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ABSTRACT

This paper presents an empirical study on the prediction of the instantaneous fuel consumption of public transport
buses using LSTM type recurrent neural networks. The analyses were conducted on selected repetitive Sort 2 driv-
ing cycles. This allowed for stable test conditions and control of data variability. For the analyses, valid measure-
ments including vehicle speed, accelerator pedal position (APP) and instantaneous fuel consumption (1/h) were
used. Five LSTM modelling strategies were developed and compared: a baseline model, an in-depth model with
dropout, an advanced model with callbacks, a model with a special weighted loss function for idling periods and a
FuelNet model for fuel consumption prediction. The results indicate high prediction performance (MAE, RMSE,
R?) and the potential for practical implementation of the model in fleet management systems.

Keywords: prediction, fuel consumption, bus, LSTM, neural network.

INTRODUCTION

In the perspective of the decarbonisation of
the public transport sector, the EU is aiming for
zero emissions in urban areas by 2040. As a result,
transport companies are replacing their vehicle
fleets with green energy vehicles. However, the op-
erative-TCO value for vehicles powered by green
HFCE (hydrogen fuel cell electric) is 23-37%
higher compared to vehicles powered by diesel,
CNG (compressed natural gas) or grey-HFCE [1].
This makes the primary energy source of the newly
sold city buses still diesel in 2022 about 67% [2]
and in 2024 about 61-63% [3, 4]. Despite the de-
clining trend, more than 60% of operators choose
to purchase a new diesel-powered vehicle.

One of the important components of the total
cost of owning and operating a means of transport
(TCO) is the consumption of materials, fuel and
energy. A cost analysis in car transport compa-
nies has shown that the cost of fuel accounts for

15-20% of TCO [5], while in public transport for
city buses equipped with a CI engine it is as much
as 25-30% [6]. For this reason, research work is
being carried out on the process of converting the
chemical energy contained in the fuel into me-
chanical and electrical energy [7-11]. Of course,
this is not the only factor that contributes to engine
research and development. An important aspect
related to engine operation is the emission of toxic
exhaust components such as nitrogen oxides, hy-
drocarbons, carbon monoxide or particulate mat-
ter and carbon dioxide emissions [12—14].

There are different methods used to reduce
fuel consumption. One of these is to replace the
electricity generated from fuel by using several
alternators on board the vehicle. For this pur-
pose, photovoltaic panels [15, 16] or vehicle
kinetic energy recuperation systems [17, 18]
are mounted on the roof of the vehicle. Anoth-
er method to minimise energy consumption is
to optimise fuel costs and sustainability through
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the use of monitoring and predictive tools for
fuel consumption in public transport. Current
traditional regression models often do not take
into account the complexity of urban traffic and
the variability of vehicle signals.

The literature analysis shows the extensive
use of classical modelling methods such as re-
gression, ARIMA (autoregressive integrated
moving average) or MLP networks for data anal-
ysis and forecasting. While regression assumes
a linear relationship between variables, ARIMA
models forecast time series based on data collect-
ed at regular intervals. In contrast, MLP networks
(MultiLayer Perceptrons) are a type of artificial
neural network that can model very complex
non-linear data relationships. Although they are
more universal and can be used for both forecast-
ing and classification and often handle difficult
patterns better than statistical methods they are
more difficult to use for interpretation.

Bus fleet management aimed at minimizing
operational and environmental costs requires the
implementation of strategies that optimize the use
of vehicles with different drives [19]. At the same
time, the use of machine learning methods to pre-
dict energy consumption allows for more accu-
rate forecasting of energy demand based on actual
operating conditions, which supports decision-
making in the field of planning and optimization
of fleet operation [20].

Traditional statistical and analytical mod-
els such as regression are used to identify criti-
cal parameters (driving style, landscape, road
conditions, etc.) affecting fuel consumption of
specific vehicle types. The paper [21] presents a
methodology for determining a statistical model
of fuel consumption based on an analysis of the
relevance of driving parameters. A fleet of trucks
from the commercial freight transport sector was
studied. It was shown that the number of vehicle
stops and emergency braking had the least impact
on average fuel consumption. In contrast, a study
[22] showed that in passenger vehicle transport,
the driver’s driving style was significant for in-
stantaneous and average fuel consumption values.

