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ABSTRACT

This paper presents a novel approach to federated learning based on the smooth ordered weighted averaging (OWA)
operator which enables flexible and context-sensitive weighting of local models during the aggregation process.
To enhance the quality of the aggregated weight computations, we incorporate numerical quadrature-inspired tech-
niques, allowing for a more accurate representation of individual client contributions to the global model. Specifi-
cally, the approach utilizes classical OWA and several smoothed variants derived from Newton-Cotes quadratures,
including the 3/8 rule, trapezoidal rule, and ONC4 (4-point open Newton-Cotes) formula. The study compares fed-
erated learning models using standard weight averaging against those incorporating both classical and smoothed
OWA operators. This evaluation provides insight into how the smoothing mechanisms influence aggregation quality
and final model accuracy. A neural network comprising several dense layers served as the classification model in the
federated learning framework. Two experimental scenarios were considered: one where data was evenly distribut-
ed across local clients, and another with non-uniform data distribution to reflect real-world heterogeneity. Various
strategies for extracting the OWA weights were explored, including performance-based weighting determined by the
accuracy of local models during preliminary training rounds The proposed methodology has been tested on small-
scale image datasets such as MNIST and it has demonstrated improved classification accuracy value compared to
traditional federated learning approaches using simple averaging.

Keywords: federated learning, neural network, OWA operator, smooth OWA, weight aggregation.

INTRODUCTION

Federated learning is a more and more popu-
lar approach to distributed machine learning that
enables multiple clients to collaboratively train a
shared model without exchanging their raw data.
This paradigm is particularly relevant in con-
texts where privacy, security or legal constraints
limit centralized data collection. It also reduces
the need for large-scale data transfers, which is
beneficial in scenarios with limited bandwidth or
distributed data sources, such as mobile devices
or Internet of Things networks. Instead of aggre-
gating data in one place, federated learning relies
on the exchange of model updates, which are then
combined to form a global model. A key step in
this process is the aggregation mechanism, which

determines how local updates are merged. As
in many other areas of machine learning, recent
years have seen numerous modifications to the
Federated learning algorithm. The most classic
and fundamental model is FedAvg [1] which av-
erages updates from local models to create a glob-
al model. However, it assumes that data is inde-
pendently and identically distributed (IID) among
clients. This assumption is often not met in real-
world applications which creates a strong need to
improve FedAvg for heterogeneous data. FedProx
[2] introduces a proximal term to address objec-
tive inconsistency between local and global opti-
mization. FedNova [3] normalizes client updates
to counteract unbalanced contributions in hetero-
geneous settings. Using a mechanism based on
deep Q-learning, the Favor algorithm [4] selects
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client devices from past experience to participate
in each round of federated learning, counterbal-
ancing bias introduced by Non-IID data and thus
accelerating convergence.

Due to the privacy-preserving nature of fed-
erated learning, despite using information from
multiple client devices, the algorithm is particu-
larly suitable for applications requiring a high
level of data security, such as finance or health-
care. [5] provides an example of using federated
learning in medicine for collaboration between
multiple healthcare institutions without sharing
patient data. Other works also highlight the need
for algorithms that ensure patient data anonymity
while still allowing for model training. [6] and [7]
explore similar topics, including the detection of
heart-related diseases and hospitalizations, while
preserving patient privacy. Because of its decen-
tralized structure, FL is also well-suited for ap-
plications in the internet of things and mobile de-
vices. In [8], an interesting combination of medi-
cal application with mobile and IoT devices is
presented. FL and transfer learning are applied to
health data collected from wearable devices such
as smartbands. Federated learning can also be
successfully applied to modeling from mobile de-
vices such as in mobile keyboard prediction [9].

