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INTRODUCTION

Shock resistance of shipboard equipment is 
essential, as naval vessels often face underwa-
ter explosions generating high-intensity shock 
waves. These waves induce severe dynamic loads 
on the ship’s structure and onboard systems. To 
maintain operational capability and safety, equip-
ment must be designed and qualified to withstand 
such shocks.

Shock qualification standards for naval ships 
often reference the Shock Resistance Analysis of 
Equipment for Surface Ships (STANAG 4142), 
which remains classified. However, under general 
circumstances, other publicly available standards 
are commonly applied. These include the Lloyd’s 
Register Naval Ship Rules (LRNSR) [1] and 

regulations issued by Det Norske Veritas (DNV) 
[2], which provide guidelines for increasing allow-
able material stresses as a function of strain rate.

Complementary methodologies for naval 
vessels are also outlined in the Naval Sea Sys-
tems Command (NAVSEA 0908-LP-000-3010A) 
framework [3], which includes elastic-plastic shock 
design values and the application of the Dynamic 
Design Analysis Method (DDAM), specifically tai-
lored to meet the requirements of the U.S. Navy.

To evaluate the structural integrity and func-
tionality of onboard equipment under underwater 
explosion (UNDEX) loading, several analytical 
and numerical approaches are employed [4–7]. 
These differ in terms of fidelity, computational cost, 
and applicability to specific equipment types. The 
primary approaches include:
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	• quasi-static finite element analysis (FEA) 
[8, 9], which is suitable for relatively rigid 
equipment,

	• design response spectra (DRS) and the dynam-
ic design analysis method (DDAM) [10, 11], 
both widely applied in evaluating dynamic 
shock responses,

	• dynamic or nonlinear structural FEA [12], 
applicable to complex systems exhibiting sig-
nificant nonlinearity, 

	• advanced numerical methods [13], such as 
fluid structure interaction (FSI) techniques, 	
which allow for detailed modelling of coupled 
domains using arbitrary Lagrangian-Eulerian 
(ALE) or structural arbitrary Lagrangian-Eule-
rian (S-ALE) based solvers.

Each of these approaches offers unique ad-
vantages and limitations, and in practice, they are 
often used in combination to achieve reliable and 
comprehensive shock qualification results.

The primary objective of this study is to eval-
uate the shock resistance of ship structures, with 
particular emphasis on the stress distribution and 
load-bearing capacity of structural elements such 
as frames and supports. While existing manuals 
and classification society standards provide general 
guidelines for shock qualification, they often lack 
detailed methodologies for optimizing shock at-
tenuation, especially in terms of damper selec-
tion and design. This study addresses that gap 
by presenting and comparing the results of two 
numerical methods, offering practical insight for 
engineers involved in designing and assessing na-
val equipment. By integrating advanced computational 
techniques with international standards, the find-
ings contribute to a more comprehensive approach 
to mitigating shock effects and enhancing overall 
ship safety and performance. The choice of the two 
methods analysed is based on balancing computational 
accuracy and efficiency.

Fluid-structure interaction approaches are 
widely recognized as the most accurate tools for 
simulating shock responses due to their ability to 
capture coupled domain behaviour with high fidel-
ity. However, they are also extremely demanding 
in terms of computational time and hardware re-
sources, making them less practical for fast, itera-
tive analyses during early design stages.

The classical transient FEM remains the most 
commonly used approach for dynamic analyses 
in ship shock qualification. Nevertheless, when 
applied to solid 3D models that include material 

nonlinearities and contact interactions, its computa-
tional performance significantly deteriorates. One 
way to alleviate this issue is by replacing solid ele-
ments with shell formulations, which considerably 
reduce the degrees of freedom, although at the cost 
of increased modelling effort.

An alternative, less popular but historically well-
established method is the DDAM, which, despite 
being implemented in most commercial FEM 
solvers, is rarely employed in modern engineer-
ing practice. The likely reason for this is not its 
lack of capability, but the complexity of its ap-
plication rules and result interpretation. A key ad-
vantage of DDAM lies in its frequency-domain 
formulation, which allows for rapid computations 
as opposed to the time-consuming transient simu-
lations of classical FEM.

Demonstrating agreement between DDAM 
predictions and transient FEM results under real-
istic boundary and loading conditions would offer 
a novel contribution to the field of shock response 
analyses. It would validate DDAM as a reliable 
alternative for early-stage evaluation of naval 
equipment, providing a practical methodology that 
combines speed and sufficient accuracy—especial-
ly valuable in scenarios where rapid iteration and 
conservative estimations are needed.

BACKGROUND

In recent years, studies on stresses and shock 
response of naval equipment have focused on three 
complementary directions. First, rapid spectral–
modal methods are being developed for equipment 
mounted to the hull and foundations, allowing the 
estimation of forces and stresses without costly 
time-domain simulations, based on the results of 
modal analysis and design spectra [14]. Second, 
unsteady calculations with full fluid structure in-
teraction and ALE methods are carried out, which 
serve to reproduce the wave-structure interaction 
and to update design spectra on the basis of data 
from ship trials [15].Third, results are published 
from large-scale shock platform tests with real 
equipment, e.g., naval engines, which provide re-
liable data for model validation and for selecting 
damping parameters and mounting methods [16].

Currently, spectral-modal methods have 
reached a high level of maturity and are widely 
applied in engineering practice, but their limita-
tion remains their approximate nature and the in-
ability to capture nonlinear local effects.
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FSI/FEM simulations are developing rapidly 
and aim to increase the accuracy of wave–struc-
ture interaction modelling, yet they still face the 
barrier of very high computational costs and chal-
lenges in validation. Shock platform trials, on the 
other hand, provide unique experimental data, but 
their major drawback lies in their high cost and 
limited repeatability, which hinders the system-
atic updating of design spectra.

