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INTRODUCTION

Artificial intelligence (AI) and machine 
learning (ML) are currently undergoing rapid 
development, impacting nearly every aspect of 
daily life. One of the affected areas is music rec-
ognition, which serves as a valuable element of 
music information retrieval (MIR), focusing on 
identifying crucial features and patterns within 
audio signals [1]. It also supports a wide range 
of applications, such as genre classification or 
song detection, which can be performed using 
cutting-edge technologies involving convolu-
tional neural networks (CNNs). This may entail 
utilizing widely applied pre-trained classifiers or 
incorporating various visual representations of 
sound as input to the network. These up-to-date 

techniques can often be employed not only to 
contribute to entertainment purposes but also to 
fulfill more educational or scientific objectives. 
Some other areas where machine learning may 
be applicable include audio signal processing in 
pipe organ systems [2–4].

One of the aspects that may be overlooked 
by the majority is related to intangible cultural 
heritage (ICH) which includes traditions, prac-
tices, or knowledge transmitted across genera-
tions. It helps shape every nation’s identity, dis-
tinguishing them from one another. Music and 
dances can also be characterized as an essential 
element of ICH revealing unique characteristics 
of various cultures [5–7]. Notably, Polish na-
tional dances (the Krakowiak, the Kujawiak, the 
Mazurek, the Oberek, and the Polonez) reflect 
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Poland’s cultural heritage. Yet, each of them con-
sists of distinct qualities and features that help 
differentiate them [8]. In addition, these dances 
and their music serve as a significant element of 
Polish ICH and history [9]. Thus, AL and ML 
may help preserve them and make them acces-
sible to younger generations.

MOTIVATION OF THE STUDY

The main motivation for this study was the 
lack of scientific works regarding Polish na-
tional dance music that applied some of the re-
cent trends that have developed in the area of 
music classification such as the fusion of vari-
ous features, attention mechanisms, or explain-
able artificial intelligence (XAI) techniques. 
Some prevalent databases were utilized to ver-
ify the lack of suitable literature search such as 
Scopus, Web of Knowledge, IEEE Xplorer, and 
Google Scholar. It was decided to use some of 
the following keywords: ‘Polish national dance 
music recognition’, ‘folk music’, ‘machine 
learning’, ‘attention mechanisms’. Hence, this 
research aims to present a novel multimodal 
CNN that fuses Mel spectrograms, spectro-
grams, scalograms, and MFCCs using attention 
mechanisms. The network architecture is based 
on popular pre-trained classifiers and is applied 
to a dataset of audio recordings of five Polish 
national dances.

Scientific novelty of the proposed work

The key contributions can be summarized 
as follows:
1.	Altering the available dataset of Polish na-

tional dance music [10] by reducing the 
length of audio samples from 10 seconds to 
3 seconds. Contrasting both datasets and their 
performance proves the superiority of the da-
tasets with shorter recordings. This demon-
strates that even 3-second pieces are valuable 
for music recognition.

2.	Developing the innovative multimodal CNN 
that performs a fusion of spectral features by 
employing the Adaptive Attention Module 
(AAM) with the adaptive trunk branch, the 
adaptive mask branch, and the adaptive gate. 
The proposed structure strengthens the net-
work’s performance in detecting salient sound 
characteristics and mitigating over-suppression 

in subsequent layers. Applying modalities such 
as Mel spectrograms, spectrograms, scalo-
grams, and MFCC plots.

3.	Introducing up-to-date formerly pre-trained 
classifiers, including EfficientNetB0, Xcep-
tion, VGG16, VGG19, ResNet50, Mobile-
NetV2, and DenseNet121, as a core of each 
CNN’s modality. Comparing their efficiency 
utilizing one of the most prevalent metrics such 
as testing accuracy, testing loss, precision, re-
call, and F1-score for both of the audio record-
ing collections used.

4.	Visualizing the Shapley Additive explanations 
(SHAP) for each of the analyzed sound visu-
alization techniques to localize areas that the 
developed classifier utilizes to predict Polish 
national dance music.

5.	Performing an ablation study by evaluating 
testing accuracy and testing loss when one, 
two, or three of the proposed modalities are 
reduced for various classification methods and 
two datasets.

6.	Comparing state-of-the-art techniques across 
various datasets, implemented models, and 
commonly used deep learning methods in mu-
sic recognition.

Notably, previously researchers focused main-
ly on feature-based approaches where features 
such as Mel-Frequency Cepstral Coefficients 
(MFCC) vectors were extracted and fed to the 
classifiers [11]. There were some drawbacks to 
this method, as it might not capture the temporal 
and spatial dependencies present in audio sig-
nals and often requires careful feature engineer-
ing. Moreover, spectrograms were predominant-
ly chosen in many music classification works 
incorporating CNNs while they might overlook 
some other aspects of the audio signal. Thus, 
our CNN-driven model with Adaptive Feature 
Fusion is introduced to address these limita-
tions. It incorporates multimodality by combin-
ing four inputs that visualize signals in various 
ways such as spectrograms, Mel spectrograms, 
MFCC plots, and scalograms. Moreover, apply-
ing attention mechanisms and pre-trained classi-
fication methods can also enhance classification 
accuracy and the extraction of complementary 
features. In comparison with traditional ap-
proaches, the proposed method yields superior 
results through the integration of multiple au-
dio representations and advanced convolutional 
neural network architecture.
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RELATED WORKS