Often combined with federated learning is
image analysis, such as classification, using vari-
ous neural network structures. Image analysis
remains one of the most intensively developed
areas within the broader field of artificial intel-
ligence, with applications ranging from medical
diagnostics and remote sensing to biometric sys-
tems and industrial automation. The paper [10]
explores the application of deep convolutional
neural networks to the classification of media im-
ages from individual sports, addressing the chal-
lenge of visual similarity across disciplines. Their
study demonstrates how tailored deep learning
architectures can effectively differentiate between
subtle patterns in sports imagery, contributing to
the refinement of automated recognition systems
in this domain. A convolutional neural network-
based approach for automated detection of bone
fractures in X-ray images is presented in [11],
addressing a critical challenge in medical image
analysis. This research highlights the capacity of
deep learning models to capture subtle diagnos-
tic features, supporting the development of more
efficient and accurate tools for clinical decision-
making. The study [12] investigates the effective-
ness of local image descriptors in face recognition
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systems under age-related variations. By evalu-
ating several commonly used descriptors on the
FG-NET aging database, this research analyzes
their robustness across age groups and explores
how their performance changes when paired with
different similarity measures and Gabor wavelet
representations. The paper [13] investigates the
effectiveness of ensemble learning techniques
in enhancing the classification of brain tumors
from MRI images using convolutional neural net-
works. By integrating multiple pretrained mod-
els within a transfer learning framework, their
approach demonstrates improved accuracy and
robustness compared to single-model baselines,
offering promising results for clinical image
analysis applications. In [14], a hybrid approach
is proposed, combining convolutional neural
networks with traditional machine learning clas-
sifiers for the detection of clustered fruits, using
grapes as a case study. By leveraging deep feature
extraction from multiple CNN architectures and
integrating it with support vector machines, the
presented method demonstrates high precision,
supporting advanced applications in agricultural
automation and yield estimation. The paper [15]
presents a content-based image retrieval method
that identifies visual objects by following their
edges—a technique referred to as edge crawling.
The detected object shapes are then described us-
ing histograms of local features and angular mea-
surements, allowing for fast retrieval of visually
similar images. The approach, evaluated on sev-
eral benchmark datasets, demonstrates competi-
tive performance without relying on deep learn-
ing architectures. Another example of novel neu-
ral architecture design is the Weighted Probabilis-
tic Neural Network presented in [16], introducing
sensitivity-derived weights into the traditional
Probabilistic Neural Network model. Although
not focused on visual data, its strong performance
across multiple benchmark classification tasks
offers a compelling case for its future adaptation
in federated or image-based settings where inter-
pretability and adaptability are critical.

A frequently explored topic in research is the
weighting of local models. One approach is to as-
sess the influence of local models on the global
model. Simple yet effective methods were pro-
posed in [17] where contributions were calcu-
lated using the deletion method and the Shapley
Index. The work in [18] identifies one of the is-
sues with simple averaging in FedAvg: Conflict-
ing gradients with large differences in magnitude.
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A fair averaging framework, FedFV, is proposed,
with an algorithm designed to eliminate poten-
tial conflicts in gradients between clients. There
are also works proposing the use of aggregation
operators other than arithmetic or weighted av-
erages. In [19], a Choquet-based aggregation is
employed, which in the future could also be im-
proved by Choquet integral modifications [20].
Even with a simple weighted mean [21] there
are many ways to define the weights, aiming to
produce the most effective global model. Another
suggestion is adaptive weighting based on crite-
ria such as Inverse Distance [22]. Many concepts
used in federated learning are inspired by meth-
ods used in ensemble learning. It is worth noting
that although federated learning and ensemble
learning both involve combining multiple mod-
els, they are conceptually and architecturally dis-
tinct. Ensemble learning typically trains multiple
models independently, often on the same dataset,
and combines their predictions to improve gen-
eralization. In contrast, federated learning trains
local models on disjoint, decentralized data and
aggregates their parameters or updates to form a
single global model. The aggregation in federated
learning serves to synchronize model knowledge
across clients, rather than to directly combine pre-
dictions from multiple models.

Federated learning remains a relatively new
and actively evolving algorithm. The uneven dis-
tribution of data among clients continues to pose a
challenge, and the choice of aggregation weights—
frequently discussed in various studies—is a cru-
cial component of the framework. Furthermore,
despite some attempts to use alternative aggrega-
tion strategies, most federated learning modifica-
tions still rely on simple or weighted averaging.
It is possible that employing different aggregation
operators could lead to a more effective modeling
of client influence on the global model.

In this study, we aim to propose a novel mod-
ification to the classical FedAvg algorithm by
introducing a recently developed aggregation op-
erator: Smooth OWA [26], which is a smoothed
version of the well-known OWA operator. These
operators provide a flexible and interpretable
mechanism for model combination, enabling the
aggregation process to dynamically adapt to the
relative performance of client models. As a result,
the aggregation should allow for a more nuanced
consideration of local model contributions to the
global model. Through the use of smoothing,
we can subtly account for interactions between

models, since each coefficient is smoothed using
neighboring coefficients from other local mod-
els. Such OWA-based aggregation is a promising
alternative to the traditional aggregation meth-
ods. A measurable outcome of this modification
should be an improvement in the accuracy of the
resulting global model.

The paper is structured as follows: the The-
oretical Background section recalls the funda-
mental concepts of federated learning as well as
the definitions of the OWA and Smooth OWA
operators. The proposed methodology section
introduces our novel modification to the FedAvg
algorithm. The numerical experiments section
presents the results of our computations using the
proposed method, along with a discussion. Final-
ly, in the Conclusions and Future Work section, a
summary of our findings and outlines directions
for future work are given.

BACKGROUND

This section will recall the basic concepts
of federated learning, followed by a description
of the OWA operator and its recent modification
called Smooth OWA.

