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ABSTRACT

Keratoconus is a progressive disease that requires precise and rapid diagnosis, as well as the initiation of treat-
ment, to prevent serious and permanent visual impairment. This article presents a comparison of 3D convolutional
neural network models for the diagnosis of keratoconus based on dynamic corneal imaging results obtained with
the CORVIS device. The article describes the data preprocessing and compares models of varying complexity in
terms of accuracy, inference time, number of parameters, and GPU memory usage. To ensure adequate generaliza-
tion capability during algorithm training, 5-fold stratified cross-validation was used, and the average metrics from
all splits were compared. The best model achieved an average keratoconus detection accuracy exceeding 88%,
confirming that deep neural networks can be a promising tool to support physicians in diagnosing corneal diseases
such as keratoconus. Future work includes plans to gather a larger patient database and apply more advanced pre-
processing methods for the video data.

Keywords: keratoconus, cornea, deep learning, convolutional neural network, medical imaging.

INTRODUCTION

The cornea is a key component of the eye’s
refractive system, responsible for 70% of the to-
tal refractive power. Visual quality depends on its
shape and transparency, and therefore on the stabil-
ity and structural integrity of the cornea, which are

determined by its biomechanical properties [1, 2].
These properties dictate how the cornea responds
to stress and deformation, and this process is influ-
enced by its viscoelastic characteristics. The cor-
nea can be regarded as a complex biomechanical
composite. Its stroma, which accounts for more
than 90% of its thickness, consists of 300 to 500
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lamellar layers composed of unbranched collagen
fibers extending across the entire cornea from lim-
bus to limbus. Each lamella has a highly regular
organization: the fibers are parallel and evenly
spaced [3, 4]. The biomechanical properties of the
cornea are important in the measurement of intra-
ocular pressure (IOP) and are relevant in clinical
conditions such as keratoconus, corneal refractive
surgery, and glaucoma [5].

Keratoconus is a progressive, non-inflamma-
tory disorder characterized by corneal thinning,
conical protrusion, and biomechanical alterations
[6]. This results in irregular astigmatism, visual
deterioration, and reduced visual acuity. The eti-
ology of the disease is not fully understood, but
it is suggested that genetic, biomechanical, and
environmental factors may contribute to its devel-
opment [7]. Early diagnosis is crucial for halting
disease progression and initiating treatment [8].
Traditional diagnostic methods focus on analyz-
ing the corneal shape and thickness using topog-
raphy and tomography (Scheimpflug, OCT) [9].
Although these techniques are effective in de-
tecting advanced keratoconus, their accuracy is
limited in identifying early-stage changes [8, 10,
11]. For this reason, increasing attention is being
given to methods that assess the biomechanical
properties of the cornea.

A modern diagnostic tool is the Ocular Re-
sponse Analyzer (ORA), which measures the cor-
nea’s response to dynamic deformation through
the corneal hysteresis (CH) and corneal resistance
factor (CRF) [12,13]. These values are reduced
in patients with keratoconus, indicating structural
weakening of the tissue [14].

Another commonly used method is the Corvis
ST (Corneal Visualization Scheimpflug Technol-
ogy), which employs an air puff and Scheimpflug
imaging to record dynamic corneal deformation
[15, 16]. The device generates a range of mechan-
ical indices, such as stiffness and deformation
parameters, enabling earlier detection of degen-
erative changes. Corvis ST (Oculus Optikgerite
GmbH, Wetzlar, Germany) is a non-contact,
semi-automated device that analyzes corneal bio-
mechanics in vivo. It uses an air pulse to induce
corneal deformation and captures its progression
in real time with a high-speed Scheimpflug cam-
era, acquiring 4300 horizontal frames per second
[17—-19]. Corneal deformation can be observed in
slow motion on the device’s screen.

Scheimpflug imaging enables the assessment
of central corneal thickness (CCT). During the first
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of two corneal applanations, intraocular pressure
(IOP) is calculated [20]. The most important bio-
mechanical parameters include, among others: ap-
planation times and lengths (A-timel/A-time2, A-
length1/A-length2), corneal velocities (Vin/Vout),
time and radius of highest concavity, deformation
amplitude (DA), peak distance (PD), and the radius
of curvature at the point of highest concavity (R).