Many recent papers focus mainly on analyz-
ing visual representations of audio recordings 
employing various presentation techniques such 
as Mel spectrograms, spectrograms, scalograms, 
and Mel-Frequency Cepstral Coefficients plots. 
They facilitate the application of convolutional 
neural networks to music identification tasks. 
In [11] Mel spectrograms were obtained from 
30-second audio recordings originating from the 
GTZAN dataset [12]. They represent a range of 10 
various music genres e.g. country, rock, and pop 
music. Then, it was decided to employ pre-trained 
on ImageNet [13] models namely ResNet34, 
ResNet50, VGG16, and AlexNet. Following the 
training stage, each classifier was independently 
assessed utilizing confusion matrices and accu-
racy metrics ranging from 71 to 79%. Spectro-
grams and Mel spectrograms with the utilization 
of other pre-trained classification methods such 
as AlexNet and LeNet-5 were also presented in 
[14] demonstrating favourable outcomes. More-
over, spectrograms were also generated from the 
GTZAN and 10GenreGram subsets, as detailed in 
[15]. Then, ResNet18 and NNet2 classifiers were 
applied, trained on 50 epochs, and evaluated by 
contrasting their accuracies and confusion matri-
ces. It is noteworthy that the results varied signifi-
cantly, with accuracy ranging from 40% to nearly 
80%. To address the task of music genre classi-
fication, Mel spectrograms combined with self-
adjusted convolutional neural networks (CNNs) 
were also employed in [16–18] yielding sufficient 
results in terms of obtained metrics comprising 
precision, recall, F1-score, and accuracy. Alter-
native methods for sound visual representations 
include spectrograms [19–22] and scalograms 
[23,24] generation which are also utilized as an 
input to the CNNs contributing to achieving sat-
isfactory outcomes. MFCCs were extracted from 
audio signals in [25–27] and subsequently utilized 
in classification models such as support vector 
machines (SVM), convolutional recurrent neu-
ral networks (CRNN), and Convolutional Neu-
ral Networks, respectively. In [28], MFCC plots 
were generated using the extracted coefficients 
and employed to train the self-adjusted CNN.

While many papers tackle music genre clas-
sification employing some well-known datasets 
such as the GTZAN, the FMA [29,30], or EMA, 
there is still a lack of scientific works relating to 
folk music classification. However, the recent rise 

in awareness about the importance of preserving 
nations’ intangible cultural heritage (ICH) pro-
vides research with some valuable insights. In 
[31] an ethnic music dataset was obtained repre-
senting ten various genres with each genre con-
taining 100 audio recordings lasting 20 seconds 
each. Then Mel sound spectrum and short-time 
Fourier spectroscopy were utilized as an input 
into a self-adjusted CNN and compared in terms 
of obtained accuracy. There are some other works 
combining folk music classification with machine 
learning techniques concerning different nations 
and cultures including Chinese culture [32, 33], 
Turkish [34], Greek [35], Indian [36–38], Hun-
garian [39], Vietnamese [40], Assamese [41], 
Bengali [42], Irish [43], Korean [44], Arabic [45], 
and Nigerian [46]. Noteworthy, there is also some 
work presenting Polish national dance music rec-
ognition [10] where audio samples demonstrating 
Polish national dances such as the Krakowiak, the 
Kujawiak, the Mazur, the Oberek, and the Polonez 
were collected yielding a dataset encompassing 
137 recordings in the MP3 format. Then, the data 
preprocessing stage was performed where each 
audio sample was carefully listened to remove 
some unnecessary parts including noise, etc. Af-
terwards, each audio was converted to the WAV 
format and divided into 10-second pieces obtain-
ing a final dataset consisting of over two thousand 
samples. From each sample Mel spectrograms 
were generated, split into training, validation, and 
testing sets in an 8:1:1 ratio, and utilized as an in-
put into the pre-trained ImageNet classifiers such 
as VGG16, ResNet50, DenseNet121, and Mobile-
NetV2. The acquired outcomes were compared 
with the attained metrics such as testing accuracy, 
testing loss, precision, recall, and F1-score result-
ing in a testing accuracy of approximately 90%.

Recently, attention mechanisms have gained 
more and more recognition concerning computer 
vision issues such as image classification help-
ing achieve improved outcomes [47,48]. Music 
genre recognition could also be handled employ-
ing attention mechanisms which were utilized in 
[49] where Mel spectrograms and MFCC plots 
were generated based on the GTZAN dataset. 
Subsequently, three distinct architectures were 
chosen and trained such as ResNet18, Bi-LSTM, 
and ResNet18-BiLSTM with ResNet18 and 
ResNet18-BiLSTM implementing the convolu-
tional block attention module (CBAM). Then, 
each classifier was trained with and without it, 
and the impact of each feature and its combination 
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was also evaluated in terms of the obtained test-
ing accuracy. The combination of Mel spectro-
grams and CNNs with attention mechanisms uti-
lized for the music genre classification was also 
implemented in the following papers [50–52] 
providing acceptable outcomes. Spectrograms 
are fairly commonly selected methods employed 
to visualize audio signals when combined with a 
range of attention mechanisms confronting music 
genre recognition issues. The residual attention 
network (RAN) applying residual blocks and at-
tention modules was selected in [53], while [54] 
presented the CNN with NetVlad and self-atten-
tion. Additionally, MFCC extraction was utilized 
with the attention-based CNN showcasing accu-
racy at the level of 85% in [55].

It was recognized that it might be beneficial to 
enhance sound recognition by developing classi-
fiers based on the fusion of several music features 
in CNNs. In [28], it was stated that it could be 
more valuable to use the late-fusion strategy to 
combine features such as MFCC plots, Mel spec-
trograms, and spectrograms due to the possible 
information redundancy. The aforementioned 
features are strictly connected with each other as 
Mel spectrograms derived from short-time Fou-
rier transform (STFT) [56] which is the backbone 
of spectrograms, and MFCC plots are connected 
to Mel spectrograms. The presented solution 
yielded promising accuracy. The late-fusion strat-
egy was also demonstrated in [57] with the same 
set of combined features.

It is essential to provide AI models with suit-
able resources to be able to properly assess their 
effectiveness. Thus, XAI has emerged and pro-
vides some proper techniques to address this con-
cern. Regarding the sound recognition approach-
es such as Explain like I am 5 (ELi5), SHAP, and 
local interpretable model-agnostic explanations 
(LIME) were selected in [58] providing some 
impactful insights into CNNs’ decision-making 
process. The SHAP technique was also elected in 
[59,60] to enable more transparent interpretation 
of the classification methods’ results. 

The conducted literature research facilitated 
the assessment of the current state of music rec-
ognition and the identification of up-to-date tech-
niques utilized in this area. It could be observed 
that many studies remained focused on music 
genre classification based on commercially pop-
ular music. They typically employed their own 
self-employed CNN or some pre-trained classi-
fiers with various types of inputs including Mel 

spectrograms, spectrograms, MFCC plots, or 
scalograms. Some of the works provided more 
complex solutions requiring the implementation 
of various attention mechanisms or fusion of fea-
tures. To gain more comprehension of the cho-
sen classification methods some XAI tools have 
been implemented, too. Nevertheless, more and 
more works concerning folk or national songs re-
lating to distinct cultures around the world have 
been revealed. Consequently, it was determined 
to undertake research pertaining to Polish music 
recognition combined with the widely known 
previously pre-trained classifiers with the Adap-
tive Feature Fusion enabling the classification of 
Polish national dance music. To assess the perfor-
mance of the provided classification methods the 
SHAP technique was employed.