For modelling fuel consumption, artificial
neural networks are also used. Compared to re-
gression models, they have less stringent input
data requirements and can analyse more complex
non-linear relationships without being explicit
[23, 25, 26]. Nevertheless, in both cases, similar
approx. 3% differences in calculated and actual
average fuel consumption were obtained [21, 23].
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The researchers are aiming to improve the
accuracy of modelling methods. There is grow-
ing interest in the use of LSTMs for time series
prediction, due to their ability to analyse long-
term sequential relationships [26-32]. For fuel
consumption modelling, researchers have mainly
focused on the topic of energy consumption pre-
diction in marine transport. In the study [27], the
authors focus on the optimisation of the LSTM
model using a genetic algorithm for VLOC (very
large ore carrier) vessels. In order to develop a
digital twin of the fuel consumption of a marine
vessel, in this case the R/V Gunnerus research
vessel, correlation and sensitivity analysis was
used to select the input parameters and optimise
the configuration of the LSTM model. Real op-
erating data from the R/V Gunnerus was used to
verify the model [28].

The research shows the superiority of predic-
tive learning models compared to traditional en-
ergy consumption models based on BP, SVR and
ARIMA [27, 30]. The use of the genetic algorithm
(GA) optimisation method optimises the number
of network layers, number of neurons and batch/
size (Batch_size) of the LSTM network, resulting
in a minimised prediction error for operational
ship energy efficiency of 0.29% [30]. As a result,
these models are very effective in predicting the
fuel consumption of vessels under different voy-
age conditions, which is useful in optimising and
improving their energy efficiency.

Although traffic conditions, engine load dy-
namics, and environmental conditions are differ-
ent in water and road transport, the application of
the LSTM model in predicting the fuel consump-
tion of buses used in urban public transport can
contribute to increasing their energy efficiency,
reducing costs, and minimising the environmen-
tal impact of land transport.

The objective of this paper is to develop, im-
plement and compare the performance of five var-
iants of LSTM models for the prediction of instan-
taneous fuel consumption in urban buses based on
real data. The choice of repetitive driving cycles
(Sort 2) was made deliberately to ensure control
over the nature of the data and to reduce the im-
pact of uncontrolled environmental factors on the
results. This enabled a more precise assessment of
model performance and analysis of the impact of
the network architecture on the quality of the pre-
diction under stable driving conditions.



Advances in Science and Technology Research Journal 2025, 19(12) 197-209

DATA ACQUISITION AND
PRE-PROCESSING

The investigation was carried out under road
conditions at the former military airport in Biata
Podlaska (Poland). The facility offered favourable
conditions with a 3.300-metre-long main runway
and a 2.700-metre-long reserve runway (Figure
1). The airport was regularly used for road tests of
vehicles and motorsport events until 2020. Both a
section of the main runway and part of the service
lanes were used for the tests. This infrastructure
enabled repeated driving cycles to be carried out,
additionally allowing the engine load to be al-
tered by increasing the alternator load.

The object of the study was a city bus,
Mercedes Conecto LF (Figure 2), owned by
the Municipal Transport Company in Lublin

(Poland). It is a 12-metre long, low-floor bus,
built from welded closed profiles, which can
accommodate a maximum of 94 passengers
(26 seated and 68 standing). It is powered by a
6-cylinder OM 926 LA in-line diesel engine, lo-
cated in the left rear corner of the vehicle. The
engine has a capacity of 7.23 dm* and develops
a maximum power of 205 kW (278 hp). The bus
complies with the Euro IV emissions standard
thanks to BlueTec technology, which uses the in-
jection of AdBlue fluid into the catalytic convert-
er. Transmission from the engine is via a Voith
854.3 4-speed automatic transmission, the main
gearbox located in the ZF AV-132 drive bridge,
to the vehicle’s drive wheels. The bus features an
electronically controlled air suspension system,
allowing precise control of ride comfort and low-
ering the platform for easier passenger access.