Of particular note is the dynamic structural 
mechanics analysis system (DYSMAS) [17], 
which has been continuously developed since 
the 1990s solely for the purpose of UNDEX 
analysis. The DYSMAS is currently the most 
advanced computational tool for analysing na-
val structures subjected to underwater explo-
sions. Its main advantage lies in its specializa-
tion – the built-in fluid–structure interaction 
(Euler-Lagrange coupling) solver has been tai-
lored specifically to capture shock wave propa-
gation, cavitation, and gas bubble pulsation. As 
a result, DYSMAS simulations are more stable, 
computationally efficient, and physically accu-
rate than those performed with general-purpose 
codes such as LS-DYNA. The system enables 
a detailed assessment of both the global hull 
response and local effects in critical structural 
components. However, its main drawbacks are 
its limited accessibility – DYSMAS is a NATO 
reference code, strictly controlled by the Ger-
man and U.S. Navies – and the fact that, despite 
its efficiency, UNDEX simulations remain ex-
tremely demanding in terms of computational 
resources, often requiring high-performance 
computing facilities.

A clear trend in the literature is the combi-
nation of these approaches into hybrid compu-
tational–experimental schemes. Fast spectral–
modal methods continue to be used at the early 
design stages, but they are complemented with 
local FSI/FEM simulations in critical structural 
regions. Data from shock platform trials are, in 
turn, employed for calibration and validation of 
design spectra, allowing the gradual reduction of 
numerical model uncertainties.

The direction of development is therefore the 
integration of methods within shared databases 
and unified design procedures, in order to pre-
serve computational efficiency while better cap-
turing nonlinear local effects and realistic operat-
ing conditions.

In light of these works, DDAM remains a 
computationally efficient tool at the preliminary 

stage, while FSI/FEM simulations provide ref-
erences for verifying local stress maxima and 
nonlinear effects. DDAM is a modal method 
used to qualify the strength of supporting structures 
and equipment subjected to underwater explosions. 
Shock spectra are defined based on modal param-
eters and empirical data from shock tests.

Unlike direct shock analysis, DDAM uses 
the shock response spectrum (SRS) theory and 
the structure’s own properties. Structural infor-
mation provides participating modes, natural fre-
quencies, and other modal properties for DDAM 
analyses. Finally, is computed via modal super-
position [11]. DDAM has been widely used in 
naval engineering since the early 1950’s, when it 
was applied by the American and British navies 
to evaluate shock responses of embarked equip-
ment. Today, it remains a global reference for 
rapid and efficient shock design [12].

In DDAM, on-board equipment or structures are 
discretized in equivalent mass – spring systems (fi-
nite element meshes) subjected to a shock response 
spectrum, with the objective of calculating the equip-
ment/structure in terms of displacements, velocity, 
and acceleration but also to determine the stress state 
inside the structures. DDAM method has been im-
plemented in several finite element software such as 
NASTRAN and LS-DYNA.

As input, the acceleration shock response 
spectrum is usually obtained from on-board ex-
perimental tests and/or operational data records 
performed at different locations of a pattern vessel. 
The shock spectrum serves as a critical tool in naval 
design, allowing engineers to:
	• predict dynamic responses of components across 

different modal frequencies,
	• determine the required structural reinforce-

ment based on modal characteristics,
	• compare different configurations and select ma-

terials that meet shock resistance criteria,
	• ensure compliance with DDAM standards, 

preventing underestimation of critical design 	
accelerations.

The shock spectrum embodies the core prin-
ciples of DDAM and serves as a practical frame-
work for evaluating and optimizing the shock re-
silience of naval structures. The effective modal 
mass and support structure are determined through 
preliminary modal analyses.

DDAM is derived from the broader shock 
testing framework (Fig. 1) outlined in MIL-
DTL-901 [18], which establishes the fundamental 
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requirements for high-impact shock testing of 
shipboard equipment. However, MIL-DTL-901 
primarily focuses on physical shock testing pro-
cedures and does not provide a direct computa-
tional method for assessing dynamic responses ana-
lytically. Instead, numerical shock analyses and de-
sign criteria are governed by NAVSEA standards.

The primary reference for DDAM implemen-
tation is [21], which provides guidelines for eval-
uating shock resistance through modal analyses. 
Its updated version, T9070-AJ-DPC-120/3010 
[3], refines these guidelines but does not explic-
itly define the formulas for the fundamental shock 
parameters (Eq. 1 and Eq. 2).

To determine these dynamic parameters, engi-
neers refer to DDS 072-1 [18], which contains the 
official formulas for design velocity and accelera-
tion values (V0 and A0). However, this document is 
classified and not publicly accessible. As a result, 
engineering applications often rely on alternative 
references such as NR 1396 [22], which provides 
practical formulations derived from prior validated 
methodologies.

Additional literature further supplements these 
foundational documents by exploring the ship shock 
response, underwater explosion effects, and compu-
tational modelling techniques. Notable references 
included by Reid [23], which compiles findings 
from the Underwater Explosions Research De-
partment (UERD) at the Naval Surface Warfare 
Centre, including ship shock trials and numeri-
cal modelling approaches. Didoszak [9] presents 
modern computational techniques for shock failure 
evaluation, while Tasdelen [8] compares different 

numerical strategies for evaluating the effects of 
underwater explosions on shipboard structures.

The DDAM methodology and its numerical 
implementation are summarized in Figure 2. The 
diagram illustrates the hierarchy of empirical stan-
dards (MIL and NAVSEA), formal procedures 
(DDS), and numerical implementations (e.g., LS-
DYNA DDAM module) that together form the ana-
lytical backbone of the DDAM approach.

OBJECT AND OUTCOME OF THE STUDY

The marine tank (Fig. 3) mounted on a sup-
port frame is a crucial component in various types 

Fig. 1. Typical MIL-DTL-901E floating shock platform setup [19, 20]

Fig. 2. Summary of the DDAM framework – from 
MIL-DTL-901 and MIL-STD-1399 to numerical 

implementation in LS-DYNA
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of vessels, serving purposes such as storing fuel, 
water, or other technical media. Its resilience to 
dynamic loads, such as impulsive accelerations, is 
particularly significant in the context of maritime 
operations, where forces generated by underwater 
explosions, shock loads may occur.

Finite element model description

Dimensions

The FE model of the marine tank system 
was developed in LS-DYNA using shell ele-
ments and for the support frame. The average 
element size was 25 mm, refined in the support 

connections. The tank dimensions of 6000 mm 
in length and 2300 mm in diameter, with a wall 
thickness of 30 mm is suitable for storing liquid 
or pressurized gases. The frame structure con-
sisting of a lattice design with cross-bracings, 
constructed from 8 mm thick structural sections, 
which enhances rigidity and minimizes local-
ized deformation under dynamic loads.

