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INTRODUCTION 

The cornea is a key component of the eye’s 
refractive system, responsible for 70% of the to-
tal refractive power. Visual quality depends on its 
shape and transparency, and therefore on the stabil-
ity and structural integrity of the cornea, which are 

determined by its biomechanical properties [1, 2]. 
These properties dictate how the cornea responds 
to stress and deformation, and this process is influ-
enced by its viscoelastic characteristics. The cor-
nea can be regarded as a complex biomechanical 
composite. Its stroma, which accounts for more 
than 90% of its thickness, consists of 300 to 500 
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lamellar layers composed of unbranched collagen 
fibers extending across the entire cornea from lim-
bus to limbus. Each lamella has a highly regular 
organization: the fibers are parallel and evenly 
spaced [3, 4]. The biomechanical properties of the 
cornea are important in the measurement of intra-
ocular pressure (IOP) and are relevant in clinical 
conditions such as keratoconus, corneal refractive 
surgery, and glaucoma [5].

Keratoconus is a progressive, non-inflamma-
tory disorder characterized by corneal thinning, 
conical protrusion, and biomechanical alterations 
[6]. This results in irregular astigmatism, visual 
deterioration, and reduced visual acuity. The eti-
ology of the disease is not fully understood, but 
it is suggested that genetic, biomechanical, and 
environmental factors may contribute to its devel-
opment [7]. Early diagnosis is crucial for halting 
disease progression and initiating treatment [8]. 
Traditional diagnostic methods focus on analyz-
ing the corneal shape and thickness using topog-
raphy and tomography (Scheimpflug, OCT) [9]. 
Although these techniques are effective in de-
tecting advanced keratoconus, their accuracy is 
limited in identifying early-stage changes [8, 10, 
11]. For this reason, increasing attention is being 
given to methods that assess the biomechanical 
properties of the cornea.

A modern diagnostic tool is the Ocular Re-
sponse Analyzer (ORA), which measures the cor-
nea’s response to dynamic deformation through 
the corneal hysteresis (CH) and corneal resistance 
factor (CRF) [12,13]. These values are reduced 
in patients with keratoconus, indicating structural 
weakening of the tissue [14].

Another commonly used method is the Corvis 
ST (Corneal Visualization Scheimpflug Technol-
ogy), which employs an air puff and Scheimpflug 
imaging to record dynamic corneal deformation 
[15, 16]. The device generates a range of mechan-
ical indices, such as stiffness and deformation 
parameters, enabling earlier detection of degen-
erative changes. Corvis ST (Oculus Optikgeräte 
GmbH, Wetzlar, Germany) is a non-contact, 
semi-automated device that analyzes corneal bio-
mechanics in vivo. It uses an air pulse to induce 
corneal deformation and captures its progression 
in real time with a high-speed Scheimpflug cam-
era, acquiring 4300 horizontal frames per second 
[17–19]. Corneal deformation can be observed in 
slow motion on the device’s screen.

Scheimpflug imaging enables the assessment 
of central corneal thickness (CCT). During the first 

of two corneal applanations, intraocular pressure 
(IOP) is calculated [20]. The most important bio-
mechanical parameters include, among others: ap-
planation times and lengths (A-time1/A-time2, A-
length1/A-length2), corneal velocities (Vin/Vout), 
time and radius of highest concavity, deformation 
amplitude (DA), peak distance (PD), and the radius 
of curvature at the point of highest concavity (R).

The use of Scheimpflug imaging combined 
with artificial intelligence methods and multi-
modal data (both imaging and numerical) enables 
effective classification of keratoconus cases. The 
extraction of corneal geometric features based on 
deformation curve profiles allowed for 99% di-
agnostic accuracy using a neural network [21]. 
Expanding the feature set with topographic data 
from the Pentacam device enabled a Random For-
est model to achieve 89% classification accuracy 
[22]. Similar combinations of features yielded an 
AUC of 93% [23]. Analysis of data from three 
devices (Sirius, Pentacam, Corvis) enabled iden-
tification of the most accurate indicators (Sirius – 
AUC = 91%, Corvis – AUC = 82%) [24]. Transfer 
learning has been applied to classify images from 
the Corvis device - comparison of the ResNet152, 
VGG16, and InceptionV3 models showed the 
highest diagnostic accuracy for ResNet152 (AUC 
= 99%) [25]. The latest review [26] of literature 
on AI applications in corneal disease diagnostics 
highlights their high effectiveness, as well as the 
need for external validation and greater popula-
tion heterogeneity.

