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INTRODUCTION

In the perspective of the decarbonisation of 
the public transport sector, the EU is aiming for 
zero emissions in urban areas by 2040. As a result, 
transport companies are replacing their vehicle 
fleets with green energy vehicles. However, the op-
erative-TCO value for vehicles powered by green 
HFCE (hydrogen fuel cell electric) is 23–37% 
higher compared to vehicles powered by diesel, 
CNG (compressed natural gas) or grey-HFCE [1]. 
This makes the primary energy source of the newly 
sold city buses still diesel in 2022 about 67% [2] 
and in 2024 about 61–63% [3, 4]. Despite the de-
clining trend, more than 60% of operators choose 
to purchase a new diesel-powered vehicle.

One of the important components of the total 
cost of owning and operating a means of transport 
(TCO) is the consumption of materials, fuel and 
energy. A cost analysis in car transport compa-
nies has shown that the cost of fuel accounts for 

15–20% of TCO [5], while in public transport for 
city buses equipped with a CI engine it is as much 
as 25–30% [6]. For this reason, research work is 
being carried out on the process of converting the 
chemical energy contained in the fuel into me-
chanical and electrical energy [7–11]. Of course, 
this is not the only factor that contributes to engine 
research and development. An important aspect 
related to engine operation is the emission of toxic 
exhaust components such as nitrogen oxides, hy-
drocarbons, carbon monoxide or particulate mat-
ter and carbon dioxide emissions [12–14].

There are different methods used to reduce 
fuel consumption. One of these is to replace the 
electricity generated from fuel by using several 
alternators on board the vehicle. For this pur-
pose, photovoltaic panels [15, 16] or vehicle 
kinetic energy recuperation systems [17, 18] 
are mounted on the roof of the vehicle. Anoth-
er method to minimise energy consumption is 
to optimise fuel costs and sustainability through 
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the use of monitoring and predictive tools for 
fuel consumption in public transport. Current 
traditional regression models often do not take 
into account the complexity of urban traffic and 
the variability of vehicle signals.

The literature analysis shows the extensive 
use of classical modelling methods such as re-
gression, ARIMA (autoregressive integrated 
moving average) or MLP networks for data anal-
ysis and forecasting. While regression assumes 
a linear relationship between variables, ARIMA 
models forecast time series based on data collect-
ed at regular intervals. In contrast, MLP networks 
(MultiLayer Perceptrons) are a type of artificial 
neural network that can model very complex 
non-linear data relationships. Although they are 
more universal and can be used for both forecast-
ing and classification and often handle difficult 
patterns better than statistical methods they are 
more difficult to use for interpretation.

Bus fleet management aimed at minimizing 
operational and environmental costs requires the 
implementation of strategies that optimize the use 
of vehicles with different drives [19]. At the same 
time, the use of machine learning methods to pre-
dict energy consumption allows for more accu-
rate forecasting of energy demand based on actual 
operating conditions, which supports decision-
making in the field of planning and optimization 
of fleet operation [20].

Traditional statistical and analytical mod-
els such as regression are used to identify criti-
cal parameters (driving style, landscape, road 
conditions, etc.) affecting fuel consumption of 
specific vehicle types. The paper [21] presents a 
methodology for determining a statistical model 
of fuel consumption based on an analysis of the 
relevance of driving parameters. A fleet of trucks 
from the commercial freight transport sector was 
studied. It was shown that the number of vehicle 
stops and emergency braking had the least impact 
on average fuel consumption. In contrast, a study 
[22] showed that in passenger vehicle transport, 
the driver’s driving style was significant for in-
stantaneous and average fuel consumption values.

For modelling fuel consumption, artificial 
neural networks are also used. Compared to re-
gression models, they have less stringent input 
data requirements and can analyse more complex 
non-linear relationships without being explicit 
[23, 25, 26]. Nevertheless, in both cases, similar 
approx. 3% differences in calculated and actual 
average fuel consumption were obtained [21, 23].

The researchers are aiming to improve the 
accuracy of modelling methods. There is grow-
ing interest in the use of LSTMs for time series 
prediction, due to their ability to analyse long-
term sequential relationships [26–32]. For fuel 
consumption modelling, researchers have mainly 
focused on the topic of energy consumption pre-
diction in marine transport. In the study [27], the 
authors focus on the optimisation of the LSTM 
model using a genetic algorithm for VLOC (very 
large ore carrier) vessels. In order to develop a 
digital twin of the fuel consumption of a marine 
vessel, in this case the R/V Gunnerus research 
vessel, correlation and sensitivity analysis was 
used to select the input parameters and optimise 
the configuration of the LSTM model. Real op-
erating data from the R/V Gunnerus was used to 
verify the model [28].

