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ABSTRACT

Mel spectrograms have been widely applied in music identification, often yielding successful results when com-
bined with well-known pre-trained classification methods such as VGG16, DenseNet121, or ResNet50. However,
the acquired performance may still be improved by employing fusion techniques and proposing a dataset consist-
ing of more samples, which generally demonstrate superior results. Thus, a novel approach employing these meth-
ods with the formerly pre-trained classifiers has been introduced. The core innovation of our study is feature fusion
utilizing Mel spectrograms, spectrograms, scalograms, and Mel-Frequency Cepstral Coefficients plots, created
based on audio recordings from the created dataset encompassing Polish national dance music. The adaptive model
is suggested as a mechanism adjusting the highly relevant features for Polish national dance music identification.
Furthermore, the use of SHapley Additive exPlanations makes it possible to visualize which parts of the input fea-
ture maps are crucial to the model fusion decisions. Subsequently, the most prevalent classification metrics were
employed including accuracy, precision, recall, and F1-score to compare the obtained results with state-of-the-art.
Hence, the present method yields highly satisfactory results, exceeding 94% accuracy. Consequently, this study
not only sets a new benchmark for Polish national dance recognition but also underscores the broader potential of
multi-representation fusion as a general blueprint for next-generation audio classification systems.

Keywords: machine learning, convolutional neural networks, Polish national dance music identification, SHapley
Additive exPlanations, feature fusion.

INTRODUCTION

Artificial intelligence (AI) and machine
learning (ML) are currently undergoing rapid
development, impacting nearly every aspect of
daily life. One of the affected areas is music rec-
ognition, which serves as a valuable element of
music information retrieval (MIR), focusing on
identifying crucial features and patterns within
audio signals [1]. It also supports a wide range
of applications, such as genre classification or
song detection, which can be performed using
cutting-edge technologies involving convolu-
tional neural networks (CNNs). This may entail
utilizing widely applied pre-trained classifiers or
incorporating various visual representations of
sound as input to the network. These up-to-date
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techniques can often be employed not only to
contribute to entertainment purposes but also to
fulfill more educational or scientific objectives.
Some other areas where machine learning may
be applicable include audio signal processing in
pipe organ systems [2—4].

One of the aspects that may be overlooked
by the majority is related to intangible cultural
heritage (ICH) which includes traditions, prac-
tices, or knowledge transmitted across genera-
tions. It helps shape every nation’s identity, dis-
tinguishing them from one another. Music and
dances can also be characterized as an essential
element of ICH revealing unique characteristics
of various cultures [5—7]. Notably, Polish na-
tional dances (the Krakowiak, the Kujawiak, the
Mazurek, the Oberek, and the Polonez) reflect
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Poland’s cultural heritage. Yet, each of them con-
sists of distinct qualities and features that help
differentiate them [8]. In addition, these dances
and their music serve as a significant element of
Polish ICH and history [9]. Thus, AL and ML
may help preserve them and make them acces-
sible to younger generations.

MOTIVATION OF THE STUDY

The main motivation for this study was the
lack of scientific works regarding Polish na-
tional dance music that applied some of the re-
cent trends that have developed in the area of
music classification such as the fusion of vari-
ous features, attention mechanisms, or explain-
able artificial intelligence (XAI) techniques.
Some prevalent databases were utilized to ver-
ify the lack of suitable literature search such as
Scopus, Web of Knowledge, IEEE Xplorer, and
Google Scholar. It was decided to use some of
the following keywords: ‘Polish national dance
music recognition’, ‘folk music’, ‘machine
learning’, ‘attention mechanisms’. Hence, this
research aims to present a novel multimodal
CNN that fuses Mel spectrograms, spectro-
grams, scalograms, and MFCCs using attention
mechanisms. The network architecture is based
on popular pre-trained classifiers and is applied
to a dataset of audio recordings of five Polish
national dances.

Scientific novelty of the proposed work

The key contributions can be summarized
as follows:

1. Altering the available dataset of Polish na-
tional dance music [10] by reducing the
length of audio samples from 10 seconds to
3 seconds. Contrasting both datasets and their
performance proves the superiority of the da-
tasets with shorter recordings. This demon-
strates that even 3-second pieces are valuable
for music recognition.

2. Developing the innovative multimodal CNN
that performs a fusion of spectral features by
employing the Adaptive Attention Module
(AAM) with the adaptive trunk branch, the
adaptive mask branch, and the adaptive gate.
The proposed structure strengthens the net-
work’s performance in detecting salient sound
characteristics and mitigating over-suppression

in subsequent layers. Applying modalities such
as Mel spectrograms, spectrograms, scalo-
grams, and MFCC plots.

3. Introducing up-to-date formerly pre-trained
classifiers, including EfficientNetB0, Xcep-
tion, VGG16, VGG19, ResNet50, Mobile-
NetV2, and DenseNetl21, as a core of each
CNN’s modality. Comparing their efficiency
utilizing one of the most prevalent metrics such
as testing accuracy, testing loss, precision, re-
call, and F1-score for both of the audio record-
ing collections used.

4. Visualizing the Shapley Additive explanations
(SHAP) for each of the analyzed sound visu-
alization techniques to localize areas that the
developed classifier utilizes to predict Polish
national dance music.

5. Performing an ablation study by evaluating
testing accuracy and testing loss when one,
two, or three of the proposed modalities are
reduced for various classification methods and
two datasets.

6. Comparing state-of-the-art techniques across
various datasets, implemented models, and
commonly used deep learning methods in mu-
sic recognition.

Notably, previously researchers focused main-
ly on feature-based approaches where features
such as Mel-Frequency Cepstral Coefficients
(MFCC) vectors were extracted and fed to the
classifiers [11]. There were some drawbacks to
this method, as it might not capture the temporal
and spatial dependencies present in audio sig-
nals and often requires careful feature engineer-
ing. Moreover, spectrograms were predominant-
ly chosen in many music classification works
incorporating CNNs while they might overlook
some other aspects of the audio signal. Thus,
our CNN-driven model with Adaptive Feature
Fusion is introduced to address these limita-
tions. It incorporates multimodality by combin-
ing four inputs that visualize signals in various
ways such as spectrograms, Mel spectrograms,
MFCC plots, and scalograms. Moreover, apply-
ing attention mechanisms and pre-trained classi-
fication methods can also enhance classification
accuracy and the extraction of complementary
features. In comparison with traditional ap-
proaches, the proposed method yields superior
results through the integration of multiple au-
dio representations and advanced convolutional
neural network architecture.
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RELATED WORKS

