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ABSTRACT

Nowadays, deep learning and machine vision technologies are power artificial intelligence tools based on indus-
trial welding defect detection operations in manufacturing and require superior automated inspection systems.
YOLOVS represents the advanced stage of YOLO deep neural network architecture which brings powerful object
detection features to fusion welding applications resulting in high accuracy for computer vision quality control
technology. The integration between artificial intelligence and traditional inspection approaches now provides a
viable route for reducing the dependency on humans through automated methods that inspect conventional welds.
The research executes YOLOvVS as a leading-edge deep learning structure which detects welding flaws auto-
matically through machine vision systems for potential remote welding surface assessments. The proposed system
stands apart from previously described systems because it combines high-resolution machine vision cameras (ad-
vanced webcam 7022 ultrasharp 4K UHD) with sophisticated convolutional neural network structure of YOLOVS.
Standardized remote visual inspection configurations were implemented to gather datasets from steel weld inspec-
tions while testing the system for various typical carbon steel welding defect shapes. The training portion of the
deep learning model underwent evaluations in detail to assess both its real time deployment suitability as well as
its defect identification and categorization abilities. The study has revealed a mean average precision of 97.2%
in identifying common defects in welding of alloy carbon steel (e.g. porosity, undercut and good surface profile).
Evaluation on a dataset of 1,200 annotated images of welds revealed the inference speed of 42 FPS (frames per
second) on NVIDIA GeForce RTX 4050 Laptop GPU, which allows the process to operate in real-time inspection.
Precision and recall rates amounted to 97.3% and 97.1% correspondingly. A comparative examination indicated
there was a reduction of about 30-35% in inspection time compared to the manual methods but sustained the 97%
accuracy levels in defect classifications across multiple inspection conditions.The testing process verified remark-
able system performance with high accuracy reaching 97% confidence for its complex deep learning algorithms.
The system offers better assessment speed than traditional inspection methods and simultaneously lowers the need
for human involvement as well as offers total digital documentation for quality control purposes. The results dem-
onstrate YOLOVS to be a potential leading technology for the next-generation of industrial welding quality control
systems as it persists robust surface defect identification across multiple inspection conditions.
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INTRODUCTION machinery, pressure vessels, power generation
machinery and other various products using metal

Welding technologies play a crucial role in the [1]. The welding structures commonly face chal-
construction of structures such as steel buildings,  lenging operating conditions during in-services,
ships, offshore structures, steel bridges, heavy such as structural stresses, environmental aspects,
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and temperature fluctuations. That is why, they
are important for the protection of the popula-
tion, structures, and ecology. Consequences, the
failure of welded structures can have serious im-
plications, for instance, equipment damage and
environmental hazards [2]. The welding quality
also directly impacts the cost, since repairing a
welding seam due to some defects could escalate
the cost several-fold compared with the original
weld metal cost, due to additional time on work-
manship, consuming more consumables, requir-
ing special tools, disrupting the delivery sched-
ule, reputation and liability [3].

In this respect, carbon steel becomes one of
the major materials of interest in the scope of
industrial welding and is being considered as
one of the tightly welded materials, who have
high strength, low cost, and is easy to work with
though again the probability of defects occurring
during the welding procedure greatly depends on
the carbon content of the material.

The carbon steel is used in an iron-carbon al-
loy typically containing less than 2.1% carbon. It
requires a certain composition in welding which
consists of carbon contents, which determine its
weldability [4] as follows:

e Low-carbon steel (< 0.25% C): Excellent
weldability, minimal preheating required.

e Medium-carbon steel (0.25-0.6% C): Re-
quires preheating to avoid hardness increase
and crack susceptibility.

e High-carbon steel (> 0.6% C): Poor weldabil-
ity due to hard microstructures like martensite
formation; prone to cold cracking [5, 6].

Welding of carbon steel involves managing
heat input, cooling rate and interpass temperature
so as to ensure that brittle micro structures such
as martensite do not form in the heat affect zone
(HAZ) that would cause a significant defect in the
form of cracks [7].

Fusion welding is a process in which heat is
applied to melt base metals and fuse them with-
out additional pressure. For carbon steel, the most
common fusion welding method and focus to this
study is manual metal arc welding (MMA) [8].

