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INTRODUCTION

Federated learning is a more and more popu-
lar approach to distributed machine learning that 
enables multiple clients to collaboratively train a 
shared model without exchanging their raw data. 
This paradigm is particularly relevant in con-
texts where privacy, security or legal constraints 
limit centralized data collection. It also reduces 
the need for large-scale data transfers, which is 
beneficial in scenarios with limited bandwidth or 
distributed data sources, such as mobile devices 
or Internet of Things networks. Instead of aggre-
gating data in one place, federated learning relies 
on the exchange of model updates, which are then 
combined to form a global model. A key step in 
this process is the aggregation mechanism, which 

determines how local updates are merged. As 
in many other areas of machine learning, recent 
years have seen numerous modifications to the 
Federated learning algorithm. The most classic 
and fundamental model is FedAvg [1] which av-
erages updates from local models to create a glob-
al model. However, it assumes that data is inde-
pendently and identically distributed (IID) among 
clients. This assumption is often not met in real-
world applications which creates a strong need to 
improve FedAvg for heterogeneous data. FedProx 
[2] introduces a proximal term to address objec-
tive inconsistency between local and global opti-
mization. FedNova [3] normalizes client updates
to counteract unbalanced contributions in hetero-
geneous settings. Using a mechanism based on
deep Q-learning, the Favor algorithm [4] selects
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client devices from past experience to participate 
in each round of federated learning, counterbal-
ancing bias introduced by Non-IID data and thus 
accelerating convergence.

Due to the privacy-preserving nature of fed-
erated learning, despite using information from 
multiple client devices, the algorithm is particu-
larly suitable for applications requiring a high 
level of data security, such as finance or health-
care. [5] provides an example of using federated 
learning in medicine for collaboration between 
multiple healthcare institutions without sharing 
patient data. Other works also highlight the need 
for algorithms that ensure patient data anonymity 
while still allowing for model training. [6] and [7] 
explore similar topics, including the detection of 
heart-related diseases and hospitalizations, while 
preserving patient privacy. Because of its decen-
tralized structure, FL is also well-suited for ap-
plications in the internet of things and mobile de-
vices. In [8], an interesting combination of medi-
cal application with mobile and IoT devices is 
presented. FL and transfer learning are applied to 
health data collected from wearable devices such 
as smartbands. Federated learning can also be 
successfully applied to modeling from mobile de-
vices such as in mobile keyboard prediction [9].

Often combined with federated learning is 
image analysis, such as classification, using vari-
ous neural network structures. Image analysis 
remains one of the most intensively developed 
areas within the broader field of artificial intel-
ligence, with applications ranging from medical 
diagnostics and remote sensing to biometric sys-
tems and industrial automation. The paper [10] 
explores the application of deep convolutional 
neural networks to the classification of media im-
ages from individual sports, addressing the chal-
lenge of visual similarity across disciplines. Their 
study demonstrates how tailored deep learning 
architectures can effectively differentiate between 
subtle patterns in sports imagery, contributing to 
the refinement of automated recognition systems 
in this domain. A convolutional neural network-
based approach for automated detection of bone 
fractures in X-ray images is presented in [11], 
addressing a critical challenge in medical image 
analysis. This research highlights the capacity of 
deep learning models to capture subtle diagnos-
tic features, supporting the development of more 
efficient and accurate tools for clinical decision-
making. The study [12] investigates the effective-
ness of local image descriptors in face recognition 

systems under age-related variations. By evalu-
ating several commonly used descriptors on the 
FG-NET aging database, this research analyzes 
their robustness across age groups and explores 
how their performance changes when paired with 
different similarity measures and Gabor wavelet 
representations. The paper [13] investigates the 
effectiveness of ensemble learning techniques 
in enhancing the classification of brain tumors 
from MRI images using convolutional neural net-
works. By integrating multiple pretrained mod-
els within a transfer learning framework, their 
approach demonstrates improved accuracy and 
robustness compared to single-model baselines, 
offering promising results for clinical image 
analysis applications. In [14], a hybrid approach 
is proposed, combining convolutional neural 
networks with traditional machine learning clas-
sifiers for the detection of clustered fruits, using 
grapes as a case study. By leveraging deep feature 
extraction from multiple CNN architectures and 
integrating it with support vector machines, the 
presented method demonstrates high precision, 
supporting advanced applications in agricultural 
automation and yield estimation. The paper [15] 
presents a content-based image retrieval method 
that identifies visual objects by following their 
edges—a technique referred to as edge crawling. 
The detected object shapes are then described us-
ing histograms of local features and angular mea-
surements, allowing for fast retrieval of visually 
similar images. The approach, evaluated on sev-
eral benchmark datasets, demonstrates competi-
tive performance without relying on deep learn-
ing architectures. Another example of novel neu-
ral architecture design is the Weighted Probabilis-
tic Neural Network presented in [16], introducing 
sensitivity-derived weights into the traditional 
Probabilistic Neural Network model. Although 
not focused on visual data, its strong performance 
across multiple benchmark classification tasks 
offers a compelling case for its future adaptation 
in federated or image-based settings where inter-
pretability and adaptability are critical.

