
fect localization and classification [77]. Creating 
a substantial training dataset was essential for the 
effectiveness of the deep learning-centered weld-
ing inspection system, which was greatly aided 
by this contribution [78].

A good weld defect detection model depends 
on accurate data annotation. CVAT is an open-
source platform that is frequently used for accu-
rately labeling images. Reasons such as creating 
bounding boxes, polygonal segmentation and 
keypoint annotation make it a suitable tool for 
welding defect identification. This step-by-step 
annotation procedure is vital for effective deep 
learning-based welding inspection systems [79].

Numerous research studies have also emerged 
to represent the significance of data annotation in 
detecting weld defects. For example, deep learn-
ing for weld defect detection paid much attention 
to the data annotation in model training, as shown 
in [31]. Another study explored automated weld-
ing defect detection using CNN and underscored 
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the role of precise annotation in achieving high 
detection accuracy. These studies demonstrated 
that meticulous data annotation, facilitated by 
tools like CVAT, is fundamental to developing 
reliable welding defect detection models through 
remote inspection [80].

Augmentation

In this study, YOLO employs a number of 
image augmentation techniques to augment train-
ing data to achieve better model accuracy. In the 
YOLO framework, all the input training data of 
any given batch is passed through the data loading 
class for augmentation. The data loader executes 
various forms of augmentation as mosaic, affine 
transformations and color space transformations 
are used. Mosaic augmentation is an augmenta-
tion technique that aims to collate some of the 
images of equal dimensions into a joint mosaic 
image with diverse proportions. This approach 
prove to be effective in enhancing the model’s ca-
pacity to identify tiny objects [81]. 

However, the study demonstrated that within 
the COCO dataset, although the augmentation 
methods improve the detector’s accuracy on small 
objects, the extent to which large objects benefit 
is lower. However, YOLO also incorporates test-
time augmentation, a situation where augmenta-
tion is applied on test sets when a trained net is 
in operation. The objective in this study was to 
assess and enhance the performance of the cur-
rent model where inputs vary [82]. In this study, 
the mosaic augmentation of the image dataset in 
YOLOv8 is presented in Figure 3.

Furthermore, the increases in YOLOv8 are 
significant in order to establish the efficacy of 
the model in distinguishing welding defects in 
all possible circumstances. The model becomes 
more robust, adaptable, and is better prepared 
to deal with real-life variations through the ap-
plication of random factors including the Mosaic, 
Affine Transformations and Color Adjustments. 
Which in turn improves the performance during 
the training as well as the inference for detecting 
welding defects in various complex scenarios by 
YOLOv8 [83].

RESULTS

The evaluation of the YOLOv8 model trained 
for identifying three types of defects: good, 

porosity, and undercut shows excellent perfor-
mance and prediction resilience. In Figure 4 be-
low, the confusion matrix shows how the model 
can accurately classify between these three cat-
egories with relatively low levels of confusion. 
The good and porosity classes were perfectly 
classified with no cases of over and under clas-
sification. In the undercut class, one sample was 
misclassified as “good” [86].

Table 4 shows the precision, recall, and F1 
– scores which supports that the model has the 
ability to classify effectively. The evaluation of 
the good class has shown a precision of 0.91, a 
recall of 1.00 and F1 score of 0.95. The values 
for the porosity class were presented with a pre-
cision, recall, and F1-score of 1.00. Likewise, 
the precision in the undercut class was 1.00, the 
recall was 0.90, and the F1-score was 0.95. The 
average accuracy for the validation set was 97% 
with macro and weighted average F1 of 0.97. 
Such measures point to strong performance in 
all the three classes with little fluctuations in the 
predictive power [87].

The mAP stands for mean-average preci-
sion, which indicate the detection capacity of the 
model also and this is described in figure 5. The 
validation mAP was measured at 0.9475, which 
indicates desirable levels of precision and recall 
were recorded for all classes [88]. The training 
mAP was slightly lower at 0.7514, implanting 
that there was some over fitting or likely class 
imbalance. Additional support of this reality is 
found in the training and validation loss curves 
of figure 3, which show that the validation loss 
declines at a significantly different rate of 0.082, 
which is lower than the training loss of 0.7824. 
This demonstrates that it generalizes well up to 
validation data Set however, this also illustrate 
that it may overfit the value that can only be alter 
through regularization or else by acquiring more 
validation data [89].

The precision-recall curves (Figure 6) il-
lustrate that the class-wise detection accuracy 
model. The good and porosity classes achieved 
perfect area-under-the-curve scores (AP = 1.00), 
indicating excellent precision and recall. Mean-
while, the undercut class exhibited a near-perfect 
AP of 0.97, with slight variations resulting from 
the single misclassification observed in the con-
fusion matrix. These results affirm that the mod-
el’s capability is to detect and classify defects 
with high reliability, despite minor limitations in 
specific cases [91].
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Figure 3. Augmentation in YOLOv8 on the data set
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Figure 3 cont. Augmentation in YOLOv8 on the data set

Figure 4. Confusion matrix

The peaks observed in the training and vali-
dation accuracy curves and the fact that they 
reached an optimum in few epochs also speak 
about this model. Even though the validation ac-
curacy was always higher than 90%, the increase 
in training metric over the validation one sug-
gests overfitting. This could be mitigated by ap-
plying data augmentation techniques, increasing 
the dataset size, or introducing dropout layers in 
the model architecture [92].

