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ABSTRACT

This paper introduces a procedure that transforms multiple evaluation metrics into a single aggregated score, providing
a comprehensive and interpretable summary of machine learning performance. The approach is demonstrated on a set
of metrics obtained from various anomaly detection algorithms based primarily on Isolation Forest. Seven relevant
performance metrics are aggregated using diverse techniques, including the arithmetic mean, weighted mean, Choquet
integral, the OWA operator, and several Smooth OWA variants based on different interpolation Newton-Cotes quadra-
tures. For methods requiring them, two distinct sets of weights are used. The results show that, particularly in anomaly
detection tasks where individual metrics may lead to inconsistent evaluations, the aggregated score effectively reflects
metric preferences and enables quick identification of the best-performing algorithm for a given dataset.

Keywords: multi-criteria decision making, model ranking, metric aggregation, evaluation metrics, OWA operator,

Choquet integral.

INTRODUCTION

The widespread usage of machine learning and
artificial intelligence has made model evaluation a
central concern in both academic and applied re-
search. Whether working with classical algorithms
or state-of-the-art Al systems, practitioners face
the challenge of selecting evaluation strategies
that meaningfully reflect model behavior across
diverse datasets and tasks. Far from being a mere
afterthought, evaluation metrics now play a critical
role in shaping how results are interpreted, com-
pared, and communicated, ultimately influencing
which models are trusted, deployed, or discarded.
Across current studies, there emerges a common
thread. While a wide variety of evaluation metrics
have been proposed, each with their own assump-
tions and domains of applicability, there is still no
consensus on how to systematically compare these
metrics. There is a necessity to introduce a single
metric that aggregates classical measures in order
to provide an unambiguous evaluation of classi-
fier quality, especially under complex conditions
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such as class imbalance or temporal ambiguity.
Such fusion enables more coherent model com-
parison, particularly when individual metrics yield
conflicting or ambiguous results. In this context,
techniques from multi-criteria decision making
(MCDM), including the ordered weighted averag-
ing (OWA) operator [1] and the Choquet integral
[2] offer robust tools for combining performance
indicators while capturing user-defined preferenc-
es or dependencies among metrics. These methods
go beyond conventional arithmetic mean by incor-
porating notions of importance, interaction, and
non-linearity, making them especially suitable for
high-stakes evaluations such as anomaly detection
under class imbalance.

Challenges in model evaluation and metric
diversity

Although metrics are a tool rather than a
topic of their own, there are some academic pa-
pers emerging on new methodologies for evaluat-
ing the quality of machine learning models. The
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paper [3] introduces a benchmark-based method-
ology for aggregating software quality metrics
into ratings. Instead of relying solely on direct
numerical aggregation (such as averages or in-
equality indices like Gini), the authors propose
a two-stage process. Firstly, raw metric values
are mapped to risk profiles using thresholds de-
rived from benchmark datasets. Secondly, these
profiles are converted into interpretable ratings.
The approach is demonstrated on a benchmark of
100 software systems, showcasing its applicabil-
ity to real-world quality assessment scenarios and
its robustness to data variations. In [4] the chal-
lenge of aggregating low-level software quality
metrics into meaningful system-level indicators
is considered. The Squale model is introduced,
which uses normalization and weighting to unify
diverse metrics. The method is validated on the
Eclipse project and compared against traditional
and inequality-based aggregations. The meth-
odology proposed in [5] includes the use of the
Choquet integral to aggregate multi-dimensional
quality indicators in the context of data fusion
from heterogeneous sources. Although its focus
is on data quality dimensions such as freshness
and consistency, the paper offers valuable insight
into how conflicting criteria can be systematically
combined into a unified score. This methodology
is conceptually aligned with efforts in model eval-
uation that aim to reconcile diverse performance
metrics into coherent, interpretable outcomes.
The paper [6] introduces the unified performance
measure (UPM), a modified F1-score designed to
better handle imbalanced classification problems.
UPM is tested on synthetic and real datasets,
showing superior stability and informativeness
compared to classical metrics. It offers a prom-
ising direction for standardizing binary classifier
evaluation.

Many scientific papers focus on potential prob-
lems arising from the incorrect application of some
metric. The widespread use of reciever operating
characteristic (ROC) curve for imbalanced binary
classification tasks is criticized in [7]. The authors
argue that such plots can mislead performance in-
terpretation. They advocate for precision-recall
(PR) curve, which more accurately reflect classi-
fier behavior when positive cases are rare. Experi-
mental and theoretical results support PR curves
as a more reliable evaluation tool in real-world
imbalanced scenarios. In [8] a theoretical relation-
ship between ROC and PR curves is explored,
particularly in the context of imbalanced datasets.