Many recent papers focus mainly on analyz-
ing visual representations of audio recordings
employing various presentation techniques such
as Mel spectrograms, spectrograms, scalograms,
and Mel-Frequency Cepstral Coefficients plots.
They facilitate the application of convolutional
neural networks to music identification tasks.
In [11] Mel spectrograms were obtained from
30-second audio recordings originating from the
GTZAN dataset [12]. They represent a range of 10
various music genres e.g. country, rock, and pop
music. Then, it was decided to employ pre-trained
on ImageNet [13] models namely ResNet34,
ResNet50, VGG16, and AlexNet. Following the
training stage, each classifier was independently
assessed utilizing confusion matrices and accu-
racy metrics ranging from 71 to 79%. Spectro-
grams and Mel spectrograms with the utilization
of other pre-trained classification methods such
as AlexNet and LeNet-5 were also presented in
[14] demonstrating favourable outcomes. More-
over, spectrograms were also generated from the
GTZAN and 10GenreGram subsets, as detailed in
[15]. Then, ResNet18 and NNet2 classifiers were
applied, trained on 50 epochs, and evaluated by
contrasting their accuracies and confusion matri-
ces. It is noteworthy that the results varied signifi-
cantly, with accuracy ranging from 40% to nearly
80%. To address the task of music genre classi-
fication, Mel spectrograms combined with self-
adjusted convolutional neural networks (CNNs)
were also employed in [16—18] yielding sufficient
results in terms of obtained metrics comprising
precision, recall, Fl-score, and accuracy. Alter-
native methods for sound visual representations
include spectrograms [19-22] and scalograms
[23,24] generation which are also utilized as an
input to the CNNs contributing to achieving sat-
isfactory outcomes. MFCCs were extracted from
audio signals in [25-27] and subsequently utilized
in classification models such as support vector
machines (SVM), convolutional recurrent neu-
ral networks (CRNN), and Convolutional Neu-
ral Networks, respectively. In [28], MFCC plots
were generated using the extracted coefficients
and employed to train the self-adjusted CNN.

While many papers tackle music genre clas-
sification employing some well-known datasets
such as the GTZAN, the FMA [29,30], or EMA,
there is still a lack of scientific works relating to
folk music classification. However, the recent rise
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in awareness about the importance of preserving
nations’ intangible cultural heritage (ICH) pro-
vides research with some valuable insights. In
[31] an ethnic music dataset was obtained repre-
senting ten various genres with each genre con-
taining 100 audio recordings lasting 20 seconds
each. Then Mel sound spectrum and short-time
Fourier spectroscopy were utilized as an input
into a self-adjusted CNN and compared in terms
of obtained accuracy. There are some other works
combining folk music classification with machine
learning techniques concerning different nations
and cultures including Chinese culture [32, 33],
Turkish [34], Greek [35], Indian [36-38], Hun-
garian [39], Vietnamese [40], Assamese [41],
Bengali [42], Irish [43], Korean [44], Arabic [45],
and Nigerian [46]. Noteworthy, there is also some
work presenting Polish national dance music rec-
ognition [10] where audio samples demonstrating
Polish national dances such as the Krakowiak, the
Kujawiak, the Mazur, the Oberek, and the Polonez
were collected yielding a dataset encompassing
137 recordings in the MP3 format. Then, the data
preprocessing stage was performed where each
audio sample was carefully listened to remove
some unnecessary parts including noise, etc. Af-
terwards, each audio was converted to the WAV
format and divided into 10-second pieces obtain-
ing a final dataset consisting of over two thousand
samples. From each sample Mel spectrograms
were generated, split into training, validation, and
testing sets in an 8:1:1 ratio, and utilized as an in-
put into the pre-trained ImageNet classifiers such
as VGG16, ResNet50, DenseNet121, and Mobile-
NetV2. The acquired outcomes were compared
with the attained metrics such as testing accuracy,
testing loss, precision, recall, and F1-score result-
ing in a testing accuracy of approximately 90%.
Recently, attention mechanisms have gained
more and more recognition concerning computer
vision issues such as image classification help-
ing achieve improved outcomes [47,48]. Music
genre recognition could also be handled employ-
ing attention mechanisms which were utilized in
[49] where Mel spectrograms and MFCC plots
were generated based on the GTZAN dataset.
Subsequently, three distinct architectures were
chosen and trained such as ResNet18, Bi-LSTM,
and ResNetl8-BiLSTM with ResNetl8 and
ResNet18-BiLSTM implementing the convolu-
tional block attention module (CBAM). Then,
each classifier was trained with and without it,
and the impact of each feature and its combination
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was also evaluated in terms of the obtained test-
ing accuracy. The combination of Mel spectro-
grams and CNNs with attention mechanisms uti-
lized for the music genre classification was also
implemented in the following papers [50-52]
providing acceptable outcomes. Spectrograms
are fairly commonly selected methods employed
to visualize audio signals when combined with a
range of attention mechanisms confronting music
genre recognition issues. The residual attention
network (RAN) applying residual blocks and at-
tention modules was selected in [53], while [54]
presented the CNN with NetVlad and self-atten-
tion. Additionally, MFCC extraction was utilized
with the attention-based CNN showcasing accu-
racy at the level of 85% in [55].

It was recognized that it might be beneficial to
enhance sound recognition by developing classi-
fiers based on the fusion of several music features
in CNNs. In [28], it was stated that it could be
more valuable to use the late-fusion strategy to
combine features such as MFCC plots, Mel spec-
trograms, and spectrograms due to the possible
information redundancy. The aforementioned
features are strictly connected with each other as
Mel spectrograms derived from short-time Fou-
rier transform (STFT) [56] which is the backbone
of spectrograms, and MFCC plots are connected
to Mel spectrograms. The presented solution
yielded promising accuracy. The late-fusion strat-
egy was also demonstrated in [57] with the same
set of combined features.

It is essential to provide Al models with suit-
able resources to be able to properly assess their
effectiveness. Thus, XAl has emerged and pro-
vides some proper techniques to address this con-
cern. Regarding the sound recognition approach-
es such as Explain like [ am 5 (ELi5), SHAP, and
local interpretable model-agnostic explanations
(LIME) were selected in [58] providing some
impactful insights into CNNs’ decision-making
process. The SHAP technique was also elected in
[59,60] to enable more transparent interpretation
of the classification methods’ results.