The use of Scheimpflug imaging combined
with artificial intelligence methods and multi-
modal data (both imaging and numerical) enables
effective classification of keratoconus cases. The
extraction of corneal geometric features based on
deformation curve profiles allowed for 99% di-
agnostic accuracy using a neural network [21].
Expanding the feature set with topographic data
from the Pentacam device enabled a Random For-
est model to achieve 89% classification accuracy
[22]. Similar combinations of features yielded an
AUC of 93% [23]. Analysis of data from three
devices (Sirius, Pentacam, Corvis) enabled iden-
tification of the most accurate indicators (Sirius —
AUC =91%, Corvis —AUC = 82%) [24]. Transfer
learning has been applied to classify images from
the Corvis device - comparison of the ResNet152,
VGG16, and InceptionV3 models showed the
highest diagnostic accuracy for ResNet152 (AUC
=99%) [25]. The latest review [26] of literature
on Al applications in corneal disease diagnostics
highlights their high effectiveness, as well as the
need for external validation and greater popula-
tion heterogeneity.

The implementation potential of artificial in-
telligence models depends not only on their di-
agnostic performance for a given task but also
on their hardware requirements and their ability
to meet real-time constraints, if such are critical
in a specific context. The aim of this study was
to evaluate the capabilities of three-dimensional
convolutional neural network (3D-CNN) archi-
tectures for the diagnosis of keratoconus, as well
as to assess their inference time and memory
consumption. This approach makes it possible to
evaluate algorithmic performance while simulta-
neously addressing their feasibility for practical
deployment in a clinical setting, which is an as-
pect often overlooked in medical data analysis.
The conducted literature review indicates that
previous studies have focused primarily on the
diagnostic accuracy of artificial intelligence al-
gorithms for keratoconus based on biomechani-
cal parameters derived from dynamic corneal
imaging. In contrast, our approach relies on the
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analysis of complete video sequences captured
by the high-speed camera integrated in the Corvis
ST system. This eliminates the need for explicit
computation of biomechanical parameters and re-
quires only the direct use of the recorded video.
Furthermore, our method makes it possible to de-
fine implementation-related requirements that are
critical for the translation of developed models
into medical practice.

The novelty of this study lies in the compara-
tive analysis of the performance and hardware
requirements of 3D convolutional neural net-
works for keratoconus detection based solely on
dynamic corneal imaging using video sequences
acquired with the CORVIS ST device. Our find-
ings offers a novel perspective on adapting the
3D CNN architecture to the specific requirements
of keratoconus diagnosis and available compu-
tational resources, while achieving high classifi-
cation accuracy. The integration of the proposed
models into clinical workflows has the potential
to serve as a valuable decision-support tool for
ophthalmologists in the diagnosis of keratoconus.
This contribution, to the best of our knowledge,
has not yet been reported in the existing literature.

STUDY PARTICIPANTS

The study included two groups of patients
presenting at the outpatient clinic: a pilot group
diagnosed with keratoconus (57 eyes) and a
control group (47 eyes). All examinations were
conducted at the Department of Ophthalmology,
Medical University of Lublin, between March
and August 2024. Each patient provided written
informed consent to participate in the study. The
study was conducted in accordance with Good
Clinical Practice (GCP) guidelines and the Dec-
laration of Helsinki, and its implementation was
approved by the Local Ethics Committee of the
Medical University of Lublin (approval number:
KE-0254/98/03/2023). The preliminary examina-
tions included: objective and subjective refrac-
tion, slit-lamp examination, intraocular pressure
measurement, and corneal tomography. Patients
were enrolled in the study based on the following
inclusion criteria:

e Inclusion criteria for healthy eyes:

— normal corneal topography and tomogra-
phy results (K max < 47 D, inferior—supe-
rior difference < 1.5 D, skewed radial axis
index < 22°)

— normal elevation maps of the anterior and
posterior corneal surfaces

— uniform corneal thickness
(CCT > 480 um)

— no corneal scarring

— no clinical signs of keratoconus

— no family history of keratoconus

e Inclusion criteria for keratoconic eyes:

— abnormal corneal tomography and topogra-
phy results (K max > 47 D, inferior—supe-
rior difference > 1.5 D, skewed radial axis
index > 22°),

— abnormal elevation maps of the anterior and
posterior corneal surfaces,

— central or inferior corneal protrusion,

— thin cornea,

— no corneal scarring;

e Exclusion criteria included: other forms of
corneal ectasia (e.g., pellucid marginal degen-
eration, keratoglobus), endothelial diseases,
prior ocular surgeries, and eye infections.