They demonstrate that dominance in ROC space
implies dominance in PR space and introduce the
concept of the achievable PR curve. The study also
highlights that improving the ROC AUC metrics
may not result in optimal PR AUC performance,
which is critical for algorithm evaluation. The
paper [9] investigates how to select optimal deci-
sion thresholds for classifiers to maximize the F1
score in binary and multilabel contexts. It derives
theoretical thresholds under different assumptions,
such as well-calibrated probabilities or uninforma-
tive classifiers. Results reveal unintuitive behav-
iors and underscore the need for careful threshold
selection in imbalanced classification settings. In
[10] the Matthews correlation coefficient (MCC)
is compared with F1 score and accuracy in binary
classification, especially under class imbalance.
They demonstrate that MCC offers more balanced
and informative evaluations by incorporating all
four elements of the confusion matrix. Experimen-
tal results across synthetic and real datasets support
MCC as a superior and more reliable evaluation
metric. The research [11] critically examines the
ROC area under the curve (AUC) as a performance
metric for classification systems, highlighting a
fundamental inconsistency: AUC implicitly ap-
plies different misclassification cost assumptions
across classifiers. The author argues that such a
practice is incoherent since misclassification costs
are inherent to the classification problem, not de-
pendent on the classifier. As a solution, a coherent
alternative metric is proposed that preserves con-
sistency in cost assumptions, offering a more reli-
able basis for comparative evaluation.

Related work on metric aggregation

The article [12] presents a statistically
grounded comparison of five text classification
algorithms across varying category distributions
and training data volumes. While it does not pro-
pose new evaluation metrics, it highlights how
model performance can fluctuate significantly
depending on dataset characteristics, implicitly
demonstrating the limitations of fixed evalua-
tion criteria. These observations support the case
for data-sensitive model ranking, reinforcing the
need for adaptable and context-aware evaluation
strategies. The study [13] examines the perfor-
mance of two variants of the Naive Bayes clas-
sifier, multivariate Bernoulli and multinomial,
across multiple text classification tasks. Although
not framed as a metric-focused study, its detailed
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empirical comparisons reveal how performance is
influenced by factors such as vocabulary size and
feature representation. These findings underscore
the importance of context-aware analysis, echoing
broader challenges in constructing reliable ranking
frameworks that account for data-specific behav-
ior. The review paper [ 14] offers a broad overview
of commonly used evaluation metrics in machine
learning, particularly in classification tasks across
binary, multi-class, and multi-label settings. It
highlights the limitations of traditional metrics
such as accuracy and F1-score when used in isola-
tion, and emphasizes the lack of standardization
in metric usage as a major obstacle for meaning-
ful model comparison. The authors of [15] pres-
ent a detailed taxonomy of 20 evaluation metrics
used in time series anomaly detection. They de-
fine a set of desirable metric properties and evalu-
ate each metric’s suitability through case studies
and experiments. Their analysis underscores the
need for domain- and task-specific metric selec-
tion, reinforcing the importance of metric-aware
model evaluation frameworks. In [16], affiliation
precision/recall is proposed, which is a new class
of evaluation metrics designed for anomaly de-
tection in time series. Unlike traditional metrics,
these are parameter-free, interpretable, and resil-
ient to adversarial predictions. Their framework
enables local, fine-grained evaluation of detection
quality, addressing significant shortcomings in
conventional approaches. The study [17] evalu-
ates the limitations of traditional metrics, such as
accuracy and Fl-score, when applied to anomaly
detection in time series data from industrial con-
trol systems. The authors propose an improved,
range-based evaluation metric by modifying the
Time-series aware precision and recall (TaPR) to
account for ambiguous temporal boundaries of
anomalies. Their approach highlights the impor-
tance of tailoring metrics to data characteristics
and operational contexts, reinforcing the inad-
equacy of point-based evaluation for real-world
detection tasks. The authors of [18] present a
mathematical extension of classical precision and
recall tailored to detect and evaluate range-based
anomalies in time series data. Their model allows
for customization based on domain-specific pri-
orities, bridging the gap between generic metrics
and real-world anomaly detection needs. This
work offers a formal foundation for evaluating
detection systems beyond point-based accuracy,
aligning closely with efforts to develop composite,
context-aware evaluation frameworks.
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Motivation for a unified aggregated metric