Figure 2. Mercedes Conecto LF city bus [7]
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The vehicle was equipped with an on-board
data logging system consisting of an NI cRIO-
9024 controller running in a real-time operating
system, an NI 9862 CAN interface compatible
with C-Series enclosures and running in Win-
dows and Real-Time, an NI cRIO-9118 univer-
sal measurement card support module and an NI
9871 RS485/RS422 interface with 4 ports, com-
patible with C-Series enclosures. All modules are
integrated in the LabVIEW environment.

Signals recorded included vehicle speed Vr,
accelerator lever position APP, instantaneous fuel
consumption Ge [dm?/h], as well as time and ba-
sic route data. A schematic of the measurement
system is shown in Figure 3.

During the tests, the driver monitored both
the target Vt and the current Vr speed on the
screen in real time. All measurements were
collected in one day, with an ambient temper-
ature of around 2 °C and a southwesterly wind
of 7-10 km/h. Precise bus speed measurement,
with a resolution of 0.1 km/h. The driving cycle
was repeated five times during one run. The re-
sults of the measurement are included in Figure
4. The presented time frames show the changes
in three operating parameters of the vehicle dur-
ing the driving test: accelerator pedal position
(APP), vehicle speed (V) and fuel consumption
(Ge). In the first graph (APP), the sequential var-
iability of the APP is noticeable, with periods of
acceleration followed by phases of engine brak-
ing or standstill. The middle graph shows the
vehicle speed (V), which varies according to the
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Sort 2 cycle, reaching a maximum of approx. 50
km/h. The recorded data provides valuable for
machine learning, enabling modelling and pre-
diction of fuel consumption in real-world urban
operation conditions.

The data preparation process included prelim-
inary analysis as well as signal processing. Data
corresponding to the repetitive driving cycles of
SORT?2 (Standardised on—road test) were select-
ed. This made it possible to reduce the influence
of random disturbances and to ensure the consist-
ency of the observations. Due to the dynamics of
the drive train operating phenomena, the recorded
data were sampled at 10 Hz. Channel synchroni-
sation was also verified.

The study is based on an analysis under con-
trolled conditions, using a single vehicle type and
the SORT-2 cycle. This approach eliminated dis-
turbing factors and ensured consistent reference
data. The aim was to verify the methodology and
predictive models in an unambiguous way. The
results may serve as a basis for estimating future
fuel consumption, similar to the approach applied
in the VECTO tool.

During signal processing, input data normali-
sation was performed using the MinMaxScaler
function. The data were then transformed into a
fixed-length sequence (time window), defining
a short-term history of the vehicle state. A three-
dimensional input tensor (time, feature, sample)
was created, using vehicle speed (V) and APP as
input variables, and instantaneous fuel consump-
tion (I/h) as the output variable.

Set speed profile

Vehicle speed

Voltage U

Current intensity |

Fuel consum. Ge

Shaft speed n

Gear ratio no.

Road load

Accelerator lever position

Figure 3. Diagram of the road test measurement system [1]
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Figure 4. Results of road tests, fuel consumption (Ge), vehicle velocity (V),
acceleration pedal position (%)

SCOPE OF THE MODEL STUDY

In order to determine the most effective
method for predicting the fuel consumption of
a city bus, five different approaches to building
models based on neural networks were carried
out. Each successive approach incorporated fur-
ther improvements to the architecture or learn-
ing process, in line with the progress of the re-
search and the conclusions of previous analyses.
A summary of the modified parameters is in-
cluded in Table 1, while a broader description is
provided in the following table. The description
of model is:

e LSTM 1 — the basic single-tier model: the
first step used a basic LSTM (long short-
term memory) network architecture, with one

LSTM layer (64 neurons) and a Dense output
layer. The model was taught for 20 epochs on
input sequences of 20 samples, using the stan-
dard Adam optimisation algorithm and a mean
squared error (MSE) type loss function. Input
data included vehicle speed and APP signal,
and the output variable was instantaneous fuel
consumption [1/h].

e [STM 2 — depth extension and regularisation:
the second step involved increasing the com-
plexity of the model by introducing two LSTM
layers (with 64 and 32 neurons, respectively)
and using Dropout layers (p = 0.2) after each
recurrent layer to reduce the risk of overfitting.
In addition, the length of the input sequence
was extended to 30 samples and the number
of epochs was increased to 40. The model was
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Table 1. Comparative overview of model