The conducted literature research facilitated
the assessment of the current state of music rec-
ognition and the identification of up-to-date tech-
niques utilized in this area. It could be observed
that many studies remained focused on music
genre classification based on commercially pop-
ular music. They typically employed their own
self-employed CNN or some pre-trained classi-
fiers with various types of inputs including Mel

spectrograms, spectrograms, MFCC plots, or
scalograms. Some of the works provided more
complex solutions requiring the implementation
of various attention mechanisms or fusion of fea-
tures. To gain more comprehension of the cho-
sen classification methods some XAl tools have
been implemented, too. Nevertheless, more and
more works concerning folk or national songs re-
lating to distinct cultures around the world have
been revealed. Consequently, it was determined
to undertake research pertaining to Polish music
recognition combined with the widely known
previously pre-trained classifiers with the Adap-
tive Feature Fusion enabling the classification of
Polish national dance music. To assess the perfor-
mance of the provided classification methods the
SHAP technique was employed.

MATERIALS AND METHODS

This section presents the general research
methodology. Some main elements of this may
be retrieved. Firstly, the overall dataset contain-
ing music of five Polish national dances in WAV
audio recordings was collected. Secondly, the
collected samples were segmented into 3-second
and 10-second clips, resulting in the creation of
two separate datasets. Then, distinct sound fea-
tures such as Mel spectrograms, spectrograms,
scalograms, and MFCC plots were extracted and
saved as JPG images. Ultimately, developed clas-
sifiers were trained and evaluated utilizing chosen
classification metrics.

Dataset

It was decided to utilize the formerly de-
veloped Polish national dances music dataset
presented in [10] comprising music represent-
ing five Polish national dances such as the Kra-
kowiak, the Kujawiak, the Mazur, the Oberek,
and the Polonez. The demonstrated collection
consists of 137 audio recordings in the MP3
format. Audio samples were previously manu-
ally checked to remove parts that did not con-
tain music including crowd noises or silence
and converted into the WAV format. Although
this step was performed manually in the current
study, future research could automate the pro-
cess. For example, pyAudioAnalysis, a Python
library, can be introduced to remove silence pe-
riods from audio recordings [61]. In [10] audio
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recordings were then divided into 10-second
pieces. In our study, this process was enhanced
by creating two sets where one reflected 10-sec-
ond samples and the other 3-second samples.
It was selected to evaluate the impact of em-
ploying audio recordings that lasted only 3 sec-
onds due to similar studies presenting this issue
[62,63] where favourable results were exhib-
ited. It increases the overall size of the dataset
which may result in achieving enhanced out-
comes. It can also be used to evaluate whether
shorter data samples affect music recognition
performance. Notably, during the data splitting
stage, it is essential to select only those samples
that match the specified length, while shorter re-
cordings must be excluded.

As might be observed in Table 1, an over 3
times larger dataset was obtained due to the split-
ting of audio samples into 3-second pieces. Yet,
each class which is represented by each Polish
national dance presents the same data distribution
with the Kujawiak still being the most numerous
class, and the Mazur the least. The dataset contin-
ues to exhibit a slight imbalance in the number of
samples among the classes.

Data preprocessing

The analysis of audio signals may be con-
ducted using a variety of techniques encompass-
ing time-domain analysis, frequency-domain
analysis, and wavelet analysis. Each method fa-
cilitates the process of capturing essential spectral
characteristics of the signal.

By applying the Fourier Transform to local-
ized time intervals, the short-time Fourier trans-
form (STFT) reveals variations in the frequency
characteristics of sound signals over time [64].
STFT may be analyzed by Equation 1, where ¢
denotes the time parameter of the signal, u repre-
sents the frequency parameter, f{) is the input sig-
nal, and W refers to the windowing function [65].

STFTH(t',u) =

= [ [f@® - w(t—t)]- e /2mutqe (D)

Spectrograms help depict this technique
where the x-axis refers to time and the y-axis to
the frequency (Figure 1) [66]. Often, the frequen-
cy on the vertical axis is visualized using a loga-
rithmic scale due to the fact that people typically
have a better perception of low-frequency sounds
compared to high-frequency ones.

A Mel spectrogram can be defined as a spec-
trogram where frequencies are transformed ac-
cording to the Mel scale [22] presented by Equa-
tion 2. The scale is designed to align with human
auditory perception of sound frequencies.

Mel Scale = 2595 log,

(1 4 f requency) 2)

700

An example of Mel spectrogram with the
time on the x-axis and Mel-frequency bins on
the y-axis was generated for the Mazur dance
(Figure 1). Unlike spectrograms with the lin-
ear or logarithmic scale, Mel spectrograms map
frequencies onto the Mel scale that aligns better
with human auditory perception as it compresses
higher frequencies and expands lower frequen-
cies. That is why it may be a better tool utilized
in sound analysis due to the fact that it focuses on
how humans hear.

The Mel scale is incorporated into the calcu-
lation of Mel-Frequency Cepstral Coefficients,
too. The transformation of the input signal is pro-
cessed, and then Mel filter banks are employed
to compute the amplitude across the frequency
bands defined by the Mel scale. Eventually, the
cepstral coefficients are determined by taking the
logarithm of these amplitudes.

A sample MFCC plot was depicted in Figure 1
with the horizontal axis representing time and the

Table 1. The aggregate number of WAV-format audio samples

Dance Samples number before splitting 10-second samples number 3-second samples number
Krakowiak 23 444 1501
Kujawiak 34 588 1993
Mazur 25 410 1388
Oberek 38 428 1472
Polonez 17 426 1432
Overall 137 2296 7782
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Figure 1. The CNN-driven model with adaptive feature fusion

calculated MFCC on the vertical axis. The magni-
tude of the associated coefficient is demonstrated
by the intensity, potentially indicating the pres-
ence of distinctive audio characteristics.

Continuous wavelet transform (CWT) utiliz-
es wavelets to analyze changes in a signal’s fre-
quency content over time, capturing both short-
and long-term features by adapting the size of the
analysis windows. It is defined by Equation 3 [65]
where y denotes the mother wavelet (Equation 4).
One of the most widely adopted wavelets is the
Morlet wavelet, developed as a combination of a
sine wave with a Gaussian function [67].

CW(ab) = [~ fOap®dt  (3)

Yap(®) = =9 () (4)

Scalograms are an effective approach to the
visualization of CWTs (Figure 2). The horizon-
tal axis represents time, whereas the vertical axis
corresponds to scale.