A frequently explored topic in research is the 
weighting of local models. One approach is to as-
sess the influence of local models on the global 
model. Simple yet effective methods were pro-
posed in [17] where contributions were calcu-
lated using the deletion method and the Shapley 
Index. The work in [18] identifies one of the is-
sues with simple averaging in FedAvg: Conflict-
ing gradients with large differences in magnitude. 
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A fair averaging framework, FedFV, is proposed, 
with an algorithm designed to eliminate poten-
tial conflicts in gradients between clients. There 
are also works proposing the use of aggregation 
operators other than arithmetic or weighted av-
erages. In [19], a Choquet-based aggregation is 
employed, which in the future could also be im-
proved by Choquet integral modifications [20]. 
Even with a simple weighted mean [21] there 
are many ways to define the weights, aiming to 
produce the most effective global model. Another 
suggestion is adaptive weighting based on crite-
ria such as Inverse Distance [22]. Many concepts 
used in federated learning are inspired by meth-
ods used in ensemble learning. It is worth noting 
that although federated learning and ensemble 
learning both involve combining multiple mod-
els, they are conceptually and architecturally dis-
tinct. Ensemble learning typically trains multiple 
models independently, often on the same dataset, 
and combines their predictions to improve gen-
eralization. In contrast, federated learning trains 
local models on disjoint, decentralized data and 
aggregates their parameters or updates to form a 
single global model. The aggregation in federated 
learning serves to synchronize model knowledge 
across clients, rather than to directly combine pre-
dictions from multiple models.

Federated learning remains a relatively new 
and actively evolving algorithm. The uneven dis-
tribution of data among clients continues to pose a 
challenge, and the choice of aggregation weights—
frequently discussed in various studies—is a cru-
cial component of the framework. Furthermore, 
despite some attempts to use alternative aggrega-
tion strategies, most federated learning modifica-
tions still rely on simple or weighted averaging. 
It is possible that employing different aggregation 
operators could lead to a more effective modeling 
of client influence on the global model.

In this study, we aim to propose a novel mod-
ification to the classical FedAvg algorithm by 
introducing a recently developed aggregation op-
erator: Smooth OWA [26], which is a smoothed 
version of the well-known OWA operator. These 
operators provide a flexible and interpretable 
mechanism for model combination, enabling the 
aggregation process to dynamically adapt to the 
relative performance of client models. As a result, 
the aggregation should allow for a more nuanced 
consideration of local model contributions to the 
global model. Through the use of smoothing, 
we can subtly account for interactions between 

models, since each coefficient is smoothed using 
neighboring coefficients from other local mod-
els. Such OWA-based aggregation is a promising 
alternative to the traditional aggregation meth-
ods. A measurable outcome of this modification 
should be an improvement in the accuracy of the 
resulting global model.

The paper is structured as follows: the The-
oretical Background section recalls the funda-
mental concepts of federated learning as well as 
the definitions of the OWA and Smooth OWA 
operators. The proposed methodology section 
introduces our novel modification to the FedAvg 
algorithm. The numerical experiments section 
presents the results of our computations using the 
proposed method, along with a discussion. Final-
ly, in the Conclusions and Future Work section, a 
summary of our findings and outlines directions 
for future work are given.

BACKGROUND

This section will recall the basic concepts 
of federated learning, followed by a description 
of the OWA operator and its recent modification 
called Smooth OWA.

Federated learning

Federated learning is a machine learning 
technique used in an environment where multi-
ple entities train a model together, while keeping 
the data decentralized rather than stored centrally. 
Instead of transferring data to a central common 
space where calculations take place, local model 
coefficients are transferred to the global model. In 
order to get a single global model, one needs to 
combine all the model updates we have received 
from client nodes. This process is called aggrega-
tion, and there are many different ways to do it. 
The most basic is federated averaging [1], often 
abbreviated as FedAvg. In practice, it often uses 
a weighted average where the weights are the 
data sizes of each client.The federated learning 
framework can be described as follows [23]. Let 
us assume that there are n clients (local models) 
{M1, M2,..., Mn}. Each is assigned its own portion 
of the dataset  {D1, D2,...,Dn}. Client Cj has ac-
cess only to the assigned part of the set Dj. Global 
model MG does not have access to any training 
data. A communication round (a training epoch) 
proceeds in the following way:
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1.	Global model MG transmits its coefficients VG  
to local models, i.e. the local models are initial-
ized anew, with the current global coefficients.