Model Architecture Input sequence Epochs Dropout ful;:?izn Additional features
LSTM 1 LSTM (64) + Dense 20 time steps None MSE Baseline model
LSTM (64) — LSTM ) s ]
LSTM 2 (32) + Dense 30 time steps 0.2 MSE Overfitting reduction
. He normal init,
LSTM 3 LSTS'V;)(?S;S? ~ | 40 time steps (Earl:l)yr::]lcin y| 03 MSE ReduceLROnPlateau,
y stopping ModelCheckpoint
. Dynamic Weighted | Sample weighting for idle
LSTM 4 Same as LSTM 3 40 time steps (Early stopping) 0.3 MSE mode (< 2 I/h)
No sequence Dvnamic ReLU activation, classical
FuelNet | MLP (5 Dense layers) (flat ?n ut) (Earlysto ing) 0.2 MSE Feedforward neural
P y stopping network (FFN) architecture

taught on normalised data and the predictions
were verified against actual measurements.

e LSTM 3 — automation of the learning process
and a deeper network: the third step introduced
further automation of the learning process, us-
ing EarlyStopping and ReduceLROnPlateau
mechanisms to dynamically adjust the number
of epochs and the learning rate. The model had
an even deeper architecture, with three LSTM
layers (128, 64 and 32 neurons) and Dropout
layers (p=0.3). The sequence was extended
to 40 samples and the batch size was reduced
to 16. Initialisation of weights (“he_normal”)
was also used. The checkpoint model saved
the best version of the model based on the loss
function.

e LSTM 4 — model with weights for idling: the
fourth step was an advanced modification of
the third version. Sample weighting was in-
troduced, giving higher weighting to samples
corresponding to idling (defined as fuel con-
sumption < 2 1/h). The aim was to increase the
accuracy of the prediction of low fuel con-
sumption, which is particularly important for
the efficiency of bus fleets. In addition, an in-
house loss function was used to allow weights
to be passed to the learning algorithm. Other
aspects of the model corresponded to the ar-
chitecture of the third approach.

e FuelNet—a dedicated Feedforward deep neural
network architecture: the FuelNet deep feedfor-
ward neural network (MLP) model, consistent
with the literature, was used as a benchmark
for comparison with LSTM architectures. Fu-
elNet consists of five fully connected layers,
with a decreasing number of neurons, ReLU-
type activation functions and Dropout (p =0.2)
between layers. The model was trained iden-
tically to the LSTM models, using the same
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input and output data. The aim was to verify
whether sequential architectures (LSTM) sig-
nificantly outperform classical models in the
fuel consumption prediction task.

MODEL VALIDATION AND RESULTS
ANALYSIS

In the presented approach to modelling the
instantaneous fuel consumption of a vehicle, the
strategy of training the model on the full reference
data set (base file) was adopted. The assessment
of the prediction quality was carried out on a sep-
arate test file, not participating in the training pro-
cess. This configuration corresponds to a typical
division into a training set and a test set, with the
difference that instead of a random or sequential
division of one data set, a division of data from
different measurement sessions is used. The risk
of data leakage between training and evaluation
phases has been eliminated. Consequently, the
calculated error metrics (MAE, RMSE, R?) can
be considered reliable and resilient to overfitting.
Figures 5a-5e show the results of the model vali-
dation on additional data that were also obtained
during the Sort 2 test run, but with an increased
value of engine load by increasing the electrical
power consumed by the electrical devices in the
vehicle. The red line represents the experimental
values, while the blue line represents the values
predicted by the model. The R? (Coefficient of
determination) value shown in the Figures 5a-5e
refers to the goodness-of-fit of a linear regression
applied to a 35% random subset of the predicted
vs. actual values. It does not represent the true
performance of the model, which is evaluated us-
ing the full dataset and reported separately in the
metrics summary.
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Figures 5a—e show the results of five fuel
consumption prediction models, comprising four
LSTM-based architectures (LSTMI1-LSTM4)
and one MLP-type model (FuelNet). The evalu-
ation of each model was based on two types of
visualisation: a comparison of the time course of
measured and predicted values of instantaneous
fuel consumption (graphs on the left) and (2) a
scatterplot of actual and predicted values with fit-
ted linear regression and coefficient of determina-
tion R? (graphs on the right).