The implementation potential of artificial in-
telligence models depends not only on their di-
agnostic performance for a given task but also 
on their hardware requirements and their ability 
to meet real-time constraints, if such are critical 
in a specific context. The aim of this study was 
to evaluate the capabilities of three-dimensional 
convolutional neural network (3D-CNN) archi-
tectures for the diagnosis of keratoconus, as well 
as to assess their inference time and memory 
consumption. This approach makes it possible to 
evaluate algorithmic performance while simulta-
neously addressing their feasibility for practical 
deployment in a clinical setting, which is an as-
pect often overlooked in medical data analysis. 
The conducted literature review indicates that 
previous studies have focused primarily on the 
diagnostic accuracy of artificial intelligence al-
gorithms for keratoconus based on biomechani-
cal parameters derived from dynamic corneal 
imaging. In contrast, our approach relies on the 



259

Advances in Science and Technology Research Journal 2025, 19(12) 257–272

analysis of complete video sequences captured 
by the high-speed camera integrated in the Corvis 
ST system. This eliminates the need for explicit 
computation of biomechanical parameters and re-
quires only the direct use of the recorded video. 
Furthermore, our method makes it possible to de-
fine implementation-related requirements that are 
critical for the translation of developed models 
into medical practice.

The novelty of this study lies in the compara-
tive analysis of the performance and hardware 
requirements of 3D convolutional neural net-
works for keratoconus detection based solely on 
dynamic corneal imaging using video sequences 
acquired with the CORVIS ST device. Our find-
ings offers a novel perspective on adapting the 
3D CNN architecture to the specific requirements 
of keratoconus diagnosis and available compu-
tational resources, while achieving high classifi-
cation accuracy. The integration of the proposed 
models into clinical workflows has the potential 
to serve as a valuable decision-support tool for 
ophthalmologists in the diagnosis of keratoconus. 
This contribution, to the best of our knowledge, 
has not yet been reported in the existing literature.

STUDY PARTICIPANTS 

The study included two groups of patients 
presenting at the outpatient clinic: a pilot group 
diagnosed with keratoconus (57 eyes) and a 
control group (47 eyes). All examinations were 
conducted at the Department of Ophthalmology, 
Medical University of Lublin, between March 
and August 2024. Each patient provided written 
informed consent to participate in the study. The 
study was conducted in accordance with Good 
Clinical Practice (GCP) guidelines and the Dec-
laration of Helsinki, and its implementation was 
approved by the Local Ethics Committee of the 
Medical University of Lublin (approval number: 
KE-0254/98/03/2023). The preliminary examina-
tions included: objective and subjective refrac-
tion, slit-lamp examination, intraocular pressure 
measurement, and corneal tomography. Patients 
were enrolled in the study based on the following 
inclusion criteria:
	• Inclusion criteria for healthy eyes:

−	 normal corneal topography and tomogra-
phy results (K max < 47 D, inferior–supe-
rior difference < 1.5 D, skewed radial axis 
index < 22°)

−	 normal elevation maps of the anterior and 
posterior corneal surfaces

−	 uniform corneal thickness distribution 
(CCT > 480 µm)

−	 no corneal scarring
−	 no clinical signs of keratoconus
−	 no family history of keratoconus

	• Inclusion criteria for keratoconic eyes:
−	 abnormal corneal tomography and topogra-

phy results (K max > 47 D, inferior–supe-
rior difference > 1.5 D, skewed radial axis 
index > 22°),

−	 abnormal elevation maps of the anterior and 
posterior corneal surfaces,

−	 central or inferior corneal protrusion,
−	 thin cornea,
−	 no corneal scarring;

	• Exclusion criteria included: other forms of 
corneal ectasia (e.g., pellucid marginal degen-
eration, keratoglobus), endothelial diseases, 
prior ocular surgeries, and eye infections.

	• Rationale for inclusion and exclusion criteria. 

The inclusion criteria for healthy eyes were 
based on tomographic and topographic thresh-
olds (K max < 47 D, inferior-superior differ-
ence < 1.5 D, skewed radial axis index < 22º, 
central corneal thickness > 480 µm) that are 
well established in the literature to rule out sub-
clinical keratoconus and ensure a truly normal 
corneal profile. Additional requirements, such 
as normal elevation maps and absence of clini-
cal signs of keratoconus or family history, were 
applied to minimize the risk of enrolling eyes 
with forme fruste disease. The inclusion criteria 
for keratoconic eyes were based on characteris-
tic tomographic features (K max > 47 D, infe-
rior–superior difference > 1.5 D, skewed radial 
axis index > 22º) and morphological changes, 
such as central or inferior protrusion and cor-
neal thinning, which are diagnostic hallmarks 
of keratoconus. The absence of corneal scarring 
was required to avoid irregularities that could 
interfere with optical quality and biomechanical 
measurements. Exclusion criteria (other corneal 
ectasias such as pellucid marginal degeneration 
or keratoglobus, endothelial diseases, prior ocu-
lar surgeries, or active eye infections) were in-
troduced to eliminate potential confounders that 
could independently affect corneal biomechan-
ics, thereby ensuring the validity of the com-
parative analysis between groups.
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All available biomechanical parameters ob-
tained using the Corvis ST device were recorded 
for analysis. Table 1 contains the most important 
information about the device used. Measurements 
were performed by a qualified operator in accor-
dance with the manufacturer’s instructions. 