The research shows the superiority of predic-
tive learning models compared to traditional en-
ergy consumption models based on BP, SVR and 
ARIMA [27, 30]. The use of the genetic algorithm 
(GA) optimisation method optimises the number 
of network layers, number of neurons and batch/
size (Batch_size) of the LSTM network, resulting 
in a minimised prediction error for operational 
ship energy efficiency of 0.29% [30]. As a result, 
these models are very effective in predicting the 
fuel consumption of vessels under different voy-
age conditions, which is useful in optimising and 
improving their energy efficiency.

Although traffic conditions, engine load dy-
namics, and environmental conditions are differ-
ent in water and road transport, the application of 
the LSTM model in predicting the fuel consump-
tion of buses used in urban public transport can 
contribute to increasing their energy efficiency, 
reducing costs, and minimising the environmen-
tal impact of land transport.

The objective of this paper is to develop, im-
plement and compare the performance of five var-
iants of LSTM models for the prediction of instan-
taneous fuel consumption in urban buses based on 
real data. The choice of repetitive driving cycles 
(Sort 2) was made deliberately to ensure control 
over the nature of the data and to reduce the im-
pact of uncontrolled environmental factors on the 
results. This enabled a more precise assessment of 
model performance and analysis of the impact of 
the network architecture on the quality of the pre-
diction under stable driving conditions.
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DATA ACQUISITION AND 
PRE-PROCESSING

The investigation was carried out under road 
conditions at the former military airport in Biała 
Podlaska (Poland). The facility offered favourable 
conditions with a 3.300-metre-long main runway 
and a 2.700-metre-long reserve runway (Figure 
1). The airport was regularly used for road tests of 
vehicles and motorsport events until 2020. Both a 
section of the main runway and part of the service 
lanes were used for the tests. This infrastructure 
enabled repeated driving cycles to be carried out, 
additionally allowing the engine load to be al-
tered by increasing the alternator load.

The object of the study was a city bus, 
Mercedes Conecto LF (Figure 2), owned by 
the Municipal Transport Company in Lublin 

(Poland). It is a 12-metre long, low-floor bus, 
built from welded closed profiles, which can 
accommodate a maximum of 94 passengers 
(26 seated and 68 standing). It is powered by a 
6-cylinder OM 926 LA in-line diesel engine, lo-
cated in the left rear corner of the vehicle. The 
engine has a capacity of 7.23 dm³ and develops 
a maximum power of 205 kW (278 hp). The bus 
complies with the Euro IV emissions standard 
thanks to BlueTec technology, which uses the in-
jection of AdBlue fluid into the catalytic convert-
er. Transmission from the engine is via a Voith 
854.3 4-speed automatic transmission, the main 
gearbox located in the ZF AV-132 drive bridge, 
to the vehicle’s drive wheels. The bus features an 
electronically controlled air suspension system, 
allowing precise control of ride comfort and low-
ering the platform for easier passenger access.

Figure 1. View of runways on the airport [7]

Figure 2. Mercedes Conecto LF city bus [7]
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The vehicle was equipped with an on-board 
data logging system consisting of an NI cRIO-
9024 controller running in a real-time operating 
system, an NI 9862 CAN interface compatible 
with C-Series enclosures and running in Win-
dows and Real-Time, an NI cRIO-9118 univer-
sal measurement card support module and an NI 
9871 RS485/RS422 interface with 4 ports, com-
patible with C-Series enclosures. All modules are 
integrated in the LabVIEW environment.

Signals recorded included vehicle speed Vr, 
accelerator lever position APP, instantaneous fuel 
consumption Ge [dm3/h], as well as time and ba-
sic route data. A schematic of the measurement 
system is shown in Figure 3. 