Proper edge preparation ensures complete
fusion and mitigates common defects like crack,
porosity, undercut, lack of fusion, slag inclusion,
crater pipe, concavity, overlap, arc strike and
spatter. The mode of preparation awaits the fol-
lowing considerations:

e Type of the joint: e.g. butt, T-joint, corner,
lap, etc.
e Thickness of the materials: The thicker mate-

rial will require beveling [9].

Table 1. Common edge preparations for MMA welding are [10]

Material
Type of preparation Description thickness Cross-section Weld illustration
t (mm)
Square butt joint
. No bevel <4
preparation
Single V-groove One side bevel (40°<a <
) 3<t<10
preparation 60°)
Double V-groove Both sides bevel (40° < a >10
preparation <60°)
. . Smooth curved edges (8° < o
Single-U preparation >12 &
B<12°)
f
Square preparation Fillet joint 2<t<4 é 4
Q

% 70
Ay
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Surface cleaning (via wire brushing, grinding,
or chemical cleaning) and proper fit up prior to
carry out any welding are essential to avoid any
possibility of defects [11].

Due to the fact that the subsequent welding
quality has to meet specific particular standards,
it has to be examined adequately. A proper and
detail examination procedure (thorough exami-
nation) is meant to identify and eliminate the
welding defects that would constitute potential
threats to safety [12]. The visual inspection by
human inspectors also called the thorough exam-
ination, is one of the oldest and most convention-
al methods of non-destructive testing regarding
imperfections or defects identification and clas-
sification for the affirmation of weld quality. The
eyes of the human are only the tool is utilized to
make the visual check of the surface of the weld-
ing seam [13]. An accomplish visual inspection
requires sufficient lighting and good vision. The
intended outcome from the visual inspection pro-
cess then rely more on the human expertise/skill,
the cleanliness of the object, surface quality con-
dition, and adequate illumination as per normal
human eyesight, as stated by common standards,
at a minimum of 350 lux. However, it recom-
mends at a minimum of 500 lux (normal shop or
office lighting). The position of the human eye
to the object being examined needs a sufficient
distance of around 600 mm and a viewing angle
of at least 30° [14].

Visual inspection is an indispensable tool
in non-destructive test methods, whether aided
or unaided. It consists of two (2) categories:
direct visual (conventional) and remote visual
inspection [15]. Conventional visual welding
inspection methods by personnel adjudge the
welding quality based on their qualifications
and experiences, which might leads to inconsis-
tent assessment results due to the influence of
fatigue and distractions, visibility matters, psy-
chological and cognitive biases [15, 16]. On the
other hand, remote visual welding inspection
is a widely accepted method by the certifying
bodies (industry players) as an alternative ap-
proach to performing close-up inspection with-
out physically attending.

Nevertheless, this study proposes to integrate
human expertise/skill with machine intelligence
to revolutionize welding defects detection. Spe-
cifically, it proposes to implement YOLOVS, a
state-of-the-art object detection algorithm, to
enhance visual inspection accuracy, particularly

438

for remote inspection applications [17]. Human
inspectors are superior in the activities dealing
with language, scheduling, imagination, feeling,
reasoning, and aesthetics. These multiple as-
pects of the eyes can easily assess scene under-
standing, numerate with valuable objects, and
use experience judgments. On the other hand,
machines are well suited to make a large number
of data analyses and many computations very
quickly. They can potentially work at high reso-
lution as well as make fixed records in security
and reliably [18, 19].

This method provides more benefits, such as
eliminating and minimizing risk exposure, en-
hancing personnel safety, eliminating the need
for travelling, saving costs (transportation, ac-
commodation, and other expenses), reducing
downtime, improving efficiency, consistency
and accuracy of the result, environmentally
friendly by a reduction in the carbon footprint,
data sharing, advance technological improve-
ment and permanent record [20]. From an in-
dustry perspective, the fusion steel welding
seam quality needs to achieve certain particular
standards and adhere to a specific code or statu-
tory regulations [21].