2.	For each j=1, 2,..., n the model Mj is trained on 
the Dj part of the dataset. The coefficients VMj  
of the local model are updated. 

3.	The aggregation of local coeficients VMj occurs 
in the global model, producing new values of 
VG coefficients.

This process is presented in Figure 1. The 
training is repeated a predetermined number of 
epochs or until a specified stop condition is met.

The problem of data distribution among cli-
ents is closely related to the issue of federated 
learning. For the testing process, it is often as-
sumed that the data is independently and identi-
cally distributed among clients (Independent and 
Identically Distributed – IID). In practice, this is 
usually not the case, rather, clients have different 
amounts of data, and often qualitatively different, 
using the example of classification: If we have 
data of 10 classes, it may be that, for example, the 
first client has to deal with only two of them, an-
other only with three, etc. We refer to such a sit-
uation as Non-IID. Partitioning data as Non-IID 
poses a challenge for models. Researchers often 
tackle this problem [24].

OWA and smooth OWA operators

Among the many existing aggregation meth-
ods, a family of ordered weighted averaging 
(OWA) operators stands out as flexible and very 
adaptable. In contrast to weighted average, the 

OWA operator applies weights not to specific 
components, but to the ordered position of them. 
The OWA operator [25] is defined as function 
OWAw: ℝn→ℝ associated with a set of weights w 
= [w1, w2,...,wn] such that w1 ≥ w2 ≥ ... ≥ wn  and 
∑ 𝑤𝑤𝑖𝑖 = 1 𝑛𝑛

𝑖𝑖=1 ,   , determined by the formula 

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (1) 

where: x(1) is the i-th largest value in the vector 
(x1, x2,..., xn) ∈ ℝn .

Smooth OWA operator [26] is a modification 
of the OWA operator, associated additionally with 
smoothing method denoted as Q:

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (2) 

where: Q(x(i))  means an application of a chosen 
Newton-Cotes formula to the element x(i). 

Let us recall few Newton-Cotes quadratures 
that can be used for such smoothing:

	

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 ×(𝑖𝑖−1)+ 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 1 )  

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 ×(𝑖𝑖)+ 1

2 ×(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 2 )  

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 1

24 ×(𝑖𝑖)+ 

+ 1
24 ×(𝑖𝑖+1)+ 11

24 ×(𝑖𝑖+2) 
(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

	 (3) 

	

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 ×(𝑖𝑖−1)+ 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 1 )  

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 ×(𝑖𝑖)+ 1

2 ×(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 2 )  

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 1

24 ×(𝑖𝑖)+ 

+ 1
24 ×(𝑖𝑖+1)+ 11

24 ×(𝑖𝑖+2) 
(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

	 (4) 

Figure 1. Federated learning general scheme
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𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 ×(𝑖𝑖−1)+ 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 1 )  

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 ×(𝑖𝑖)+ 1

2 ×(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 2 )  

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 1

24 ×(𝑖𝑖)+ 

+ 1
24 ×(𝑖𝑖+1)+ 11

24 ×(𝑖𝑖+2) 
(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

	 (5) 

With such operation of applying the New-
ton-Cotes quadratures, each element x(1) is 
smoothed by its neighboring elements in the vec-
tor of sorted input. Note that if the index of an 
element is less than 1, we take the value of x(1)  
instead of that element, and if the index is greater 
than n, we take x(n).

PROPOSED METHODOLOGY

The process of federated learning with smooth 
OWA aggregation is presented in Figure 2. Local 
model 1,... Local model n represent n clients in 
the federated learning scheme. For each client, a 
local model is trained and its coefficients are cal-
culated (more accurately, these are the weights in 
the neural network, but the name ‘weights’ can be 
misleading because they are also used in this work 
in the context of aggregation operators). Each lo-
cal model sends its parameters to the global mod-
el, and gets back the aggregated coefficients, that 
is, the coefficients updated in the global model 
based on information from all n clients. The glob-
al model is the central model that collects all local 
coefficients from clients and aggregates them. In 
the basic method, this is done using an average. 
In another existing modification, it is the classic 
OWA operator. In our work we propose to use the 

smooth OWA operator with a set of weights w and 
a selected smoothing method Q. 

Smooth OWA is an aggregation function that 
sorts the input data (here: the weights of neurons 
from different clients), smooths it by a combina-
tion of neighboring values (e.g., by Newton-Cotes 
rules), and applies the defined weights w to the ag-
gregation. Q is a type of smoothing rule – e.g., Trap-
ezoidal, Three-eighths – that affects how strong the 
smoothing of values is during aggregation.