During the tests, the driver monitored both 
the target Vt and the current Vr speed on the 
screen in real time. All measurements were 
collected in one day, with an ambient temper-
ature of around 2 °C and a southwesterly wind 
of 7–10 km/h. Precise bus speed measurement, 
with a resolution of 0.1 km/h. The driving cycle 
was repeated five times during one run. The re-
sults of the measurement are included in Figure 
4. The presented time frames show the changes 
in three operating parameters of the vehicle dur-
ing the driving test: accelerator pedal position 
(APP), vehicle speed (V) and fuel consumption 
(Ge). In the first graph (APP), the sequential var-
iability of the APP is noticeable, with periods of 
acceleration followed by phases of engine brak-
ing or standstill. The middle graph shows the 
vehicle speed (V), which varies according to the 

Sort 2 cycle, reaching a maximum of approx. 50 
km/h. The recorded data provides valuable for 
machine learning, enabling modelling and pre-
diction of fuel consumption in real-world urban 
operation conditions. 

The data preparation process included prelim-
inary analysis as well as signal processing. Data 
corresponding to the repetitive driving cycles of 
SORT2 (Standardised on–road test) were select-
ed. This made it possible to reduce the influence 
of random disturbances and to ensure the consist-
ency of the observations. Due to the dynamics of 
the drive train operating phenomena, the recorded 
data were sampled at 10 Hz. Channel synchroni-
sation was also verified.

The study is based on an analysis under con-
trolled conditions, using a single vehicle type and 
the SORT-2 cycle. This approach eliminated dis-
turbing factors and ensured consistent reference 
data. The aim was to verify the methodology and 
predictive models in an unambiguous way. The 
results may serve as a basis for estimating future 
fuel consumption, similar to the approach applied 
in the VECTO tool.

During signal processing, input data normali-
sation was performed using the MinMaxScaler 
function. The data were then transformed into a 
fixed-length sequence (time window), defining 
a short-term history of the vehicle state. A three-
dimensional input tensor (time, feature, sample) 
was created, using vehicle speed (V) and APP as 
input variables, and instantaneous fuel consump-
tion (l/h) as the output variable.

Figure 3. Diagram of the road test measurement system [1]
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SCOPE OF THE MODEL STUDY

In order to determine the most effective 
method for predicting the fuel consumption of 
a city bus, five different approaches to building 
models based on neural networks were carried 
out. Each successive approach incorporated fur-
ther improvements to the architecture or learn-
ing process, in line with the progress of the re-
search and the conclusions of previous analyses. 
A summary of the modified parameters is in-
cluded in Table 1, while a broader description is 
provided in the following table. The description 
of model is: 
	• LSTM 1 – the basic single-tier model: the 

first step used a basic LSTM (long short-
term memory) network architecture, with one 

LSTM layer (64 neurons) and a Dense output 
layer. The model was taught for 20 epochs on 
input sequences of 20 samples, using the stan-
dard Adam optimisation algorithm and a mean 
squared error (MSE) type loss function. Input 
data included vehicle speed and APP signal, 
and the output variable was instantaneous fuel 
consumption [l/h].

	• LSTM 2 – depth extension and regularisation: 
the second step involved increasing the com-
plexity of the model by introducing two LSTM 
layers (with 64 and 32 neurons, respectively) 
and using Dropout layers (p = 0.2) after each 
recurrent layer to reduce the risk of overfitting. 
In addition, the length of the input sequence 
was extended to 30 samples and the number 
of epochs was increased to 40. The model was 

Figure 4. Results of road tests, fuel consumption (Ge), vehicle velocity (V),  
acceleration pedal position (%)
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taught on normalised data and the predictions 
were verified against actual measurements.

	• LSTM 3 – automation of the learning process 
and a deeper network: the third step introduced 
further automation of the learning process, us-
ing EarlyStopping and ReduceLROnPlateau 
mechanisms to dynamically adjust the number 
of epochs and the learning rate. The model had 
an even deeper architecture, with three LSTM 
layers (128, 64 and 32 neurons) and Dropout 
layers (p=0.3). The sequence was extended 
to 40 samples and the batch size was reduced 
to 16. Initialisation of weights (“he_normal”) 
was also used. The checkpoint model saved 
the best version of the model based on the loss 
function.

	• LSTM 4 – model with weights for idling: the 
fourth step was an advanced modification of 
the third version. Sample weighting was in-
troduced, giving higher weighting to samples 
corresponding to idling (defined as fuel con-
sumption < 2 l/h). The aim was to increase the 
accuracy of the prediction of low fuel con-
sumption, which is particularly important for 
the efficiency of bus fleets. In addition, an in-
house loss function was used to allow weights 
to be passed to the learning algorithm. Other 
aspects of the model corresponded to the ar-
chitecture of the third approach.