Federated learning

Federated learning is a machine learning
technique used in an environment where multi-
ple entities train a model together, while keeping
the data decentralized rather than stored centrally.
Instead of transferring data to a central common
space where calculations take place, local model
coefficients are transferred to the global model. In
order to get a single global model, one needs to
combine all the model updates we have received
from client nodes. This process is called aggrega-
tion, and there are many different ways to do it.
The most basic is federated averaging [1], often
abbreviated as FedAvg. In practice, it often uses
a weighted average where the weights are the
data sizes of each client.The federated learning
framework can be described as follows [23]. Let
us assume that there are n clients (local models)
{M, M,,..., M }. Each is assigned its own portion
of the dataset {D,, D,.,....D }. Client C/. has ac-
cess only to the assigned part of the set D, Global
model M, does not have access to any training
data. A communication round (a training epoch)
proceeds in the following way:
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1. Global model M, transmits its coefficients V¢
to local models, i.e. the local models are initial-
ized anew, with the current global coefficients.

2. Foreachj=1, 2,..., n the model M, is trained on
the D, part of the dataset. The coefficients VM
of the local model are updated.

3. The aggregation of local coeficients VM occurs
in the global model, producing new values of
V¢ coefficients.

This process is presented in Figure 1. The
training is repeated a predetermined number of
epochs or until a specified stop condition is met.

The problem of data distribution among cli-
ents is closely related to the issue of federated
learning. For the testing process, it is often as-
sumed that the data is independently and identi-
cally distributed among clients (Independent and
Identically Distributed — IID). In practice, this is
usually not the case, rather, clients have different
amounts of data, and often qualitatively different,
using the example of classification: If we have
data of 10 classes, it may be that, for example, the
first client has to deal with only two of them, an-
other only with three, etc. We refer to such a sit-
uation as Non-IID. Partitioning data as Non-IID
poses a challenge for models. Researchers often
tackle this problem [24].

OWA and smooth OWA operators

Among the many existing aggregation meth-
ods, a family of ordered weighted averaging
(OWA) operators stands out as flexible and very
adaptable. In contrast to weighted average, the

Step 3: Aggregation of
coefficients in global model

VM ’ ’

vM2

Fl=0s
=l

D4 2

2 Step 2: Local training
and upload of
coefficients

OWA operator applies weights not to specific
components, but to the ordered position of them.
The OWA operator [25] is defined as function
OWA : R"—R associated with a set of weights w
= [w, w,,...,w ] such that w >w, > ... >w and

iw; =1, determined by the formula

OWA,,(x1, Xy, ..., Xp)=
n

_ (1)
= Wi * X(i)
i=1
where: x

() 1s the i-th largest value in the vector
(X, Xp00s X,) € R

Smooth OWA operator [26] is a modification
of the OWA operator, associated additionally with
smoothing method denoted as Q:

Smooth OWA,, o(x1, %3, ..., Xy)=
n

(2)
= Z w; - Q(xy),

where: O(x) means an application of a chosen
Newton-Cotes formula to the element x ;.

Let us recall few Newton-Cotes quadratures
that can be used for such smoothing:

1
Qs(x) = g xa-n+
8

3 3
+§ X(i)+§x(i+1)+ 3)
1 3
+3 X2 (°/g quadrature)
1 1
Qr(xw) = PRACRIERAGEY) 4)

(trapezoidal quadrature)

Step 1: Local \
models initialization

Figure 1. Federated learning general scheme
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11 1
Qonca(xy) = o2 X (-1t o2 X+
1 11 (5)
tog Xt 5 X+
(4 — point Open NC quadrature)

With such operation of applying the New-
ton-Cotes quadratures, each element X is
smoothed by its neighboring elements in the vec-
tor of sorted input. Note that if the index of an
element is less than 1, we take the value of X
instead of that element, and if the index is greater

than n, we take X

PROPOSED METHODOLOGY

The process of federated learning with smooth
OWA aggregation is presented in Figure 2. Local
model 1,... Local model n represent n clients in
the federated learning scheme. For each client, a
local model is trained and its coefficients are cal-
culated (more accurately, these are the weights in
the neural network, but the name ‘weights’ can be
misleading because they are also used in this work
in the context of aggregation operators). Each lo-
cal model sends its parameters to the global mod-
el, and gets back the aggregated coefficients, that
is, the coefficients updated in the global model
based on information from all z clients. The glob-
al model is the central model that collects all local
coefficients from clients and aggregates them. In
the basic method, this is done using an average.
In another existing modification, it is the classic
OWA operator. In our work we propose to use the

Local model 1

aggregated

local coefficients
model 1

Local model 2

smooth OWA operator with a set of weights w and
a selected smoothing method Q.