The YOLO (You Only Look Once) detec-
tion system was introduced in 2015 [22] with a
simple and straightforward method to identify
and classify images. This method (You Only
Look Once — YOLO) treats object detection
as an integrated regression matter, converting
the pixel data into frame coordinates and class
probability distributions. This system needs just
a single run towards the image to ascertain both
categories concurrently, the presence and the
positions of the objects [23]. It is remarkable
as a neural network, detecting a number of ob-
ject categories at around 45 to 155 frames per
second. Therefore, this experiment will employ
a 4K Ultra HD advanced webcam with a speed
of 30 to 60 frames per second to capture videos
[24]. A general comparison of the features of
the YOLO methods used for detecting welding
defects is shown in Table 2.

The potential combination of remote visual
inspection, the power of YOLOvVS for object de-
tection, and robotic welding systems embodies
the future of automated welding quality control.
In addition to overcoming the current welding
inspection constraints, the system points the way
for fully autonomous manufacturing processes
with integrated quality assurance.
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Table 2. Comparative study on welding defect detection utilizing the YOLO framework.

Authors

Methodology Dataset

Moyun Liu, Youpin Chen, Jingming Xie, Lei He and
Yang Zhang [25]

LF-YOLO (based on YOLOvV3)

Radiographic films

Kailai Pan, Haiyang Hu and Pan Gu [26]

WD-YOLO (modified YOLO)

Radiographic films

Ang Gao, Zhuoxuan Fan, Anning Li, Qiaoyue Le,
Dongting Wu and Fuxin Du [27]

YOLO-Weld (based on YOLOV5)

Five weld defect types

Jung Eun Kwon, Jae Hyeon Park, Ju Hyun Kim,
Yun Hak Lee and Sung In Cho [28]

LF-YOLO (based on YOLOV5)

Radiographic films

Lushuai Xu, Shaohua Dong, Haotian Wei, Qingying
Ren, Jiawei Huang and Jiayue Liu [29]

Improved YOLOvV5

Radiographic films

Xianggian Xu and Xing Li [30]

Improved YOLOv7

Pipeline weld surface defects

Yi Zhang and Qingjian Ni [31]

S-YOLO (based on YOLOv8-nano)

Weld defect images

Guan-Qiang Wang, Chi-Zhou Zhang, Ming-Song
Chen, Yong-Cheng Lin, Xian-Hua Tan and Pei
Liang [32]

Yolo-MSAPF (based on YOLOV5)

Eight weld defect types

Kehao Shi, Chengkai Yu, Yang Cao, Yu Kang,
Yunbo Zhao and Lijun Zhao [33]

TGS-YOLO combined with a Siamese
Network Architecture

Welding images

Lushuai Xu, Shaohua Dong, Haotian Wei,
Donghua Peng, Weichao Qian, Qingying Ren,
Luming Wang and Yundong Ma [34]

The YOLOv5 model with the
Convolutional Block Attention Module

Girth weld defects in pipelines
(CBAM)

H. Xu, Z. H. Yan, B. W. Ji, P. F. Huang, J. P. Cheng
and X. D. Wu [35]

The YOLOV5 with Adaptive Spatial
Feature Fusion (ASFF) and
Convolutional Block Attention Module

Radiographic films

(CBAM)

Jianshu Xu, Lun Zhao, Yu Ren, Zhigang Li, Zeshan
Abbas, Lan Zhang and Md Shafiqul Islam [36]

The LightYOLO (based on YOLOVS)

The welded wire terminations

Yurong Du, ManLiu, Jiuxin Wang, Xinru Liu,
Kaihang Wang, Zishen Liu, QiDong, Jiahui Yao,

Dingze Lu and Yaoheng Su [37]

Improved YOLOV8

Weld defect types (overlaps, gas
pores and cracks)

WELDING DEFECTS CLASSIFICATION
AND ITS REQUIREMENTS

A welding seam on the steel material inevi-
tably brings about some changes to the parent
material. Apart from the impact on the material
properties, the weld sound may sometime vary
from the desired orientation of the base mate-
rial surface and hence some complications may
impact the structural integrity of the weld [38].
The deviations may be in bead profile, surface
finish or weld height and any of these is useful
to consider while welding inspection in order
to assess whether the weld meets the standard
desired quality or safety level. It is universally
agreed that weld defects are very influential in the
structural reliability of welded formations [39].
Localized stress concentration occurs frequently
in the cases of a welding seam defect, which can
significantly reduce the ability of a structure to
bear external loads. This stress concentration
arises due to inconsistencies in the global stress