Across a variety of recent studies in anoma-
ly detection, classification and image analysis, a
common dependency emerges: the effectiveness
of the algorithms is closely tied to the choice
of evaluation metrics and similarity measures.
Whether in visual imperfection detection under
weak supervision [19], deep learning-based medi-
cal diagnostics [20], patient survival prediction
[21] or ensemble-based intrusion detection sys-
tems [22], model performance is typically report-
ed through standard metrics such as accuracy, pre-
cision, recall, or F1 score. Similarly, in unsuper-
vised anomaly detection approaches, such as the
modified negative selection algorithm [23], evalu-
ation hinges on metrics capable of reflecting sensi-
tivity to rare events, often prioritizing recall at the
cost of precision. In high-dimensional industrial
cybersecurity contexts [24] or general intrusion
detection benchmarks involving multiple classi-
fiers [25], the metric space directly shapes how
model output is interpreted and compared. These
examples illustrate the diversity of metric require-
ments across domains — ranging from robustness
to class imbalance, to interpretability, to discrimi-
native sensitivity in complex feature spaces.

Despite the rich spectrum of available metrics,
this diversity often presents challenges rather than
clarity. Researchers must navigate a wide range
of evaluation criteria, each emphasizing differ-
ent aspects of performance sometimes leading to
contradictory conclusions and inflated analytical
complexity. Furthermore, strong correlations and
redundancies among metrics can distort the over-
all assessment of model performance and hinder
efforts to construct consistent and meaningful
rankings of algorithms. These issues are particu-
larly pronounced in anomaly detection, a class of
problems often treated as binary classification.
Here, the task involves identifying observations
that significantly deviate from the norm, and is
especially sensitive to class imbalance. While ac-
curacy may suffice for multiclass classification,
binary tasks require a broader and more nuanced
set of metrics, such as precision, recall, F1-score,
specificity, ROC AUC, PR AUC and balanced
accuracy to capture performance reliably. Faced
with this multitude of options, researchers often
struggle to determine which metrics to prioritize,
and whether their conclusions hold consistently
across different measures. To address this, this
study proposes a unified evaluation framework:
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a composite performance metric designed to in-
tegrate the strengths of individual criteria while
reducing ambiguity and inconsistency in model
assessment. This unified approach seeks to sim-
plify the evaluation process, enhance interpret-
ability, and support the construction of robust
rankings, particularly in challenging settings such
as anomaly detection, where classical metrics
may yield misleading insights due to inherent data
imbalances.

We also aim to use the most recent, refined ag-
gregation methods. Recent development in metric
aggregation emphasize generalized operators and
smoothing techniques to enhance interpretability
and robustness. [26] introduce smooth OWA op-
erators inspired by Newton-Cotes quadratures,
demonstrating notable gains in classification ac-
curacy through pre-aggregation smoothing. Sim-
ilarly, in [27] a generalized and smoothed variant
of the Choquet integral are proposed, retaining its
theoretical properties while improving numeri-
cal precision. These innovations reflect a broader
trend toward flexible, mathematically grounded
aggregation strategies suited for high-stakes, mul-
ti-metric evaluation scenarios.Unlike simple aver-
aging or heuristic scoring, our method leverages
structured aggregation and multi-criteria ranking
techniques to produce a consistent evaluation out-
put across different model types and tasks.

BACKGROUND

Anomaly detection metrics

Among the metrics that determine the qual-
ity of an anomaly detection algorithm, a division
can be made into those dependent and indepen-
dent of the decision threshold. To the first group
belong precision, recall, their combination F1
score, specificity, accuracy. All these metrics are
based on different measurements of the propor-
tion of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) cas-
es. Metrics independent of the decision thresh-
old include ROC AUC and PR AUC, measur-
ing the area under a respectively defined curve.
These metrics, in addition to anomaly detection,
can be used identically for binary classification
algorithms, and in modified form for multiclass
classification, where the metric is calculated
separately for each class and the results are av-
eraged across all classes.

Precision indicates the proportion of samples
predicted as anomalies that are actually anomalous.

Precisi v ()
recision = ————
TP + FP
Recall (sensitivity, true positive rate) mea-
sures the proportion of actual anomalies that are
correctly identified.

TP
Recall = ——— 2
T TP FN
F1 score is the harmonic mean of precision
and Recall. This metric balances both aspects
and is especially useful when a trade-off between
false alarms and missed detections is required.

Fl=2 Precision - Recall 3)
~ " Precision + Recall

Specificity (true negative rate) indicates the
proportion of normal samples correctly identified
as normal.

TN
. . . - 4
Specificity TN+ FP 4)

Accuracy represents the overall proportion
of correctly classified samples, including both
anomalies and normal.