Smooth OWA is an aggregation function that
sorts the input data (here: the weights of neurons
from different clients), smooths it by a combina-
tion of neighboring values (e.g., by Newton-Cotes
rules), and applies the defined weights w to the ag-
gregation. Q is a type of smoothing rule —e.g., Trap-
ezoidal, Three-eighths — that affects how strong the
smoothing of values is during aggregation.

A more detailed diagram of the process
is shown in Figure 3. At the beginning of each
round of communication (training epoch), each of
the n local models receives a copy of the weights
from the global model — this is the classic starting
point of a federated learning round. Each client
performs one local learning epoch on its set and
updates all the coefficients of its model (weights
in the neural network), denoted as

v, Vo, .., Vi) (6)

Therefore every coefficient Vj,j =1,2,., k
has n versions — one for each client. For each
position j all values of coefficient V, are collect-
ed from the client models:

{V}',local 1 Vj,local 2r Vj,local n} (7)

Then these values for each k separately are
sorted in descending order:

Wiy Vi Vim) ®)

The sorted values are processed by the select-
ed quadrature Q, resulting in the following set of
smoothed coefficients.

QW) QW) @), QW) )

Local model n

local coefficients fro
model n

agdregated
global
coefficients

Global model

Smooth OWA with weights W

Eggregation of the coefficients b)j

and smoothing quadrature Q

Figure 2. The process of federated learning with smooth OWA aggregation
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v

Update local model

s with global weights

v v

v

Local model 1

Local model 2

Local model n

One epoch of local models training
Update of local weights (coefficients v)

[v1, localt ] [Vz, localt } . -[vk, localt ] [W.mm] [Vz, Iucal?}

...[Vk.mmm} [v1,|ocaun] [Vg,localn}"'[vk,lucaln]

Sorting of local models

weights (coefficients v)

(o) (o} (e}

(o) (o) -

[ V2, (n) } [ Vi, (1) ][ Vk. @ }[ Vi, (m) ]

A A A

h 4 A

[Q(Vm))] [Q(V1,(2))} e '[Q(V1,(n))] [Q(Vz,m)] [Q(Vz, (2))}

.. '[Q(Vz, (n))} [Q(Vk, (1))] [Q(Vk. (2))} . '[Q(Vk. (n))]

| A

| Voo |

L V4,6 = OWA, (V4,(1): V1,2)r =+ V1,(n)) [ V2,6 = OWAy, (v2,(1), V2,

Vi,G = OWAy (Vi (1), Vk(2)s -+ Vk,(n))

(@) - V2,(n) J

A

A

Global

Set weights as [V1,G, V2,G, -.-» Vk,Gl

model

for every epoch of training

Figure 3. Detailed workflow of federated learning with smooth OWA aggregation

After the smoothing process, the resulting co-
efficients are aggregated as in the classical OWA
operator with weights w. Thus the final coeffi-
cients of the global model have the form

V& = 0WA,, (Q(V; 1),
Qi) QW)

At the end of the learning epoch, the global
model is characterized by a set of coefficients

[vEvE, ... V] (11)
and such weights are propagated to local

models at the beginning of the next communica-
tion round.

(10)

NUMERICAL EXPERIMENTS

This section includes a description of the
datasets, the neural network model used for
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classification, methods used to extract weights
for the OWA operator, and a presentation and
discussion of the results obtained from the nu-
merical experiments.

Datasets descprition

Three widely known datasets containing
small scale images were used for the experiments.
MNIST is a dataset of 60 000 28 x 28 grayscale
images of the 10 digits, along with a test set of 10
000 images. Fashion-MNIST is a similar dataset
containing 60,000 28 x 28 grayscale images of
10 fashion categories, along with a test set of 10
000 images. CIFARI10 is a dataset of 50 000 32
x 32 color training images and 10 000 test im-
ages, labeled over 10 categories. The collections
were loaded from the Tensorflow library resourc-
es in Python. For each set, a merge of the train-
ing and test sets was performed, due to the fact
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that in each iteration of the experiment a different
division between the learning and test parts was
planned, in order to make the numerical results
more reliable. The size of the sets after combining
the training and testing parts is shown in Table 1,
along with the number of classes and whether the
images are grayscale or color.

In each iteration of the experiment, the entire
dataset is split into a learning and testing part, and
then the training set is divided among 10 clients,
each client (local classification model) having ac-
cess only to its part of the set. For the IID split, the
data is first shuffled and thus each client gets ran-
dom observations from different classes. For Non-
11D splitting, the data is sorted by class label before
splitting, and so clients usually get observations
only from 2-3 classes. This is a more difficult task
for the classification model, but more similar to the
real-world case of federated learning. The global
model does not have access to the data, but only
gets information (coefficients) from local models.
At the end of the learning epochs, the global model
is validated on the test part of the dataset.