Materials

The FEM model incorporates real material prop-
erties of the tank and frame steel (Fig. 4), including 
stress-strain behaviour and damping capacity, criti-
cal for accuracy and reliability.

Fig. 3. Marine tank CAD model mounted on a support frame for shock resistance analysis under UNDEX 
conditions (dimensions in millimetres)

Fig. 4. Plastic behaviour σtrue− εplasticity
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For the transient FEM analyses, a high-strength 
structural steel with a tensile strength of Rm = 
647 MPa and yield strength of Re = 405 MPa was 
adopted. To account for the dynamic nature of 
the loading conditions, a rate-dependent plastic-
ity model based on piecewise linear flow stress 
curves was used (*MAT PIECEWISE LINEAR 
PLASTICITY). The material response to differ-
ent plastic strain rates was introduced through a 
tabulated input (*DEFINE_TABLE), allowing 
for a more flexible and physically representative 
description of strain rate effects. Representative 
data for this material, incorporating different plastic 
strain rates, are shown in Figure 4 and were used in 
a demonstrative context to ensure the consistency of 
results under rapid loading.

The use of tabulated data in constitutive mod-
elling, eliminates the need to identify empirical 
constants required by traditional rate-dependent 
models such as Cowper-Symonds or Johnson-
Cook. When reliable experimental or standard 
tabular data for flow stress at various strain rates 
is available, modern FEM techniques recommend 
direct implementation of such datasets. This ap-
proach improves both the physical realism and nu-
merical robustness of simulations, particularly under 
dynamic loading conditions.

Boundary conditions

The tank was rigidly attached to the frame using 
CONTACT_TIED_SURFACE_TO_ SURFACE. 
The frame supports were constrained to the foun-
dation with BOUNDARY_SPC constraints in all 
translational and rotational degrees of freedom, rep-
resenting welded connections to the base structure.

In contrast, the DDAM methodology inher-
ently assumes simplified material behaviour. 
When the “elasto-plastic” option (MATTYP=2) is 
selected, LS-DYNA internally applies an idealized 
bilinear material model with default values for the 
yield strength and elastic modulus. These are not de-
rived from any user-defined *MAT card and do not 
consider strain rate sensitivity.

Kinematic loading conditions

The study examines the structural behaviour 
under kinematic loading conditions. The maxi-
mum accelerations applied to the system are 
12.5 g. These loads are applied as boundary con-
ditions to the legs of the frame supporting the 
tank. The gravitational effects and inertia forces 

generated by the tank and its contents are includ-
ed to simulate realistic operational conditions.

To capture realistic loading scenarios, kinematic 
excitations were defined as time-dependent func-
tions. The simulation time is set to allow for several 
cycles of excitation to achieve peak stress and defor-
mation responses, reflecting the real-world perfor-
mance of the structure under impulsive loads. The 
analyses include a single shock impulse.

The core analyses use the quasi-static FEM 
method, a robust approach for modelling dynamic 
interactions between loads and structures. Ad-
ditionally, the DDAM method was evaluated to 
provide a comparative perspective, analysing 
their advantages and limitations in terms of com-
putational efficiency and result accuracy. This 
multi-method approach enhances the understand-
ing of the structural performance of the marine 
tank and frame, validating their applicability for 
high-stress maritime environments and providing 
a foundation for further optimisation.

The evaluation assesses the shock resistance 
of the foundation and load-bearing frame, with sim-
ulations carried out in accordance with the stan-
dards outlined in Det Norske Veritas (DNV) and 
Lloyd’s Register Naval Ship Rules (LRNSR).

DDAM ANALYSIS

Based on the DDAM methodology, different 
analyses variants can be applied depending on the 
ship type, material behaviour, and loading condi-
tions (Fig. 5). The key parameters considered in 
DDAM analyses are:
	• shock spectrum, NRL-1396 standard navy de-

fined shock spectrum and user defined spec-
trum based on custom conditions,

	• ship type, submarine, surface ship,
	• mounting type, hull-mounted equipment, deck-

mounted equipment, shell plating-mounted 
equipment,

	• material type, elastic (linear material be-
haviour), elasto-plastic (considering plastic 
deformations),

	• load direction, vertical, athwartship (side-to-side 
motion), fore and aft (longitudinal motion).

These variants allow for customization of the 
DDAM analyses based on the specific operational 
environment of the naval vessel and the type of 
structural components being evaluated. The se-
lection of the appropriate parameters ensures that 
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the shock qualification process accounts for real-
istic loading conditions and structural constraints.

Methodology behind DDAM equations

The DDAM equations provide an efficient 
and validated approach for computing structural 
stresses caused by shock loading. By leveraging 
modal decomposition and response spectra, they 
eliminate the need for full transient simulations 
while maintaining sufficient accuracy for naval 
system qualification.

DDAM combines empirical data from histori-
cal ship shock tests with theoretical modal analyses. 
The core idea is to assess how different structural 
modes respond to a given shock spectrum, allowing 
estimation of shock-induced stresses and deforma-
tions without time-consuming simulations. A key 
parameter in this method is the modal acceleration, 
A0, which quantifies how a given mode experiences 
acceleration under shock loading.

For example, for submarines and hull-mount-
ed systems, the empirical equations [22] are:
	• Modal acceleration A0 – derived from empiri-

cal data, ensures that acceleration is correctly 
scaled for various structural masses based on 
real-world shock test results:

	

 

 𝐴𝐴0 = 10.4 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

∙ 𝑔𝑔, where 𝑔𝑔 = 32.174, ft/s2  (1) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, in/s2 (2) 

 𝐴𝐴0 = 101.99 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

, m/s2 (3) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, m/s (4) 

 𝑤̅𝑤𝑎𝑎 = 𝑤𝑤𝑎𝑎
1000 = 4905

1000 = 4.905 kN (5) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

 (1)

where:	 A0 − modal acceleration, g,
	 V0 − modal velocity, in/s.
	 wa = wa/1000 − effective modal weight, 

kips,
	 wa = meff·g − effective modal weight in 

pounds.
	• Modal velocity V0 – provides an estimate of how 

kinetic energy is distributed in a given mode:
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20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