distribution occurring at the weld and affecting
relatively weak sections [40]. For this reason,
even the smallest defect can cause cracks that
will eventually result in structural failure [41]. It
is therefore important to study and be in a po-
sition to recognize such defects with an aim of
preventing failure, integrity of structures, and as
a result extending the service time of the welded
part [42]. This study focuses on weld defects to
enable reliable determination of the strength, en-
durance and performance of the welded structure,
especially in the structures that experience high
stresses such as bridges, offshore structures, ships
and pipelines [43]. The most common defects and
their descriptions are shown in Table 3.
Acceptance criteria for defects, in terms of
specific size and type permissible within a struc-
ture, are generally defined by what is known as
the defect acceptance standard. These criteria
are commonly described in relevant application
norms or technical specifications, which are a
basis for assessing structural soundness [47]
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Table 3. Designation of welding defects [44] [45] [46]

Defects Name Description

Causes

Hydrogen, stress, temperature and

Crack Local rupture in the solid state .
microstructure
Porosity Gas pore breaks the surface Contaminated surface, excess sulfur, arc and
flow rate
Undercut Irregular groove weld toe in the parent metal High arc voltage, Io;/:)gggrent and high travel

Slag inclusion

Slag trapped during welding

Entrapment of a slag, improper cleaning

Lack of fusion
parent metal

Lack of union between the weld metal and the

Low heat input, low current, small gap, incorrect
angle

Crater pipe Shrinkage cavity at the end of a weld Welder skill matter, high a current
Concavity A shallow groove due to shrinkage Incorrect‘ prep.ar.atlon, welder skill, and
insufficient arc power
Overlap Weld metal lying OUtS'd?otge plane joining the weld Poor welder technique, too much filler metal
. Local damage to the metal surface adjacent to the e .
Arc strike weld Poor access, missing insulation, loose current
Spatter Globules of weld to the metal surface High & long arc current, magnetic arc blow,

damp electrode

[48]. Under standard weld acceptance criteria,
cracks are undeniably classified as unaccept-
able and must be removed [49, 50]. However,
in seldom-seen and exceptional cases, with the
explicit agreement of all concerned parties, a
crack may be permitted to remain, provided that
there is irrefutable evidence that it poses no risk
of structural failure. It is not easy to deliver such
assurance, because it requires a detailed fracture
mechanics analysis, and this involves perform-
ing a comprehensive number of calculations and
measurements in order to forecast the expected
performance under load conditions [51, 52].

It is imperative to observe that the defect lev-
els acceptable in an application differ from one
application to another and even from one stan-
dard to another for the same kind of application.
Consequently, adherence to the specific standard/
criterion must be maintained rigorously when
evaluating weld quality for different jobs [53].
Upon identifying unacceptable weld defects, it
is mandatory to remove them. For superficial de-
fects, the first analysis is made as to whether the
defect is sufficiently shallow so as to be repaired
by means of dressing. Superficial dressing implies
that, once the defect is eliminated, the remaining
material retains sufficient thickness, negating the
need for additional weld metal to restore struc-
tural integrity [54—56]. When a defect extends too
deeply, it must be entirely excised, and new weld
metal must be added to achieve the minimum
design throat thickness as specified. Replacing
removed material or performing a weld repair —
whether filling an excavation or recreating a weld
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joint — must follow an approved procedure. The
stringency of this approved procedure depends
on the application standard governing the specific
job [57]. In some instances, a procedure quali-
fied for establishing new joints may be acceptable
for filling an excavation or creating a new weld
joint. Nonetheless, if more stringent requirements
of qualification are to be achieved, then the pro-
cess of welded repair must be simulated exactly,
this entails designating an excavation of sufficient
volume and method of filling. In either situation,
the procedure must undergo qualification inspec-
tion and testing in alignment with the relevant ap-
plication standard [58].

RESEARCH METHODOLOGY

This study presents a comprehensive system
designed to enhance the detection of welding de-
fects by integrating various components. The pro-
posed methodology (Fig. 1) combines real-time
data collection, predictive modeling, and a rule-
based prediction system [59]. The paper intro-
duces a novel approach to object detection, con-
centrating on identifying welding imperfections/
defects such as porosity, lack of fusion, crack,
undercut and other anomalies within the speci-
fied areas [60]. In the field of deep learning com-
puter vision especially the You Only Look Once
(YOLO) models is able to automate and improve
the defect detection process. You Only Look Once
Version 8 (YOLOVS) includes enhanced architec-
tural features which contribute to the efficiency.