	• FuelNet – a dedicated Feedforward deep neural 
network architecture: the FuelNet deep feedfor-
ward neural network (MLP) model, consistent 
with the literature, was used as a benchmark 
for comparison with LSTM architectures. Fu-
elNet consists of five fully connected layers, 
with a decreasing number of neurons, ReLU-
type activation functions and Dropout (p = 0.2) 
between layers. The model was trained iden-
tically to the LSTM models, using the same 

input and output data. The aim was to verify 
whether sequential architectures (LSTM) sig-
nificantly outperform classical models in the 
fuel consumption prediction task.

MODEL VALIDATION AND RESULTS 
ANALYSIS

In the presented approach to modelling the 
instantaneous fuel consumption of a vehicle, the 
strategy of training the model on the full reference 
data set (base file) was adopted. The assessment 
of the prediction quality was carried out on a sep-
arate test file, not participating in the training pro-
cess. This configuration corresponds to a typical 
division into a training set and a test set, with the 
difference that instead of a random or sequential 
division of one data set, a division of data from 
different measurement sessions is used. The risk 
of data leakage between training and evaluation 
phases has been eliminated. Consequently, the 
calculated error metrics (MAE, RMSE, R²) can 
be considered reliable and resilient to overfitting. 
Figures 5a-5e show the results of the model vali-
dation on additional data that were also obtained 
during the Sort 2 test run, but with an increased 
value of engine load by increasing the electrical 
power consumed by the electrical devices in the 
vehicle. The red line represents the experimental 
values, while the blue line represents the values 
predicted by the model. The R2 (Coefficient of 
determination) value shown in the Figures 5a-5e 
refers to the goodness-of-fit of a linear regression 
applied to a 35% random subset of the predicted 
vs. actual values. It does not represent the true 
performance of the model, which is evaluated us-
ing the full dataset and reported separately in the 
metrics summary.

Table 1. Comparative overview of model

Model Architecture Input sequence Epochs Dropout Loss 
function Additional features

LSTM 1 LSTM (64) + Dense 20 time steps 20 None MSE Baseline model

LSTM 2 LSTM (64) → LSTM 
(32) + Dense 30 time steps 40 0.2 MSE Overfitting reduction

LSTM 3 LSTM (128 → 64 → 
32) + Dense 40 time steps Dynamic 

(Early stopping) 0.3 MSE
He normal init, 

ReduceLROnPlateau, 
ModelCheckpoint

LSTM 4 Same as LSTM 3 40 time steps Dynamic 
(Early stopping) 0.3 Weighted 

MSE
Sample weighting for idle 

mode (< 2 l/h)

FuelNet MLP (5 Dense layers) No sequence 
(flat input)

Dynamic 
(Early stopping) 0.2 MSE

ReLU activation, classical 
Feedforward neural 

network (FFN) architecture
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Figures 5a–e show the results of five fuel 
consumption prediction models, comprising four 
LSTM-based architectures (LSTM1-LSTM4) 
and one MLP-type model (FuelNet). The evalu-
ation of each model was based on two types of 
visualisation: a comparison of the time course of 
measured and predicted values of instantaneous 
fuel consumption (graphs on the left) and (2) a 
scatterplot of actual and predicted values with fit-
ted linear regression and coefficient of determina-
tion R² (graphs on the right).

The LSTM 1 sequential baseline model 
(Figure 5a) provides a baseline for subsequent 
modifications. The time course shown reflects 
the main trends, but deviations are evident in the 
areas of fast changes and for idle speed. A mod-
erate scatter of points relative to the ideal line 
is observed in the scatter plot. The R² value is 
0.977, indicating correct, although limited, pre-
dictive accuracy.

The LSTM2 model with greater depth and 
regularisation (Figure 5b) was extended with a 
second LSTM layer and dropout was applied. 
This has improved the model’s ability to anal-
yse complex temporal relationships. Predictions 
are closer to the actual values, especially in the 
transition phases. The scatter plot shows a higher 
concentration of points near the ideal line and a 
higher R² = 0.9872.

The LSTM 3 model extended with dynamic 
learning and deep architecture (Figure 5c) using 
three layers of LSTM and the EarlyStopping and 
ReduceLROnPlateau mechanisms. This has ena-
bled a better fit to the data, especially in the areas 
of low consumption and longer constant driving 
passages. The R² value reaches 0.9907 and the 
predictions show minimal deviation from meas-
ured values.