MATERIALS AND METHODS

This section presents the general research 
methodology. Some main elements of this may 
be retrieved. Firstly, the overall dataset contain-
ing music of five Polish national dances in WAV 
audio recordings was collected. Secondly, the 
collected samples were segmented into 3-second 
and 10-second clips, resulting in the creation of 
two separate datasets. Then, distinct sound fea-
tures such as Mel spectrograms, spectrograms, 
scalograms, and MFCC plots were extracted and 
saved as JPG images. Ultimately, developed clas-
sifiers were trained and evaluated utilizing chosen 
classification metrics.

Dataset

It was decided to utilize the formerly de-
veloped Polish national dances music dataset 
presented in [10] comprising music represent-
ing five Polish national dances such as the Kra-
kowiak, the Kujawiak, the Mazur, the Oberek, 
and the Polonez. The demonstrated collection 
consists of 137 audio recordings in the MP3 
format. Audio samples were previously manu-
ally checked to remove parts that did not con-
tain music including crowd noises or silence 
and converted into the WAV format. Although 
this step was performed manually in the current 
study, future research could automate the pro-
cess. For example, pyAudioAnalysis, a Python 
library, can be introduced to remove silence pe-
riods from audio recordings [61]. In [10] audio 
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recordings were then divided into 10-second 
pieces. In our study, this process was enhanced 
by creating two sets where one reflected 10-sec-
ond samples and the other 3-second samples. 
It was selected to evaluate the impact of em-
ploying audio recordings that lasted only 3 sec-
onds due to similar studies presenting this issue 
[62,63] where favourable results were exhib-
ited. It increases the overall size of the dataset 
which may result in achieving enhanced out-
comes. It can also be used to evaluate whether 
shorter data samples affect music recognition 
performance. Notably, during the data splitting 
stage, it is essential to select only those samples 
that match the specified length, while shorter re-
cordings must be excluded.

As might be observed in Table 1, an over 3 
times larger dataset was obtained due to the split-
ting of audio samples into 3-second pieces. Yet, 
each class which is represented by each Polish 
national dance presents the same data distribution 
with the Kujawiak still being the most numerous 
class, and the Mazur the least. The dataset contin-
ues to exhibit a slight imbalance in the number of 
samples among the classes.

Data preprocessing

The analysis of audio signals may be con-
ducted using a variety of techniques encompass-
ing time-domain analysis, frequency-domain 
analysis, and wavelet analysis. Each method fa-
cilitates the process of capturing essential spectral 
characteristics of the signal.

By applying the Fourier Transform to local-
ized time intervals, the short-time Fourier trans-
form (STFT) reveals variations in the frequency 
characteristics of sound signals over time [64]. 
STFT may be analyzed by Equation 1, where t 
denotes the time parameter of the signal, u repre-
sents the frequency parameter, f(t) is the input sig-
nal, and W refers to the windowing function [65].
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Spectrograms help depict this technique 
where the x-axis refers to time and the y-axis to 
the frequency (Figure 1) [66]. Often, the frequen-
cy on the vertical axis is visualized using a loga-
rithmic scale due to the fact that people typically 
have a better perception of low-frequency sounds 
compared to high-frequency ones.

A Mel spectrogram can be defined as a spec-
trogram where frequencies are transformed ac-
cording to the Mel scale [22] presented by Equa-
tion 2. The scale is designed to align with human 
auditory perception of sound frequencies.
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An example of Mel spectrogram with the 
time on the x-axis and Mel-frequency bins on 
the y-axis was generated for the Mazur dance 
(Figure 1). Unlike spectrograms with the lin-
ear or logarithmic scale, Mel spectrograms map 
frequencies onto the Mel scale that aligns better 
with human auditory perception as it compresses 
higher frequencies and expands lower frequen-
cies. That is why it may be a better tool utilized 
in sound analysis due to the fact that it focuses on 
how humans hear.

The Mel scale is incorporated into the calcu-
lation of Mel-Frequency Cepstral Coefficients, 
too. The transformation of the input signal is pro-
cessed, and then Mel filter banks are employed 
to compute the amplitude across the frequency 
bands defined by the Mel scale. Eventually, the 
cepstral coefficients are determined by taking the 
logarithm of these amplitudes.

A sample MFCC plot was depicted in Figure 1 
with the horizontal axis representing time and the 

Table 1. The aggregate number of WAV-format audio samples 
Dance Samples number before splitting 10-second samples number 3-second samples number

Krakowiak 23 444 1501

Kujawiak 34 588 1993

Mazur 25 410 1388

Oberek 38 428 1472

Polonez 17 426 1432

Overall 137 2296 7782
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calculated MFCC on the vertical axis. The magni-
tude of the associated coefficient is demonstrated 
by the intensity, potentially indicating the pres-
ence of distinctive audio characteristics.

Continuous wavelet transform (CWT) utiliz-
es wavelets to analyze changes in a signal’s fre-
quency content over time, capturing both short- 
and long-term features by adapting the size of the 
analysis windows. It is defined by Equation 3 [65] 
where ψ denotes the mother wavelet (Equation 4). 
One of the most widely adopted wavelets is the 
Morlet wavelet, developed as a combination of a 
sine wave with a Gaussian function [67].
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Scalograms are an effective approach to the 
visualization of CWTs (Figure 2). The horizon-
tal axis represents time, whereas the vertical axis 
corresponds to scale.

Model architecture

The innovative model combining multiple 
spectral features of sound with the late-fusion 

strategy has been proposed to tackle music iden-
tification (Figure 1). The designed network has 
four separate inputs pertaining to spectral charac-
teristics derived from audio including Mel spec-
trograms, spectrograms, scalograms, and MFCC 
plots which have been merged into a multimod-
al CNN using a late fusion strategy to mitigate 
the presence of redundant features [28]. Each 
outlined modality encompasses one of the most 
prevalent pre-trained ImageNet classifiers such 
as EfficientNetB0, Xception, VGG16, VGG19, 
ResNet50, MobileNetV2, and DenseNet121. It is 
essential to ensure that every branch incorporates 
the same classification method. Each time the last 
layer from these classifiers is removed and it is 
connected to the flattened layer. Then, the up-to-
date solution named Adaptive Attention Module 
is adopted. This mechanism consists of an adap-
tive trunk branch, an adaptive mask branch, and 
an adaptive gate. After feature fusion, two Dense 
blocks are utilized and Softmax is employed to 
classify one of the dance classes.