e Rationale for inclusion and exclusion criteria.

distribution

The inclusion criteria for healthy eyes were
based on tomographic and topographic thresh-
olds (K max < 47 D, inferior-superior differ-
ence < 1.5 D, skewed radial axis index < 22°,
central corneal thickness > 480 pum) that are
well established in the literature to rule out sub-
clinical keratoconus and ensure a truly normal
corneal profile. Additional requirements, such
as normal elevation maps and absence of clini-
cal signs of keratoconus or family history, were
applied to minimize the risk of enrolling eyes
with forme fruste disease. The inclusion criteria
for keratoconic eyes were based on characteris-
tic tomographic features (K max > 47 D, infe-
rior—superior difference > 1.5 D, skewed radial
axis index > 22°) and morphological changes,
such as central or inferior protrusion and cor-
neal thinning, which are diagnostic hallmarks
of keratoconus. The absence of corneal scarring
was required to avoid irregularities that could
interfere with optical quality and biomechanical
measurements. Exclusion criteria (other corneal
ectasias such as pellucid marginal degeneration
or keratoglobus, endothelial diseases, prior ocu-
lar surgeries, or active eye infections) were in-
troduced to eliminate potential confounders that
could independently affect corneal biomechan-
ics, thereby ensuring the validity of the com-
parative analysis between groups.
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All available biomechanical parameters ob-
tained using the Corvis ST device were recorded
for analysis. Table 1 contains the most important
information about the device used. Measurements
were performed by a qualified operator in accor-
dance with the manufacturer’s instructions.

DATA PREPROCESSING

This article presents a study on keratoconus
detection based on videos from the CORVIS ST
device using 3D convolutional neural network
models of varying complexity. The input data
consisted of 139 videos, of which 87 represented
keratoconus eyes and 52 were healthy eyes. Each
video comprised 139 frames, each with a resolu-
tion of 200 x 576 pixels. The duration of the vid-
eos as well as the frame dimensions were consis-
tent across all recordings.

Proper data preparation is a crucial aspect of
medical imaging and the use of artificial intelli-
gence methods for diagnosing various diseases.
Medical images may contain different types of
noise or artifacts that degrade the quality of al-
gorithm training and, in some cases, even prevent
pattern recognition within the data. The absence
of preprocessing in medical imaging can hinder
the generation of consistent and interpretable re-
sults [27, 28]. Digital image processing plays a
vital role in medical technologies such as radiog-
raphy, ultrasonography, computed tomography,
and computer-based analysis and interpretation
of microscopic cellular images. As noted by the
authors in [29], the goal of image processing is to

Table 1. Corvis ST specification and key features

General information

Manufacturer Oculus

Model Corvis ST
Tonometer

Measurement range 6—60 mmHg

Measurement distance 11 mm

Inner fixation light Red LED

Scheimpflug camera

Frame rate 4330 images per sec

Measurement range 8.5 mm horizontal coverage

Pachymeter measurement

200-1200 pym
range

576 per image (80640 per
examination)

Blue LED (470 nm UV free)

Measuring points

Source of light
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enhance relevant image features to facilitate in-
terpretation. Furthermore, image processing can
positively influence training speed and reduce the
hardware requirements needed for analysis. This
approach can enable the deployment of diagnos-
tic models directly on measuring devices and
edge devices [30].

Each video obtained from the CORVIS ST im-
aging device contains essential information about
the examination, such as patient data, date of ac-
quisition, and the examined eye. Additionally,
each video frame includes a watermark with the
logo of Oculus — the device manufacturer. There-
fore, before proceeding with the study, it was
necessary to remove this text to prevent patient-
identifiable information from influencing the di-
agnostic features. Another important issue was the
removal of the manufacturer’s logo, which, due to
its sharp edges and high brightness, could reduce
the sensitivity of vision models to the edges of the
cornea and their deformation over time.

The video processing was performed using
the OpenCV library, because it is one of the most
commonly used media processing library, sup-
ports wide range of video formats and is optimized
for speed and performance, resulting in the initial
processing of all videos taking approximately 84
seconds. Initially, edge detection was carried out
using the Canny algorithm [31], followed by dila-
tion to enhance the fine edges of the text overlays.
In the next step, the cv2.findContours function
was used to detect the contours of the text. For
each contour, a bounding rectangle was calculated
and a mask was created based on matching the
rectangle size to predefined minimum and maxi-
mum character dimensions and aspect ratio. Using
this mask, the text was removed through inpaint-
ing, i.e., filling in the masked regions based on an
estimation of the background appearance. The re-
sults of this procedure are presented in Figure 1
for several frames from a demo video.