The LSTM 1 sequential baseline model
(Figure 5a) provides a baseline for subsequent
modifications. The time course shown reflects
the main trends, but deviations are evident in the
areas of fast changes and for idle speed. A mod-
erate scatter of points relative to the ideal line
is observed in the scatter plot. The R? value is
0.977, indicating correct, although limited, pre-
dictive accuracy.

The LSTM2 model with greater depth and
regularisation (Figure 5b) was extended with a
second LSTM layer and dropout was applied.
This has improved the model’s ability to anal-
yse complex temporal relationships. Predictions
are closer to the actual values, especially in the
transition phases. The scatter plot shows a higher
concentration of points near the ideal line and a
higher R? = 0.9872.

The LSTM 3 model extended with dynamic
learning and deep architecture (Figure 5c¢) using
three layers of LSTM and the EarlyStopping and
ReduceLROnPlateau mechanisms. This has ena-
bled a better fit to the data, especially in the areas
of low consumption and longer constant driving
passages. The R? value reaches 0.9907 and the
predictions show minimal deviation from meas-
ured values.

The LSTM 4 model with weights for idling
(Figure 6d) is an extension of the third version
with a system of weights assigned to idling trials
(<2 1/h). This has made it possible to increase the
precision of the predictions in the sensitive areas
of low consumption relevant to urban fleets. Pre-
dictions remain highly consistent with the meas-
urement, with the R? value increasing to 0.992 —
the highest of all models.

The FuelNet model (Figure 5e) represents a
classic MLP-type network with a five-layer Dense
structure. The model correctly reproduces the fuel
consumption trend, but shows limited sensitivi-
ty to dynamic changes and abrupt transitions. In
spite of this, a high R* = 0.992 was obtained. This

indicates good prediction of steady-state values,
with less effectiveness under variable conditions.

All the models used show acceptable predic-
tive capability for instantaneous fuel consump-
tion. The accuracy of the prediction increases
with the depth of the architecture and the applica-
tion of regularisation techniques. The sequential
models (LSTM3-LSTM4) show a clear advan-
tage over the classical MLP model (FuelNet) in
terms of dynamic representation and precision
at low consumption. The highest performance is
achieved by the LSTM4 model, due to the use of
sample weighting in the idling range. However, it
should be mentioned that the use of the FuelNet
model is more efficient to some extent, as it will
require fewer hardware resources for future fuel
consumption forecasting.

Figure 6 shows a comparison of the predic-
tive accuracy of the five regression models con-
sidered. Four classic quality assessment metrics
were used: mean absolute error (MAE), mean
squared error (MSE), root of mean squared error
(RMSE) and coefficient of determination (R?).
The metric values were determined based on
validation data that the model did not see during
training. The obtained values of MAE, MSE and
RMSE indicate a small prediction error, while a
high R? indicates a good ability of the model to
represent the variance of real data.

The best results were obtained by the LSTM2,
LSTM3 and LSTM4 models, which achieved low
errors (MAE = 0.47-0.49) and high R? values (>
0.986), indicating high prediction precision. The
FuelNet model, despite a high R? (0.938), gen-
erated significantly larger MAE and MSE errors,
which may suggest overly general prediction
characteristics. Further analysis of FuelNet may
require an architecture review or hyperparameter
retuning. In summary, the LSTM2-LSTM4 mod-
els best represent the test data, while FuelNet re-
quires further optimization.

Analysis of the fuel prediction error histo-
grams presented in Figure 7 allows for a precise
comparison of the fuel consumption prediction
quality obtained by the neural models: FuelNet
and LSTM 1-4. The LSTM 1 model (one LSTM
layer with 64 neurons and a Dense layer), using
20 input time steps and trained for 20 epochs
without dropout, generates a noticeable error
peak at approximately 0.4 dm?3/h. This indicates
a reproducible pattern of prediction inaccuracy
and moderate model generalization. The LSTM
2 model (two LSTM layers: 64, then 32 neurons,
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Figure 5. Results of instantaneous fuel consumption prediction for the (a) LSTM 1 model, (b) LSTM 2 model,