Classification model

A simple neural network with dense lay-
ers was used for classification in the federated
learning model. The overall processing scheme
of the network is presented in Figure 4. The first
two layers contain 200 neurons each and a relu
activation function. The output layer consists of
10 neurons (since there were 10 classes in each

Table 1. Dataset information

dataset) and a softmax activation function. The
input image was flattened to a one-dimensional
vector of appropriate size before being passed to
the neural network. A categorical crossentropy
loss function and accuracy metric were used in
the training process.

Experimental results

The proposed method was compared with
federated learning with the arithmetic mean and
federated learning with the classical OWA opera-
tor. 10 iterations of experiments were performed
on each of the three data sets. Each iteration in-
cluded IID and Non-IID scenarios of data divi-
sion. Each iteration of the experiment consisted
of 30 communication epochs where local models
were trained and the weights of the global model
were updated. The classification accuracy from
the global model was tested on the test set.

Several methods of selecting weights have
been proposed:

e Without considering any information from the
dataset — as a decreasing sequence of invers-
es of consecutive natural numbers: [1/2, 1/3,
1/4,..., 1/11]

e Based on the accuracy of local classifiers in
five rounds of pre-training — a vector of accu-
racies is assembled, next it is sorted in decreas-
ing order and normalized to sum equal to 1.

e On the basis of the size of the client sets —
[0.23, 0.18, 0.15, 0.12, 0.09, 0.08, 0.06,
0.045, 0.035, 0.03].

flatten .| Dense + relu

"1 200 neurons

Dataset Number of observations Number of classes Number of color channels
MNIST 70 000 10 1 (grayscale)
Fashion-MNIST 70 000 10 1 (grayscale)
CIFAR10 60 000 10 3 (color)
) R

Dense +

Dense + relu
e softmax
200 neurons

10 neurons

—

—

Figure 4. Scheme of simple neural network used for federated learning classification
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Prior to aggregation, the weights were nor-
malized so that their sum was equal 1. The results
obtained with those sets of weights that best suit-
ed the particular set under study will be presented.

For the MNIST dataset, the best results were
obtained while using the set of weights derived
from accuracy of local classifiers in pre-training
rounds. These results are presented in Table 2 for
IID scenario and in Table 3 for Non-IID.

The average accuracy on the MNIST set for
the IID case in the base method was 93.45%. Ag-
gregation with the classical OWA operator yield-
ed a similar result. With the help of smoothing
of the OWA operator, this result was slightly in-
creased to around 93.51-93.53%, so less than 0.1
percentage points. This result was not statistically
significant in the Wilcoxon test.

When partitioning the MNIST dataset Non-
1ID, the differences between the methods used
were much greater. For the baseline method, the
average accuracy was 77.32%, and the range of
it was from about 76 to about 80%. The classi-
cal OWA operator achieved a slightly worse mean
result of 77.25%. Smooth operators were able to
achieve better results. Smoothing with the trap-
ezoidal quadrature yielded a statistically insig-
nificant 0.17 percentage point improvement in
the score. For the 3/8 quadrature, the improve-
ment was significant and equal about 1 percentage
point. Higher scores can also be observed based
on the minimum and maximum for this method:

from 76.7 to 81.3%. The biggest difference in ac-
curacy in favor of the smooth OWA operator ap-
peared with the ONC4 quadrature. The average
accuracy reached 80.11%, an improvement of
about 2.8 percentage point over the baseline meth-
od. The accuracy range for the ONC4 method
was 78.7 to 82.5%. The standard deviation for the
ONC4 method was lower than for the other meth-
ods which is also an advantage because it means
that the method behaved more stably regardless of
the exact split into the learning and test sets.

The graphs in Figure 5 and Figure 6 depict
the average accuracy values at successive ep-
ochs of training on the MNIST set for the Non-
IID data distribution. In the case of the ONC4
quadrature (Figure 5), it can be seen that in the
first few epochs the difference in favor of this
method is relatively small, and by the 10th ep-
och it becomes more pronounced and remains
so until the end. In the case of the 3/8 quadra-
ture (Figure 6), the course of accuracy values is
almost perfectly similar to the baseline method
up to about epoch 15, and then the 3/8 method
begins to show an improvement over the base-
line method — small at first, and by the end of
learning somewhat more pronounced although
much smaller than in the case of ONC4 quadra-
ture. The fashion-MNIST image collection is a
very similar set to MNIST. The images are also
grayscale and the same size, but they differ in
the subject presented. It turns out that for the