In the next stage of preprocessing, the video
frames were resized to 100 x 100 pixels. This
step was necessary to adjust the image size to the
memory capacity of the graphics card used for
computations. Processing full-size frames from
videos consisting of 139 images would not have
been feasible on an RTX 4070 Super GPU, as
confirmed by preliminary tests, during which out
of memory (OOM) errors occurred.

While the initial preparation of individual
frames aimed to facilitate the algorithm’s identifi-
cation of spatial features - such as texture, contours,
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Name: 00_Demo_Cory Exam. Date: 23,01.2014

ID: grade 2

Eye: Right (0D)

I PZ0OCULUS

Eye: Right (OD)

Eye: Right (OD) Exam. Date: 23.01.2014 0

Eye: Right (0D)

Exam. Date: 23.01.2014 03:38:23

b)

Figure 1. Examples of video frames before (a) and after (b) preprocessing, based on demo videos from the
CORVIS ST standard database (excerpts from demo videos were shown to avoid revealing sensitive patient data)

shape, and the arrangement of elements — for the
classification of entire videos, temporal features
also play a significant role. These include object
movements, changes in brightness and structure,
as well as inter-frame dependencies. Analysis of
the video material, composed of 139 frames, in-
dicates that only a subset contains relevant infor-
mation about corneal dynamics (i.e. its motion).
The initial part of the video captures a static state
— the patient is waiting for the test to begin, and
the cornea remains motionless, aside from slight
movements related, for example, to breathing. In
the subsequent part of the video, the cornea’s re-
sponse to the air impulse is observed — from the
initial state, through the point of maximum defor-
mation, to the return to baseline position. In addi-
tion to the video, the CORVIS device also records
three key corneal frames corresponding to the fol-
lowing states: initial, applanation, and maximum
concavity, which are presented in the device re-
port (Figure 2). Considering that these three states
and the transitions between them are most crucial
in the diagnostic process, a decision was made to

trim the videos to include only the time range in
which they occur. Each video was truncated to 55
frames, covering the corneal deformation from
the initial state to the point of maximum deflec-
tion and containing the most relevant information.
An additional advantage of this approach was the
reduction of spatially near-identical frames, which
decreases the risk of algorithmic bias toward re-
peated features. Furthermore, this step helped to
reduce GPU memory requirements and accelerate
the training process.

Due to the limited size of the dataset and the
need to test multiple models to develop an effec-
tive solution for keratoconus diagnosis, a 5-fold
stratified cross-validation was applied to compare
the predictive performance of the models and to
fine-tune their parameters. This method involves
dividing the dataset into five equal parts and train-
ing the algorithm on four of them while testing on
the remaining one. In each iteration of the pro-
cess, a different subset is used for testing, ensur-
ing that each subset maintains a class distribution
similar to that of the original dataset, that is, the
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Figure 2. Sample report from the CORVIS device showing the three corneal states, based on demo videos
from the CORVIS ST standard database (excerpts from demo videos were shown to avoid
revealing sensitive patient data)

number of keratoconus and healthy cases is ap-
proximately balanced. This approach helps avoid
bias associated with the selection of the test set
when determining the model architecture and pa-
rameters. According to the data reported in [32],
keratoconus affects between 0.2 and 4.790 indi-
viduals per 100,000. Consequently, it is difficult
to collect a sufficiently large dataset of affected
patients. The limited size of the dataset reduces
the stability of model predictions, particularly
when ambiguous cases are present. For this rea-
son, both parameter selection and classification
evaluation were performed using average accu-
racy values across five validation folds. Although
this approach does not provide a definitive esti-
mate of model performance on previously unseen
data, it offers a practical compromise that enables
meaningful comparison between models.