Model architecture

The innovative model combining multiple
spectral features of sound with the late-fusion

strategy has been proposed to tackle music iden-
tification (Figure 1). The designed network has
four separate inputs pertaining to spectral charac-
teristics derived from audio including Mel spec-
trograms, spectrograms, scalograms, and MFCC
plots which have been merged into a multimod-
al CNN using a late fusion strategy to mitigate
the presence of redundant features [28]. Each
outlined modality encompasses one of the most
prevalent pre-trained ImageNet classifiers such
as EfficientNetB0O, Xception, VGG16, VGG19,
ResNet50, MobileNetV2, and DenseNet121. It is
essential to ensure that every branch incorporates
the same classification method. Each time the last
layer from these classifiers is removed and it is
connected to the flattened layer. Then, the up-to-
date solution named Adaptive Attention Module
is adopted. This mechanism consists of an adap-
tive trunk branch, an adaptive mask branch, and
an adaptive gate. After feature fusion, two Dense
blocks are utilized and Softmax is employed to
classify one of the dance classes.

Pre-trained classifiers

After comprehensive research, it was de-
termined to select some of the most prevalent
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Figure 2. The adaptive feature fusion mechanism

classification methods like Xception, VGG16,

VGG19, ResNet50, MobileNetV2, DenseNetl121,

and EfficientNetB0. Their unique characteristics

may be valuable to increase the effectiveness of
the introduced classifier for Polish national dance
music identification:

1. Xception is a novel classifier where an In-
ception module is substituted with depthwise
separable convolutions resulting in achieving
better performance [68].

2. VGG introduced deeper convolutional neural
networks by employing more convolutional
layers [69]. This became feasible due to lever-
aging 3 X 3 convolutional filters, contributing
to improved accuracy. VGG16 and VGGI19
represent 16 and 19-weight layers, respectively.

3. ResNet50 provides training of deeper neural
networks without their degradation due to the
application of shortcut connections and residu-
al blocks [70]. Moreover, it maintained a lower
level of complexity compared to the aforemen-
tioned VGG classifiers.

4. The decrease in memory consumption was
obtained as a result of an innovative design of
MobileNetV2 [71]. It developed a cutting-edge
structure established on inverted residuals with
linear bottlenecks and depthwise separable
convolutions.

5. ResNet classification methods are surpassed
by DenseNetl21 by enhancing feature propa-
gation while minimizing the number of param-
eters [72]. This classifier also addresses the
vanishing gradient issue by establishing dense
connections between layers.

6. EfficientNets contrast with formerly mentioned
classifiers such as MobileNets and ResNet
yielding higher accuracy due to the compound
scaling [73]. It adjusts the depth, width, and
resolution of the network evenly while the
stem layer conducts initial convolutions. Effi-
cientNetBO is a classifier belonging to the Ef-
ficientNet family.
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Adaptive attention module

It may be challenging to recognize even slight
disparities between audio signals by some preva-
lent classification methods. Thus, an adaptive at-
tention structure called AAM has been proposed
to handle feature fusion (Figure 2). This facili-
tates the dynamic adjustment of the number of at-
tention modules based on the input class or type
of image. Extra gate layers in the proposed mod-
ules dynamically influence the feature maps by
optimizing the attention mask structure according
to the complexity of the detected sound features.
This design mitigates the over-suppression of fea-
tures in deeper network layers while enhancing
the model’s ability to capture important sound
characteristics. The suggested adaptive attention
module consists of three main components: the
adaptive trunk branch, the adaptive mask branch,
and the adaptive gate.

Adaptive trunk branch

The proposed adaptive trunk branch serves
as the primary feature extraction path, contain-
ing two convolutional layers with a 3x3 kernel
size Conv,,, followed by a rectified linear unit
(ReLU) activation function and batch normaliza-
tion (BN) (Equation 5, 6).

AT;(x) = ReLU(BN(Convs «3(x)))  (5)

AT (x) = BN(Convsy3(AT;(x))) (6)

Adaptive mask branch

The adaptive masking branch enhances sa-
lient regions in the input of the classifier by form-
ing a spatial-channel mask. This process includes
channel reduction, application of a standard 3x3
convolutional kernel, and concludes with a sig-
moid activation function. It is presented by Equa-
tion 7 with Conv, , noting a convolutional layer
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which is responsible for reducing the channels’
number (which can serve as a bottleneck). Con-
versely, 0 refers to the sigmoid activation func-
tion limiting the output to the 0—1 range.

Convs «
Ma(x) = G((ReLU(COTl13;1:1(x)))) @

Adaptive gate

The adaptive gate is employed to perform
the process of dynamically scaling the attention
mask to allow the classifier to adjust the impact
of attention based on the presence of sound fea-
tures. The gating function, defined by Equation
8, uses Global Average Pooling (AvgPool) to re-
duce the input tensor from R™7 to R where
C is the number of channels, H is the height, and
W is the width.

Convy «1

(t=0 ((Rew(convl } 1<Avgpool<x))>)) ®)

This attention module adjusts weights based
on global audio characteristics — distinct acoustic
patterns like harmonic structures result in higher
gating weights, enhancing their influence. The
final output of the Adaptive Attention Module is
calculated utilizing Equation 9 where the output
is calculated through element-wise multiplication
of the trunk features and attention weights.

Output(x) =

=AT(x) O (14 6(x) - My (x)) 2

Employing a gating mechanism G(x) avoids
over-suppressing features, especially in noisy or
low-quality audio, making it valuable in variable
sound environments.

Classification metrics

The CNN-driven model with adaptive feature
fusion was assessed by applying some of the most
prevalent classification metrics involving accura-
¢y, precision, recall, and F1-score.

In the mentioned equations true positive (TP)
represents correctly identified positives, false
positive (FP) — incorrectly identified positives,
and false negative (FN) — missed positives. In
addition, accuracy reflects the ratio of correctly
predicted instances to the total number suggest-
ing the overall performance of the proposed clas-
sifier across all classes [74]. Precision and recall

may also be utilized for multi-class classification
when precision evaluates how many predicted
instances of a class are correct and recall reflects
how well the classifier identifies all actual in-
stances of that class [75]. A harmonic mean of
recall and precision is F1-score [76] which may
be particularly advantageous when dealing with
uneven class distributions.

As another classification metric loss is also
computed utilizing the Categorical Cross En-
tropy [77]. It is a widely applied function in
multiclass classification that examines the dif-
ference between predicted and actual probabil-
ity distributions.