Advances in Science and Technology Research Journal 2025, 19(12) 436-453

Start

?

Data Collection

|

Annotation

|

Dataset Splitting

|

Augmentation

|

No
Training Model <«
. Meet
Evaluation Requirment ?
l Yes
Testing -— Validation
End

Figure 1. Working flowchart

Due to its superior speed, accuracy and flexibility,
this model can be effectively utilized in real-time
object detection systems [61].

Framework YOLOvS

Deep learning-based YOLOVS is the applica-
ble model for diverse object detection [62]. YO-
LOvV8 has brought about an evolution in the field
of computer vision, generating object detection
output and being capable of classifying images
[63]. The Cross Partial Stage Network is the YO-
LOv8 backbone, which divides features into some
components as output and convolutional opera-
tions. Owing to the CSPNet backbone and other
advanced optimization techniques, YOLOvV8 can
help in the reduction of operational workload
making it fit for use even on industrial cameras
and mobile devices. This efficiency renders ex-
tensive, adaptable applications in various indus-
trial scenarios, including for potential remote
inspection systems for the detection of welding
joint deficiencies [64]. YOLOvVS is designed to
carry out both object detection and classification
operations dynamically while simultaneously an-
alyzing a great number of images or video clips.

Such functional capability is very important for
real-world applications, for example, a welding
defect detection system that needs real-time qual-
ity control integration without causing any distur-
bances to the process [65]. The backbone of YO-
LOv8, Cross Stage Partial Network (CSPNet), is
engineered to enhance feature extraction while
minimizing computational overhead. The de-
tailed structure of the YOLOVS system is shown
in Figure 2. The CSPNet divides the input fea-
ture map into parts that allow selective convolu-
tion operation in certain regions, thus reducing
the number of unnecessary computations. That
is why this approach allows YOLOvV8 to main-
tain high accuracy while not needing too much
computational power. It is ideal for use in the
places where computational capability might be
less or when real time processing is needed [66].
YOLOVS is planned in a way that the architec-
ture focuses on the efficiency of feature extraction
conducted due to the convolutional operations to
capture as much spatial contextual information as
possible while rejecting all the other information.
This aspect makes it easier for YOLOVS to locate
defects in the images where their characteristics
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Figure 2. YOLOVS architecture

may differ in size, shape, or positioning, as seen
in welding images. This allows YOLOVS to de-
tect global features of an image along with lo-
cal ones because it recognizes different types of
welding defects ranging from large cracks down
to small porosity or slug inclusions that would
be nearly impossible to find. Another advantage
is that in contrast to other models which require
formative steps for the classification and detec-
tion processes, in this case, both processes are
integrated making the whole process much less
complicated. The integration is done in the course
of a single network pass through, thus this opera-
tion is less latent as the previous method [67].
YOLOVS itself leverages pretrained weights thus
starting with a large scale set which can then be
fine-tuned for specific labeled data tied to weld-
ing defects. This approach significantly reduces
the training time while maintaining high accuracy
levels, as the model can transfer learned features
from general object detection tasks to specialized
welding applications [68]. YOLOVS is support-
ive for various data augmentation methods that
artificially enlarge training dataset by introducing
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image variations (e.g. flipping, rotation, scaling).
This way it enhances model’s robustness and
adaptability making it able to cope with lighting
variations, angles changes as well as defect ap-
pearance which are frequently observed in indus-
trial environments. YOLOvVS has a lightweight
structure and designed for convenient usage on
resource limited platforms even in real-time sce-
nario. For example, It is designed to offer the
ability of direct interfacing with welding process
inspection cameras, thus the instantaneous detec-
tion of defects without requiring the use of bulky
external processing systems. This is especially
beneficial for industries, because they need cur-
rent and applicable data to maintain quality and
safety of production processes [69].