Table 2. Accuracy on MNIST dataset for IID scenario, with weight set based on local models’ accuracy

in pre-training

Method Min Mean Median Std Max bett\’i ':Ctﬁ’;n 'Z v W”tch‘;xr; gvt\’,eA“er
Average 93.1357 93.4521 93.4250 0.3006 94.0357 - -
Base OWA | 93.1286 93.4486 93.4107 0.3025 94.0286 No -
OWA 3/8 93.1857 93.5264 93.5107 0.2969 94.1357 No No
OWA trap. 93.1857 93.5236 93.5107 0.2959 94.1286 No No
OWAONC4 | 93.1857 93.5143 93.4929 0.2927 94.1143 No No

Table 3. Accuracy on MNIST dataset for Non-IID scenario, with weight set based on local models’ accuracy

in pre-training

Method Min Mean Median Std Max W"Ctg’;'n '2 \';';tter W"tchc;xn' g\xgter

Average 75.9571 77.3200 77.2536 1.1482 80.0143 - -
Base OWA | 0.758786 | 0.772471 0.771821 1.1561 79.9500 no -

OWA 3/8 0767286 | 0783514 | 0.782107 1.3154 81.3214 yes yes
OWAtrap. | 0.760214 | 0.774907 | 0.773071 1.4045 80.7000 no no
OWAONC4 | 0786929 | 0.801071 0.799821 1.0856 82.5071 yes yes
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—— Base-FL acc

0.7 =

Accuracy
o
[e)]

o
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\

0.4 -
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1 1 | 1
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Figure 5. Average accuracy in subsequent epochs on test sets from MNIST dataset for non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with ONC4 quadrature
compared to base federated learning with averaging

0.8 -
—— 3/8-FL acc

—— Base-FL acc

0.7 -

Accuracy
o
[e)]

°
w
\

0.4 -

0.3 -

15 20 25 30

Epoch

Figure 6. Average accuracy in subsequent epochs on test sets from MNIST dataset for non-1ID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with 3/8 quadrature
compared to base federated learning with averaging

fashion-MNIST set, the best performance was
with the set of weights obtained by an analogous
method as for MNIST, that is, from the accura-
cy of local classifiers in pre-training. The results
for fashion-MNIST are shown in Table 4 for IID
division and in Table 5 for Non-IID.

For the fashion-MNIST dataset and the 11D
data split, no significant improvement in the

accuracy metric can be observed using either the
classical or smooth OWA operator. Regardless of
the method used, the results are very similar, ac-
curacy is around 85%, and the standard deviation
is very small at around 0.3%.

When splitting the data with Non-IID vari-
ant in the fashion-MNIST set, the use of smooth
OWA operators yields a significant improvement
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Table 4. Accuracy on fashion-MNIST dataset for IID scenario, with weight set based on local models’ accuracy

in pre-training

Method Min Mean Median Std Max bettvi 'r'iﬁ’;n 'Z v W"t‘;‘:‘r; 'gvt\’;fter

Average 84.5929 85.0121 84.9893 0.3192 85.5286 - ;
Base OWA | 84.6143 85.0143 84.9821 0.3207 85.5714 no ;

OWA 3/8 84.6357 85.0229 84.9821 0.3192 85.5571 no no
OWAtrap. | 846643 85.0343 84.9893 0.3164 85.5643 no no
OWAONC4 | 84.6500 85.0364 84.9964 0.3122 85.5571 no no

Table 5. Accuracy on fashion-MNIST dataset for Non-IID scenario, with weight set based on local models’

accuracy in pre-training

Method Min Mean Median Std Max bettvz 'r'ﬁﬁ:n 'ng W"t‘;faxr; gvt\’,i“er

Average 69.2714 71.2264 71.0964 1.4824 73.6500 - -
Base OWA | 69.2143 71.2021 71.0571 1.4807 73.6357 no -

OWA 3/8 70.1429 72.3850 72.7500 1.5405 74.0143 yes yes
OWAtrap. | 69.5714 71.8829 72.4429 1.5724 73.5429 no no
OWAONC4 | 71.0714 73.1136 73.4250 14757 74.8286 yes yes

in the accuracy metric. The baseline method
achieved an average accuracy of 71.23%, while
aggregation with the classical OWA operator pro-
duced a similar result of 71.2%. Smoothing with
the trapezoidal quadrature was able to raise this
score to 71.88%, but this improvement was not
found to be statistically significant in the Wilcox-
on test. Instead, a significant improvement was
achieved with the 3/8 and ONC4 methods, where
for 3/8 there is an average accuracy of 72.39%
(about 1.2 percentage points higher than for the
baseline method), and for ONC4 accuracy aver-
aged 73.11% which is about 1.9 percentage points
better than with the baseline method.

The graphs in Figure 7 and Figure 8 show
the average accuracy values at successive epochs
on the fashion-MNIST set with the Non-IID data
split. Regardless of the method used, it can be seen
that accuracy increases somewhat more rapidly in
the first epochs than for the MNIST set. Differenc-
es in favor of smooth OWA operators are also no-
ticeable quickly, already in the initial epochs, and
remain at a similar level for most of the training.
For the 3/8 method, the difference is more pro-
nounced than on the MNIST set, and the ONC4
method behaves similarily on both datasets.