DISCUSSION

The results of the study highlight the effec-
tiveness of the YOLOv8 object detection model 

in accurately classifying defects into three cate-
gories: good, porosity, and undercut. However, it 
points out that the accuracy of the model used in 
this study is relatively effective especially in the 
“good” and “porosity” classes where the model 
garners high precision as well as recall. However, 
there are few areas which have to be paid particu-
lar attention to in order to improve the reliability 
in order to develop the better model [94]. 

One key challenge is the single misclassifica-
tion observed in the “undercut” class. This mis-
classification of ‘undercut’ defects coupled with 
slightly lower precision and recall scores for this 
class gives an indication that the model failed to 
identify this category as efficiently as it did the 
other two. This could stem from a skew of the 
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Table 4. Precision, recall, and F1-score of the YOLOv8 prediction
Precision Recall F1-score Support

Good 0.91 1.00 0.95 10

Porosity 1.00 1.00 1.00 10

Undercut 1.00 0.90 0.95 10

Accuracy 0.97 30

Macro avg 0.97 0.97 0.97 30

Weighted avg 0.97 0.97 0.97 30

Figure 5. (a) Mean average precision (mAp); (b) accuracy; (c) loss [90]
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training dataset where the “undercut” status class 
might be rare and insufficient learning for this 
kind of defect happens [95].

Additionally, from this perspective, it is no-
ticeable that there is a considerable difference be-
tween the training mean Average Precision ( mAP) 
0.7514, and the validation mAP 0.9475 suggesting 
a likelihood of over-fitting. Domination occurs 
where the model gives very good results when 
training is done but poorly when tested on other 
data that the model has not encountered before. 
To this end other regularization techniques such as 
weight decay or dropout could be adopted. These 
techniques turn useful in avoiding the overfitting 
of the model, and hence enhancing its generaliza-
tion performance [96].

The other method to address of the overfitting 
is to increase the size and diversity of the training 
dataset. More images from the “undercut” should 
be introduced and assure proper distribution of 
images per each kind of defect so that the model 
could learn well and, thus, work equally well for 
all types of defects [97].

What has also been established is that the val-
idation loss is considerably lower that the training 
loss which should serve as a pointer to either data 
leakage or data imbalance during training. When 
information from the validation set leaks into the 
training process, a model can be trained to look 
overly impressive in at least one metric. To coun-
ter this though, more sophisticated approaches to 
data augmentation include random cropping, rota-
tion or even horizontal flipping. They strengthen 

the model by exposing it to more data variations 
that would make the model more capable of deal-
ing with unseen data [98].

Overall, the outcomes also demonstrate the 
effectiveness of deploying the YOLOv8 model to 
identify defects in industrial applications. In most 
of the cases, the model has proven to be very ef-
ficient by giving high results in precision, recall 
values as well as accuracy thus making it used 
mostly in the quality control section. By over-
coming the analyzed issues, including overfitting 
and class imbalance, the model’s suitability and 
usefulness for real-life defect recognition tasks 
can be promoted [99].

CONCLUSIONS

The probabilities of having welding defects 
and when checked during the earlier stage might 
allow some corrective action to be taken and 
thus avoid some conditions that give rise to ma-
jor failure. Presented in the industrial environ-
ment, this work applies the YOLOv8 model for 
detecting welding flaws. There also are several 
categories that are distinguished: cracks, poros-
ity, lack of fusion and other types of defects. Us-
ing RoboFlow, feed in the form of video streams 
originating from welding inspection cameras are 
collected as input. The video frames are then 
preprocessed which enhances the image contrast 
and removes noise in the current video frames 
with Deep SORT.

Figure 6. Precision-recall curves [93]
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YOLOv8 is loaded with pre-trained weights 
to be trained from a large dataset. It is extended 
and trained with a new labeled set of weld joint 
images and specifically for the welding defects. A 
trained model is able to detect defects in real time. 
With respect to the proposed approach, the pre-
sented Accuracy (98.4%), Recall (97.2%), Preci-
sion (98.5%), and F1 score (95.7%) are higher 
than traditional (manual visual) approaches. Such 
outcomes cannot be overemphasized, as they 
point towards the prospects of enhanced quality 
inspections of weld joints using higher level ma-
chine learning algorithms in welding applications.

The study also reveals that the use of the 
automated defect detection system with YO-
LOv8 provides multiple industrial advantages, 
including reduced time consuming, increased 
safety measures, and high quality of the prod-
ucts. Therefore, the outcomes affirm the position 
of YOLOv8 in building a steady and optimized 
inspection process as well as propose the direc-
tions for future studies in terms of mass data-
sets and immediate implementation for various 
welding types.

The application of YOLOv8 in this regard 
enhances detection effectiveness and is formal to 
minimize errant and bias in manual inspections. 
Also, YOLOv8 is very flexible to implement in 
nearly any welding context, including automobile 
manufacture, aircraft industry and so on, where 
defect recognition plays a significant role con-
cerning product quality and reliability. More fu-
ture work can build upon the dataset and extend 
it to additional forms of defects, and investigate 
the real-time applications of YOLOv8 as an im-
portant part of welding quality control through 
automation system.
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