A more detailed diagram of the process 
is shown in Figure 3. At the beginning of each 
round of communication (training epoch), each of 
the n local models receives a copy of the weights 
from the global model – this is the classic starting 
point of a federated learning round. Each client 
performs one local learning epoch on its set and 
updates all the coefficients of its model (weights 
in the neural network), denoted as
	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (6) 

Therefore every coefficient Vj,j = 1,2,..., k  
has n versions – one for each client. For each 
position j all values of coefficient Vj are collect-
ed from the client models:
	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (7) 

Then these values for each k separately are 
sorted in descending order:
	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (8) 

The sorted values are processed by the select-
ed quadrature Q, resulting in the following set of 
smoothed coefficients.

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

	 (9) 

Figure 2. The process of federated learning with smooth OWA aggregation 
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After the smoothing process, the resulting co-
efficients are aggregated as in the classical OWA 
operator with weights w. Thus the final coeffi-
cients of the global model have the form

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  

,	 ( 10 ) 

At the end of the learning epoch, the global 
model is characterized by a set of coefficients
	

𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
, 

( 1 )  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤,𝑄𝑄(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)= 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, 

( 2 )  
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 

+ 3
8 ×(𝑖𝑖)+ 3

8 ×(𝑖𝑖+1)+ 

+ 1
8 ×(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

( 3 )  
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1)  
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 
( 4 ) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂4(𝑥𝑥(𝑖𝑖)) = 11
24 ×(𝑖𝑖−1)+ 

+ 1
24 𝑥𝑥(𝑖𝑖) + 1

24 𝑥𝑥(𝑖𝑖+1) + 11
24 ×(𝑖𝑖+2)  

(4 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)  
 

( 5 ) 
 
{𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘}    ( 6 )  
 
 
{𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2, . . . , 𝑉𝑉𝑗𝑗,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛}    ( 7 )  
 
 
{𝑉𝑉𝑗𝑗,(1), 𝑉𝑉𝑗𝑗,(2), . . . , 𝑉𝑉𝑗𝑗,(𝑛𝑛)}    ( 8 )  
 
 

{𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), Q(𝑉𝑉𝑗𝑗,(2)), . . . , Q(𝑉𝑉𝑗𝑗,(𝑛𝑛))} 
 
   ( 9 ) 
  

Vj
G = 𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤(𝑄𝑄(𝑉𝑉𝑗𝑗,(1)), 

𝑄𝑄(𝑉𝑉𝑗𝑗,(2)), . . . , 𝑄𝑄(𝑉𝑉𝑗𝑗,(𝑛𝑛)))  
( 10 ) 
 
[𝑉𝑉1

𝐺𝐺, 𝑉𝑉2
𝐺𝐺, . . . , 𝑉𝑉𝑘𝑘

𝐺𝐺]     ( 11 )  	 ( 11 ) 

and such weights are propagated to local 
models at the beginning of the next communica-
tion round.

NUMERICAL EXPERIMENTS

This section includes a description of the 
datasets, the neural network model used for 

classification, methods used to extract weights 
for the OWA operator, and a presentation and 
discussion of the results obtained from the nu-
merical experiments.

Datasets descprition

Three widely known datasets containing 
small scale images were used for the experiments. 
MNIST is a dataset of 60 000 28 × 28 grayscale 
images of the 10 digits, along with a test set of 10 
000 images. Fashion-MNIST is a similar dataset 
containing 60,000 28 × 28 grayscale images of 
10 fashion categories, along with a test set of 10 
000 images. CIFAR10 is a dataset of 50 000 32 
× 32 color training images and 10 000 test im-
ages, labeled over 10 categories. The collections 
were loaded from the Tensorflow library resourc-
es in Python. For each set, a merge of the train-
ing and test sets was performed, due to the fact 

Figure 3. Detailed workflow of federated learning with smooth OWA aggregation 
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that in each iteration of the experiment a different 
division between the learning and test parts was 
planned, in order to make the numerical results 
more reliable. The size of the sets after combining 
the training and testing parts is shown in Table 1, 
along with the number of classes and whether the 
images are grayscale or color.

In each iteration of the experiment, the entire 
dataset is split into a learning and testing part, and 
then the training set is divided among 10 clients, 
each client (local classification model) having ac-
cess only to its part of the set. For the IID split, the 
data is first shuffled and thus each client gets ran-
dom observations from different classes. For Non-
IID splitting, the data is sorted by class label before 
splitting, and so clients usually get observations 
only from 2–3 classes. This is a more difficult task 
for the classification model, but more similar to the 
real-world case of federated learning. The global 
model does not have access to the data, but only 
gets information (coefficients) from local models. 
At the end of the learning epochs, the global model 
is validated on the test part of the dataset.