3D CONVOLUTIONAL NEURAL
NETWORKS

The structure of the 3D convolutional neural
network model is very similar to standard models
used in image analysis, with the key difference
being the inclusion of an additional temporal di-
mension representing changes in the image over
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time. In 2D CNNs, two-dimensional convolutions
are applied to extract features from local neigh-
borhoods on the feature maps of the previous
layer. Weight units are then added, and the result
is passed through a sigmoidal activation function.
The value at a given position (X, y) in a layer of
the network can be expressed as:

M-1N—

Y(x,y) =f(b+ Wm,m, c)

1C-1
Z X(x+my+ n,c))(l)
=0n=0c=0
where: fis the sigmoidal activation function (e.g.,
ReLU), b is the bias unit for the feature
map, X(x+m, y+n, c) is the value at posi-
tion (x+m, y+n) in channel c of the input
image, W(m, n, c) is the value at position
(m, n) of the filter for channel ¢, M x N is
the size of the filter, and C is the number of
input channels (e.g., 3 for RGB images).

Typically, to reduce sensitivity to distortions
in the input data, convolutional layers are fol-
lowed by pooling layers, which aggregate local
neighborhoods on the feature maps. An example
of the convolution mechanism for two-dimen-
sional networks is shown in Figure 3.

In video analysis, it is desirable to capture not
only spatial features but also temporal features,
that is, changes occurring in images over time. At
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the input of a 3D convolutional neural network
model, the entire video or a selected segment is
typically provided, and the convolutional filter
takes the shape of a cube. This structure enables
the feature maps in the convolutional layer to be
connected to multiple adjacent video frames, al-
lowing the network to capture motion informa-
tion (see Figure 4). Formally, the value at position
(x, v, z) can be expressed as:

Y(x,y,2) =

2)

1¢-
z w(d, m,n,c)
X(x+d,y+m,z+n,c)

ul_\42

D—1 M-
=f(b+;;

where: D is the size of the filter along the new
temporal dimension.

In the diagnosis of keratoconus based on
dynamic corneal imaging, both spatial features,
related to the cornea’s shape, structure, and thick-
ness, and temporal features, i.e., corneal biome-
chanics — are highly important. Three-dimen-
sional convolutional neural network (3D CNN)
models have gained popularity in the scientific
community precisely due to their ability to learn
spatiotemporal features [33]. For this reason,
such models are frequently used for human ac-
tion recognition [34], and in medicine they can
support the detection of discomfort in hospital-
ized infants [35]. Applications of 3D CNNs in the
diagnosis of forme fruste keratoconus have also
been reported in the literature, in [36] the authors
achieved an accuracy of 8§7%.
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In this article, a comparative study of 21 3D-
CNN models of varying complexity and architec-
ture was undertaken in the context of keratoco-
nus detection. The model-building approach was
inspired by the VGG16 architecture [37], which
has repeatedly demonstrated its effectiveness in
extracting features from medical images. For in-
stance, in the study presented in [38], the authors
achieved an accuracy of 88% in brain tumor clas-
sification using this model. For every model, data
were first normalized using a BatchNormaliza-
tion layer. Subsequent models were constructed
by incrementally adding blocks composed of two
3D convolutional layers (kernel size =3 x 3 x 3,
stride = 1 x 1 x 1, ReLU activation, and ‘same’
padding) followed by one MaxPooling3D layer
(pool size =2 x 2 x 2). The number of Dense lay-
ers at the end of the network equaled the number
of blocks; when more than one Dense layer was
present, a Dropout layer with a rate of 0.3 was in-
serted between them. In addition, L2 weight regu-
larization with a coefficient 0of 0.0001 was applied
to every layer.

For each network depth, different layer widths
were also tested, with a minimum width of 16 fil-
ters. Two width profiles were analyzed: constant
and a pyramidal profile (increasing width). The
inverted-pyramid topology (decreasing width)
was not tested because a large number of filters in
the initial layers, where the feature-map size had
not yet been reduced by pooling or stride, caused
Out-Of-Memory (OOM) errors during prelimi-
nary trials. A summary of all built and evaluated
models is presented in Table 2. It is worth noting

------ ) 0
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® | e
0
0 2 €
0
0 - 1 !
1 e -

Figure 3. 2D convolution diagram
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Figure 4. 3D convolution diagram

that the models were expanded by sequentially
adding blocks and increasing the number of filters
until OOM errors occurred.

The final classification layer consisted of a
fully connected layer with a single neuron and a
sigmoid activation function. Each developed 3D
CNN model was trained for 100 epochs using the
Binary Crossentropy loss function and the Adam
optimizer with a learning rate set to 0.0001. Dur-
ing training, a Model Checkpoint callback was
introduced to enable restoration of the model that
achieved the best validation accuracy in terms of
loss. A summary of the modeling approach is pre-
sented in Figure 5.