Experiments

Mel spectrograms, spectrograms, scalo-
grams, and MFCC plots were generated for the
samples both from the 3-second and 10-second
datasets. Subsequently, every catalog consisting
of various sound features was randomly divided
into training, validation, and testing sets. Specifi-
cally, 80% of the data was allocated to the train-
ing set, with 10% each assigned to validation and
testing. During this process, it was vital to ensure
that each directory representing diverse auditory
characteristics followed the same labeling and
number of samples.

It was established to employ several prevalent
classification methods like EfficientNetB0, Xcep-
tion, VGG16, VGG19, ResNet50, MobileNetV2,
and DenseNet121 to examine their impact on the
proposed CNN-driven model. The training pro-
cess encompassed the following steps for 3- and
10-second audio segments separately:

1. Change the core classifier of the proposed
model.

2. Load images of Mel spectrograms, spectro-
grams, scalograms, and MFCC plots for train-
ing, validation, and testing sets.

3. Preprocess images according to the specific
needs of the selected classification method.

4. Set the number of epochs to 30 based on the
former studies [15].

5. Evaluate the performance of the model by de-
termining the value of the following metrics:
testing accuracy, testing loss, precision, recall,
and F1-score.

The aforementioned training stage was re-
peated each time an alternative primary classifier
was employed.
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RESULTS

The performance of the proposed classifier
was demonstrated separately for both the 3-sec-
ond and 10-second datasets. Then, an ablation
study was performed and SHAP visualization
was presented.

The CNN-driven model with adaptive
feature fusion

The performance of the proposed CNN-
driven model, incorporating the adaptive feature
fusion module, was evaluated based on testing
accuracy and testing loss (Table 2). The results
were calculated for different core classifica-
tion methods across both 10-second and 3-sec-
ond audio datasets. It might be noted that Effi-
cientNetBO and ResNet50 achieved the highest
testing accuracy (over 94%) on the 3-second
dataset, with EfficientNetBO also yielding the
lowest loss (around 0.16) while VGG16 per-
formed the worst on this dataset, with 88% ac-
curacy and 0.75 loss. For the 10-second data-
set, DenseNetl121 performed the best (91% ac-
curacy and around 0.25 loss), while ResNet50
showed the weakest results (86% accuracy and
around 1.73 loss). The results obtained for the
remaining classifiers demonstrated relatively
consistent performance. In the 10-second sam-
ple dataset, testing accuracy fluctuated within a
range of approximately 2—3 percentage points,
with testing loss varying by about 1.2. For the
3-second dataset, accuracy differences spanned
roughly 4-5 percentage points, while testing
loss varied by around 0.5.

One of the most prevalent classification met-
rics such as precision, recall, and Fl-score has
been computed for every classifier, dataset and
class representing music from one of the Polish

national dances such as the Krakowiak, the Ku-
jawiak, the Mazur, the Oberek, and the Polonez.
They were presented in Tables 3-9.

Regarding DenseNetl121, the 3-second da-
taset yielded to a minor extent better outcomes.
However, for the Krakowiak and the Oberek
dance F1-score was higher for the 10-second da-
taset. The Polonez class presented the highest pre-
cision (over 95%) with slightly lower recall for
the 3-second sample dataset. Notably, the Oberek
dance gained the highest precision (100%) with
significantly lower recall (over 86%) for the
10-second dataset. In general, all dances (for both
datasets) might be characterized by relatively
high metrics with precision and recall above 86%
and F1-score above 88%.

It could be observed that considering the Ef-
ficientNetBO0 classifier in almost every scenario
precision, recall, and Fl-score yielded notably
higher outcomes for the database with 3-second
audio recordings than with the 10-second pieces.
Especially for the Kujawiak, the Oberek, and the
Polonez classes Fl-score acquired over 95%.
Correspondingly, MobileNetV2 performed better
on the dataset with shorter samples resulting in an
F1 score between 91-94% while the dataset with
10-second pieces obtained the highest F1 score
for the Kujawiak dance (around 92%).

The ResNet50 classification method dem-
onstrated even better for the 3-second dataset
with the Fl-score between 93-95% and recall
and precision mainly over 90%. Substantial dis-
parities might be noticed for the 10-second col-
lection where differences between precision and
recall were around 20 percentage points for al-
most every class. For example, for the Polonez
class precision is 100%, however, recall was only
around 72%. In addition, the obtained F1-score
was around 82% for the Mazur, while the highest
was for the Kujawiak and it was equal to 90%.

Table 2. The testing accuracy (in %) and testing loss for the selected classifier on both datasets

(TA — testing accuracy, TL — testing loss)

Classifier Dataset type TA TL Dataset type TA TL
DenseNet121 10 s samples 91.553 0.254 3 s samples 91.826 0.333
EfficientNetBO 10 s samples 90.871 0.375 3 s samples 94.636 0.165
MobileNetV2 10 s samples 91.008 0.362 3 s samples 93.614 0.287
ResNet50 10 s samples 86.512 1.735 3 s samples 94.252 0.415
VGG16 10 s samples 88.692 1.549 3 s samples 88.505 0.750
VGG19 10 s samples 89.373 1.006 3 s samples 89.399 0.638
Xception 10 s samples 88.692 0.356 3 s samples 92.337 0.317
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Table 3. The obtained metrics (in %) for DenseNet121 regarding the type of dataset

Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 90.526 86.000 90.526 89.864 91.724 88.079
Kujawiak 93.548 90.625 96.666 93.796 93.103 94.500
Mazur 89.156 88.095 90.243 89.679 89.361 90.000
Oberek 92.682 100.000 86.363 90.066 88.311 91.891
Polonez 90.476 95.000 86.363 95.774 97.142 94.444
Table 4. The obtained metrics (in %) for EfficientNetB0 regarding the type of dataset
Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 85.106 81.632 88.888 91.582 93.15 90.066
Kujawiak 95.798 96.610 95.000 95.477 95.959 95.000
Mazur 92.500 94.871 90.243 94.244 94.927 93.571
Oberek 86.021 81.632 90.909 95.145 91.304 99.324
Polonez 92.682 100.000 86.363 95.774 97.142 94.444
Table S. The obtained metrics (in %) for MobileNetV2 regarding the type of dataset
Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 90.526 86.000 95.555 92.255 93.835 90.728
Kujawiak 92.561 91.803 93.333 94.865 92.822 97.000
Mazur 89.156 88.095 90.243 94.366 93.055 95.714
Oberek 89.156 94.871 84.090 91.408 93.006 89.864
Polonez 93.023 95.238 90.909 96.140 97.163 95.138
Table 6. The obtained metrics (in %) for ResNet50 regarding the type of dataset
Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 86.000 78.181 95.555 94.520 97.872 91.390
Kujawiak 90.598 92.982 88.333 94.285 90.000 99.000
Mazur 82.105 72.222 95.121 94.076 91.836 96.428
Oberek 87.500 97.222 79.545 95.890 97.222 94.594
Polonez 84.210 100.000 72.727 93.090 97.709 88.888