The LSTM 4 model with weights for idling 
(Figure 6d) is an extension of the third version 
with a system of weights assigned to idling trials 
(< 2 l/h). This has made it possible to increase the 
precision of the predictions in the sensitive areas 
of low consumption relevant to urban fleets. Pre-
dictions remain highly consistent with the meas-
urement, with the R² value increasing to 0.992 – 
the highest of all models.

The FuelNet model (Figure 5e) represents a 
classic MLP-type network with a five-layer Dense 
structure. The model correctly reproduces the fuel 
consumption trend, but shows limited sensitivi-
ty to dynamic changes and abrupt transitions. In 
spite of this, a high R² = 0.992 was obtained. This 

indicates good prediction of steady-state values, 
with less effectiveness under variable conditions.

All the models used show acceptable predic-
tive capability for instantaneous fuel consump-
tion. The accuracy of the prediction increases 
with the depth of the architecture and the applica-
tion of regularisation techniques. The sequential 
models (LSTM3-LSTM4) show a clear advan-
tage over the classical MLP model (FuelNet) in 
terms of dynamic representation and precision 
at low consumption. The highest performance is 
achieved by the LSTM4 model, due to the use of 
sample weighting in the idling range. However, it 
should be mentioned that the use of the FuelNet 
model is more efficient to some extent, as it will 
require fewer hardware resources for future fuel 
consumption forecasting.

Figure 6 shows a comparison of the predic-
tive accuracy of the five regression models con-
sidered. Four classic quality assessment metrics 
were used: mean absolute error (MAE), mean 
squared error (MSE), root of mean squared error 
(RMSE) and coefficient of determination (R²). 
The metric values were determined based on 
validation data that the model did not see during 
training. The obtained values of MAE, MSE and 
RMSE indicate a small prediction error, while a 
high R² indicates a good ability of the model to 
represent the variance of real data.

The best results were obtained by the LSTM2, 
LSTM3 and LSTM4 models, which achieved low 
errors (MAE ≈ 0.47–0.49) and high R² values (≥ 
0.986), indicating high prediction precision. The 
FuelNet model, despite a high R² (0.938), gen-
erated significantly larger MAE and MSE errors, 
which may suggest overly general prediction 
characteristics. Further analysis of FuelNet may 
require an architecture review or hyperparameter 
retuning. In summary, the LSTM2–LSTM4 mod-
els best represent the test data, while FuelNet re-
quires further optimization.

Analysis of the fuel prediction error histo-
grams presented in Figure 7 allows for a precise 
comparison of the fuel consumption prediction 
quality obtained by the neural models: FuelNet 
and LSTM 1–4. The LSTM 1 model (one LSTM 
layer with 64 neurons and a Dense layer), using 
20 input time steps and trained for 20 epochs 
without dropout, generates a noticeable error 
peak at approximately 0.4 dm³/h. This indicates 
a reproducible pattern of prediction inaccuracy 
and moderate model generalization. The LSTM 
2 model (two LSTM layers: 64, then 32 neurons, 
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Figure 5. Results of instantaneous fuel consumption prediction for the (a) LSTM 1 model, (b) LSTM 2 model, 
(c) LSTM 3 model, (d) LSTM 4 model, (e) FuelNet model
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Figure 6. Model metric values

and a Dense layer) with 30 input steps, 40 training 
epochs, a dropout of 0.2, and MSE demonstrates 
a significant improvement over LSTM 1. Most 
errors are concentrated below 0.2 dm³/h. The in-
troduction of dropout and a deeper structure ef-
fectively reduces overfitting. The LSTM 3 model 
was equipped with three LSTM layers (128, 64, 
and 32 neurons) and a Dense layer with 40 input 

steps and dynamic epoch selection (EarlyStop-
ping), a dropout of 0.3, He normal weight initial-
ization, and the ReduceLROnPlateau and Mod-
elCheckpoint strategies. Error analysis revealed a 
significant increase in prediction accuracy. Errors 
in the range of up to 0.2 dm³/h are dominant.