DATA PREPROCESSING 

This article presents a study on keratoconus 
detection based on videos from the CORVIS ST 
device using 3D convolutional neural network 
models of varying complexity. The input data 
consisted of 139 videos, of which 87 represented 
keratoconus eyes and 52 were healthy eyes. Each 
video comprised 139 frames, each with a resolu-
tion of 200 × 576 pixels. The duration of the vid-
eos as well as the frame dimensions were consis-
tent across all recordings.

Proper data preparation is a crucial aspect of 
medical imaging and the use of artificial intelli-
gence methods for diagnosing various diseases. 
Medical images may contain different types of 
noise or artifacts that degrade the quality of al-
gorithm training and, in some cases, even prevent 
pattern recognition within the data. The absence 
of preprocessing in medical imaging can hinder 
the generation of consistent and interpretable re-
sults [27, 28]. Digital image processing plays a 
vital role in medical technologies such as radiog-
raphy, ultrasonography, computed tomography, 
and computer-based analysis and interpretation 
of microscopic cellular images. As noted by the 
authors in [29], the goal of image processing is to 

enhance relevant image features to facilitate in-
terpretation. Furthermore, image processing can 
positively influence training speed and reduce the 
hardware requirements needed for analysis. This 
approach can enable the deployment of diagnos-
tic models directly on measuring devices and 
edge devices [30]. 

Each video obtained from the CORVIS ST im-
aging device contains essential information about 
the examination, such as patient data, date of ac-
quisition, and the examined eye. Additionally, 
each video frame includes a watermark with the 
logo of Oculus – the device manufacturer. There-
fore, before proceeding with the study, it was 
necessary to remove this text to prevent patient-
identifiable information from influencing the di-
agnostic features. Another important issue was the 
removal of the manufacturer’s logo, which, due to 
its sharp edges and high brightness, could reduce 
the sensitivity of vision models to the edges of the 
cornea and their deformation over time.

The video processing was performed using 
the OpenCV library, because it is one of the most 
commonly used media processing library, sup-
ports wide range of video formats and is optimized 
for speed and performance, resulting in the initial 
processing of all videos taking approximately 84 
seconds. Initially, edge detection was carried out 
using the Canny algorithm [31], followed by dila-
tion to enhance the fine edges of the text overlays. 
In the next step, the cv2.findContours function 
was used to detect the contours of the text. For 
each contour, a bounding rectangle was calculated 
and a mask was created based on matching the 
rectangle size to predefined minimum and maxi-
mum character dimensions and aspect ratio. Using 
this mask, the text was removed through inpaint-
ing, i.e., filling in the masked regions based on an 
estimation of the background appearance. The re-
sults of this procedure are presented in Figure 1 
for several frames from a demo video.

In the next stage of preprocessing, the video 
frames were resized to 100 × 100 pixels. This 
step was necessary to adjust the image size to the 
memory capacity of the graphics card used for 
computations. Processing full-size frames from 
videos consisting of 139 images would not have 
been feasible on an RTX 4070 Super GPU, as 
confirmed by preliminary tests, during which out 
of memory (OOM) errors occurred.

While the initial preparation of individual 
frames aimed to facilitate the algorithm’s identifi-
cation of spatial features - such as texture, contours, 

Table 1. Corvis ST specification and key features
General information

Manufacturer Oculus

Model Corvis ST

Tonometer

Measurement range 6–60 mmHg

Measurement distance 11 mm

Inner fixation light Red LED

Scheimpflug camera

Frame rate 4330 images per sec

Measurement range 8.5 mm horizontal coverage
Pachymeter measurement 
range 200–1200 µm

Measuring points 576 per image (80640 per 
examination)