Classification model

A simple neural network with dense lay-
ers was used for classification in the federated 
learning model. The overall processing scheme 
of the network is presented in Figure 4. The first 
two layers contain 200 neurons each and a relu 
activation function. The output layer consists of 
10 neurons (since there were 10 classes in each 

dataset) and a softmax activation function. The 
input image was flattened to a one-dimensional 
vector of appropriate size before being passed to 
the neural network. A categorical crossentropy 
loss function and accuracy metric were used in 
the training process.

Experimental results

The proposed method was compared with 
federated learning with the arithmetic mean and 
federated learning with the classical OWA opera-
tor. 10 iterations of experiments were performed 
on each of the three data sets. Each iteration in-
cluded IID and Non-IID scenarios of data divi-
sion. Each iteration of the experiment consisted 
of 30 communication epochs where local models 
were trained and the weights of the global model 
were updated. The classification accuracy from 
the global model was tested on the test set.

Several methods of selecting weights have 
been proposed:
	• Without considering any information from the 

dataset – as a decreasing sequence of invers-
es of consecutive natural numbers: [1/2, 1/3, 
1/4,..., 1/11]

	• Based on the accuracy of local classifiers in 
five rounds of pre-training – a vector of accu-
racies is assembled, next it is sorted in decreas-
ing order and normalized to sum equal to 1.

	• On the basis of the size of the client sets – 
[0.23, 0.18, 0.15, 0.12, 0.09, 0.08, 0.06, 
0.045, 0.035, 0.03].

Table 1. Dataset information
Dataset Number of observations Number of classes Number of color channels

MNIST 70 000 10 1 (grayscale)

Fashion-MNIST 70 000 10 1 (grayscale)

CIFAR10 60 000 10 3 (color)

Figure 4. Scheme of simple neural network used for federated learning classification 
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Prior to aggregation, the weights were nor-
malized so that their sum was equal 1. The results 
obtained with those sets of weights that best suit-
ed the particular set under study will be presented.

For the MNIST dataset, the best results were 
obtained while using the set of weights derived 
from accuracy of local classifiers in pre-training 
rounds. These results are presented in Table 2 for 
IID scenario and in Table 3 for Non-IID.

The average accuracy on the MNIST set for 
the IID case in the base method was 93.45%. Ag-
gregation with the classical OWA operator yield-
ed a similar result. With the help of smoothing 
of the OWA operator, this result was slightly in-
creased to around 93.51–93.53%, so less than 0.1 
percentage points. This result was not statistically 
significant in the Wilcoxon test.

When partitioning the MNIST dataset Non-
IID, the differences between the methods used 
were much greater. For the baseline method, the 
average accuracy was 77.32%, and the range of 
it was from about 76 to about 80%. The classi-
cal OWA operator achieved a slightly worse mean 
result of 77.25%. Smooth operators were able to 
achieve better results. Smoothing with the trap-
ezoidal quadrature yielded a statistically insig-
nificant 0.17 percentage point improvement in 
the score. For the 3/8 quadrature, the improve-
ment was significant and equal about 1 percentage 
point. Higher scores can also be observed based 
on the minimum and maximum for this method: 

from 76.7 to 81.3%. The biggest difference in ac-
curacy in favor of the smooth OWA operator ap-
peared with the ONC4 quadrature. The average 
accuracy reached 80.11%, an improvement of 
about 2.8 percentage point over the baseline meth-
od. The accuracy range for the ONC4 method 
was 78.7 to 82.5%. The standard deviation for the 
ONC4 method was lower than for the other meth-
ods which is also an advantage because it means 
that the method behaved more stably regardless of 
the exact split into the learning and test sets.

The graphs in Figure 5 and Figure 6 depict 
the average accuracy values at successive ep-
ochs of training on the MNIST set for the Non-
IID data distribution. In the case of the ONC4 
quadrature (Figure 5), it can be seen that in the 
first few epochs the difference in favor of this 
method is relatively small, and by the 10th ep-
och it becomes more pronounced and remains 
so until the end. In the case of the 3/8 quadra-
ture (Figure 6), the course of accuracy values is 
almost perfectly similar to the baseline method 
up to about epoch 15, and then the 3/8 method 
begins to show an improvement over the base-
line method – small at first, and by the end of 
learning somewhat more pronounced although 
much smaller than in the case of ONC4 quadra-
ture. The fashion-MNIST image collection is a 
very similar set to MNIST. The images are also 
grayscale and the same size, but they differ in 
the subject presented. It turns out that for the 

Table 2. Accuracy on MNIST dataset for IID scenario, with weight set based on local models’ accuracy
in pre-training 