Pre-trained classifiers

After comprehensive research, it was de-
termined to select some of the most prevalent 

Figure 1. The CNN-driven model with adaptive feature fusion
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classification methods like Xception, VGG16, 
VGG19, ResNet50, MobileNetV2, DenseNet121, 
and EfficientNetB0. Their unique characteristics 
may be valuable to increase the effectiveness of 
the introduced classifier for Polish national dance 
music identification:
1.	Xception is a novel classifier where an In-

ception module is substituted with depthwise 
separable convolutions resulting in achieving 
better performance [68].

2.	VGG introduced deeper convolutional neural 
networks by employing more convolutional 
layers [69]. This became feasible due to lever-
aging 3 × 3 convolutional filters, contributing 
to improved accuracy. VGG16 and VGG19 
represent 16 and 19-weight layers, respectively.

3.	ResNet50 provides training of deeper neural 
networks without their degradation due to the 
application of shortcut connections and residu-
al blocks [70]. Moreover, it maintained a lower 
level of complexity compared to the aforemen-
tioned VGG classifiers.

4.	The decrease in memory consumption was 
obtained as a result of an innovative design of 
MobileNetV2 [71]. It developed a cutting-edge 
structure established on inverted residuals with 
linear bottlenecks and depthwise separable 
convolutions.

5.	ResNet classification methods are surpassed 
by DenseNet121 by enhancing feature propa-
gation while minimizing the number of param-
eters [72]. This classifier also addresses the 
vanishing gradient issue by establishing dense 
connections between layers.

6.	EfficientNets contrast with formerly mentioned 
classifiers such as MobileNets and ResNet 
yielding higher accuracy due to the compound 
scaling [73]. It adjusts the depth, width, and 
resolution of the network evenly while the 
stem layer conducts initial convolutions. Effi-
cientNetB0 is a classifier belonging to the Ef-
ficientNet family.

Adaptive attention module

It may be challenging to recognize even slight 
disparities between audio signals by some preva-
lent classification methods. Thus, an adaptive at-
tention structure called AAM has been proposed 
to handle feature fusion (Figure 2). This facili-
tates the dynamic adjustment of the number of at-
tention modules based on the input class or type 
of image. Extra gate layers in the proposed mod-
ules dynamically influence the feature maps by 
optimizing the attention mask structure according 
to the complexity of the detected sound features. 
This design mitigates the over-suppression of fea-
tures in deeper network layers while enhancing 
the model’s ability to capture important sound 
characteristics. The suggested adaptive attention 
module consists of three main components: the 
adaptive trunk branch, the adaptive mask branch, 
and the adaptive gate.

Adaptive trunk branch

The proposed adaptive trunk branch serves 
as the primary feature extraction path, contain-
ing two convolutional layers with a 3x3 kernel 
size Conv3x3, followed by a rectified linear unit 
(ReLU) activation function and batch normaliza-
tion (BN) (Equation 5, 6).
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Adaptive mask branch

The adaptive masking branch enhances sa-
lient regions in the input of the classifier by form-
ing a spatial-channel mask. This process includes 
channel reduction, application of a standard 3x3 
convolutional kernel, and concludes with a sig-
moid activation function. It is presented by Equa-
tion 7 with Conv1x1 noting a convolutional layer 

Figure 2. The adaptive feature fusion mechanism
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which is responsible for reducing the channels’ 
number (which can serve as a bottleneck). Con-
versely, σ refers to the sigmoid activation func-
tion limiting the output to the 0–1 range.
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Adaptive gate

The adaptive gate is employed to perform 
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of attention based on the presence of sound fea-
tures. The gating function, defined by Equation 
8, uses Global Average Pooling (AvgPool) to re-
duce the input tensor from ℝCxHxW to ℝCx1x1 where 
C is the number of channels, H is the height, and 
W is the width.
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This attention module adjusts weights based 
on global audio characteristics – distinct acoustic 
patterns like harmonic structures result in higher 
gating weights, enhancing their influence. The 
final output of the Adaptive Attention Module is 
calculated utilizing Equation 9 where the output 
is calculated through element-wise multiplication 
of the trunk features and attention weights.
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Employing a gating mechanism G(x) avoids 
over-suppressing features, especially in noisy or 
low-quality audio, making it valuable in variable 
sound environments.

Classification metrics

The CNN-driven model with adaptive feature 
fusion was assessed by applying some of the most 
prevalent classification metrics involving accura-
cy, precision, recall, and F1-score. 

In the mentioned equations true positive (TP) 
represents correctly identified positives, false 
positive (FP) – incorrectly identified positives, 
and false negative (FN) – missed positives. In 
addition, accuracy reflects the ratio of correctly 
predicted instances to the total number suggest-
ing the overall performance of the proposed clas-
sifier across all classes [74]. Precision and recall 

may also be utilized for multi-class classification 
when precision evaluates how many predicted 
instances of a class are correct and recall reflects 
how well the classifier identifies all actual in-
stances of that class [75]. A harmonic mean of 
recall and precision is F1-score [76] which may 
be particularly advantageous when dealing with 
uneven class distributions. 

As another classification metric loss is also 
computed utilizing the Categorical Cross En-
tropy [77]. It is a widely applied function in 
multiclass classification that examines the dif-
ference between predicted and actual probabil-
ity distributions.

Experiments

Mel spectrograms, spectrograms, scalo-
grams, and MFCC plots were generated for the 
samples both from the 3-second and 10-second 
datasets. Subsequently, every catalog consisting 
of various sound features was randomly divided 
into training, validation, and testing sets. Specifi-
cally, 80% of the data was allocated to the train-
ing set, with 10% each assigned to validation and 
testing. During this process, it was vital to ensure 
that each directory representing diverse auditory 
characteristics followed the same labeling and 
number of samples.

It was established to employ several prevalent 
classification methods like EfficientNetB0, Xcep-
tion, VGG16, VGG19, ResNet50, MobileNetV2, 
and DenseNet121 to examine their impact on the 
proposed CNN-driven model. The training pro-
cess encompassed the following steps for 3- and 
10-second audio segments separately:
1.	Change the core classifier of the proposed 

model.
2.	Load images of Mel spectrograms, spectro-

grams, scalograms, and MFCC plots for train-
ing, validation, and testing sets.