Source of light Blue LED (470 nm UV free)
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shape, and the arrangement of elements – for the 
classification of entire videos, temporal features 
also play a significant role. These include object 
movements, changes in brightness and structure, 
as well as inter-frame dependencies. Analysis of 
the video material, composed of 139 frames, in-
dicates that only a subset contains relevant infor-
mation about corneal dynamics (i.e. its motion). 
The initial part of the video captures a static state 
– the patient is waiting for the test to begin, and 
the cornea remains motionless, aside from slight 
movements related, for example, to breathing. In 
the subsequent part of the video, the cornea’s re-
sponse to the air impulse is observed – from the 
initial state, through the point of maximum defor-
mation, to the return to baseline position. In addi-
tion to the video, the CORVIS device also records 
three key corneal frames corresponding to the fol-
lowing states: initial, applanation, and maximum 
concavity, which are presented in the device re-
port (Figure 2). Considering that these three states 
and the transitions between them are most crucial 
in the diagnostic process, a decision was made to 

trim the videos to include only the time range in 
which they occur. Each video was truncated to 55 
frames, covering the corneal deformation from 
the initial state to the point of maximum deflec-
tion and containing the most relevant information. 
An additional advantage of this approach was the 
reduction of spatially near-identical frames, which 
decreases the risk of algorithmic bias toward re-
peated features. Furthermore, this step helped to 
reduce GPU memory requirements and accelerate 
the training process.

Due to the limited size of the dataset and the 
need to test multiple models to develop an effec-
tive solution for keratoconus diagnosis, a 5-fold 
stratified cross-validation was applied to compare 
the predictive performance of the models and to 
fine-tune their parameters. This method involves 
dividing the dataset into five equal parts and train-
ing the algorithm on four of them while testing on 
the remaining one. In each iteration of the pro-
cess, a different subset is used for testing, ensur-
ing that each subset maintains a class distribution 
similar to that of the original dataset, that is, the 

Figure 1. Examples of video frames before (a) and after (b) preprocessing, based on demo videos from the 
CORVIS ST standard database (excerpts from demo videos were shown to avoid revealing sensitive patient data)
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number of keratoconus and healthy cases is ap-
proximately balanced. This approach helps avoid 
bias associated with the selection of the test set 
when determining the model architecture and pa-
rameters. According to the data reported in [32], 
keratoconus affects between 0.2 and 4.790 indi-
viduals per 100,000. Consequently, it is difficult 
to collect a sufficiently large dataset of affected 
patients. The limited size of the dataset reduces 
the stability of model predictions, particularly 
when ambiguous cases are present. For this rea-
son, both parameter selection and classification 
evaluation were performed using average accu-
racy values across five validation folds. Although 
this approach does not provide a definitive esti-
mate of model performance on previously unseen 
data, it offers a practical compromise that enables 
meaningful comparison between models.

3D CONVOLUTIONAL NEURAL 
NETWORKS 

The structure of the 3D convolutional neural 
network model is very similar to standard models 
used in image analysis, with the key difference 
being the inclusion of an additional temporal di-
mension representing changes in the image over 

time. In 2D CNNs, two-dimensional convolutions 
are applied to extract features from local neigh-
borhoods on the feature maps of the previous 
layer. Weight units are then added, and the result 
is passed through a sigmoidal activation function. 
The value at a given position (x, y) in a layer of 
the network can be expressed as:

	𝑌𝑌(𝑥𝑥, 𝑦𝑦) = f⁡(𝑏𝑏 + ∑ ∑ ∑ 𝑊𝑊(𝑚𝑚, 𝑛𝑛, 𝑐𝑐)
𝑋𝑋(𝑥𝑥 + 𝑚𝑚, 𝑦𝑦 + 𝑛𝑛, 𝑐𝑐))

𝐶𝐶−1

𝑐𝑐=0

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
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= f⁡(𝑏𝑏 + ∑ ∑ ∑ ∑ 𝑊𝑊(𝑑𝑑,𝑚𝑚, 𝑛𝑛, 𝑐𝑐)
𝑋𝑋(𝑥𝑥 + 𝑑𝑑, 𝑦𝑦 + 𝑚𝑚, 𝑧𝑧 + 𝑛𝑛, 𝑐𝑐)
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𝑐𝑐=0
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𝑘𝑘
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	(1)

where:	 f is the sigmoidal activation function (e.g., 
ReLU), b is the bias unit for the feature 
map, X(x+m, y+n, c) is the value at posi-
tion (x+m, y+n) in channel c of the input 
image, W(m, n, c) is the value at position 
(m, n) of the filter for channel c, M × N is 
the size of the filter, and C is the number of 
input channels (e.g., 3 for RGB images). 

Typically, to reduce sensitivity to distortions 
in the input data, convolutional layers are fol-
lowed by pooling layers, which aggregate local 
neighborhoods on the feature maps. An example 
of the convolution mechanism for two-dimen-
sional networks is shown in Figure 3.