The LSTM 4 model, which is an exten-
sion of the LSTM 3 model architecture with 

Figure 7. Fuel prediction error histograms for FuelNet and LSTM 1-4 models
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identical layer parameters, input sequence, and 
training strategy (EarlyStopping, dropout 0.3), 
differs in its use of a weighted error function 
(weighted MSE). By taking into account lower 
fuel consumption values (idle mode < 2 l/h), it 
achieves the highest concentration of low abso-
lute error values among the analyzed models, 
clearly dominating for errors below 0.2 dm3/h. 
The FuelNet model, based on a classic MLP 
(Multilayer Perceptron) network composed of 
5 dense layers (Dense), without taking into ac-
count the data sequence (flat input structure), 
is characterized by two distinct absolute error 
modes around 0.05 and 0.45 dm³/h. The use of 
a dynamic number of epochs (EarlyStopping), 
an MSE loss function, and a dropout of 0.2 pro-
vides moderate precision, but a wide error dis-
tribution is visible, which may result from the 
simplified network structure.

To sum up, it can be stated that the use of 
an extensive LSTM network architecture and 
advanced regularization techniques (EarlyStop-
ping, ReduceLROnPlateau, ModelCheckpoint) 
and a weighted error function, as in the case of 
LSTM 4, enabled achieving the highest preci-
sion in fuel consumption prediction. The next 
step in the analysis of the fuel consumption 
prediction modeling results was to develop box 
plots for the errors of each prediction. The re-
sults are shown in Figure 8. The graph compares 
the distributions of absolute error (dm³/h) for 
fuel consumption predictions for five models. 
Visualization in the form of boxplots enabled the 
analysis of basic descriptive statistics – quartile 

values, interquartile range, and the number and 
spread of outliers.

All LSTM models achieve low median er-
rors (below 0.5 dm³/h). This demonstrates their 
high central precision. In the case of the FuelNet 
model, this median is higher, around 0.8 dm³/h. 
Larger differences are visible in the interquartile 
range (IQR). LSTM 3 and LSTM 4 models have 
the lowest IQR, indicating stable and predictable 
results. FuelNet, on the other hand, has the widest 
range between the lower and upper quartiles, re-
sulting from greater error variability. The outlier 
analysis shows that FuelNet generates a signifi-
cantly larger number of outliers, including errors 
exceeding 4 dm³/h. In LSTM models, this dis-
persion is smaller, with outliers not exceeding 6 
dm³/h. However, it is worth emphasizing that the 
lower quartile (Q1) in all models is at a similar 
level – below 0.25 dm³/h – meaning that in the top 
25% of cases, each model achieves high accuracy 
regardless of the architecture used.

In summary, LSTM models demonstrate bet-
ter stability and lower error variability compared 
to FuelNet. Despite the potential advantages of 
its greater architectural complexity and flexibility, 
FuelNet exhibits significantly more outliers and a 
wider error range. This may indicate its susceptibil-
ity to overfitting or a stronger response to unusual 
input data. Statistical analysis suggests that model 
selection should consider not only average accu-
racy but also prediction stability and robustness to 
anomalies, especially in real-world applications.

The instantaneous fuel consumption pre-
diction results obtained by the LSTM models 

Figure 8. Comparison of absolute errors (in dm³/h) of fuel consumption prediction for different model variants
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(particularly LSTM3 and LSTM4) and the Fu-
elNet model are characterized by high quality of 
representation of actual values – the coefficient 
of determination R² exceeds 0.98, and the MAE 
oscillates in the range of 0.47–0.49 dm³/h for the 
best models. This accuracy classifies these mod-
els as highly useful for practical applications, 
such as driving style optimization or decision 
support systems in fleet management.

The literature on the subject reports varying 
levels of prediction accuracy, depending on vehi-
cle type, environmental conditions, the number of 
input variables, and the modeling strategies used. 
To verify the quality of the obtained results, a re-
view of current works published in high-ranking 
scientific journals was conducted.

In article [31] utilized a long short‑term mem-
ory (LSTM) neural network to estimate instantane-
ous fuel consumption of a Toyota Camry HEV (hy-
brid electric vehicle). Authors were used GPS po-
sition, speed, acceleration, and road condition data. 
They achieved excellent predictive performance, 
with R² values close to 0.97–0.98 and MAE in the 
range ~0.3–0.4 dm³/h under real driving condi-
tions. In comparison, LSTM3 and LSTM4 models 
achieved MAE < 0.5 dm³/h and R² > 0.98 

In the study [32], a hybrid deep learning mod-
el (LSTM-MVO) was used to predict fuel con-
sumption and CO₂ emissions based on OBD (on-
board diagnostics) interface data, achieving high 
determination coefficients (R² = 0.996 for training 
data and R² = 0.988 for testing data). These re-
sults indicate the high effectiveness of sequential 
models in representing temporal and nonlinear 
dependencies in transport data.