3.	Preprocess images according to the specific 
needs of the selected classification method.

4.	Set the number of epochs to 30 based on the 
former studies [15].

5.	Evaluate the performance of the model by de-
termining the value of the following metrics: 
testing accuracy, testing loss, precision, recall, 
and F1-score. 

The aforementioned training stage was re-
peated each time an alternative primary classifier 
was employed.
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RESULTS

The performance of the proposed classifier 
was demonstrated separately for both the 3-sec-
ond and 10-second datasets. Then, an ablation 
study was performed and SHAP visualization 
was presented.

The CNN-driven model with adaptive 		
feature fusion

The performance of the proposed CNN-
driven model, incorporating the adaptive feature 
fusion module, was evaluated based on testing 
accuracy and testing loss (Table 2). The results 
were calculated for different core classifica-
tion methods across both 10-second and 3-sec-
ond audio datasets. It might be noted that Effi-
cientNetB0 and ResNet50 achieved the highest 
testing accuracy (over 94%) on the 3-second 
dataset, with EfficientNetB0 also yielding the 
lowest loss (around 0.16) while VGG16 per-
formed the worst on this dataset, with 88% ac-
curacy and 0.75 loss. For the 10-second data-
set, DenseNet121 performed the best (91% ac-
curacy and around 0.25 loss), while ResNet50 
showed the weakest results (86% accuracy and 
around 1.73 loss). The results obtained for the 
remaining classifiers demonstrated relatively 
consistent performance. In the 10-second sam-
ple dataset, testing accuracy fluctuated within a 
range of approximately 2–3 percentage points, 
with testing loss varying by about 1.2. For the 
3-second dataset, accuracy differences spanned 
roughly 4–5 percentage points, while testing 
loss varied by around 0.5.

One of the most prevalent classification met-
rics such as precision, recall, and F1-score has 
been computed for every classifier, dataset and 
class representing music from one of the Polish 

national dances such as the Krakowiak, the Ku-
jawiak, the Mazur, the Oberek, and the Polonez. 
They were presented in Tables 3–9.

Regarding DenseNet121, the 3-second da-
taset yielded to a minor extent better outcomes. 
However, for the Krakowiak and the Oberek 
dance F1-score was higher for the 10-second da-
taset. The Polonez class presented the highest pre-
cision (over 95%) with slightly lower recall for 
the 3-second sample dataset. Notably, the Oberek 
dance gained the highest precision (100%) with 
significantly lower recall (over 86%) for the 
10-second dataset. In general, all dances (for both 
datasets) might be characterized by relatively 
high metrics with precision and recall above 86% 
and F1-score above 88%.

It could be observed that considering the Ef-
ficientNetB0 classifier in almost every scenario 
precision, recall, and F1-score yielded notably 
higher outcomes for the database with 3-second 
audio recordings than with the 10-second pieces. 
Especially for the Kujawiak, the Oberek, and the 
Polonez classes F1-score acquired over 95%. 
Correspondingly, MobileNetV2 performed better 
on the dataset with shorter samples resulting in an 
F1 score between 91–94% while the dataset with 
10-second pieces obtained the highest F1 score 
for the Kujawiak dance (around 92%).

The ResNet50 classification method dem-
onstrated even better for the 3-second dataset 
with the F1-score between 93-95% and recall 
and precision mainly over 90%. Substantial dis-
parities might be noticed for the 10-second col-
lection where differences between precision and 
recall were around 20 percentage points for al-
most every class. For example, for the Polonez 
class precision is 100%, however, recall was only 
around 72%. In addition, the obtained F1-score 
was around 82% for the Mazur, while the highest 
was for the Kujawiak and it was equal to 90%. 

Table 2. The testing accuracy (in %) and testing loss for the selected classifier on both datasets
(TA – testing accuracy, TL – testing loss)

Classifier Dataset type TA TL Dataset type TA TL

DenseNet121 10 s samples 91.553 0.254 3 s samples 91.826 0.333

EfficientNetB0 10 s samples 90.871 0.375 3 s samples 94.636 0.165

MobileNetV2 10 s samples 91.008 0.362 3 s samples 93.614 0.287

ResNet50 10 s samples 86.512 1.735 3 s samples 94.252 0.415

VGG16 10 s samples 88.692 1.549 3 s samples 88.505 0.750

VGG19 10 s samples 89.373 1.006 3 s samples 89.399 0.638

Xception 10 s samples 88.692 0.356 3 s samples 92.337 0.317
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Surprisingly, there were notable imbalances 
of the obtained metrics regarding VGG16 for both 
datasets. F1-score was between 82–92% for the 
10-second collection, and 79–94% for the 3-sec-
ond collection. It could be recognized that the 
Mazur dance performed considerably low with a 
precision of around 69% and 79% for the F1-score 
for the 3-second dataset. Similarly, for the collec-
tion with longer samples, the Mazur yielded the 
worst outcomes. Although the F1 score was higher 

(around 82%). Concerning the VGG19 classifier, 
the 3-second datasets yielded generally higher out-
comes. However, for the Mazur and the Oberek 
dance, the F1 score was slightly lower. Overall, the 
notable disparities between obtained metrics might 
be spotted for the dances including the Mazur, the 
Oberek, and the Polonez. The 3-second dataset 
outperformed the 10-second dataset pertaining to 
the Xception with the F1-score between 89–95%. 
Precision and recall also presented more concise 

Table 3. The obtained metrics (in %) for DenseNet121 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 90.526 86.000 90.526 89.864 91.724 88.079

Kujawiak 93.548 90.625 96.666 93.796 93.103 94.500

Mazur 89.156 88.095 90.243 89.679 89.361 90.000

Oberek 92.682 100.000 86.363 90.066 88.311 91.891

Polonez 90.476 95.000 86.363 95.774 97.142 94.444

Table 4. The obtained metrics (in %) for EfficientNetB0 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 85.106 81.632 88.888 91.582 93.15 90.066

Kujawiak 95.798 96.610 95.000 95.477 95.959 95.000

Mazur 92.500 94.871 90.243 94.244 94.927 93.571

Oberek 86.021 81.632 90.909 95.145 91.304 99.324

Polonez 92.682 100.000 86.363 95.774 97.142 94.444

Table 5. The obtained metrics (in %) for MobileNetV2 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 90.526 86.000 95.555 92.255 93.835 90.728

Kujawiak 92.561 91.803 93.333 94.865 92.822 97.000

Mazur 89.156 88.095 90.243 94.366 93.055 95.714

Oberek 89.156 94.871 84.090 91.408 93.006 89.864

Polonez 93.023 95.238 90.909 96.140 97.163 95.138

Table 6. The obtained metrics (in %) for ResNet50 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 86.000 78.181 95.555 94.520 97.872 91.390

Kujawiak 90.598 92.982 88.333 94.285 90.000 99.000

Mazur 82.105 72.222 95.121 94.076 91.836 96.428

Oberek 87.500 97.222 79.545 95.890 97.222 94.594

Polonez 84.210 100.000 72.727 93.090 97.709 88.888
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results between each class while for the collection 
with longer audio recordings recall was around 
96% with precision only 83% for the Kujawiak.