 	 (2)

	• Shock design acceleration Da – represents the 
expected acceleration a structure must endure 
under shock loading. This value reflects modal 
characteristics and is essential for structural 
evaluation. The actual acceleration demand im-
posed on the structure is calculated as:

	 Da = min(A0· g, V0· ω) 	 (3)
This ensures that both acceleration-dominat-

ed and velocity-dominated responses are consid-
ered. Note that in SI-based versions of DDAM,  is 
not multiplied by g (Eq. (6)).
	• Shock design value SDV – the structural de-

sign is ultimately based on the worst-case ac-
celeration demand:

	 SDV = max(Da, 6g) 	 (4)
The 6g threshold guarantees a baseline level of 

robustness, consistent with naval shock test stan-
dards. The SDV is the benchmark acceleration used 
in structural design and verification. In practice, it is 
often equal to Da: 
	 SDV = Da	 (5)

The SDV serves as a reference for verifying 
stress levels and ensuring compliance with standards 
such as DNV or MIL-STD and can be sum up as:
	• defines the required acceleration capacity of a 

structure,
	• provides a standardized reference for engi-

neering assessments,
	• both are essential for ensuring naval and 

offshore structures withstand shock loads 
effectively.

The DDAM methodology is rooted in ex-
tensive shock testing by the U.S. Navy, where 

Fig. 5. Mounted systems of equipment and foundation [22]: a) surface ship, b) submarine
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acceleration, velocity, and deformation were re-
corded during controlled experiments on real ships. 
The constants in the equations (e.g., 480, 20, 100, 
101.99, 0.508) were statistically derived to gener-
alize results across diverse naval structures and is 
based on three key principles:
	• empirical validation, equations are calibrated 

using real-world shock response data,
	• modal response approximation, structural be-

haviour is modelled using a superposition of 
natural modes, simplifying transient analysis,

	• standardized safety factors, a minimum re-
quirement of 6g ensures resilience even in 
lightweight systems.

Reference equations and conversion to SI units

The original DDAM reference equations Eq. 
(1) and Eq. (2) are given in imperial units and below 
is to the SI unit system.

To convert the equations to SI units, the follow-
ing adjustments are made: replace g with 9.81 m/
s2, and replace the constants 10.4 and 20 with their 
scaled SI equivalents with 1 in/sec = 0.0254 s as 
10.4·9.81 = 101.99 m/s2 and 20 in/sec = 20·0.0254 
= 0.508 m/s, The converted equations in SI units 
now look like:
	• modal acceleration 

	

 

 𝐴𝐴0 = 10.4 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

∙ 𝑔𝑔, where 𝑔𝑔 = 32.174, ft/s2  (1) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, in/s2 (2) 

 𝐴𝐴0 = 101.99 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

, m/s2 (3) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, m/s (4) 

 𝑤̅𝑤𝑎𝑎 = 𝑤𝑤𝑎𝑎
1000 = 4905

1000 = 4.905 kN (5) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

	 (6)

	• modal velocity 
	

 

 𝐴𝐴0 = 10.4 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

∙ 𝑔𝑔, where 𝑔𝑔 = 32.174, ft/s2  (1) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, in/s2 (2) 

 𝐴𝐴0 = 101.99 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

, m/s2 (3) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, m/s (4) 

 𝑤̅𝑤𝑎𝑎 = 𝑤𝑤𝑎𝑎
1000 = 4905

1000 = 4.905 kN (5) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

	 (7)

with wa = wa/1000, and wa = meff·g, using g = 
9.81 m/s2.

These equations are now fully converted into 
SI units for use in DDAM analyses and reflect 
empirical data from ship shock tests and serve as 
a foundation for DDAM stress assessment. For ex-
ample (CASE I) for a system with an effective 
modal mass meff = 50 kg and assumed ω = 100 
rad/s, the calculations proceed as follows
	 wa = meff·g = 50·9.81 = 4905 N (8)

	

 

 𝐴𝐴0 = 10.4 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

∙ 𝑔𝑔, where 𝑔𝑔 = 32.174, ft/s2  (1) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, in/s2 (2) 

 𝐴𝐴0 = 101.99 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

, m/s2 (3) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, m/s (4) 

 𝑤̅𝑤𝑎𝑎 = 𝑤𝑤𝑎𝑎
1000 = 4905

1000 = 4.905 kN (5) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 
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The calculated values of A0 = 1982.4 m/s2 and V0 
= 2.34 m/s are specific to the given effective modal 
mass and system configuration. These results high-
light the importance of accurate effective modal mass 
determination and unit conversion for ensuring com-
pliance with DDAM standards.

The next step in DDAM involves determining 
the dynamic design acceleration Da and the shock 
design value SDV. Taking A0 and V0 multiplying by 
ω (the circular frequency in radians per second). Da 
is the lesser of these two values
	 Da = min(A0· g, V0· ω) 	 (12)
where ω1 = 100 rad/s, then
	 Da = min(1982.4, 2.34·100) = 		
	 min(1982.4, 234.0) = 234.0 m/s 	 (13)

Taking the maximum of Da and 6g (minimum 
acceleration value in SI as 6·9.1 = 58.86 m/s2) we 
set the shock design value
	 SDV = max(Da, 6g) =
	 max(234·0,58·86) = 234.0 m/s 	 (14)

In this case, the system’s natural frequency 
is not explicitly provided. When the natural fre-
quency is unknown in practical DDAM applica-
tions for naval structures, it is common to assume 
a standard value of ω≈100 rad/s. This assumption 
is based on the typical frequency range of ship 
structures subjected to shock loads, where an ap-
proximate fundamental frequency of 15.9 Hz is 
often used, leading to
	 ω = 2πf ≈ 2π·15.9 ≈ 100 rad/s 	 (15)

This standardization ensures that the comput-
ed dynamic design acceleration Da remains within 
the expected range for ship-mounted equipment, 
as outlined in DDAM methodologies. 