RESULTS AND DISCUSSION

For each of the models presented in the previ-
ous section, an evaluation was conducted based
on four criteria: accuracy, inference time, number
of parameters, and GPU memory usage. The ac-
curacy was calculated according to formula:

k

1 TP, + TN,

{ L3 TP, +TN; + FP; + FN,
1=

3)

where: i is the fold index, 7P — number of true
positives (correctly detected keratoconus
cases), TN — number of true negatives
(correctly classified healthy cases),
FP —number of false positives (videos in-
correctly classified as keratoconus),
FN—number of false negatives (videos in-
correctly classified as healthy).

Since cross-validation was applied, the ac-
curacy and inference time were calculated as the
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mean across all folds, while the number of param-
eters remained constant for each fold, and GPU
memory usage was reported as the maximum ob-
served value. These evaluation criteria allowed
for a comparison of the models not only in terms
of keratoconus detection performance but also in
terms of computational complexity and process-
ing speed. Figure 6 presents a plot of model ac-
curacy as a function of model complexity for both
constant-width and pyramidal network architec-
tures. It is evident that for both network types,
the best results are similar, around 89% accuracy,
and are achieved with networks composed of four
convolutional blocks. Moreover, it is worth not-
ing that for a given number of blocks, increasing
the width improves the performance of constant-
width networks, whereas it decreases accuracy
in pyramidal architectures. An exception to this
is observed in constant-width models with four
convolutional blocks, where increasing the width
beyond 64 filters causes a slight drop in accuracy.

Figure 7 presents a comparison of the num-
ber of parameters in relation to model complexity.
First, it should be noted that the number of param-
eters in both architectures is not linearly dependent
on either the number of convolutional blocks or
their width. Interestingly, the number of parameters
decreases as the number of convolutional blocks
increases. This occurs because each block contains
a MaxPooling layer, which reduces the data shape,
and consequently lowers the number of parameters
in the first Dense layer (since the number of param-
eters in that layer depends on the number and shape
of its inputs). It is also evident that increasing the
width of the layers results in a higher number of
parameters; however, this growth is significantly
more rapid in pyramidal models. This is due to the
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Table 2. Compared models

ConvNet Configuration
A1 |A2|B1|B2|B3|c1| c2 [D1|D2|D3| D4 | E1 | E2 | E3 |[F1|[F2|F3| F4 [ 61 | G2 | @3
Video input 55 x (100 x 100 RGB frames)
Conv3D
16 |32 |16 32|64 | 1| 32 [16]32 |64 |128] 16 | 32 [ 64 [16[32 |64 | 128 ] 16 | 32 | 64
Conv3D
16 |32 |16 32 |64 | 16| 32 [ 1632 |64 | 128 16 | 32 [ 64 [16[32 |64 | 128 ] 16 | 32 | 64
Maxpool
Conv3D
163264 |32 64 [ 1632 |64 | 128 | 32 | 64 | 128 [ 1632 |64 | 128 | 32 | 64 | 128
Conv3D
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fact that the X-axis of the plot represents the num-
ber of filters in the first convolutional layer. In pyra-
midal architectures, the number of filters is doubled
in each subsequent convolutional block and also
doubled again when transitioning to the Dense lay-
ers. This means that in a model with three blocks,
if the first block contains 32 filters, the correspond-
ing Dense layer would consist of 256 neurons. As
a result, pyramidal models have significantly more
parameters than constant-width models.

Another criterion related to model com-
plexity was GPU memory usage, as shown in

Figure 8. Although the shape of the plots is simi-
lar to those depicting the number of parameters,
it is noticeable that for constant-width models,
memory usage increases much more rapidly than
the number of parameters. This is primarily due
to the fact that memory consumption depends not
only on the number of parameters but also on the
data shape, and even on the specific implementa-
tion of the model within the framework. For both
constant-width and pyramidal models, the maxi-
mum memory usage was comparable and did not
exceed 7.5 GB.
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When implementing decision-support sys-
tems, an important aspect is the prediction time
for a single sample. In the case of keratoconus
diagnosis, this refers to the time required to ana-
lyze one examination video from the CORVIS
ST device. Although keratoconus is not an acute
condition that requires immediate action to save a
patient’s life or health, the diagnosis time should
still be short enough to allow comparison with
the analysis conducted by a physician. Figure 9
presents the inference time as a function of model
complexity for both constant-width and pyrami-
dal architectures. Most importantly, it should be
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noted that the prediction time for a single video
did not exceed 0.2 seconds, which is well within
acceptable limits for building a medical deci-
sion-support system. Naturally, inference time
depends on model complexity. It is evident that
as the number of convolutional blocks increases,
inference time also increases, and the relationship
appears approximately linear - though more data
points would be needed to confirm this precisely.
However, it can be assumed that the relationship
becomes nonlinear for increasing layer width.
Figure 10 presents a comparison of the ac-
curacy of constant-width and pyramidal models.