In case of the CIFAR10 dataset, no significant
improvement in accuracy metrics could be ob-
tained using OWA operators with weights deter-
mined by the accuracy of local models in pre-train-
ing (improvement if appeared was small and not
statistically significant). Instead, good results were
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obtained using two other sets of weights. They al-
lowed a significant improvement in the classifica-
tion metric for the IID data distribution. However,
this did not transfer to good results with the Non-
1ID distribution. In the latter case, a significant de-
crease in accuracy was even apparent using OWA
and smooth OWA compared to the baseline meth-
od. Only the results for IID division are shown. Ta-
ble 1 Dataset information Table 6 presents results
for weight set of inverses of consecutive natural
numbers, while Table 7 shows scores for weight
set corresponding to client sets sizes.

From Table 6, it can be observed that the use
of smoothing quadratures resulted in a significant
improvement in accuracy by almost 1 percentage
point (the largest growth for trapezoid and ONC4
quadratures). The use of the classical OWA oper-
ator improved the result of the baseline method
by almost 0.8 percentage points. Both the clas-
sic OWA and its smoothed version yielded accu-
racy improvements that were significant in the
Wilcoxon test, but the smooth OWA with either
quadrature was not significantly different from
the baseline OWA. An additional advantage of the
methods with smoothing is their lower standard
deviation than for federated learning with averag-
ing or with classic OWA.

As can be seen from Table 7, the classic
OWA method did not yield a significant im-
provement over averaging in federated learning.
In contrast, the smooth OWA operators signifi-
cantly improved both the result of the baseline
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Figure 7. Accuracy in subsequent epochs on fashion-MNIST dataset for Non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with ONC4 quadrature
compared to base federated learning with averaging
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Figure 8. Average accuracy in subsequent epochs on test sets from fashion-MNIST dataset for Non-IID scenario,
with weight set based on local models’ accuracy in pre-training, smooth OWA with 3/8 quadrature compared to
base federated learning with averaging

method and the classic OWA. The recorded im-
provement in accuracy is about 0.5 percentage
points — the least for trapezoidal quadrature and
the most for ONC4 quadrature. There is a no-
ticeably smaller standard deviation for OWA and
Smooth OWA than for the baseline method.
Figure 9 shows the average accuracy values
at successive epochs on the CIFAR10 set for the

IID data distribution. It can be seen that in the first
epochs the differences between the baseline fed-
erated learning and the one with ONC4 smooth-
ing method are small, until somewhere between
epochs 5 and 10 they become pronounced. The
accuracy values were lower after 30 epochs than
on the other sets, which is due to the fact that the
images in CIFAR10 were larger and contained
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Table 6. Accuracy on CIFAR10 dataset for IID scenario, with weight set of inverses of consecutive natural numbers

Method Min Mean Median Std Max bett\’\é ':‘iﬂ’;n 'Z v W"tc'g‘r; gvt\’/eA“er
Average 44.2417 45.0025 449375 0.5332 45.8500 - -
Base OWA | 44.9417 45.8058 45.6875 0.5396 46.4917 yes ]
OWA3/8 45.3250 45.8517 45.8083 0.4369 46.3833 yes no
OWAtrap. | 45.3583 45.9775 45.9458 0.4483 46.6250 yes no
OWAONC4 | 45.3083 45.9667 45.9250 0.4723 46.6333 yes no

Table 7. Accuracy on CIFAR10 dataset for IID scenario, with weight set based on client sets sizes

. . Wilcox. Is Wilcox. Is better
Method Min Mean Median Std Max better than avg than OWA
Average 44,5250 45.2425 45.2042 0.5851 46.1917 - -
Base OWA 44.6417 45.3442 45.3833 0.3926 45.9500 no -
OWA 3/8 44.8417 45.8033 45.8417 0.4228 46.2167 yes yes
OWA trap. 45.0000 45.7758 45.8833 0.3835 46.2917 yes yes
OWA ONC4 45.0417 45.8358 45.8375 0.4263 46.4667 yes yes
—— ONC4-FL acc
0.450 - __ Base-FL acc
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0.400 -
> 0.375 -
o
35
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Figure 9. Average accuracy in subsequent epochs on test sets from CIFAR10 dataset for IID scenario,
with weight set of inverses of consecutive natural numbers, smooth OWA with ONC4 quadrature
compared to base federated learning with averaging

3 color channels, in contrast to the less complex
images in the rest of the sets. To achieve higher
accuracy, more epochs of training or a more com-
plex network structure such as a convolutional
network, would be required.