Ablation study

An ablation study might be perceived as an 
up-to-date method utilized to evaluate the impact 
of individual components within a neural network 
by systematically removing or altering them and 
assessing results. Nowadays, it has gained no-
table acknowledgment in the music recognition 
area [78–80]. Hence, it was determined to per-
form an ablation study within our research with 
the introduced scenarios such as:
1.	Ablation Scenario 1: The proposed classi-

fier with Mel spectrograms, spectrograms, and 
scalograms.

2.	Ablation Scenario 2: The proposed classi-
fier with Mel spectrograms, scalograms, and 
MFCC plots.

3.	Ablation Scenario 3: The proposed classi-
fier with Mel spectrograms, spectrograms, and 
MFCC plots.

4.	Ablation Scenario 4: The proposed classifier with 
scalograms, spectrograms, and MFCC plots.

The acquired results were presented in Table 
10 for the 10-second dataset and in Table 11 for 
the 3-second dataset where testing accuracy and 
testing loss were presented for every assessed 
pre-trained classifier. Generally, the dataset with 
shorter audio samples yields better outcomes both 
regarding testing accuracy and testing loss. It 
might be perceived that ResNet gained the high-
est testing accuracy around 94.5% for the 3-sec-
ond dataset when the spectrograms were reduced. 
Similarly, in the same dataset, MobileNetV2 
achieved the lowest testing loss equal to 0.204. 
However, it was for this scenario that scalograms 
were reduced. As it might be noticed the VGG16 
classifier performed worst in terms of the ac-
quired testing loss for the longer audio recordings 

Table 7. The obtained metrics (in %) for VGG16 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 87.500 82.352 93.333 88.339 94.696 82.781

Kujawiak 92.561 91.803 93.333 92.783 95.744 90.000

Mazur 82.051 86.486 78.048 79.635 69.312 93.571

Oberek 89.887 88.888 90.909 86.545 93.700 80.405

Polonez 90.476 95.000 86.363 94.158 93.197 95.138

Table 8. The obtained metrics (in %) for VGG19 regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 84.210 80.000 88.888 88.054 90.845 85.430

Kujawiak 93.548 90.625 96.666 94.320 93.170 95.500

Mazur 88.372 84.444 92.682 83.280 74.576 94.285

Oberek 90.243 97.368 84.090 89.377 97.60 82.432

Polonez 88.888 97.297 81.818 92.086 95.522 88.888

Table 9. The obtained metrics (in %) for Xception regarding the type of dataset
Type 10-s dataset 3-s dataset

Dance/Metric F1-score Precision Recall F1-score Precision Recall

Krakowiak 85.057 88.095 82.222 91.836 94.405 89.403

Kujawiak 89.230 82.857 96.666 93.137 91.346 95.000

Mazur 87.500 89.743 85.365 89.208 89.855 88.571

Oberek 88.372 90.476 86.363 93.069 90.967 95.270

Polonez 91.764 95.121 88.636 95.406 95.406 93.750
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as in every scenario the value of the testing loss 
was over 1. For the third and second scenario it 
was even higher than 1.7. Similarly, VGG19 had 
a testing loss above 1 in the fourth scenario. This 
indicates that VGG16 might be a less effective 
classifier compared to others.

The outcomes gained by the proposed CNN-
driven model were compared with every abla-
tion experiment for both datasets. Regarding 
the collection with longer audio samples, it was 
revealed that interestingly ablation scenarios 
sometimes outperformed the proposed model. 
For example, DenseNet121, EfficientNetB0, Mo-
bileNetV2, ResNet50, and Xception showed the 
highest accuracy when applied in the classifica-
tion method with scalograms, spectrograms, and 
MFCC plots. For VGG16 and VGG19 the high-
est testing accuracy was obtained in this scenar-
io without scalograms. Moreover, the obtained 
testing loss was only superior for DenseNet121. 
Concerning the 3-second database, only for Ef-
ficientNetB0 and Xception the highest testing 
accuracy was yielded. However, there is no no-
ticeable pattern relating to the acquired accuracy 
across all scenarios and classifiers. The test-
ing loss was the lowest for EfficientNetB0 and 

Xception for the CNN-driven model, too. Nota-
bly, EfficientNetB0 surpassed other classifiers in 
every scenario. On the 10-second datasets, Ef-
ficientNetB2 also exceeds both in terms of test-
ing accuracy and testing loss. Although it was 
obtained for the experiment where scalograms 
were not employed.

The analysis of the ablation study may sug-
gest that the unique compound scaling feature 
utilized in the EfficientNetB0 led to superior 
results relating to both datasets. Moreover, it is 
profitable to employ shorter audio samples as it 
leads to a general higher efficiency regardless of 
the experiment.