Advances in Science and Technology Research Journal 2025, 19(12) 257-272

WMax. memory usage [GB]

% 4

No. filters No. blocks

Max. memory usage [GB]
A @ e W @

w

R

6 4 No. blocks
No. filters in the first block

Figure 8. Relationship between maximum GPU memory usage, the number of filters and the number of blocks
for constant-width models (left) and pyramidal models (right)

]
°
S

tean inference time (5]
s

G St el
2 \\// 2

No. blocks. 116 No. filters

s
°
2
e
°

o ¢
&

)
E
1
]
8
e
-
2
£
<
&
8
=

e
ST R
\//
No. blocks 004

No. filters in the first block

Figure 9. Relationship between inference time, the number of filters and the number of blocks
for constant-width models (left) and pyramidal models (right)

Interestingly, the median accuracy is exactly the
same for both architectures; however, the con-
stant-width models exhibit a much greater vari-
ability in results. Additionally, the pyramidal
models did not achieve 100% accuracy in any of
the cross-validation folds, in contrast to the con-
stant-width models.

A comparison of inference times for the eval-
uated 3D convolutional network architectures is
shown in Figure 11. It can be observed that, once
again, the median value for both architectures is
very similar, although not identical in this case.
While constant-width models exhibit less variabil-
ity, the plot contains more outliers compared to
pyramidal structures. Naturally, inference time is
also influenced by the load on the CPU, GPU and
RAM caused by other running processes, which
could explain the presence of these outlier values.
However, it is important to note that even the out-
lier inference times did not exceed 0.3 seconds,
which remains acceptable from the perspective of
keratoconus diagnosis support systems.

Considering the results presented above, it is
evident that the highest accuracy among constant-
width models was achieved by the model with 4
blocks, each containing 64 filters. In contrast,
the best-performing pyramidal architecture was
the model with 4 blocks and 16 filters in the first
block. A full comparison of the results for these
two best models is provided in Table 3. It is worth
noting that the constant-width model achieved
nearly the same accuracy as the best pyramidal
model (a difference of only 0.05%) while using
significantly fewer parameters, which translates
into a shorter training time. However, the ad-
vantage of the pyramidal model lies in its lower
memory consumption and shorter inference time.

In medical diagnostics, it is important not
only to ensure adequate diagnostic accuracy. An-
other crucial aspect is minimizing the number of
false alarms, as well as maximizing prediction
coverage, i.e. the proportion of correctly identi-
fied patients. Therefore, to properly evaluate the
model, it is necessary to analyze classification
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Table 3. Comparison of the best-performing constant-width and pyramidal models

Parameter Mean accuracy [%] Mean inference time [s] | Number of parameters [min] | Memory usage [GB]
Constant width 89.18 0.1214 1.595 4.037
Pyramid 89.23 0.0974 7.500 2.087

metrics such as precision, recall, and F1 score.
The values of these metrics for the best-perform-
ing model (pyramidal) are presented in Figure 12.
It is evident that the accuracy varies considerably
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across different cross-validation splits, with a dis-
crepancy of approximately 10%. The other met-
rics also exhibit substantial variation, which may
be attributed to the limited size of the dataset. The
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results further show that the model achieves a
considerably higher median recall — 94%, com-
pared to precision — 89%, while the F1 score did
not exceed 95% in any of the splits