In [33], the authors presented a model for es-
timating monthly vehicle fuel consumption and 
CO₂ emissions using driver behavior data (ag-
gressive acceleration, braking, speeding) together 
with trip distance and duration. The best results 
were achieved with the Random Forest Regression 
model, reaching R² = 0.975, RMSE = 13.3 kg, 
and MAE = 8.3 kg. In the present study, the 
LSTM3 and LSTM4 models, developed for pre-
dicting instantaneous fuel consumption in urban 
traffic, achieved MAE < 0.5 dm³/h and R² > 0.98. 
Compared to the approach of Wang [33], which 
operates on monthly aggregated data, the pro-
posed LSTM models provide high‑resolution, 
time‑series‑based predictions better suited for dy-
namic traffic conditions.

Against the background of the above publica-
tions, it can be stated that the LSTM3 and LSTM4 

models obtained in this study achieve one of the 
highest R² values (0.986–0.989) and absolute er-
ror (MAE < 0.5 dm³/h) under complex test condi-
tions and real urban data. Furthermore, the use of 
sample weighting for idle mode (LSTM4) allows 
for better representation of significant low fuel 
consumption periods, which is different from the 
reviewed literature models.

CONCLUSIONS

The research carried out aimed to develop, 
implement and compare five variants of models 
based on neural networks for predicting instanta-
neous fuel consumption in city buses. Real-world 
data recorded during Sort 2 driving cycles were 
used. Analysis of the modeling results demon-
strated high predictive accuracy for all mod-
els. The more advanced LSTM architectures 
(LSTM2, LSTM3, LSTM4) were found to be su-
perior to the basic model (LSTM1) and the classic 
MLP network (FuelNet). The key findings from 
the study are presented below.

High prediction accuracy of LSTM mod-
els: The LSTM2, LSTM3, and LSTM4 models 
achieved R² coefficients of determination ranging 
from 0.986 to 0.998 and MAE values of 0.47 to 
0.49 dm³/h. In particular, the LSTM4 model, with 
a weighted loss function that accounted for idle 
mode (< 2 l/h), achieved the highest precision (R² 
= 0.99). This highlights the importance of spe-
cialized modeling strategies for specific operat-
ing conditions, such as low fuel consumption in 
urban traffic.

Advantages of sequential LSTM models over 
classic MLP networks: The FuelNet model, based 
on a five-layer MLP architecture, achieved R² 
= 0.938, but generated larger errors (MAE and 
MSE) and exhibited a wider error distribution 
compared to LSTM models. This is due to Fuel-
Net’s limited ability to model dynamic changes in 
sequential data.

Effectiveness of advanced regularization 
and optimization techniques: The use of tech-
niques such as EarlyStopping, ReduceLROnPla-
teau, and ModelCheckpoint in the LSTM3 and 
LSTM4 models allowed for dynamic optimiza-
tion of the training process, minimizing overfit-
ting, and achieving stable and predictable results. 
The introduction of a weighted loss function in 
the LSTM4 model further improved prediction 
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accuracy in low fuel consumption ranges, crucial 
for the efficiency of bus fleets.

Prediction stability of the LSTM models: Box 
plot analysis showed that the LSTM models had 
a smaller interquartile range (IQR) and fewer out-
liers compared to the FuelNet model. The median 
error for the LSTM models was below 0.5 dm³/h. 
This demonstrates their high stability and resil-
ience to data anomalies, which is important in re-
al-world fleet management applications.

Practical application: The high accuracy 
and stability of the LSTM3 and LSTM4 models 
demonstrates potential utility in fleet manage-
ment systems or driving style optimization. The 
ability to precisely predict fuel consumption, es-
pecially during idling, can contribute to reducing 
operating costs and emissions. This is consistent 
with sustainable transport goals and the target de-
carbonization targets by 2040.

Directions for Further Research: Despite the 
high results obtained, further work should focus 
on testing the models in more diverse road and 
environmental conditions. This will allow us to 
verify the model’s robustness to data variability. 
Furthermore, integrating a larger number of input 
variables, such as weather data or passenger load, 
could increase the models’ versatility.

The study confirms that advanced LSTM 
models, especially those with a weighted loss 
function, offer high precision and stability in 
predicting instantaneous fuel consumption in 
city buses. These results could significantly con-
tribute to the development of fuel consumption 
modeling methods and enable practical applica-
tions in fleet management.
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