Surprisingly, there were notable imbalances
of the obtained metrics regarding VGG16 for both
datasets. F1-score was between 82-92% for the
10-second collection, and 79-94% for the 3-sec-
ond collection. It could be recognized that the
Mazur dance performed considerably low with a
precision of around 69% and 79% for the F1-score
for the 3-second dataset. Similarly, for the collec-
tion with longer samples, the Mazur yielded the
worst outcomes. Although the F1 score was higher

(around 82%). Concerning the VGG19 classifier,
the 3-second datasets yielded generally higher out-
comes. However, for the Mazur and the Oberek
dance, the F1 score was slightly lower. Overall, the
notable disparities between obtained metrics might
be spotted for the dances including the Mazur, the
Oberek, and the Polonez. The 3-second dataset
outperformed the 10-second dataset pertaining to
the Xception with the F1-score between 89-95%.
Precision and recall also presented more concise
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Table 7. The obtained metrics (in %) for VGG16 regarding the type of dataset

Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 87.500 82.352 93.333 88.339 94.696 82.781
Kujawiak 92.561 91.803 93.333 92.783 95.744 90.000
Mazur 82.051 86.486 78.048 79.635 69.312 93.571
Oberek 89.887 88.888 90.909 86.545 93.700 80.405
Polonez 90.476 95.000 86.363 94.158 93.197 95.138

Table 8. The obtained metrics (in %) for VGG19 regarding the type of dataset

Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 84.210 80.000 88.888 88.054 90.845 85.430
Kujawiak 93.548 90.625 96.666 94.320 93.170 95.500
Mazur 88.372 84.444 92.682 83.280 74.576 94.285
Oberek 90.243 97.368 84.090 89.377 97.60 82.432
Polonez 88.888 97.297 81.818 92.086 95.522 88.888

Table 9. The obtained metrics (in %) for Xception regarding the type of dataset

Type 10-s dataset 3-s dataset
Dance/Metric F1-score Precision Recall F1-score Precision Recall
Krakowiak 85.057 88.095 82.222 91.836 94.405 89.403
Kujawiak 89.230 82.857 96.666 93.137 91.346 95.000
Mazur 87.500 89.743 85.365 89.208 89.855 88.571
Oberek 88.372 90.476 86.363 93.069 90.967 95.270
Polonez 91.764 95.121 88.636 95.406 95.406 93.750

results between each class while for the collection
with longer audio recordings recall was around
96% with precision only 83% for the Kujawiak.

Ablation study

An ablation study might be perceived as an
up-to-date method utilized to evaluate the impact
of individual components within a neural network
by systematically removing or altering them and
assessing results. Nowadays, it has gained no-
table acknowledgment in the music recognition
area [78—80]. Hence, it was determined to per-
form an ablation study within our research with
the introduced scenarios such as:

1. Ablation Scenario 1: The proposed classi-
fier with Mel spectrograms, spectrograms, and
scalograms.

2. Ablation Scenario 2: The proposed classi-
fier with Mel spectrograms, scalograms, and
MFCC plots.
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3. Ablation Scenario 3: The proposed classi-
fier with Mel spectrograms, spectrograms, and
MFCC plots.

4. Ablation Scenario 4: The proposed classifier with
scalograms, spectrograms, and MFCC plots.

The acquired results were presented in Table
10 for the 10-second dataset and in Table 11 for
the 3-second dataset where testing accuracy and
testing loss were presented for every assessed
pre-trained classifier. Generally, the dataset with
shorter audio samples yields better outcomes both
regarding testing accuracy and testing loss. It
might be perceived that ResNet gained the high-
est testing accuracy around 94.5% for the 3-sec-
ond dataset when the spectrograms were reduced.
Similarly, in the same dataset, MobileNetV2
achieved the lowest testing loss equal to 0.204.
However, it was for this scenario that scalograms
were reduced. As it might be noticed the VGG16
classifier performed worst in terms of the ac-
quired testing loss for the longer audio recordings
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as in every scenario the value of the testing loss
was over 1. For the third and second scenario it
was even higher than 1.7. Similarly, VGG19 had
a testing loss above 1 in the fourth scenario. This
indicates that VGG16 might be a less effective
classifier compared to others.

The outcomes gained by the proposed CNN-
driven model were compared with every abla-
tion experiment for both datasets. Regarding
the collection with longer audio samples, it was
revealed that interestingly ablation scenarios
sometimes outperformed the proposed model.
Forexample, DenseNet121, EfficientNetB0, Mo-
bileNetV2, ResNet50, and Xception showed the
highest accuracy when applied in the classifica-
tion method with scalograms, spectrograms, and
MEFCC plots. For VGG16 and VGG19 the high-
est testing accuracy was obtained in this scenar-
10 without scalograms. Moreover, the obtained
testing loss was only superior for DenseNet121.
Concerning the 3-second database, only for Ef-
ficientNetBO and Xception the highest testing
accuracy was yielded. However, there is no no-
ticeable pattern relating to the acquired accuracy
across all scenarios and classifiers. The test-
ing loss was the lowest for EfficientNetB0 and

Xception for the CNN-driven model, too. Nota-
bly, EfficientNetBO surpassed other classifiers in
every scenario. On the 10-second datasets, Ef-
ficientNetB2 also exceeds both in terms of test-
ing accuracy and testing loss. Although it was
obtained for the experiment where scalograms
were not employed.

The analysis of the ablation study may sug-
gest that the unique compound scaling feature
utilized in the EfficientNetBO led to superior
results relating to both datasets. Moreover, it is
profitable to employ shorter audio samples as it
leads to a general higher efficiency regardless of
the experiment.