DISCUSSION

The federated learning algorithm, in its basic
form known as FedAvg [1], can be enhanced by
replacing the arithmetic mean with a weighted
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average, where different strategies for weight as-
signment can be considered [21], including the
use of dynamically adjusted weights [27]. A fur-
ther modification of FedAvg involves replacing
the averaging mechanism entirely with more ad-
vanced and flexible aggregation operators.The
introduction of new aggregation methods in
federated learning is currently a significant and
promising research direction, as demonstrated
by the works such as [19], which presents the
integration of the Sugeno integral as an aggre-
gation mechanism in the FL framework. Our
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proposal to use the smooth OWA operator aligns
with this recent trend.

The application of OWA and smooth OWA
operators also supports FL’s overarching goal of
maximizing data security and privacy [28]. Even
in the baseline FedAvg, no raw data is transmitted;
only the local model parameters are shared, which
already ensures a considerable level of data priva-
cy, though some vulnerability to information leak-
age still remains [29]. Operators from the OWA
family, however, assign weights not to individual
clients but to ranks in the sorted set of values, mak-
ing it impossible to infer which client received
which weight, in contrast to weighted averaging.

In our work, we also introduced several prom-
ising strategies for selecting weights for OWA-
family operators. In some cases, these strategies
effectively handled Non-IID data, which is a criti-
cal issue in FL [4, 24]. An interesting direction for
future research could involve combining OWA
operators with dynamically assigned weights
based on the characteristics of local models [30]
or with other forms of dynamic adjustments [31].

CONCLUSIONS

In this work, a recent modification of the OWA
operator was successfully applied in the aggrega-
tion of local model coefficients in the federated
learning framework. The proposed method was
tested in two scenarios of data partitioning: when
the data is independently and identically distrib-
uted (IID) among clients, and in the opposite sit-
uation (Non-IID), more difficult for the model but
closer to reality. Three datasets containing small-
scale images were used in the experiments. Three
methods of selecting weights for the OWA and
smooth OWA operator as well as three quadra-
tures for smoothing were tested.

The results of numerical experiments indicate
that the use of smooth OWA in federated learning
can contribute to a significant increase in model
accuracy, both relative to the base method (feder-
ated learning + average) and to aggregation with
the classical OWA operator. Often, aggregation us-
ing smooth OWA also exhibited a lower standard
deviation of accuracy across multiple iterations
of the experiment than occurred for the baseline
method. This indicates that the proposed method
is more stable with different divisions of the set
into training and testing parts. In the cases stud-
ied, usually the greatest improvement in accuracy

was provided by using ONC4 quadrature, fol-
lowed by the 3/8 method, and usually a slightly
smaller increase was for trapezoidal quadrature.
The improvement also tended to occur with Non-
IID splitting, which makes it possible to apply
the new method also to less obvious splitting of a
dataset between clients. Smooth OWA operators,
when applied to federated learning, proved to be
very sensitive to the set of weights used: often dif-
ferent weights had to be selected for different da-
tasets and different split methods (IID/Non-IID).

On the MNIST and fashion-MNIST sets,
smooth OWA operators performed best with
weights based on the accuracy of local mod-
els in pre-training rounds. A significant increase
in accuracy was observed on the Non-IID data
split. For the MNIST set, significant improve-
ments were made by the 3/8 (about 1 percentage
point) and ONC4 (almost 2.8 percentage points)
quadratures. For the fashion-MNIST set, these
two quadratures also produced the best results,
improving the baseline method by 1.2 and 1.9
percentage points, respectively. On the CIFAR10
set, equally good results were not achieved with
this set of weights and the Non-IID distribution,
but significant improvements in accuracy of 0.5
to sometimes almost 1 percentage point were
achieved with the IID distribution and two other
sets of weights. Lower standard deviations were
also recorded for methods using smooth OWA
than for the baseline method.

The experimental results confirm that the pro-
posed smooth OWA-based aggregation methods
offer a significant improvement over traditional
schemes, often also in Non-IID and unbalanced
federated learning scenarios. The introduction
of smooth operator variants allows for more nu-
anced control over the aggregation process. This
study demonstrates that incorporating operator-
theoretic concepts such as OWA into federated
model aggregation not only improves accuracy
but also opens a new direction for interpretable
and customizable learning frameworks.

In the future, attempts to select the best possi-
ble weights for OWA operators can be continued,
such as weights based on the diversity of local
sets, determining the quality of these sets, for ex-
ample, based on the number of classes present in
them (with Non-IID partitioning). The structure
of the neural network serving as a classifier can
be expanded to see if the proposed aggregation
method would work equally well using a convolu-
tional network. It is also worthwhile to introduce
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other aggregation methods instead of OWA, such
as Choquet integral modifications, which perhaps
better take into account the importance of individ-
ual local models or the interactions between them.
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