Method Min Mean Median Std Max Wilcox. Is 
better than avg

Wilcox. Is better 
than OWA

Average 93.1357 93.4521 93.4250 0.3006 94.0357 - -

Base OWA 93.1286 93.4486 93.4107 0.3025 94.0286 No -

OWA 3/8 93.1857 93.5264 93.5107 0.2969 94.1357 No No

OWA trap. 93.1857 93.5236 93.5107 0.2959 94.1286 No No

OWA ONC4 93.1857 93.5143 93.4929 0.2927 94.1143 No No

Table 3. Accuracy on MNIST dataset for Non-IID scenario, with weight set based on local models’ accuracy
in pre-training 

Method Min Mean Median Std Max Wilcox. Is better 
than avg

Wilcox. Is better 
than OWA

Average 75.9571 77.3200 77.2536 1.1482 80.0143 - -

Base OWA 0.758786 0.772471 0.771821 1.1561 79.9500 no -

OWA 3/8 0.767286 0.783514 0.782107 1.3154 81.3214 yes yes

OWA trap. 0.760214 0.774907 0.773071 1.4045 80.7000 no no

OWA ONC4 0.786929 0.801071 0.799821 1.0856 82.5071 yes yes



97

Advances in Science and Technology Research Journal 2026, 20(1), 89–103

fashion-MNIST set, the best performance was 
with the set of weights obtained by an analogous 
method as for MNIST, that is, from the accura-
cy of local classifiers in pre-training. The results 
for fashion-MNIST are shown in Table 4 for IID 
division and in Table 5 for Non-IID.

 For the fashion-MNIST dataset and the IID 
data split, no significant improvement in the 

accuracy metric can be observed using either the 
classical or smooth OWA operator. Regardless of 
the method used, the results are very similar, ac-
curacy is around 85%, and the standard deviation 
is very small at around 0.3%.

When splitting the data with Non-IID vari-
ant in the fashion-MNIST set, the use of smooth 
OWA operators yields a significant improvement 

Figure 5. Average accuracy in subsequent epochs on test sets from MNIST dataset for non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with ONC4 quadrature

compared to base federated learning with averaging 

Figure 6. Average accuracy in subsequent epochs on test sets from MNIST dataset for non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with 3/8 quadrature

compared to base federated learning with averaging 
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in the accuracy metric. The baseline method 
achieved an average accuracy of 71.23%, while 
aggregation with the classical OWA operator pro-
duced a similar result of 71.2%. Smoothing with 
the trapezoidal quadrature was able to raise this 
score to 71.88%, but this improvement was not 
found to be statistically significant in the Wilcox-
on test. Instead, a significant improvement was 
achieved with the 3/8 and ONC4 methods, where 
for 3/8 there is an average accuracy of 72.39% 
(about 1.2 percentage points higher than for the 
baseline method), and for ONC4 accuracy aver-
aged 73.11% which is about 1.9 percentage points 
better than with the baseline method.

The graphs in Figure 7 and Figure 8 show 
the average accuracy values at successive epochs 
on the fashion-MNIST set with the Non-IID data 
split. Regardless of the method used, it can be seen 
that accuracy increases somewhat more rapidly in 
the first epochs than for the MNIST set. Differenc-
es in favor of smooth OWA operators are also no-
ticeable quickly, already in the initial epochs, and 
remain at a similar level for most of the training. 
For the 3/8 method, the difference is more pro-
nounced than on the MNIST set, and the ONC4 
method behaves similarily on both datasets.

In case of the CIFAR10 dataset, no significant 
improvement in accuracy metrics could be ob-
tained using OWA operators with weights deter-
mined by the accuracy of local models in pre-train-
ing (improvement if appeared was small and not 
statistically significant). Instead, good results were 

obtained using two other sets of weights. They al-
lowed a significant improvement in the classifica-
tion metric for the IID data distribution. However, 
this did not transfer to good results with the Non-
IID distribution. In the latter case, a significant de-
crease in accuracy was even apparent using OWA 
and smooth OWA compared to the baseline meth-
od. Only the results for IID division are shown. Ta-
ble 1 Dataset information Table 6 presents results 
for weight set of inverses of consecutive natural 
numbers, while Table 7 shows scores for weight 
set corresponding to client sets sizes.

From Table 6, it can be observed that the use 
of smoothing quadratures resulted in a significant 
improvement in accuracy by almost 1 percentage 
point (the largest growth for trapezoid and ONC4 
quadratures). The use of the classical OWA oper-
ator improved the result of the baseline method 
by almost 0.8 percentage points. Both the clas-
sic OWA and its smoothed version yielded accu-
racy improvements that were significant in the 
Wilcoxon test, but the smooth OWA with either 
quadrature was not significantly different from 
the baseline OWA. An additional advantage of the 
methods with smoothing is their lower standard 
deviation than for federated learning with averag-
ing or with classic OWA.