For structures where the natural frequency is 
explicitly determined (beams case), the actual 
computed frequency is used instead of this as-
sumed value. For a steel beam (CASE II) with 
dimensions (length width height) L = 1 m × B 
= 0.1 m × H = 0.1 m was fixed at one end with 
Young’s modulus E = 2.1105 MPa, Poisson’s ratio  
ν = 0.3 density, ρ = 7850 kg/m3, yield strength Re = 
205 MPa, ultimate tensile strength Rm = 345 MPa, 
the calculation starts from the moment of inertia:
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then cross-sectional area
	 A = b·h = 0.1·0.1 = 0.01 m2 	 (17)
and the beam mass
	 m = ρAL = 7850·0.01·1 = 78.5 kg	 (18)
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The first natural frequency for the beam with 
distributed mass is given by:
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where α1 = 1.8755 then computed frequencies are
	 f1 = 83.54 Hz 	 (20)

For the beam taking an effective modal mass 
as meff = m =78.5 kg, the calculations proceed as 
follows:
	 wa = meff·g = 78.5·9.81 ≈ 770 N 	 (21)

	 wa = wa/1000 = 770/1000 = 0.770 kN 	 (22)
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Determining the dynamic design acceleration  
and the shock design value
	 Da = min(A0∙g, V0∙ω) 	 (25)
(where ω1 = 2π f1 is the circular frequency for the first 
mode) and take the maximum of Da and 6g (mini-
mum acceleration value in SI as 6 · 9.81 = 58.86 m/
s2 as the shock design value:
	 SDV = max(Da, 58.86) 	 (26)
The final shock design values is:
	 ω1 = 2πf1 = 2π·83.54 ≈ 524.85 rad/s 	 (27)

	 Da = min(2360, 2.42·524.85)=
	 min(2360, 1270.25) = 1270.25 m/s2 	 (28)

	 SDV=max(1270.25, 58.86)=1270.25 m/s2 (29)

For a surface ship and hull mounted system 
(CASE III) but the same beam as in case II we have 
also an effective modal mass as meff = m = 78.5 kg but 
the calculations proceed as follows
	 wa = meff·g = 78.5·9.81 ≈ 770 N 	 (30)

	 wa = wa/1000 = 770/1000 = 0.770 kN 	 (31)
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The dynamic design analysis method 
(DDAM) typically considers only the first mode 

of vibration when assessing shock response. This is 
based on the fundamental assumption that the first 
mode contributes the most to the overall response 
in most practical cases. Higher-order modes (e.g. 
f2, f3) have shorter wavelengths and are less likely 
to be significantly excited by shock loads. The pri-
mary reasons for this approach include:
	• dominant energy distribution; the first mode gen-

erally captures the largest displacement and ab-
sorbs the most energy from the shock event,

	• engineering standards; NAVSEA 0908-LP-000-
3010 emphasize using the fundamental mode for 	
shipboard shock analysis,

	• computational efficiency; higher-order modes 
contribute less to the overall response, so in-
cluding them provides diminishing returns for 
design safety.

However, in specialized cases where higher-
order modes play a critical role (e.g., very flexible 
structures or local resonances), a full modal analy-
ses may be warranted.

Interpretation of results

The computed shock design values provide 
insight into the structural resilience under dynamic 
loading conditions. The minimum threshold of 58.86 
m/s² represents the baseline acceleration resistance 
required by standard guidelines, ensuring that even 
in less critical scenarios, structures maintain a funda-
mental level of durability.

In CASE I, where Da = 234.0 m/s² (≈ 24 g), 
the calculated value significantly exceeds the mini-
mum threshold, indicating that the structure must be 
designed to withstand considerable dynamic forc-
es. This suggests the necessity for robust material 
selection and reinforcement to prevent potential 
failure under extreme shock conditions.

In CASE II, with Da = 1270.25 m/s² (≈ 127 g), 
the required structural resistance is even higher, 
implying a much greater exposure to dynamic 
forces. Such high acceleration values necessitate 
advanced engineering considerations, including 
optimized damping mechanisms and structural 
reinforcements, to ensure that the system remains 
operational and within acceptable safety margins.

In CASE III, with Da = 2092.86 m/s2 (≈ 210 g), 
the shock demand reaches its highest level among 
the analysed scenarios. This extreme value indi-
cates that the structure is subjected to very intense 
dynamic loads, likely approaching or exceeding 
the limits of conventional design methods. It 
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underscores the critical need for specialized en-
gineering solutions, including enhanced material 
selection, energy-absorbing components, and rig-
orous qualification procedures, particularly for 
mission-critical naval systems exposed to under-
water explosions.

Overall, the computed values emphasize the 
importance of evaluating dynamic responses accu-
rately in structural design, ensuring that all compo-
nents meet or exceed the prescribed safety require-
ments under shock conditions.

The computed shock design values provide 
insight into the structural resilience under dynamic 
loading conditions. The minimum threshold of 58.86 
m/s² represents the baseline acceleration resistance 
required by standard guidelines, ensuring that even 
in less critical scenarios, structures maintain a funda-
mental level of durability.

While these acceleration values are significant, 
they are not exceptionally high compared to those 
experienced in extreme shock environments such as 
underwater explosions or severe impact loading. 
Military and naval structures are often designed 
to withstand accelerations exceeding 100g–200g 
in critical areas. Therefore, while these values 
indicate notable shock loads, they remain within a 
range that can be addressed with conventional struc-
tural reinforcement techniques.

Shock design spectrum

The DDAM shock design spectrum presented 
in Figure 6 provides a graphical representation of the 
computed dynamic acceleration Da values across a 

range of natural frequencies. This spectrum is cru-
cial for understanding the structural response of 
naval components subjected to underwater shock 
loads, allowing for a systematic assessment of the 
required design acceleration and can be set up in-
dividually in DDAM calculations against standard 
equations given by NRL-1396 standard.

The spectrum consists of three distinct re-
gions, corresponding to different frequency ranges:
	• low-frequency range (<15Hz) – in this re-

gion, the minimum design acceleration is con-
strained by 6g (58.86 m/s²), ensuring a baseline 
level of structural robustness even for components 
with low modal frequencies. This threshold, rep-
resented by the red dashed line, prevents designs 
from being under-conservative.

	• mid-frequency range (15–100 Hz) – the ac-
celeration  increases linearly according to the 
equation:

	 Da = V0∙ω 	 (34)

	 This relationship shows that dynamic accel-
eration is directly proportional to the modal 
velocity V0 and the circular frequency ω. In 
practical terms, components operating in this 
frequency range experience increasingly high-
er shock loads, requiring a corresponding in-
crease in structural resilience.