204

35 T —— Experimental value
Zg ‘ —— Predicted value
£ R I
30 Ss
2
£ 22 ‘
s
e 20 0 200t
S
a
€15
5
2
2
S 10
K]
2
5
]
2000 4000 6000 8000 10000
Sample
a.
35 —— Experimental value
. — Predicted value
30 L
= 4
S . [
£ 2?2
s
§ 20 0 200§
2
2
€15
2
2
S
— 10
o
]
I
5
0
2000 4000 6000 8000 10000
Sample
b.
35 —— Experimental value
Ze —— Predicted value
30 S
z
E®
2
= 13
520
g
515
2
§
S
5 10
S
I
5
0
2000 4000 6000 8000 10600
Sample
C.
35 — T — Experimental value
24 (|1 f | — Predicted value
30 S
2. |6 /
E 22 [
=2
g 20 0 200
a2
€
315
2
o
S
510
E]
2
5
0
2000 4000 6000 8000 10600
Sample
d.
35 — Experimental value
2, — Predicted value
30 S
z &
£® 22
Z
§20
s
€
ERY
2
o
S
3 10
]
2
) J
0
2000 4000 6000 8000 10000
Sample
e.

307 oo Ideal fit (y=x)
Linear regression
TTT RZ=0.977
25
g
52
v
H
S1s
o
g
z
210
&
°
5
§o80
0
0 5 10 15 20 25 30
Real value (dm?/h)
o  Experimental vs Predicted
309 e Ideal fit (y=x)
Linear regression
7T R?=0.986 B
25 ogq
z ¥ f o5,
z H
320 N
3 o
B "
=15
e o
k]
H
£10
o
o
5
o & "
t
ofe °
5 10 15 20 25 30
Real value (dm?/h)
O
o Experimental vs Predicted é’w
301 s deal fit (y=x) y‘g 3
Li;\ear regression oi®
77 R?=0.989
25 .
£
£2
@
S
E
215
1
<
3
& 10
5
o
0 5 10 15 20 25 30
Real value (dm?/h)
o Experimental vs Predicted ;?ﬁ
307 e Ideal fit (y=x) °°&o ot
___ Linear regression °
R? =0.988
25
g
§2
w
S
H
215
-1
]
£
£10
5
o
o 5 10 15 20 25 30
Real value (dm*/h)
25| o Experimental vs Predicted
------ Ideal fit (y=x)
___ Linear regression
R? = 0.965
20

Predicted value (dm?/h)

o Experimental vs Predicted

10 15 20 25
Real value (dm*/h)

(c) LSTM 3 model, (d) LSTM 4 model, (¢) FuelNet model

30




Advances in Science and Technology Research Journal 2025, 19(12) 197-209

4.0 3.855 MAE (dm3/h)
MSE (dm3/h)?
3.5 B RMSE (dm3/h)
m R2(-)
3.0
2.5

1.963

Metric value
N
o

1.527

1.5
. 1.236
0.938 0.976
1.0 0.850
0.595
0.5
0.0-

LSTM1 LSTM2

0.950 0-986 0.989 0.988
0.903 0.822 0.857
0.675 0.735
0.470 0.470
LSTM3 LSTM4 FuelNet
Model

Figure 6. Model metric values

and a Dense layer) with 30 input steps, 40 training
epochs, a dropout of 0.2, and MSE demonstrates
a significant improvement over LSTM 1. Most
errors are concentrated below 0.2 dm*h. The in-
troduction of dropout and a deeper structure ef-
fectively reduces overfitting. The LSTM 3 model
was equipped with three LSTM layers (128, 64,
and 32 neurons) and a Dense layer with 40 input
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steps and dynamic epoch selection (EarlyStop-
ping), a dropout of 0.3, He normal weight initial-
ization, and the ReduceLROnPlateau and Mod-
elCheckpoint strategies. Error analysis revealed a
significant increase in prediction accuracy. Errors
in the range of up to 0.2 dm*/h are dominant.