Figure 13 presents the confusion matrix for
the final cross-validation split of the pyramidal
model with 4 blocks and 16 filters in the first
block. It can be observed that the model mis-
takenly classified two healthy patients as having

keratoconus, i.e. two false positives were re-
corded. However, it is important to note that all
keratoconus cases were correctly identified. Such
model behavior is beneficial from the perspective
of physician-assisting systems, as borderline cas-
es can be referred for further diagnostic testing,
for example using the Pentacam device. More-
over, it is particularly important that all affected
individuals were correctly detected.
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Previous studies have highlighted the potential
of artificial intelligence methods in keratoconus
diagnosis, although most of them rely on pre-ex-
tracted features rather than on raw data. The ex-
traction of corneal biomechanical features based
on deformation curve profiles allowed neural net-
works to achieve up to 99% diagnostic accuracy
[21]. While this result is remarkable, it does not
address the computational requirements and time
constraints. Similarly, the inclusion of topograph-
ic data obtained from Pentacam device enabled a
Random Forest model to achieve 89% classifica-
tion accuracy [22]. This result is comparable to
the accuracy of our best-performing 3D CNN, but
does not take into account the cornea dynamics and
stiffness, which makes the approach less generaliz-
able to heterogeneous populations. In other study,
similar combination of features yielded an AUC of
93% [23], but not considering the inference time
and memory usage. A broader multimodal analysis
that combined data from three devices (Sirius, Pen-
tacam and Corvis) identified Sirius-derived param-
eters as the most effective indicators (AUC =91%),
followed by Corvis parameters (AUC = 82%) [24].
Although this highlights the benefit of multimodal
fusion, it also introduces challenges related to the
simultaneous use of multiple diagnostic devices,
which limits practical applicability in routine oph-
thalmic practice. In a different research, authors ex-
plored transfer learning approaches applied to im-
ages from the Corvis device [25]. A comparison of
ResNet152, VGG16 and InceptionV3 showed that
ResNet152 achieved the highest diagnostic accura-
cy (AUC =99%). While this illustrates the strength
of deep feature representations, the dependence on
pretrained 2D CNN models does not fully capture
the temporal dynamics of cornea deformation.

In contrast to the above approaches, out study
employs complete video sequences directly ob-
tained from the Corvis ST device and provides
a systematic comparison of 21 distinct 3D CNN
architectures. This design not only eliminates the
need of dedicated feature extraction model but
also enables the network to learn spatiotemporal
features directly from raw cornea deformation
videos. The evaluation of accuracy, inference
time, number of parameters and GPU memory
usage in keratoconus diagnosis adds a practical
perspective that is absent in prior studies, where
the main focus was achieving the best diagnostic
effectiveness. Our results demonstrate that pyra-
midal architectures achieved superior accuracy
and sensitivity while consuming less memory
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than constant-width networks, which emphasizes
that it is possible and beneficial to optimize mod-
els in this context. Nevertheless, further external
validation on broader and more heterogeneous
dataset is needed to confirm the robustness of the
proposed approach. Although the achieved ac-
curacy of over 89% and sensitivity of 85.9% are
competitive compared to the results of [22] and
exceed those of [36].

CONCLUSIONS

This study presents a comparison of the effec-
tiveness of keratoconus detection using 3D convo-
lutional neural network models of varying com-
plexity and architecture, based on dynamic corneal
imaging from the CORVIS ST device. The videos
collected during the examinations were properly
preprocessed and labeled. A 5-fold stratified cross-
validation was employed to identify the model
with the highest generalization capability.

The study indicates that both constant-width
and pyramidal models can achieve comparable
classification accuracy; however, the latter exhibit
lower memory usage and shorter inference times.
Additionally, pyramidal models demonstrate less
variability in performance across different cross-
validation splits. The best-performing model
achieved an average keratoconus detection accu-
racy of 89%, while maintaining high sensitivity.

The obtained results confirm the potential
of the model as an effective and reliable tool for
early keratoconus detection or for use in screen-
ing programs. The high performance of the model
demonstrates its ability to effectively complement
existing diagnostic procedures, potentially reduc-
ing the number of misdiagnoses and supporting
clinical decision-making.

Nevertheless, the model’s tendency toward
false positives represents an area for further im-
provement and should be addressed prior to its
implementation in a medical environment. In ad-
dition, the generalizability of the model must be
evaluated on larger and more diverse datasets. A
further limitation of the proposed 3D neural net-
work models lies in their relatively high GPU
memory requirements, since diagnostic worksta-
tions are typically not equipped with dedicated
computational units. A potential solution may
involve the use of cloud-based infrastructures;
however, this approach necessitates careful con-
sideration of data security and the protection of
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sensitive patient information contained in clinical
examinations. The implementation of a clinical
decision-support system will also require enhanc-
ing the interpretability of diagnostic results. This
can be partially addressed by adopting explain-
able Al methods or providing the probability of
class membership rather than a label, allowing
physicians to pay particular attention to patients
for whom the model is uncertain.
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