Shapley additive exPlanations

Nowadays, it is essential not only to gener-
ate accurate predictions but also to understand 
and interpret the underlying factors contribut-
ing to those predictions. Thus, XAI techniques 
are gaining increasing attention, also in music 
identification. One of the proposed techniques 
is SHAP which was presented in some research 
[58–60]. SHAP provides a unified method for ex-
plaining predictions by assigning an importance 
value to each feature. It combines several existing 

Table 10. The testing accuracy (in %) and testing loss regarding the selected classifier and number of ablation 
scenarios for the 10-second samples dataset (TA – testing accuracy, TL – testing loss, SN – scenario number)

SN Metric/Classifier DenseNet121 EfficientNetB0 MobileNetV2 ResNet50 VGG16 VGG19 Xception

1
TA 91.553 89.509 89.645 90.599 88.692 89.237 90.190

TL 0.318 0.481 0.916 0.903 1.890 0.999 0.380

2
TA 91.416 89.373 91.961 92.098 86.239 86.784 87.329

TL 0.295 0.459 0.327 0.895 1.712 0.659 0.531

3
TA 89.782 93.188 92.098 89.645 90.054 90.190 89.373

TL 0.342 0.340 0.340 1.006 1.428 0.996 0.357

4
TA 91.689 94.005 92.370 92.506 89.100 89.100 91.280

TL 0.389 0.212 0.473 0.799 1.296 1.012 0.344

Table 11. The testing accuracy (in %) and testing loss regarding the selected classifier and number of ablation 
scenarios for the 3-second samples dataset (TA – testing accuracy, TL – testing loss, SN – scenario number)

SN Metric/Classifier DenseNet121 EfficientNetB0 MobileNetV2 ResNet50 VGG16 VGG19 Xception

1
TA 91.826 94.125 94.636 93.869 87.994 92.081 91.060

TL 0.378 0.246 0.320 0.3125 0.991 0.713 0.406

2
TA 92.337 91.698 92.720 94.508 92.848 90.804 86.845

TL 0.348 0.308 0.366 0.255 0.472 0.681 0.509

3
TA 93.486 91.315 93.869 94.252 92.975 88.505 88.888

TL 0.262 0.355 0.204 0.230 0.409 0.785 0.423

4 TA 91.315 92.464 93.869 91.570 89.527 88.250 90.166
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methods into one tool ensuring consistent, inter-
pretable results. SHAP is supposed to better align 
with human understanding, too.

EfficientNetB0, which was utilized as a core 
classification method for every branch of the pro-
posed model and the 3-second dataset, presented 
the most superior results across all introduced 
scenarios. Hence, it was determined to prepare 
the SHAP visualization based on this model. It is 
presented in Figure 3 when outcomes have been 
computed for the Kujawiak sample. Respective-
ly, it is depicted for the Mel spectrogram, spec-
trogram, scalogram, and MFCC plot. For every 
horizontal axis, the calculated SHAP values were 
pictured with a greater red color symbolizing the 
greater influence of suggested features on the 
model’s decision influence. Simultaneously, blue 
highlights features that negatively impact the 
prediction for that specific class. Moreover, gray 
areas suggest almost zero contribution to the pre-
diction of the classifier.

It may be noticed that the proposed model was 
highly positive for the Kujawiak class regarding 
the Mel spectrogram. Since the strong red color is 
visible in this sample across the whole duration 
of the audio recording for the lower frequencies. 
There is some ambiguity regarding the spectro-
grams since the red color was computed for the 
first half of the Kujawiak sample, with the other 
half presented as some blue color. It might sug-
gest less confident predictions regarding this vi-
sualization method. Strong feature importance is 
again present for the Kujawiak in the scalogram. 
However, there is some area indicating a negative 
impact of the scalogram feature while the same 
area implies a greater impact for the Oberek and 
the Krakowiak. Consequently, this may suggest 
that the classifier confused these classes within 
scalograms due to similar features presented 
across various classes. The Kujawiak was un-
doubtedly predicted positive for the MFCC plot 
across almost horizontal bands.

Figure 3. The SHAP visualization generated for the Kujawiak sample for the CNN-driven model
based on EfficientNetB0 and for the 3-second dataset regarding the Mel spectrogram (a), spectrogram (b), 

scalogram (c), and MFCC plot (d)
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DISCUSSION

In our study, the existing collection of 10-sec-
ond audio recordings in WAV format represent-
ing music from Polish national dances has been 
altered by introducing new datasets with shorter, 
3-second pieces. This enlarged the existing data-
set over three times while ensuring the same class 
balance. Both databases were utilized for visual-
izing sound as a variety of techniques including 
Mel spectrograms, spectrograms, scalograms, and 
MFCC plots. They were employed as input into 
an introduced CNN-driven model with Adaptive 
Feature Fusion. This novel structure developed a 
multimodal network that employed a late-fusion 
strategy to reduce feature redundancy. Each of the 
above-mentioned sound visualizations represent-
ed one modality of this architecture. Moreover, 
for each modality, a separate branch was con-
structed using one of the following pre-trained 
classifiers such as DenseNet121, EfficientNetB0, 
MobileNetV2, ResNet50, VGG16, VGG19, and 
Xception. To perform feature fusion, a cutting-
edge Adaptive Attention Mechanism was intro-
duced containing a trunk branch, mask branch, 
and gate branch. AAM dynamically adjusted at-
tention modules based on the input type, utilizing 
gate layers to optimize mask generation relative 
to feature complexity. This structure addressed 
the struggle of detecting subtle musical features. 
The proposed network was evaluated on the two 
distinct datasets consisting of 3- and 10-second 
audio recordings for the aforementioned clas-
sification methods. The gained outcomes were 
contrasted using testing accuracy, testing loss, 

precision, recall, and F1-score. Then to evaluate 
the impact of each modality an ablation study 
was prepared. Four experiments representing 
networks without the subsequent branches were 
performed. Additionally, the plot with SHAP vi-
sualizations calculated for the scenario with the 
highest outcomes was depicted.

It was observed that the CNN-driven model 
performed the best (testing accuracy 94.636% 
and testing loss 0.165) when EfficientNetB0 was 
applied as a key classifier and the larger dataset 
was utilized among all tested classification meth-
ods and within the ablation study’s scenarios. This 
may be due to the distinctive compound scaling 
approach utilized in the classifiers from this fam-
ily. Additionally, using shorter audio samples 
yielded generally higher efficiency regardless of 
the experimental setup. Acquired precision, re-
call, and F1-score generally prove the superiority 
of the proposed method among all classes. Al-
though it may be noted that minor data imbalance 
could affect the overall outcome for some classes. 
For example, precision decreases from 86.49% in 
the 10-second dataset to 69.31% in the 3-second 
dataset, while recall improves from 78.05% to 
93.57% regarding the Mazur with VGG19. This 
implies that shorter samples enhance the model’s 
ability to recognize true Mazur cases but reduce 
precision due to more misclassifications. It is 
worth mentioning that the achieved testing loss 
is predominantly less than 1.00, or even 0.5 sug-
gesting that models were learning effectively. In 
addition, depicted SHAP visualizations elucidate 
the model’s decision. They help to recognize the 
areas that models struggle the most with correct 