Data collection

With regard to the dataset for this study, the
selection criterion yielded a diverse and com-
prehensive set of welding defect types [70]. The
qualitative data involving weld defects were ob-
tained experimentally by capturing ten different
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types of welds defects under standard lighting
conditions for the purpose of achieving high mea-
sure of clarity of the pictures. The lighting used
during image acquisition was controlled using
diffused and direct lighting to eliminate reflec-
tions, improve defect visibility and standardize
contrast, respectively. The photographic equip-
ment used in the research was of high resolution,
which enabled capturing the fine details of the
defect features, such as the cracks and porosity
patterns of the seam weld in steel [71].

Due to the specificity of the data, all the im-
ages used herein are from the in-house welding
projects covering different types of welding. This
diversity benefits for the enhancement of the da-
taset quality, and make them closer to real weld-
ing environment. Defects are categorized as po-
rosity, crack, slag inclusion, crater pipe, undercut,
overlap, concave, lack of fusion, arc strike, and
spatter. This classification was done according to
best practices to meet high labelling rates which
are important for training of supervised machine
learning algorithms [72].

To improve the training of the YOLOVS
model, each defect was carefully annotated using
state-of-the-art annotation tools, and besides the
rectangular affine transforms, custom metadata
was added to capture spatial and morphologi-
cal characteristics of the defects. Cross valida-
tion was performed and the dataset was further
divided into a training set of 70%, a validation
set of 20% and the remaining 10% for the testing
set. This structured division covers a very com-
prehensive detection and classification assess-
ment of the YOLOv8 model. Flipping, rotation
and brightness change was also performed on
the training data to make the model insensitive
to the changes in lighting condition and variation
in skin defect [73].

The YOLOvV8 model was selected as it is one
of the fastest object detectors that nonetheless
provides high accuracy. Its architecture is more
complex, because it utilizes feature pyramid net-
works and adaptive convolutional layers, which
allow for instance-wise detection of various types
of welding defects in terms of size, shape and con-
trast. By virtue of these mechanisms, the model
could discern fine patterns in defect morphology
like the spherical voids required to describe po-
rosity, or the elongated stress required to explain
cracks. These subtle characteristics were very sig-
nificant for accurate definition of the defect types

and their localization, requiring minimal interac-
tion of the operator [74].

Integrating this manually curated, well-anno-
tated dataset with the YOLOvVS8 framework pro-
vides a robust welding defect detection platform
and highlights the potential of automated systems
in quality assurance applications. The model’s ar-
chitecture ensures high performance even in the
scenarios with complex defect patterns and over-
lapping defects, making it a practical solution for
real-time industrial welding inspection [75].

ANNOTATION

An essential phase in accurately building a
welding defect detection model was the data an-
notation process, which used a combination of
the Computer Vision Annotation Tool (CVAT)
platform. CVAT, a free annotation tool, was uti-
lized because of its powerful features for pre-
cisely creating bounding boxes around welding
defects identified. The collaborative design of the
tool enabled various expert annotators to work to-
gether in real-time, guaranteeing uniformity and
eliminating individual bias [76]. The functional-
ity of the platform in image adjustment, such as
rotation, flipping, and brightness modification,
increased the variability of the dataset, which
helped the model generalize better across several
welding conditions. This rigorous approach to
data annotation confirmed the correctness of de-
fect localization and classification [77]. Creating
a substantial training dataset was essential for the
effectiveness of the deep learning-centered weld-
ing inspection system, which was greatly aided
by this contribution [78].

A good weld defect detection model depends
on accurate data annotation. CVAT is an open-
source platform that is frequently used for accu-
rately labeling images. Reasons such as creating
bounding boxes, polygonal segmentation and
keypoint annotation make it a suitable tool for
welding defect identification. This step-by-step
annotation procedure is vital for effective deep
learning-based welding inspection systems [79].

Numerous research studies have also emerged
to represent the significance of data annotation in
detecting weld defects. For example, deep learn-
ing for weld defect detection paid much attention
to the data annotation in model training, as shown
in [31]. Another study explored automated weld-
ing defect detection using CNN and underscored
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the role of precise annotation in achieving high
detection accuracy. These studies demonstrated
that meticulous data annotation, facilitated by
tools like CVAT, is fundamental to developing
reliable welding defect detection models through
remote inspection [80].

Augmentation

In this study, YOLO employs a number of
image augmentation techniques to augment train-
ing data to achieve better model accuracy. In the
YOLO framework, all the input training data of
any given batch is passed through the data loading
class for augmentation. The data loader executes
various forms of augmentation as mosaic, affine
transformations and color space transformations
are used. Mosaic augmentation is an augmenta-
tion technique that aims to collate some of the
images of equal dimensions into a joint mosaic
image with diverse proportions. This approach
prove to be effective in enhancing the model’s ca-
pacity to identify tiny objects [81].