In video analysis, it is desirable to capture not 
only spatial features but also temporal features, 
that is, changes occurring in images over time. At 

Figure 2. Sample report from the CORVIS device showing the three corneal states, based on demo videos
from the CORVIS ST standard database (excerpts from demo videos were shown to avoid

revealing sensitive patient data)



263

Advances in Science and Technology Research Journal 2025, 19(12) 257–272

the input of a 3D convolutional neural network 
model, the entire video or a selected segment is 
typically provided, and the convolutional filter 
takes the shape of a cube. This structure enables 
the feature maps in the convolutional layer to be 
connected to multiple adjacent video frames, al-
lowing the network to capture motion informa-
tion (see Figure 4). Formally, the value at position 
(x, y, z) can be expressed as:

	

𝑌𝑌(𝑥𝑥, 𝑦𝑦) = f⁡(𝑏𝑏 + ∑ ∑ ∑ 𝑊𝑊(𝑚𝑚, 𝑛𝑛, 𝑐𝑐)
𝑋𝑋(𝑥𝑥 + 𝑚𝑚, 𝑦𝑦 + 𝑛𝑛, 𝑐𝑐))
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where:	D is the size of the filter along the new 
temporal dimension.

In the diagnosis of keratoconus based on 
dynamic corneal imaging, both spatial features, 
related to the cornea’s shape, structure, and thick-
ness, and temporal features, i.e., corneal biome-
chanics – are highly important. Three-dimen-
sional convolutional neural network (3D CNN) 
models have gained popularity in the scientific 
community precisely due to their ability to learn 
spatiotemporal features [33]. For this reason, 
such models are frequently used for human ac-
tion recognition [34], and in medicine they can 
support the detection of discomfort in hospital-
ized infants [35]. Applications of 3D CNNs in the 
diagnosis of forme fruste keratoconus have also 
been reported in the literature, in [36] the authors 
achieved an accuracy of 87%.

In this article, a comparative study of 21 3D-
CNN models of varying complexity and architec-
ture was undertaken in the context of keratoco-
nus detection. The model-building approach was 
inspired by the VGG16 architecture [37], which 
has repeatedly demonstrated its effectiveness in 
extracting features from medical images. For in-
stance, in the study presented in [38], the authors 
achieved an accuracy of 88% in brain tumor clas-
sification using this model. For every model, data 
were first normalized using a BatchNormaliza-
tion layer. Subsequent models were constructed 
by incrementally adding blocks composed of two 
3D convolutional layers (kernel size = 3 × 3 × 3, 
stride = 1 × 1 × 1, ReLU activation, and ‘same’ 
padding) followed by one MaxPooling3D layer 
(pool size = 2 × 2 × 2). The number of Dense lay-
ers at the end of the network equaled the number 
of blocks; when more than one Dense layer was 
present, a Dropout layer with a rate of 0.3 was in-
serted between them. In addition, L2 weight regu-
larization with a coefficient of 0.0001 was applied 
to every layer.

For each network depth, different layer widths 
were also tested, with a minimum width of 16 fil-
ters. Two width profiles were analyzed: constant 
and a pyramidal profile (increasing width). The 
inverted-pyramid topology (decreasing width) 
was not tested because a large number of filters in 
the initial layers, where the feature-map size had 
not yet been reduced by pooling or stride, caused 
Out-Of-Memory (OOM) errors during prelimi-
nary trials. A summary of all built and evaluated 
models is presented in Table 2. It is worth noting 

Figure 3. 2D convolution diagram
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that the models were expanded by sequentially 
adding blocks and increasing the number of filters 
until OOM errors occurred.

The final classification layer consisted of a 
fully connected layer with a single neuron and a 
sigmoid activation function. Each developed 3D 
CNN model was trained for 100 epochs using the 
Binary Crossentropy loss function and the Adam 
optimizer with a learning rate set to 0.0001. Dur-
ing training, a Model Checkpoint callback was 
introduced to enable restoration of the model that 
achieved the best validation accuracy in terms of 
loss. A summary of the modeling approach is pre-
sented in Figure 5.

RESULTS AND DISCUSSION

For each of the models presented in the previ-
ous section, an evaluation was conducted based 
on four criteria: accuracy, inference time, number 
of parameters, and GPU memory usage. The ac-
curacy was calculated according to formula:

	

𝑌𝑌(𝑥𝑥, 𝑦𝑦) = f⁡(𝑏𝑏 + ∑ ∑ ∑ 𝑊𝑊(𝑚𝑚, 𝑛𝑛, 𝑐𝑐)
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 	 (3)

where:	 i is the fold index, TP – number of true 
positives (correctly detected keratoconus 
cases), TN – number of true negatives 
(correctly classified healthy cases), 	
FP – number of false positives (videos in-
correctly classified as keratoconus), 	
FN – number of false negatives (videos in-
correctly classified as healthy).