The LSTM 4 model, which is an exten-
sion of the LSTM 3 model architecture with
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identical layer parameters, input sequence, and
training strategy (EarlyStopping, dropout 0.3),
differs in its use of a weighted error function
(weighted MSE). By taking into account lower
fuel consumption values (idle mode < 2 1/h), it
achieves the highest concentration of low abso-
lute error values among the analyzed models,
clearly dominating for errors below 0.2 dm?/h.
The FuelNet model, based on a classic MLP
(Multilayer Perceptron) network composed of
5 dense layers (Dense), without taking into ac-
count the data sequence (flat input structure),
is characterized by two distinct absolute error
modes around 0.05 and 0.45 dm?3/h. The use of
a dynamic number of epochs (EarlyStopping),
an MSE loss function, and a dropout of 0.2 pro-
vides moderate precision, but a wide error dis-
tribution is visible, which may result from the
simplified network structure.

To sum up, it can be stated that the use of
an extensive LSTM network architecture and
advanced regularization techniques (EarlyStop-
ping, ReducelLROnPlateau, ModelCheckpoint)
and a weighted error function, as in the case of
LSTM 4, enabled achieving the highest preci-
sion in fuel consumption prediction. The next
step in the analysis of the fuel consumption
prediction modeling results was to develop box
plots for the errors of each prediction. The re-
sults are shown in Figure 8. The graph compares
the distributions of absolute error (dm?3/h) for
fuel consumption predictions for five models.
Visualization in the form of boxplots enabled the
analysis of basic descriptive statistics — quartile

values, interquartile range, and the number and
spread of outliers.

All LSTM models achieve low median er-
rors (below 0.5 dm?®/h). This demonstrates their
high central precision. In the case of the FuelNet
model, this median is higher, around 0.8 dm?3/h.
Larger differences are visible in the interquartile
range (IQR). LSTM 3 and LSTM 4 models have
the lowest IQR, indicating stable and predictable
results. FuelNet, on the other hand, has the widest
range between the lower and upper quartiles, re-
sulting from greater error variability. The outlier
analysis shows that FuelNet generates a signifi-
cantly larger number of outliers, including errors
exceeding 4 dm*h. In LSTM models, this dis-
persion is smaller, with outliers not exceeding 6
dm?*h. However, it is worth emphasizing that the
lower quartile (Q1) in all models is at a similar
level — below 0.25 dm3/h — meaning that in the top
25% of cases, each model achieves high accuracy
regardless of the architecture used.

In summary, LSTM models demonstrate bet-
ter stability and lower error variability compared
to FuelNet. Despite the potential advantages of
its greater architectural complexity and flexibility,
FuelNet exhibits significantly more outliers and a
wider error range. This may indicate its susceptibil-
ity to overfitting or a stronger response to unusual
input data. Statistical analysis suggests that model
selection should consider not only average accu-
racy but also prediction stability and robustness to
anomalies, especially in real-world applications.

The instantaneous fuel consumption pre-
diction results obtained by the LSTM models
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Figure 8. Comparison of absolute errors (in dm*h) of fuel consumption prediction for different model variants
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(particularly LSTM3 and LSTM4) and the Fu-
elNet model are characterized by high quality of
representation of actual values — the coefficient
of determination R? exceeds 0.98, and the MAE
oscillates in the range of 0.47-0.49 dm?3/h for the
best models. This accuracy classifies these mod-
els as highly useful for practical applications,
such as driving style optimization or decision
support systems in fleet management.

The literature on the subject reports varying
levels of prediction accuracy, depending on vehi-
cle type, environmental conditions, the number of
input variables, and the modeling strategies used.
To verify the quality of the obtained results, a re-
view of current works published in high-ranking
scientific journals was conducted.

In article [31] utilized a long short-term mem-
ory (LSTM) neural network to estimate instantane-
ous fuel consumption of a Toyota Camry HEV (hy-
brid electric vehicle). Authors were used GPS po-
sition, speed, acceleration, and road condition data.
They achieved excellent predictive performance,
with R? values close to 0.97-0.98 and MAE in the
range ~0.3—0.4 dm*/h under real driving condi-
tions. In comparison, LSTM3 and LSTM4 models
achieved MAE < 0.5 dm*h and R? > 0.98

In the study [32], a hybrid deep learning mod-
el (LSTM-MVO) was used to predict fuel con-
sumption and CO: emissions based on OBD (on-
board diagnostics) interface data, achieving high
determination coefficients (R? = 0.996 for training
data and R? = 0.988 for testing data). These re-
sults indicate the high effectiveness of sequential
models in representing temporal and nonlinear
dependencies in transport data.