	• high-frequency range (>100 Hz) – the ac-
celeration levels off, reaching its upper limit, 
indicated by the green dashed line. At these 
frequencies, modal acceleration dominates 
over velocity-dependent effects, meaning that 

Fig. 6. DDAM shock design spectrum in SI units
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further increases in frequency do not contrib-
ute to higher design accelerations. This pla-
teau defines the maximum shock load a struc-
ture must endure.

The computed spectrum is directly linked to 
the analytical results obtained for specific ship-
board components. The three primary cases anal-
ysed in this study are:
	• CASE I f1 = 15.9 Hz → ω1 = 100 rad/s,

A0 = 1982.4 m/s²,
V0 = 2.34 m/s,
Da = min(1982.4, 234.0) = 234.0 m/s²,
SDV = max(234.0, 58.86) = 234.0 m/s².

This case lies in the mid-frequency region, 
where  is velocity-controlled.

	• CASE II f1 = 83.54 Hz → ω1 = 2π f1 = 524.85 
rad/s,
A0 = 2360 m/s²,
V0 = 2.42 m/s,
Da = min(2360, 1270.25) = 1270.25 m/s²,
SDV = max(Da, 6g) = max(1270.25, 58.86) = 

1270.25 m/s².

This case is in the high-frequency range, 
where A0 dominates.

	• CASE III f1 = 83.54 Hz → ω1 = 524.85 rad/s,
A0 = 2092 m/s²,
V0 = 2.65 m/s,
Da = min(2092, 1391.86) = 1391.86 m/s²,
SDV = max(Da, 6g) = max(1391.86, 58.86) = 

1391.86 m/s².

This case corresponds to a surface ship and 
hull-mounted system where the effective mass leads 
to an increased dynamic response. All examples 
align with the expected behaviour of the spec-
trum, confirming its validity in describing the 
structural response under shock loads.

Understanding control by V0·ω and V0

The design acceleration Da in the DDAM is de-
termined by the minimum of the two expressions:
	 Da = min(A0, V0·ω) 	 (35)

This means that the governing factor for Da 
depends on the frequency range:
	• in mid-frequency ranges, where V0·ω < A0, the 

acceleration is velocity-controlled. As frequency 
increases, Da grows linearly with ω.

	• in high-frequency ranges, where V0·ω >A0, 
the acceleration reaches a plateau at A0. Here, 
modal acceleration dominates, and further 

frequency increases do not contribute to high-
er acceleration loads.

Velocity-controlled regime (V0·ω dominates)

When acceleration is controlled by V0·ω, it 
is essential to reduce modal velocity to mitigate 
shock effects. Practical strategies include:
	• modifying system stiffness (e.g., by adding 

reinforcements).
	• introducing damping elements (e.g., rubber 

pads, shock absorbers).
	• reducing mass (e.g., minimizing inertia of cer-

tain structural elements).

In real applications, mid-frequency com-
ponents are more sensitive to velocity-depen-
dent effects, so their protection should focus 
on controlling V0 rather than purely reducing 
acceleration.

Acceleration-controlled regime (A0 dominates)

When acceleration is limited by A0, modal ac-
celeration determines the structural response. In 
this case, the key strategies involve:
	• optimizing material selection to enhance en-

ergy absorption (e.g., composites, damping 
materials).

	• adjusting structural geometry (e.g., using 
strategically placed stiffeners).

	• designing damping systems to reduce peak ac-
celeration loads.

High-frequency components are particularly 
sensitive to peak acceleration values, making A0 the 
limiting factor in their response.

Practical importance of SDV

The SDV is essential in structural engineering 
for several reasons:
	• it provides a standardized acceleration value 

for stress analysis and structural verification,
	• it ensures that designs meet safety and performance 

criteria under shock loads,
	• it allows engineers to compare different 

structural components under a uniform loading 	
framework,

	• it aids in certification and compliance with 
regulatory requirements.

In summary, while Da describes the expected 
dynamic response, the SDV is the practical design 
value used in engineering assessments to ensure 
structural integrity and compliance.
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STRESS IN TERMS OF DDAM – MODAL 
STRESS COMPUTATION

In classical finite element analyses (FEM), 
the motion of a structure is governed by the sec-
ond-order differential equation
	 Ku(t) + Cu(t) + Mu(t) = F(t) 	 (36)
where: K − global stiffness matrix, 
	 C − damping matrix, 
	 M − global mass matrix, 
	 u(t) − displacement vector as a function of 

time,
	 F(t) − external force vector.

The displacement vector u(t) is obtained by solv-
ing Eq. (36) using numerical time integration in dy-
namic simulations. Once displacements are known, 
the stress field is computed through the strain and 
constitutive relations
	 σ = Dε 	 (37)
where:	 σ − stress vector,
	 D − material constitutive matrix (stiffness),
	 ε − strain vector.

The strain vector is obtained from displace-
ments via the strain-displacement relation
	 ε = Bu	 (38)
where: B − strain-displacement transformation matrix.

In the DDAM procedure, stresses in the struc-
ture are not computed from global forces alone. 
Instead, the method relies on modal decomposition 
and spectrum-based response calculations. The pro-
cedure involves the following steps:
	• modal analysis, the structure undergoes eigen-

value analysis to extract mode shapes Φj, natural 	
frequencies ωj, and participation factors Γj in each 
direction (X, Y, Z).

	• shock spectrum assignment, based on the se-
lected standard (e.g., NRL 1396), a response 	
spectrum Sj is assigned to each mode.

	• modal stress computation, for each node or 
element location i, the modal contribution to 
stress is calculated as
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where:	 σi − modal stress at node or element loca-
tion i,

	 Γj − participation factor of mode j,
 	 Φij − stress influence coefficient of mode j 

at point i,
	 S j − spectral acceleration (shock input) as-

signed to mode j, 

	 N − number of considered eigenmodes.

	• mode combination – to obtain total stress val-
ues, the modal contributions are combined 
using the square root of the sum of squares 
(SRSS) or more advanced methods. For corre-
lated modes, the correlation matrix Ci j is used
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where:	 σmax − combined maximum stress from all 
modes,

	 Cij − modal correlation coefficient between 
modes i and j,

	 σi, σj − modal stresses due to modes i and j,
	 N − number of considered eigenmodes.