Since cross-validation was applied, the ac-
curacy and inference time were calculated as the 

mean across all folds, while the number of param-
eters remained constant for each fold, and GPU 
memory usage was reported as the maximum ob-
served value. These evaluation criteria allowed 
for a comparison of the models not only in terms 
of keratoconus detection performance but also in 
terms of computational complexity and process-
ing speed. Figure 6 presents a plot of model ac-
curacy as a function of model complexity for both 
constant-width and pyramidal network architec-
tures. It is evident that for both network types, 
the best results are similar, around 89% accuracy, 
and are achieved with networks composed of four 
convolutional blocks. Moreover, it is worth not-
ing that for a given number of blocks, increasing 
the width improves the performance of constant-
width networks, whereas it decreases accuracy 
in pyramidal architectures. An exception to this 
is observed in constant-width models with four 
convolutional blocks, where increasing the width 
beyond 64 filters causes a slight drop in accuracy.

Figure 7 presents a comparison of the num-
ber of parameters in relation to model complexity. 
First, it should be noted that the number of param-
eters in both architectures is not linearly dependent 
on either the number of convolutional blocks or 
their width. Interestingly, the number of parameters 
decreases as the number of convolutional blocks 
increases. This occurs because each block contains 
a MaxPooling layer, which reduces the data shape, 
and consequently lowers the number of parameters 
in the first Dense layer (since the number of param-
eters in that layer depends on the number and shape 
of its inputs). It is also evident that increasing the 
width of the layers results in a higher number of 
parameters; however, this growth is significantly 
more rapid in pyramidal models. This is due to the 

Figure 4. 3D convolution diagram
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fact that the X-axis of the plot represents the num-
ber of filters in the first convolutional layer. In pyra-
midal architectures, the number of filters is doubled 
in each subsequent convolutional block and also 
doubled again when transitioning to the Dense lay-
ers. This means that in a model with three blocks, 
if the first block contains 32 filters, the correspond-
ing Dense layer would consist of 256 neurons. As 
a result, pyramidal models have significantly more 
parameters than constant-width models.

Another criterion related to model com-
plexity was GPU memory usage, as shown in 

Figure 8. Although the shape of the plots is simi-
lar to those depicting the number of parameters, 
it is noticeable that for constant-width models, 
memory usage increases much more rapidly than 
the number of parameters. This is primarily due 
to the fact that memory consumption depends not 
only on the number of parameters but also on the 
data shape, and even on the specific implementa-
tion of the model within the framework. For both 
constant-width and pyramidal models, the maxi-
mum memory usage was comparable and did not 
exceed 7.5 GB.

Table 2. Compared models 
ConvNet Configuration

A1 A2 B1 B2 B3 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 F3 F4 G1 G2 G3

Video input 55 x  (100 x 100 RGB frames)

Conv3D

16 32 16 32 64 1 32 16 32 64 128 16 32 64 16 32 64 128 16 32 64

Conv3D

16 32 16 32 64 16 32 16 32 64 128 16 32 64 16 32 64 128 16 32 64

Maxpool

Conv3D

16 32 64 32 64 16 32 64 128 32 64 128 16 32 64 128 32 64 128

Conv3D

16 32 64 32 64 16 32 64 128 32 64 128 16 32 64 128 32 64 128

Maxpool

Conv3D

16 32 64 128 64 128 256 16 32 64 128 64 128 256

Conv3D

16 32 64 128 64 128 256 16 32 64 128 64 128 256

Maxpool

Conv3D

16 32 64 128 128 256 512

Conv3D

16 32 64 128 128 256 512

Maxpool

Dense

16 32 16 32 64 64 128 16 32 64 128 128 256 512 16 32 64 128 256 512 1024

Dropout (0.3)

Dense

16 32 64 64 128 16 32 64 128 128 256 512 16 32 64 128 256 512 1024

Dropout (0.3)

Dense

16 32 64 128 128 256 512 16 32 64 128 256 512 1024

Dropout (0.3)

Dense

16 32 64 128 256 512 1024

Softmax
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When implementing decision-support sys-
tems, an important aspect is the prediction time 
for a single sample. In the case of keratoconus 
diagnosis, this refers to the time required to ana-
lyze one examination video from the CORVIS 
ST device. Although keratoconus is not an acute 
condition that requires immediate action to save a 
patient’s life or health, the diagnosis time should 
still be short enough to allow comparison with 
the analysis conducted by a physician. Figure 9 
presents the inference time as a function of model 
complexity for both constant-width and pyrami-
dal architectures. Most importantly, it should be 

noted that the prediction time for a single video 
did not exceed 0.2 seconds, which is well within 
acceptable limits for building a medical deci-
sion-support system. Naturally, inference time 
depends on model complexity. It is evident that 
as the number of convolutional blocks increases, 
inference time also increases, and the relationship 
appears approximately linear - though more data 
points would be needed to confirm this precisely. 
However, it can be assumed that the relationship 
becomes nonlinear for increasing layer width.