Shapley additive exPlanations

Nowadays, it is essential not only to gener-
ate accurate predictions but also to understand
and interpret the underlying factors contribut-
ing to those predictions. Thus, XAI techniques
are gaining increasing attention, also in music
identification. One of the proposed techniques
is SHAP which was presented in some research
[58—60]. SHAP provides a unified method for ex-
plaining predictions by assigning an importance
value to each feature. It combines several existing

Table 10. The testing accuracy (in %) and testing loss regarding the selected classifier and number of ablation
scenarios for the 10-second samples dataset (TA — testing accuracy, TL — testing loss, SN — scenario number)

SN | Metric/Classifier | DenseNet121 EfficientNetBO | MobileNetV2 | ResNet50 | VGG16 VGG19 Xception
TA 91.553 89.509 89.645 90.599 88.692 89.237 90.190
! TL 0.318 0.481 0.916 0.903 1.890 0.999 0.380
TA 91.416 89.373 91.961 92.098 86.239 86.784 87.329
2 TL 0.295 0.459 0.327 0.895 1.712 0.659 0.531
TA 89.782 93.188 92.098 89.645 90.054 90.190 89.373
s TL 0.342 0.340 0.340 1.006 1.428 0.996 0.357
4 TA 91.689 94.005 92.370 92.506 89.100 89.100 91.280
TL 0.389 0.212 0.473 0.799 1.296 1.012 0.344

Table 11. The testing accuracy (in %) and testing loss regarding the selected classifier and number of ablation
scenarios for the 3-second samples dataset (TA — testing accuracy, TL — testing loss, SN — scenario number)

SN | Metric/Classifier | DenseNet121 EfficientNetBO | MobileNetV2 | ResNet50 | VGG16 VGG19 Xception
TA 91.826 94.125 94.636 93.869 87.994 92.081 91.060
! TL 0.378 0.246 0.320 0.3125 0.991 0.713 0.406
TA 92.337 91.698 92.720 94.508 92.848 90.804 86.845
2 TL 0.348 0.308 0.366 0.255 0.472 0.681 0.509
TA 93.486 91.315 93.869 94.252 92.975 88.505 88.888
s TL 0.262 0.355 0.204 0.230 0.409 0.785 0.423
4 TA 91.315 92.464 93.869 91.570 89.527 88.250 90.166
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methods into one tool ensuring consistent, inter-
pretable results. SHAP is supposed to better align
with human understanding, too.

EfficientNetB0, which was utilized as a core
classification method for every branch of the pro-
posed model and the 3-second dataset, presented
the most superior results across all introduced
scenarios. Hence, it was determined to prepare
the SHAP visualization based on this model. It is
presented in Figure 3 when outcomes have been
computed for the Kujawiak sample. Respective-
ly, it is depicted for the Mel spectrogram, spec-
trogram, scalogram, and MFCC plot. For every
horizontal axis, the calculated SHAP values were
pictured with a greater red color symbolizing the
greater influence of suggested features on the
model’s decision influence. Simultaneously, blue
highlights features that negatively impact the
prediction for that specific class. Moreover, gray
areas suggest almost zero contribution to the pre-
diction of the classifier.

It may be noticed that the proposed model was
highly positive for the Kujawiak class regarding
the Mel spectrogram. Since the strong red color is
visible in this sample across the whole duration
of the audio recording for the lower frequencies.
There is some ambiguity regarding the spectro-
grams since the red color was computed for the
first half of the Kujawiak sample, with the other
half presented as some blue color. It might sug-
gest less confident predictions regarding this vi-
sualization method. Strong feature importance is
again present for the Kujawiak in the scalogram.
However, there is some area indicating a negative
impact of the scalogram feature while the same
area implies a greater impact for the Oberek and
the Krakowiak. Consequently, this may suggest
that the classifier confused these classes within
scalograms due to similar features presented
across various classes. The Kujawiak was un-
doubtedly predicted positive for the MFCC plot
across almost horizontal bands.

Krakowiak Kujawiak Mazur Oberek Polonez
a
. "
=5 | .
-1 0 1 2
SHAP value 1e-9
Krakowiak Kujawiak Mazur Oberek Polonez
=
R =
[
=
T  —————
-2 0 2 4
SHAP value 1e=11
Krakowiak Kujawiak Mazur Oberek Polonez
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=2 0 2 4 6
SHAP value 1e=10
Krakowiak Kujawiak Mazur Oberek Polonez
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Figure 3. The SHAP visualization generated for the Kujawiak sample for the CNN-driven model
based on EfficientNetB0 and for the 3-second dataset regarding the Mel spectrogram (a), spectrogram (b),
scalogram (c), and MFCC plot (d)
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DISCUSSION

In our study, the existing collection of 10-sec-
ond audio recordings in WAV format represent-
ing music from Polish national dances has been
altered by introducing new datasets with shorter,
3-second pieces. This enlarged the existing data-
set over three times while ensuring the same class
balance. Both databases were utilized for visual-
izing sound as a variety of techniques including
Mel spectrograms, spectrograms, scalograms, and
MFCC plots. They were employed as input into
an introduced CNN-driven model with Adaptive
Feature Fusion. This novel structure developed a
multimodal network that employed a late-fusion
strategy to reduce feature redundancy. Each of the
above-mentioned sound visualizations represent-
ed one modality of this architecture. Moreover,
for each modality, a separate branch was con-
structed using one of the following pre-trained
classifiers such as DenseNet121, EfficientNetBO,
MobileNetV2, ResNet50, VGG16, VGG19, and
Xception. To perform feature fusion, a cutting-
edge Adaptive Attention Mechanism was intro-
duced containing a trunk branch, mask branch,
and gate branch. AAM dynamically adjusted at-
tention modules based on the input type, utilizing
gate layers to optimize mask generation relative
to feature complexity. This structure addressed
the struggle of detecting subtle musical features.
The proposed network was evaluated on the two
distinct datasets consisting of 3- and 10-second
audio recordings for the aforementioned clas-
sification methods. The gained outcomes were
contrasted using testing accuracy, testing loss,

precision, recall, and Fl-score. Then to evaluate
the impact of each modality an ablation study
was prepared. Four experiments representing
networks without the subsequent branches were
performed. Additionally, the plot with SHAP vi-
sualizations calculated for the scenario with the
highest outcomes was depicted.