	• directional evaluation, the above process is 
repeated separately for each principal direction of 
excitation (vertical, longitudinal, athwartship). 
The highest resulting value is used for stress 	
qualification.

	• stress mapping, the computed stress field is 
mapped to the structure as equivalent static 
stress, which can be visualized and compared 
to allowable limits.

Derivation and role of modal equations 	
in stress designation

To formulate and solve the equations of mo-
tion in modal space, it is necessary to first extract 
the mode shapes of the structure. This process con-
sists of two main steps:
	• solving the eigenvalue problem, the undamped 

free vibration equation is expressed as:
	 (K – ω2 M)ϕ = 0 	 (41)
where:	 K − global stiffness matrix,
	 M − global mass matrix,
	 ω − natural circular frequency,
	 ϕ − eigenvector (mode shape).

Solving this problem yields N eigenvalues ω2 
and corresponding mode shapes which form the 
mode shape matrix
	 Φ = [ϕ1, ϕ2, ... ϕN] 	 (42)

	• transformation to modal space – with the 
mode shape matrix Φ available, the original 
system of equations

	 Mu + Ku = F 	 (43)
can be transformed using the modal coordinate 
substitution
	 u(t) = Φ·q(t) 	 (44)

..
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where:	 u(t) − displacement vector as a function of 
time,

	 Φ − mode shape matrix (eigenvectors),
	 q(t) − modal coordinates (time-dependent 

generalized displacements).

resulting in the modal equations of motion Eq. (14).
In DDAM the dynamic equilibrium equation 
Eq. (8) is transformed using mode shapes  as

	 ΦT MΦq + ΦT KΦq = ΦT F 	 (45)
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where:	 qj − modal displacement (generalized coor-
dinate) for mode j, 

	 Sj − spectral acceleration assigned to 
mode j,

	 ωj − natural circular frequency of mode j.

The modal stress at location i due to mode j is 
calculated as
	 σij = Φi j·qj 	 (47)
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The total combined stress (e.g., von Mises) is 
evaluated by summing modal contributions with 
SRSS combination
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or correlation method
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𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
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2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 
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 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

	 (50)

Finally, the shock-induced stress is added to 
operational stress (e.g., static load or pressure) us-
ing the equation
	 σfinal = |σshock| + |σoprt| 	 (51)

and can be illustrated as the flowchart

(52)

Figure 7 presents the entire DDAM stress 
evaluation procedure as a flowchart. This sche-
matic summarizes the process from modal anal-
yses through stress combination to final stress 
evaluation.

This algorithm offers an efficient and practi-
cal method for estimating shock-induced structural 
stresses by utilizing response spectrum inputs. It 
eliminates the need for full transient time-domain 
simulations, making it especially suitable for the 
qualification of naval and shipboard systems under 
dynamic shock conditions.

STRESS IN SHIP ONBOARD EQUIPMENT

The dynamic design analysis method was 
employed to evaluate the shock resistance of naval 
equipment mounted on structural foundations sub-
jected to underwater explosion (UNDEX) loading. 
The focus is on a cylindrical marine tank sup-
ported on a lattice steel frame, commonly found 
in naval and offshore systems (Fig. 8). For the 
analyses, it was assumed that the tank and frame 
assembly is mounted to a horizontal structural el-
ement of the ship, i.e., a deck-mounted system. 
The frame was subjected to a vertical acceleration 
applied vertically upward from below, corresponding 
to a peak value of approximately 125g. The struc-
tural strength of the system was evaluated under 
acceleration conditions compliant with require-
ments specified by, among others, DNV [2].

Fig. 7. Flowchart of modal stress computation in 
DDAM using LS-DYNA.

..
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The study uses DDAM alongside traditional 
FEM simulations for validation and cross-com-
parison. Using LS-DYNA, the DDAM workflow 
involves the following steps:
	• perform modal analysis to obtain mode shapes, 

frequencies, and participation factors.
	• define the acceleration shock spectrum based on 

empirical or standard curves (e.g., NRL 1396).
	• calculate modal acceleration A0 and modal veloc-

ity V0 using an appropriate empirical formulas:

Ship type “surface”:
Hull Mounted Systems:
	 Reference Equations:

−	 modal acceleration:

	

 

 𝐴𝐴0 = 10.4 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

∙ 𝑔𝑔, where 𝑔𝑔 = 32.174, ft/s2  (1) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, in/s2 (2) 

 𝐴𝐴0 = 101.99 ∙ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

, m/s2 (3) 

 𝑉𝑉0 = 20 ∙ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

, m/s (4) 

 𝑤̅𝑤𝑎𝑎 = 𝑤𝑤𝑎𝑎
1000 = 4905

1000 = 4.905 kN (5) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+4.905
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 1982.4 m/s2 (6) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s (7) 

 𝐼𝐼 = 𝑏𝑏⋅ℎ3

12 = 0.1⋅0.13

12 = 8.33 m4 (8) 

 𝑓𝑓𝑛𝑛 = 𝛼𝛼𝑛𝑛2

2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2360 m/s2  (10) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.34 m/s  (11) 

 𝐴𝐴0 = 101.99 ⋅ 480+𝑤̅𝑤𝑎𝑎
20+𝑤̅𝑤𝑎𝑎

= 101.99 ⋅ 480+0.77
20+4.905 ≈ 101.99 ⋅ 484.905

24.905 ≈ 2092 m/s2 (12) 

 𝑉𝑉0 = 0.508 ⋅ 480+𝑤̅𝑤𝑎𝑎
100+𝑤̅𝑤𝑎𝑎

= 0.508 ⋅ 480+4.905
20+4.905 ≈ 0.508 ⋅ 484.905

104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

	 (53)

−	 modal velocity:
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12 = 0.1⋅0.13

12 = 8.33 m4 (8) 
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2𝜋𝜋 √ 𝐸𝐸𝐸𝐸
𝑚𝑚𝐿𝐿3 (9) 
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= 101.99 ⋅ 480+0.77
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104.905 ≈ 2.65 m/s (13) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗𝛷𝛷𝑖𝑖𝑖𝑖 ⋅ 𝑆𝑆𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (14) 