Figure 10 presents a comparison of the ac-
curacy of constant-width and pyramidal models. 

Figure 5. Diagram showing the individual stages of developing a model for diagnosing keratoconus

Figure 6. Relationship between mean accuracy, the number of filters and the number of blocks
for constant-width layer models (left) and pyramidal models (right)

Figure 7. Relationship between number of parameters, the number of filters and the number of blocks
for constant-width layer models (left) and pyramidal models (right)
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Interestingly, the median accuracy is exactly the 
same for both architectures; however, the con-
stant-width models exhibit a much greater vari-
ability in results. Additionally, the pyramidal 
models did not achieve 100% accuracy in any of 
the cross-validation folds, in contrast to the con-
stant-width models.

A comparison of inference times for the eval-
uated 3D convolutional network architectures is 
shown in Figure 11. It can be observed that, once 
again, the median value for both architectures is 
very similar, although not identical in this case. 
While constant-width models exhibit less variabil-
ity, the plot contains more outliers compared to 
pyramidal structures. Naturally, inference time is 
also influenced by the load on the CPU, GPU and 
RAM caused by other running processes, which 
could explain the presence of these outlier values. 
However, it is important to note that even the out-
lier inference times did not exceed 0.3 seconds, 
which remains acceptable from the perspective of 
keratoconus diagnosis support systems.

Considering the results presented above, it is 
evident that the highest accuracy among constant-
width models was achieved by the model with 4 
blocks, each containing 64 filters. In contrast, 
the best-performing pyramidal architecture was 
the model with 4 blocks and 16 filters in the first 
block. A full comparison of the results for these 
two best models is provided in Table 3. It is worth 
noting that the constant-width model achieved 
nearly the same accuracy as the best pyramidal 
model (a difference of only 0.05%) while using 
significantly fewer parameters, which translates 
into a shorter training time. However, the ad-
vantage of the pyramidal model lies in its lower 
memory consumption and shorter inference time.

In medical diagnostics, it is important not 
only to ensure adequate diagnostic accuracy. An-
other crucial aspect is minimizing the number of 
false alarms, as well as maximizing prediction 
coverage, i.e. the proportion of correctly identi-
fied patients. Therefore, to properly evaluate the 
model, it is necessary to analyze classification 

Figure 8. Relationship between maximum GPU memory usage, the number of filters and the number of blocks 
for constant-width models (left) and pyramidal models (right)

Figure 9. Relationship between inference time, the number of filters and the number of blocks
for constant-width models (left) and pyramidal models (right)
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Table 3. Comparison of the best-performing constant-width and pyramidal models
Parameter Mean accuracy [%] Mean inference time [s] Number of parameters [mln] Memory usage [GB]

Constant width 89.18 0.1214 1.595 4.037

Pyramid 89.23 0.0974 7.500 2.087

metrics such as precision, recall, and F1 score. 
The values of these metrics for the best-perform-
ing model (pyramidal) are presented in Figure 12. 
It is evident that the accuracy varies considerably 

across different cross-validation splits, with a dis-
crepancy of approximately 10%. The other met-
rics also exhibit substantial variation, which may 
be attributed to the limited size of the dataset. The 

Figure 10. Accuracy comparison for constant width and pyramid model architectures

Figure 11. Inference time comparison for constant width and pyramid model architectures



269

Advances in Science and Technology Research Journal 2025, 19(12) 257–272

Figure 12. Classification metrics for the best-performing pyramidal model with 4 blocks and
16 filters in the first block

Figure 13. Confusion matrix for the best-performing pyramidal model with 4 blocks and 16 filters
in the first block and the final cross-validation split

results further show that the model achieves a 
considerably higher median recall – 94%, com-
pared to precision – 89%, while the F1 score did 
not exceed 95% in any of the splits