In [33], the authors presented a model for es-
timating monthly vehicle fuel consumption and
CO: emissions using driver behavior data (ag-
gressive acceleration, braking, speeding) together
with trip distance and duration. The best results
were achieved with the Random Forest Regression
model, reaching R?>=0.975, RMSE = 13.3 kg,
and MAE=8.3kg. In the present study, the
LSTM3 and LSTM4 models, developed for pre-
dicting instantaneous fuel consumption in urban
traffic, achieved MAE < 0.5 dm3/h and R? > 0.98.
Compared to the approach of Wang [33], which
operates on monthly aggregated data, the pro-
posed LSTM models provide high-resolution,
time-series-based predictions better suited for dy-
namic traffic conditions.

Against the background of the above publica-
tions, it can be stated that the LSTM3 and LSTM4

models obtained in this study achieve one of the
highest R? values (0.986—0.989) and absolute er-
ror (MAE < 0.5 dm*h) under complex test condi-
tions and real urban data. Furthermore, the use of
sample weighting for idle mode (LSTM4) allows
for better representation of significant low fuel
consumption periods, which is different from the
reviewed literature models.

CONCLUSIONS

The research carried out aimed to develop,
implement and compare five variants of models
based on neural networks for predicting instanta-
neous fuel consumption in city buses. Real-world
data recorded during Sort 2 driving cycles were
used. Analysis of the modeling results demon-
strated high predictive accuracy for all mod-
els. The more advanced LSTM architectures
(LSTM2, LSTM3, LSTM4) were found to be su-
perior to the basic model (LSTM1) and the classic
MLP network (FuelNet). The key findings from
the study are presented below.

High prediction accuracy of LSTM mod-
els: The LSTM2, LSTM3, and LSTM4 models
achieved R? coefficients of determination ranging
from 0.986 to 0.998 and MAE values of 0.47 to
0.49 dm?/h. In particular, the LSTM4 model, with
a weighted loss function that accounted for idle
mode (< 2 1/h), achieved the highest precision (R?
= 0.99). This highlights the importance of spe-
cialized modeling strategies for specific operat-
ing conditions, such as low fuel consumption in
urban traffic.

Advantages of sequential LSTM models over
classic MLP networks: The FuelNet model, based
on a five-layer MLP architecture, achieved R?
= 0.938, but generated larger errors (MAE and
MSE) and exhibited a wider error distribution
compared to LSTM models. This is due to Fuel-
Net’s limited ability to model dynamic changes in
sequential data.

Effectiveness of advanced regularization
and optimization techniques: The use of tech-
niques such as EarlyStopping, ReduceLROnPla-
teau, and ModelCheckpoint in the LSTM3 and
LSTM4 models allowed for dynamic optimiza-
tion of the training process, minimizing overfit-
ting, and achieving stable and predictable results.
The introduction of a weighted loss function in
the LSTM4 model further improved prediction
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accuracy in low fuel consumption ranges, crucial
for the efficiency of bus fleets.

Prediction stability of the LSTM models: Box
plot analysis showed that the LSTM models had
a smaller interquartile range (IQR) and fewer out-
liers compared to the FuelNet model. The median
error for the LSTM models was below 0.5 dm*h.
This demonstrates their high stability and resil-
ience to data anomalies, which is important in re-
al-world fleet management applications.

Practical application: The high accuracy
and stability of the LSTM3 and LSTM4 models
demonstrates potential utility in fleet manage-
ment systems or driving style optimization. The
ability to precisely predict fuel consumption, es-
pecially during idling, can contribute to reducing
operating costs and emissions. This is consistent
with sustainable transport goals and the target de-
carbonization targets by 2040.

Directions for Further Research: Despite the
high results obtained, further work should focus
on testing the models in more diverse road and
environmental conditions. This will allow us to
verify the model’s robustness to data variability.
Furthermore, integrating a larger number of input
variables, such as weather data or passenger load,
could increase the models’ versatility.

The study confirms that advanced LSTM
models, especially those with a weighted loss
function, offer high precision and stability in
predicting instantaneous fuel consumption in
city buses. These results could significantly con-
tribute to the development of fuel consumption
modeling methods and enable practical applica-
tions in fleet management.
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