It was observed that the CNN-driven model
performed the best (testing accuracy 94.636%
and testing loss 0.165) when EfficientNetB0 was
applied as a key classifier and the larger dataset
was utilized among all tested classification meth-
ods and within the ablation study’s scenarios. This
may be due to the distinctive compound scaling
approach utilized in the classifiers from this fam-
ily. Additionally, using shorter audio samples
yielded generally higher efficiency regardless of
the experimental setup. Acquired precision, re-
call, and F1-score generally prove the superiority
of the proposed method among all classes. Al-
though it may be noted that minor data imbalance
could affect the overall outcome for some classes.
For example, precision decreases from 86.49% in
the 10-second dataset to 69.31% in the 3-second
dataset, while recall improves from 78.05% to
93.57% regarding the Mazur with VGG19. This
implies that shorter samples enhance the model’s
ability to recognize true Mazur cases but reduce
precision due to more misclassifications. It is
worth mentioning that the achieved testing loss
is predominantly less than 1.00, or even 0.5 sug-
gesting that models were learning effectively. In
addition, depicted SHAP visualizations elucidate
the model’s decision. They help to recognize the
areas that models struggle the most with correct

Table 12. Comparison with the state-of-the-art regarding the music identification (TA — testing accuracy in %)

Ref. Dataset Input Classifier TA
[11] GTZAN Mel spectrograms ResNet24, VGG16, ResNet50, AlexNet 79.00
ResNet50, VGG16, MobileNetV2,
[19] FMA, GTZAN, EMA Spectrograms NASNetMobile, DenseNet121 81.00
[15] GTZAN, 10GenreGram Spectrograms ResNet18, NNet2 80.00
A dataset with 10 ethnic Mel-sound spectrum, the

[31] music genres relating to short-time Fourier sound A self-adjusted CNN 90.30- 92.80
ethnic music spectrum

(32] | Adatasetwith Chinese Mel spectrograms A self-adjusted CNN, ResNet18, ShuffleNet | 89.00

traditional folk music
A dataset with 2292 audio

[10] samples of Polish national Mel spectrograms ResNet50, DenseNet121, VGG16, MobileNetV2 | 90.59
dance music

[28] | Ballroom, ISMIR04, GTZAN MFCC plots, Mel A self-adjusted CNN 85.00

spectrograms

our A dataset with 7782 audio Mel spectrograms, The CNN-driven model with Adaptive Feature

work samples of Polish national | spectrograms, scalograms. Fusion based on EfficientNetB, MobileNetV2, 94.63
dance music MFCC plots ResNet50, VGG16, VGG19, Xception
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predictions in terms of music identification. They
also facilitate the identification of the most suit-
able spectrum feature considering Polish national
dance music recognition.

As a part of the research, a comparison with
the state-of-the-art methods for music identifi-
cation was conducted in terms of applied datas-
ets, inputs, and classifiers (Table 12). They were
evaluated in terms of acquired testing accuracy.
Most studies employ song collections based on
popular music genres. What is more, Mel spec-
trograms and spectrograms were the most prev-
alent inputs. However, some studies utilized
MEFCC plots, too. Most studies used pre-trained
classifiers like DenseNetl21 or ResNet50,
though some introduced self-adjusting CNN ar-
chitectures. Achieved testing accuracy varied be-
tween 79.00-92.80% which was lower than the
one acquired in our study (94.63%). In addition,
it was also superior to the research that employed
Mel spectrograms for Polish national dance mu-
sic classification where the highest accuracy was
90.59%. Noteworthy, compared to various state-
of-the-art methods, the proposed CNN-driven
model with adaptive feature fusion demonstrates
promising outcomes.

CONCLUSIONS

The majority of the available research on
music recognition topics is related to correct-
ly classifying distinct genres of popular music
such as pop or rock. This work includes apply-
ing formerly pre-trained classification methods
like DenseNet121 or EfficientNetB0 with diverse
inputs in particular Mel spectrograms, spectro-
grams, scalograms, and MFCC plots. Recently,
a feature fusion of sound features has been ad-
dressed yielding promising effectiveness with an
ablation study evaluating the impact of each fea-
ture. Furthermore, the decision-making process
of a CNN has been visualized using many XAI
techniques including SHAP and LIME. Despite
the growing interest in folk music datasets, this
area still needs to be adequately addressed. Thus,
a CNN-driven model with an Adaptive Attention
Module for four various inputs such as Mel spec-
trograms, spectrograms, scalograms, and MFCC
plots has been proposed. The proposed research
focused on the recognition of Polish national
dance music namely the Krakowiak, the Kujawi-
ak, the Mazur, the Oberek, and the Polonez. It
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evaluated the performance of distinct classifiers
(DenseNet121, EfficientNetB0O, MobileNetV2,
ResNet50, VGG16, VGG19, Xception) that were
chosen as a core structure for each modality re-
garding two datasets with 3- and 10-second audio
samples. Their effectiveness was assessed utiliz-
ing popular classifications such as testing accu-
racy and testing loss while EfficientnetB0 yielded
the most superficial results for the 3-second data-
set with testing accuracy equal to 94.636 % and
testing loss 0.165. Calculated precision, recall,
and F1-score for each class represented by each
of the Polish national dances such as the Krakow-
iak, the Kujawiak, the Mazur, the Oberek, and the
Polonez also presented that the obtained results
were consistent. In addition, an ablation study
helped assess how each spectral feature impacted
the proposed CNN-driven model. It also proved
the superiority of EfficientNetB0. Additionally,
the 3-second audio recordings might be a better
choice since they generally yielded higher out-
comes, also for the ablation study. SHAP visual-
izations were also generated to help understand
the introduced model predictions revealing that it
might be a profitable technique to assess what part
of sound was considered mostly by the classifiers
or which classes were supposed to be misclassi-
fied. There are several limitations, mainly due to
the limited availability of data representing Pol-
ish national dance music. Overall, the conducted
study improves Polish dance recognition and
highlights multi-representation fusion as a prom-
ising approach for future audio classification.
Some alterations of the proposed network may
be applied as a part of future works concerning
Polish national dance music recognition. Firstly,
replacing pre-trained classifiers applied in each
branch by entailing the self-adjusted structure can
be a proper solution. Secondly, it may be benefi-
cial to apply some of the prevalent layers such as
Dropout or GlobalAveragePooling2D, and evalu-
ate their impact on the general performance of the
proposed CNN-driven model. Employing some
other classifiers from the EfficientNet family
could also be a profitable resolution. In addition,
a lack of sufficient input data can be addressed
by introducing some of the data augmentation
techniques employed on the images and the audio
recordings by applying noise or proposing a solu-
tion that involves generative adversarial networks
(GAN). This will help increase the overall size of
the dataset and enable the model’s performance
to be contrasted with real-world scenarios. The
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implemented SHAP visualizations may be con-
trasted with other up-to-date XAl tools includ-
ing Gradient-weighted Class Activation Mapping
(Grad-CAM) or LIME, too. A comparison of the
CNN-driven model’s efficiency on distinct folk
and mainstream music collections will also be
valuable in assessing model generalization.
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