 𝜎𝜎max = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (15) 

 𝑞𝑞𝑗𝑗 = 𝑆𝑆𝑗𝑗
ω𝑗𝑗

2 (16) 

 𝜎𝜎𝑖𝑖 = ∑ Γ𝑗𝑗Φ𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1 ⋅ 𝑆𝑆𝑗𝑗 (17) 

 𝜎𝜎total = √∑ 𝜎𝜎𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  (18) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = √∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (19) 

 𝜎𝜎final = |𝜎𝜎shock| + |𝜎𝜎oprt| (20) 

 𝐴𝐴0 = 196.2 ⋅ (37.5+𝑤̅𝑤𝑎𝑎)(12+𝑤̅𝑤𝑎𝑎)
(6+𝑤̅𝑤𝑎𝑎)2 , m/s2 (21) 

 𝑉𝑉0 = 1.524 ⋅ 12+𝑤̅𝑤𝑎𝑎
6+𝑤̅𝑤𝑎𝑎

, m/s2 (22) 

 𝜎𝜎DDAM = 𝐹𝐹dyn
𝐴𝐴eff

= 𝑚𝑚eff⋅𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴eff

 (23) 

 Δ = |𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅−𝝈𝝈𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃|
𝝈𝝈𝐅𝐅𝐅𝐅𝐅𝐅

∙ 100% = |292.1−258.3|
292.1 ∙ 100% ≈ 11.6% (57) 

	 (54)

	• determine the dynamic design acceleration Da,
	• establish the shock design value SDV ,
	• compute the dynamic force Fdyn as

	 Fdyn = meff·SDV 	 (55)

Fig. 8. Directions and zones of acceleration acting on the hull and the foundation

	• apply the dynamic force as an equivalent dy-
namic load to the tank wall to asses stress
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	 (56)

where:	 meff – the effective modal mass, 
	 Aeff – the effective load-bearing area.

The analysed object is located in ZONE 1 (Fig. 
8) below the waterline, which is the most severely. 
The shock impulse is represented as a time-depen-
dent acceleration function described by a double 
half-sine waveform. The mathematical expres-
sions defining this waveform are presented in 
Figure 9. Predefined acceleration profiles for all 
shock zones are illustrated in Figure 10. 

The next figures present the results obtained 
using the DDAM methodology (Fig. 11) and 
transient FEM simulations (Fig. 12), which were 
comparatively analysed to assess consistency in 
stress predictions and to evaluate the suitability of 
DDAM for preliminary design under underwater 
shock loading.

In FEM computation, compared “max” stresses 
were obtained as the time envelope of the von Mises 
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Fig. 9. Double half-sine shock pulse

Fig. 10. Sinusoidal kinematic load profile for zone 1

Fig. 11. Determination of stress according to the DDAM methodology
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effective stress over the whole shock window. Val-
ues were read as nodal-averaged stresses and the 
envelope over time was formed to capture the peak 
response. To avoid numerical outliers from single 
elements, we report the global absolute maximum 
for the whole structure (e.g., 406.19 MPa), and a 
representative maximum in the critical support 
zones defined as the 95th percentile within a region 
of interest around the tank–frame joints (typically 
292 MPa to 320 MPa). This criterion suppresses 
single-element hot spots and yields engineeringly 
meaningful values for comparison.

In DDAM computation, directional spec-
tral accelerations SDV ax, ay, az were converted to 
equivalent inertial loads Fdyn = meff ai, where ai cor-
responds to the SDV (Eq. (24)) in direction i. The 
effective modal masses meffi  were obtained by in-
cluding as many modes in direction i as needed to 
reach a cumulative modal mass participation of at 
least 90%, as required by MIL-STD-901D. Bear-
ing stresses along the dominant load path were then 
evaluated as σDDAM = Fdyn/Aeff and combined using 
the SRSS procedure. The combination across the 
three spatial directions is performed at the final 
stage of the procedure (see Eq. (18–19) and (Fig. 
7)). Hence, FEM and DDAM are compared on the 

same physical quantity (stress). FEM captures lo-
calized peaks, while DDAM provides a conserva-
tive global estimate.

For a direct quantitative comparison, the maxi-
mum effective stress obtained via DDAM was 
σDDAM = 258.3 MPa, while the corresponding FEM 
analysis yielded σFEM = 292.1 MPa. The relative dif-
ference was calculated as: 
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Table 1 summarizes this comparison of stress 
values between the two approaches. It highlights 
that DDAM slightly underestimates the effective 
stress relative to FEM, but the discrepancy re-
mains within 12%. This confirms the suitability of 
DDAM for preliminary engineering assessments, 
while FEM provides more detailed local insight

These findings confirm that DDAM provides 
a conservative but reasonably accurate estimate 
of the global shock response, while FEM captures 
localized effects such as stress amplification at 
joints, peak stress concentrations, non-linear ma-
terial behaviour, and geometric discontinuities. 

Fig. 12. Determination of stress according to explicit FEM methodology

Table 1. Comparison of stress values obtained via DDAM and FEM
Case σDDAM MPa σFEM MPa Difference %

Tank-frame structure 258.3 292.1 11.6
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The difference between the two methodologies 
does not exceed 12%, which supports the fea-
sibility of DDAM as a rapid preliminary design 
tool under underwater shock loading. In contrast, 
FEM remains indispensable for capturing de-
tailed localised phenomena, particularly in criti-
cal support regions of the tank–frame interface. 
Thus, DDAM offers an efficient first-order esti-
mation of the shock response, especially valuable 
during early design stages where rapid evaluation 
is necessary, whereas FEM ensures accurate as-
sessment of complex local effects.

CONCLUSIONS

In shock resistance analysis of naval structures, 
simplified and numerical methods serve comple-
mentary roles. DDAM offers rapid, conservative 
estimates valuable in early design, while FEM, as 
implemented in LS-DYNA or DYSMAS, captures 
detailed UNDEX phenomena, including cavitation 
and bubble pulsation, but requires substantial com-
putational resources. In practice, combining both 
approaches proves most effective where DDAM 
enables fast preliminary assessments, and FEM 
provides accurate validation of localized non-linear 
effects, ensuring both efficiency and reliability in 
critical naval applications.
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