Figure 13 presents the confusion matrix for 
the final cross-validation split of the pyramidal 
model with 4 blocks and 16 filters in the first 
block. It can be observed that the model mis-
takenly classified two healthy patients as having 

keratoconus, i.e. two false positives were re-
corded. However, it is important to note that all 
keratoconus cases were correctly identified. Such 
model behavior is beneficial from the perspective 
of physician-assisting systems, as borderline cas-
es can be referred for further diagnostic testing, 
for example using the Pentacam device. More-
over, it is particularly important that all affected 
individuals were correctly detected.
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Previous studies have highlighted the potential 
of artificial intelligence methods in keratoconus 
diagnosis, although most of them rely on pre-ex-
tracted features rather than on raw data. The ex-
traction of corneal biomechanical features based 
on deformation curve profiles allowed neural net-
works to achieve up to 99% diagnostic accuracy 
[21]. While this result is remarkable, it does not 
address the computational requirements and time 
constraints. Similarly, the inclusion of topograph-
ic data obtained from Pentacam device enabled a 
Random Forest model to achieve 89% classifica-
tion accuracy [22]. This result is comparable to 
the accuracy of our best-performing 3D CNN, but 
does not take into account the cornea dynamics and 
stiffness, which makes the approach less generaliz-
able to heterogeneous populations. In other study, 
similar combination of features yielded an AUC of 
93% [23], but not considering the inference time 
and memory usage. A broader multimodal analysis 
that combined data from three devices (Sirius, Pen-
tacam and Corvis) identified Sirius-derived param-
eters as the most effective indicators (AUC = 91%), 
followed by Corvis parameters (AUC = 82%) [24]. 
Although this highlights the benefit of multimodal 
fusion, it also introduces challenges related to the 
simultaneous use of multiple diagnostic devices, 
which limits practical applicability in routine oph-
thalmic practice. In a different research, authors ex-
plored transfer learning approaches applied to im-
ages from the Corvis device [25]. A comparison of 
ResNet152, VGG16 and InceptionV3 showed that 
ResNet152 achieved the highest diagnostic accura-
cy (AUC = 99%). While this illustrates the strength 
of deep feature representations, the dependence on 
pretrained 2D CNN models does not fully capture 
the temporal dynamics of cornea deformation. 

In contrast to the above approaches, out study 
employs complete video sequences directly ob-
tained from the Corvis ST device and provides 
a systematic comparison of 21 distinct 3D CNN 
architectures. This design not only eliminates the 
need of dedicated feature extraction model but 
also enables the network to learn spatiotemporal 
features directly from raw cornea deformation 
videos. The evaluation of accuracy, inference 
time, number of parameters and GPU memory 
usage in keratoconus diagnosis adds a practical 
perspective that is absent in prior studies, where 
the main focus was achieving the best diagnostic 
effectiveness. Our results demonstrate that pyra-
midal architectures achieved superior accuracy 
and sensitivity while consuming less memory 

than constant-width networks, which emphasizes 
that it is possible and beneficial to optimize mod-
els in this context. Nevertheless, further external 
validation on broader and more heterogeneous 
dataset is needed to confirm the robustness of the 
proposed approach. Although the achieved ac-
curacy of over 89% and sensitivity of 85.9% are 
competitive compared to the results of [22] and 
exceed those of [36]. 

CONCLUSIONS

This study presents a comparison of the effec-
tiveness of keratoconus detection using 3D convo-
lutional neural network models of varying com-
plexity and architecture, based on dynamic corneal 
imaging from the CORVIS ST device. The videos 
collected during the examinations were properly 
preprocessed and labeled. A 5-fold stratified cross-
validation was employed to identify the model 
with the highest generalization capability.

The study indicates that both constant-width 
and pyramidal models can achieve comparable 
classification accuracy; however, the latter exhibit 
lower memory usage and shorter inference times. 
Additionally, pyramidal models demonstrate less 
variability in performance across different cross-
validation splits. The best-performing model 
achieved an average keratoconus detection accu-
racy of 89%, while maintaining high sensitivity.

The obtained results confirm the potential 
of the model as an effective and reliable tool for 
early keratoconus detection or for use in screen-
ing programs. The high performance of the model 
demonstrates its ability to effectively complement 
existing diagnostic procedures, potentially reduc-
ing the number of misdiagnoses and supporting 
clinical decision-making.

Nevertheless, the model’s tendency toward 
false positives represents an area for further im-
provement and should be addressed prior to its 
implementation in a medical environment. In ad-
dition, the generalizability of the model must be 
evaluated on larger and more diverse datasets. A 
further limitation of the proposed 3D neural net-
work models lies in their relatively high GPU 
memory requirements, since diagnostic worksta-
tions are typically not equipped with dedicated 
computational units. A potential solution may 
involve the use of cloud-based infrastructures; 
however, this approach necessitates careful con-
sideration of data security and the protection of 
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sensitive patient information contained in clinical 
examinations. The implementation of a clinical 
decision-support system will also require enhanc-
ing the interpretability of diagnostic results. This 
can be partially addressed by adopting explain-
able AI methods or providing the probability of 
class membership rather than a label, allowing 
physicians to pay particular attention to patients 
for whom the model is uncertain.
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