However, the study demonstrated that within
the COCO dataset, although the augmentation
methods improve the detector’s accuracy on small
objects, the extent to which large objects benefit
is lower. However, YOLO also incorporates test-
time augmentation, a situation where augmenta-
tion is applied on test sets when a trained net is
in operation. The objective in this study was to
assess and enhance the performance of the cur-
rent model where inputs vary [82]. In this study,
the mosaic augmentation of the image dataset in
YOLOVS is presented in Figure 3.

Furthermore, the increases in YOLOvVS are
significant in order to establish the efficacy of
the model in distinguishing welding defects in
all possible circumstances. The model becomes
more robust, adaptable, and is better prepared
to deal with real-life variations through the ap-
plication of random factors including the Mosaic,
Affine Transformations and Color Adjustments.
Which in turn improves the performance during
the training as well as the inference for detecting
welding defects in various complex scenarios by
YOLOVS [83].

RESULTS

The evaluation of the YOLOv8 model trained
for identifying three types of defects: good,
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porosity, and undercut shows excellent perfor-
mance and prediction resilience. In Figure 4 be-
low, the confusion matrix shows how the model
can accurately classify between these three cat-
egories with relatively low levels of confusion.
The good and porosity classes were perfectly
classified with no cases of over and under clas-
sification. In the undercut class, one sample was
misclassified as “good” [86].

Table 4 shows the precision, recall, and F1
— scores which supports that the model has the
ability to classify effectively. The evaluation of
the good class has shown a precision of 0.91, a
recall of 1.00 and F1 score of 0.95. The values
for the porosity class were presented with a pre-
cision, recall, and Fl-score of 1.00. Likewise,
the precision in the undercut class was 1.00, the
recall was 0.90, and the F1-score was 0.95. The
average accuracy for the validation set was 97%
with macro and weighted average F1 of 0.97.
Such measures point to strong performance in
all the three classes with little fluctuations in the
predictive power [87].

The mAP stands for mean-average preci-
sion, which indicate the detection capacity of the
model also and this is described in figure 5. The
validation mAP was measured at 0.9475, which
indicates desirable levels of precision and recall
were recorded for all classes [88]. The training
mAP was slightly lower at 0.7514, implanting
that there was some over fitting or likely class
imbalance. Additional support of this reality is
found in the training and validation loss curves
of figure 3, which show that the validation loss
declines at a significantly different rate of 0.082,
which is lower than the training loss of 0.7824.
This demonstrates that it generalizes well up to
validation data Set however, this also illustrate
that it may overfit the value that can only be alter
through regularization or else by acquiring more
validation data [89].

The precision-recall curves (Figure 6) il-
lustrate that the class-wise detection accuracy
model. The good and porosity classes achieved
perfect area-under-the-curve scores (AP = 1.00),
indicating excellent precision and recall. Mean-
while, the undercut class exhibited a near-perfect
AP of 0.97, with slight variations resulting from
the single misclassification observed in the con-
fusion matrix. These results affirm that the mod-
el’s capability is to detect and classify defects
with high reliability, despite minor limitations in
specific cases [91].
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The peaks observed in the training and vali-
dation accuracy curves and the fact that they
reached an optimum in few epochs also speak
about this model. Even though the validation ac-
curacy was always higher than 90%, the increase
in training metric over the validation one sug-
gests overfitting. This could be mitigated by ap-
plying data augmentation techniques, increasing
the dataset size, or introducing dropout layers in
the model architecture [92].

DISCUSSION

The results of the study highlight the effec-
tiveness of the YOLOVS object detection model
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in accurately classifying defects into three cate-
gories: good, porosity, and undercut. However, it
points out that the accuracy of the model used in
this study is relatively effective especially in the
“good” and “porosity” classes where the model
garners high precision as well as recall. However,
there are few areas which have to be paid particu-
lar attention to in order to improve the reliability
in order to develop the better model [94].