As can be seen from Table 7, the classic 
OWA method did not yield a significant im-
provement over averaging in federated learning. 
In contrast, the smooth OWA operators signifi-
cantly improved both the result of the baseline 

Table 4. Accuracy on fashion-MNIST dataset for IID scenario, with weight set based on local models’ accuracy 
in pre-training

Method Min Mean Median Std Max Wilcox. Is 
better than avg

Wilcox. Is better 
than OWA

Average 84.5929 85.0121 84.9893 0.3192 85.5286 - -

Base OWA 84.6143 85.0143 84.9821 0.3207 85.5714 no -

OWA 3/8 84.6357 85.0229 84.9821 0.3192 85.5571 no no

OWA trap. 84.6643 85.0343 84.9893 0.3164 85.5643 no no

OWA ONC4 84.6500 85.0364 84.9964 0.3122 85.5571 no no

Table 5. Accuracy on fashion-MNIST dataset for Non-IID scenario, with weight set based on local models’ 
accuracy in pre-training 

Method Min Mean Median Std Max Wilcox. Is 
better than avg

Wilcox. Is better 
than OWA

Average 69.2714 71.2264 71.0964 1.4824 73.6500 - -

Base OWA 69.2143 71.2021 71.0571 1.4807 73.6357 no -

OWA 3/8 70.1429 72.3850 72.7500 1.5405 74.0143 yes yes

OWA trap. 69.5714 71.8829 72.4429 1.5724 73.5429 no no

OWA ONC4 71.0714 73.1136 73.4250 1.4757 74.8286 yes yes
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method and the classic OWA. The recorded im-
provement in accuracy is about 0.5 percentage 
points – the least for trapezoidal quadrature and 
the most for ONC4 quadrature. There is a no-
ticeably smaller standard deviation for OWA and 
Smooth OWA than for the baseline method.

Figure 9 shows the average accuracy values 
at successive epochs on the CIFAR10 set for the 

IID data distribution. It can be seen that in the first 
epochs the differences between the baseline fed-
erated learning and the one with ONC4 smooth-
ing method are small, until somewhere between 
epochs 5 and 10 they become pronounced. The 
accuracy values were lower after 30 epochs than 
on the other sets, which is due to the fact that the 
images in CIFAR10 were larger and contained 

Figure 7. Accuracy in subsequent epochs on fashion-MNIST dataset for Non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with ONC4 quadrature

compared to base federated learning with averaging

Figure 8. Average accuracy in subsequent epochs on test sets from fashion-MNIST dataset for Non-IID scenario, 
with weight set based on local models’ accuracy in pre-training, smooth OWA with 3/8 quadrature compared to 

base federated learning with averaging 
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3 color channels, in contrast to the less complex 
images in the rest of the sets. To achieve higher 
accuracy, more epochs of training or a more com-
plex network structure such as a convolutional 
network, would be required.

DISCUSSION

The federated learning algorithm, in its basic 
form known as FedAvg [1], can be enhanced by 
replacing the arithmetic mean with a weighted 

average, where different strategies for weight as-
signment can be considered [21], including the 
use of dynamically adjusted weights [27]. A fur-
ther modification of FedAvg involves replacing 
the averaging mechanism entirely with more ad-
vanced and flexible aggregation operators.The 
introduction of new aggregation methods in 
federated learning is currently a significant and 
promising research direction, as demonstrated 
by the works such as [19], which presents the 
integration of the Sugeno integral as an aggre-
gation mechanism in the FL framework. Our 

Table 6. Accuracy on CIFAR10 dataset for IID scenario, with weight set of inverses of consecutive natural numbers

Method Min Mean Median Std Max Wilcox. Is 
better than avg

Wilcox. Is better 
than OWA

Average 44.2417 45.0025 44.9375 0.5332 45.8500 - -

Base OWA 44.9417 45.8058 45.6875 0.5396 46.4917 yes -

OWA 3/8 45.3250 45.8517 45.8083 0.4369 46.3833 yes no

OWA trap. 45.3583 45.9775 45.9458 0.4483 46.6250 yes no

OWA ONC4 45.3083 45.9667 45.9250 0.4723 46.6333 yes no

Table 7. Accuracy on CIFAR10 dataset for IID scenario, with weight set based on client sets sizes

Method Min Mean Median Std Max Wilcox. Is 
better than avg

Wilcox. Is better 
than OWA

Average 44.5250 45.2425 45.2042 0.5851 46.1917 - -

Base OWA 44.6417 45.3442 45.3833 0.3926 45.9500 no -

OWA 3/8 44.8417 45.8033 45.8417 0.4228 46.2167 yes yes

OWA trap. 45.0000 45.7758 45.8833 0.3835 46.2917 yes yes

OWA ONC4 45.0417 45.8358 45.8375 0.4263 46.4667 yes yes

Figure 9. Average accuracy in subsequent epochs on test sets from CIFAR10 dataset for IID scenario,
with weight set of inverses of consecutive natural numbers, smooth OWA with ONC4 quadrature

compared to base federated learning with averaging 
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proposal to use the smooth OWA operator aligns 
with this recent trend.