Table 12. Comparison with the state-of-the-art regarding the music identification (TA – testing accuracy in %)
Ref. Dataset Input Classifier TA

[11] GTZAN Mel spectrograms ResNet24, VGG16, ResNet50, AlexNet 79.00

[19] FMA, GTZAN, EMA Spectrograms ResNet50, VGG16, MobileNetV2,
NASNetMobile, DenseNet121 81.00

[15] GTZAN, 10GenreGram Spectrograms ResNet18, NNet2 80.00

[31]
A dataset with 10 ethnic 
music genres relating to 

ethnic music

Mel-sound spectrum, the 
short-time Fourier sound 

spectrum
A self-adjusted CNN 90.30- 92.80

[32] A dataset with Chinese 
traditional folk music Mel spectrograms A self-adjusted CNN, ResNet18, ShuffleNet 89.00

[10]
A dataset with 2292 audio 
samples of Polish national 

dance music
Mel spectrograms ResNet50, DenseNet121, VGG16, MobileNetV2 90.59

[28] Ballroom, ISMIR04, GTZAN MFCC plots, Mel 
spectrograms A self-adjusted CNN 85.00

Our 
work

A dataset with 7782 audio 
samples of Polish national 

dance music

Mel spectrograms, 
spectrograms, scalograms. 

MFCC plots

The CNN-driven model with Adaptive Feature 
Fusion based on EfficientNetB, MobileNetV2, 

ResNet50, VGG16, VGG19, Xception
94.63
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predictions in terms of music identification. They 
also facilitate the identification of the most suit-
able spectrum feature considering Polish national 
dance music recognition.

As a part of the research, a comparison with 
the state-of-the-art methods for music identifi-
cation was conducted in terms of applied datas-
ets, inputs, and classifiers (Table 12). They were 
evaluated in terms of acquired testing accuracy. 
Most studies employ song collections based on 
popular music genres. What is more, Mel spec-
trograms and spectrograms were the most prev-
alent inputs. However, some studies utilized 
MFCC plots, too. Most studies used pre-trained 
classifiers like DenseNet121 or ResNet50, 
though some introduced self-adjusting CNN ar-
chitectures. Achieved testing accuracy varied be-
tween 79.00–92.80% which was lower than the 
one acquired in our study (94.63%). In addition, 
it was also superior to the research that employed 
Mel spectrograms for Polish national dance mu-
sic classification where the highest accuracy was 
90.59%. Noteworthy, compared to various state-
of-the-art methods, the proposed CNN-driven 
model with adaptive feature fusion demonstrates 
promising outcomes.

CONCLUSIONS

The majority of the available research on 
music recognition topics is related to correct-
ly classifying distinct genres of popular music 
such as pop or rock. This work includes apply-
ing formerly pre-trained classification methods 
like DenseNet121 or EfficientNetB0 with diverse 
inputs in particular Mel spectrograms, spectro-
grams, scalograms, and MFCC plots. Recently, 
a feature fusion of sound features has been ad-
dressed yielding promising effectiveness with an 
ablation study evaluating the impact of each fea-
ture. Furthermore, the decision-making process 
of a CNN has been visualized using many XAI 
techniques including SHAP and LIME. Despite 
the growing interest in folk music datasets, this 
area still needs to be adequately addressed. Thus, 
a CNN-driven model with an Adaptive Attention 
Module for four various inputs such as Mel spec-
trograms, spectrograms, scalograms, and MFCC 
plots has been proposed. The proposed research 
focused on the recognition of Polish national 
dance music namely the Krakowiak, the Kujawi-
ak, the Mazur, the Oberek, and the Polonez. It 

evaluated the performance of distinct classifiers 
(DenseNet121, EfficientNetB0, MobileNetV2, 
ResNet50, VGG16, VGG19, Xception) that were 
chosen as a core structure for each modality re-
garding two datasets with 3- and 10-second audio 
samples. Their effectiveness was assessed utiliz-
ing popular classifications such as testing accu-
racy and testing loss while EfficientnetB0 yielded 
the most superficial results for the 3-second data-
set with testing accuracy equal to 94.636 % and 
testing loss 0.165. Calculated precision, recall, 
and F1-score for each class represented by each 
of the Polish national dances such as the Krakow-
iak, the Kujawiak, the Mazur, the Oberek, and the 
Polonez also presented that the obtained results 
were consistent. In addition, an ablation study 
helped assess how each spectral feature impacted 
the proposed CNN-driven model. It also proved 
the superiority of EfficientNetB0. Additionally, 
the 3-second audio recordings might be a better 
choice since they generally yielded higher out-
comes, also for the ablation study. SHAP visual-
izations were also generated to help understand 
the introduced model predictions revealing that it 
might be a profitable technique to assess what part 
of sound was considered mostly by the classifiers 
or which classes were supposed to be misclassi-
fied. There are several limitations, mainly due to 
the limited availability of data representing Pol-
ish national dance music. Overall, the conducted 
study improves Polish dance recognition and 
highlights multi-representation fusion as a prom-
ising approach for future audio classification.

Some alterations of the proposed network may 
be applied as a part of future works concerning 
Polish national dance music recognition. Firstly, 
replacing pre-trained classifiers applied in each 
branch by entailing the self-adjusted structure can 
be a proper solution. Secondly, it may be benefi-
cial to apply some of the prevalent layers such as 
Dropout or GlobalAveragePooling2D, and evalu-
ate their impact on the general performance of the 
proposed CNN-driven model. Employing some 
other classifiers from the EfficientNet family 
could also be a profitable resolution. In addition, 
a lack of sufficient input data can be addressed 
by introducing some of the data augmentation 
techniques employed on the images and the audio 
recordings by applying noise or proposing a solu-
tion that involves generative adversarial networks 
(GAN). This will help increase the overall size of 
the dataset and enable the model’s performance 
to be contrasted with real-world scenarios. The 



369

Advances in Science and Technology Research Journal 2026, 20(1) 354–372

implemented SHAP visualizations may be con-
trasted with other up-to-date XAI tools includ-
ing Gradient-weighted Class Activation Mapping 
(Grad-CAM) or LIME, too. A comparison of the 
CNN-driven model’s efficiency on distinct folk 
and mainstream music collections will also be 
valuable in assessing model generalization.
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