One key challenge is the single misclassifica-
tion observed in the “undercut” class. This mis-
classification of ‘undercut’ defects coupled with
slightly lower precision and recall scores for this
class gives an indication that the model failed to
identify this category as efficiently as it did the
other two. This could stem from a skew of the
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Table 4. Precision, recall, and F1-score of the YOLOVS prediction

Precision Recall F1-score Support
Good 0.91 1.00 0.95 10
Porosity 1.00 1.00 1.00 10
Undercut 1.00 0.90 0.95 10
Accuracy 0.97 30
Macro avg 0.97 0.97 0.97 30
Weighted avg 0.97 0.97 0.97 30
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training dataset where the “undercut” status class
might be rare and insufficient learning for this
kind of defect happens [95].

Additionally, from this perspective, it is no-
ticeable that there is a considerable difference be-
tween the training mean Average Precision ( mAP)
0.7514, and the validation mAP 0.9475 suggesting
a likelihood of over-fitting. Domination occurs
where the model gives very good results when
training is done but poorly when tested on other
data that the model has not encountered before.
To this end other regularization techniques such as
weight decay or dropout could be adopted. These
techniques turn useful in avoiding the overfitting
of the model, and hence enhancing its generaliza-
tion performance [96].

The other method to address of the overfitting
is to increase the size and diversity of the training
dataset. More images from the “undercut” should
be introduced and assure proper distribution of
images per each kind of defect so that the model
could learn well and, thus, work equally well for
all types of defects [97].

What has also been established is that the val-
idation loss is considerably lower that the training
loss which should serve as a pointer to either data
leakage or data imbalance during training. When
information from the validation set leaks into the
training process, a model can be trained to look
overly impressive in at least one metric. To coun-
ter this though, more sophisticated approaches to
data augmentation include random cropping, rota-
tion or even horizontal flipping. They strengthen
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the model by exposing it to more data variations
that would make the model more capable of deal-
ing with unseen data [98].

Overall, the outcomes also demonstrate the
effectiveness of deploying the YOLOv8 model to
identify defects in industrial applications. In most
of the cases, the model has proven to be very ef-
ficient by giving high results in precision, recall
values as well as accuracy thus making it used
mostly in the quality control section. By over-
coming the analyzed issues, including overfitting
and class imbalance, the model’s suitability and
usefulness for real-life defect recognition tasks
can be promoted [99].

CONCLUSIONS

The probabilities of having welding defects
and when checked during the earlier stage might
allow some corrective action to be taken and
thus avoid some conditions that give rise to ma-
jor failure. Presented in the industrial environ-
ment, this work applies the YOLOv8 model for
detecting welding flaws. There also are several
categories that are distinguished: cracks, poros-
ity, lack of fusion and other types of defects. Us-
ing RoboFlow, feed in the form of video streams
originating from welding inspection cameras are
collected as input. The video frames are then
preprocessed which enhances the image contrast
and removes noise in the current video frames
with Deep SORT.
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YOLOVS is loaded with pre-trained weights
to be trained from a large dataset. It is extended
and trained with a new labeled set of weld joint
images and specifically for the welding defects. A
trained model is able to detect defects in real time.
With respect to the proposed approach, the pre-
sented Accuracy (98.4%), Recall (97.2%), Preci-
sion (98.5%), and F1 score (95.7%) are higher
than traditional (manual visual) approaches. Such
outcomes cannot be overemphasized, as they
point towards the prospects of enhanced quality
inspections of weld joints using higher level ma-
chine learning algorithms in welding applications.

The study also reveals that the use of the
automated defect detection system with YO-
LOv8 provides multiple industrial advantages,
including reduced time consuming, increased
safety measures, and high quality of the prod-
ucts. Therefore, the outcomes affirm the position
of YOLOVS in building a steady and optimized
inspection process as well as propose the direc-
tions for future studies in terms of mass data-
sets and immediate implementation for various
welding types.

The application of YOLOVS in this regard
enhances detection effectiveness and is formal to
minimize errant and bias in manual inspections.
Also, YOLOVS is very flexible to implement in
nearly any welding context, including automobile
manufacture, aircraft industry and so on, where
defect recognition plays a significant role con-
cerning product quality and reliability. More fu-
ture work can build upon the dataset and extend
it to additional forms of defects, and investigate
the real-time applications of YOLOvS as an im-
portant part of welding quality control through
automation system.
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