The application of OWA and smooth OWA 
operators also supports FL’s overarching goal of 
maximizing data security and privacy [28]. Even 
in the baseline FedAvg, no raw data is transmitted; 
only the local model parameters are shared, which 
already ensures a considerable level of data priva-
cy, though some vulnerability to information leak-
age still remains [29]. Operators from the OWA 
family, however, assign weights not to individual 
clients but to ranks in the sorted set of values, mak-
ing it impossible to infer which client received 
which weight, in contrast to weighted averaging.

In our work, we also introduced several prom-
ising strategies for selecting weights for OWA-
family operators. In some cases, these strategies 
effectively handled Non-IID data, which is a criti-
cal issue in FL [4, 24]. An interesting direction for 
future research could involve combining OWA 
operators with dynamically assigned weights 
based on the characteristics of local models [30] 
or with other forms of dynamic adjustments [31].

CONCLUSIONS

In this work, a recent modification of the OWA 
operator was successfully applied in the aggrega-
tion of local model coefficients in the federated 
learning framework. The proposed method was 
tested in two scenarios of data partitioning: when 
the data is independently and identically distrib-
uted (IID) among clients, and in the opposite sit-
uation (Non-IID), more difficult for the model but 
closer to reality. Three datasets containing small-
scale images were used in the experiments. Three 
methods of selecting weights for the OWA and 
smooth OWA operator as well as three quadra-
tures for smoothing were tested.

The results of numerical experiments indicate 
that the use of smooth OWA in federated learning 
can contribute to a significant increase in model 
accuracy, both relative to the base method (feder-
ated learning + average) and to aggregation with 
the classical OWA operator. Often, aggregation us-
ing smooth OWA also exhibited a lower standard 
deviation of accuracy across multiple iterations 
of the experiment than occurred for the baseline 
method. This indicates that the proposed method 
is more stable with different divisions of the set 
into training and testing parts. In the cases stud-
ied, usually the greatest improvement in accuracy 

was provided by using ONC4 quadrature, fol-
lowed by the 3/8 method, and usually a slightly 
smaller increase was for trapezoidal quadrature. 
The improvement also tended to occur with Non-
IID splitting, which makes it possible to apply 
the new method also to less obvious splitting of a 
dataset between clients. Smooth OWA operators, 
when applied to federated learning, proved to be 
very sensitive to the set of weights used: often dif-
ferent weights had to be selected for different da-
tasets and different split methods (IID/Non-IID).

On the MNIST and fashion-MNIST sets, 
smooth OWA operators performed best with 
weights based on the accuracy of local mod-
els in pre-training rounds. A significant increase 
in accuracy was observed on the Non-IID data 
split. For the MNIST set, significant improve-
ments were made by the 3/8 (about 1 percentage 
point) and ONC4 (almost 2.8 percentage points) 
quadratures. For the fashion-MNIST set, these 
two quadratures also produced the best results, 
improving the baseline method by 1.2 and 1.9 
percentage points, respectively. On the CIFAR10 
set, equally good results were not achieved with 
this set of weights and the Non-IID distribution, 
but significant improvements in accuracy of 0.5 
to sometimes almost 1 percentage point were 
achieved with the IID distribution and two other 
sets of weights. Lower standard deviations were 
also recorded for methods using smooth OWA 
than for the baseline method.

The experimental results confirm that the pro-
posed smooth OWA-based aggregation methods 
offer a significant improvement over traditional 
schemes, often also in Non-IID and unbalanced 
federated learning scenarios. The introduction 
of smooth operator variants allows for more nu-
anced control over the aggregation process. This 
study demonstrates that incorporating operator-
theoretic concepts such as OWA into federated 
model aggregation not only improves accuracy 
but also opens a new direction for interpretable 
and customizable learning frameworks. 

In the future, attempts to select the best possi-
ble weights for OWA operators can be continued, 
such as weights based on the diversity of local 
sets, determining the quality of these sets, for ex-
ample, based on the number of classes present in 
them (with Non-IID partitioning). The structure 
of the neural network serving as a classifier can 
be expanded to see if the proposed aggregation 
method would work equally well using a convolu-
tional network. It is also worthwhile to introduce 
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other aggregation methods instead of OWA, such 
as Choquet integral modifications, which perhaps 
better take into account the importance of individ-
ual local models or the interactions between them.
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