TP+TN

A = 5
couracy = e N TP+ FN. )

In anomaly detection, accuracy can be mis-
leading if the data is highly imbalanced, e.g. 95%
normal cases.

ROC AUC (area under the receiver oper-
ating characteristic curve) represents the area
under the ROC curve, which plots the true posi-

tive rate (TPR= TP

PP TP+FN
rate (FPR=——) at various decision thresh-

olds. The area is usually calculated by the trap-
ezoidal rule, which involves approximating the
area under the ROC curve by dividing it into
trapezoids with vertical lines at the FPR values
and horizontal lines at the TPR values. Then,
the area is computed by summing the areas of
the trapezoids. ROC AUC equal to 1 indicates
excellent classification performance, 0.5 corre-
sponds to random guessing.

PR AUC (area under the Precision-Recall
curve) represents the area under the curve plotting
Precision against Recall at various thresholds. It

) versus the false positive
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is particularly suitable for evaluating models on
imbalanced datasets. For various thresholds, Pre-
cision-Recall pairs are computed, thus forming
the PR curve. The area is calculated usually by
the trapezoidal rule, similarly as for ROC AUC.
A high PR AUC score indicates that the model
detects anomalies effectively without generating
too many false positives.

Aggregation methods

There exists a vast number of aggregation
methods, including the most basic ones like the
mean and weighted average. In this section, a
few more sophisticated ones are recalled, such
as the OWA operator and Choquet integral, and
recent modification of the OWA operator — its
smoothed version.

OWA [28] is a flexible aggregation method
which applies weights not to specific compo-
nents, but to their ordered values.

n
OWAGe;, Xy, o) = ) wioxy (6)
i=1
where: Zw,- =1and x, is the i-th largest value in
the vector (X)X, o0 s X).
Smooth OWA operator [26] is a modification

of the OWA operator, associated additionally with
smoothing method denoted as Q:

SmoothOWA(xy, x5, ..., Xp) =

= i w; - Q(x())
i=1

where: Q(x(l_)) means an application of a chosen
Newton-Cotes formula to the element x pe
Let us recall few Newton-Cotes quadra-
tures that can be used for such smoothing:

(7

1 2 1
0s(x®) =g ¥a-n +3%0 T gxan  (8)
(Simpson's quadrature)

1 3
Q0s(x) = g*e-n +gxa
8

3 1 )
+§x(i+1) + g¥a+2) (3/8 quadrature)
1 1
Qr(xw) = 5% + 3 %+1) (10)

(trapezoidal quadrature)
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2 1 2
Qoncs(xw) = 3%a-» ~3%® T 36 (11)
(3 — point Open NC quadrature)

With such operation of applying the Newton-
Cotes quadratures, each element x  is smoothed by
its neighboring elements in the vector of sorted in-
put. Note that if the index of an element is less than
1, we take the value of x o instead of that element,
and if the index is greater than n, we take x .

The Choquet integral [29] is a nonlinear aggre-
gation function that not only considers the magni-
tude of input values but also the interactions be-
tween them, as defined by a fuzzy measure g. It is
especially useful when the importance of a group
of criteria depends on their combination, not just
individual relevance. Let (X, ) be a measurable
space and h: X — [0,1] be an © -measurable func-
tion. The Choquet integral of function /4 with re-
spect to a fuzzy measure g [30] is expressed as

n
Ch fh °g= Z (h(x@) = h(xeen))
= (12)
g(4), xi41) =0
where: x are sorted inputs, 4, = {x,, .x,;} and
g is a monotonic set function — Sugeno
A-fuzzy measure. The fuzzy measure g of
any subset U,-ez{xm, '__x(n)}, where | € {1, 2,
..., n} is calculated as

g (U{xm}) = %[]_1[6 + 490 = 1] (13)

i€l
which can be also presented in the form of

9(Air1) = g(A) + g({xasn}) + 14
+ Ag(Ai)g({X(Hl)}) (1

The value of A € (-1, 0) u (0, ©) is obtained
from a polynomial eqaution solved for A:

1+/1=1_[(1+/1)gi (15)
i=1

where: g, =g({x,}, g, =g({x,}, g, = g({x,}.

The Choquet integral generalizes the weight-
ed mean and can model redundancy or synergy
between features. It is widely used in multicrite-
ria decision making and information fusion. In a
practical application, the measure g can be used
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to model the relevance of various information
sources, while # may denote results obtained from
those sources. The fuzzy integral is then used to
combine the outcomes nonlinearly.

Quality of ranking metrics

Two metrics for comparing rankings are pre-
sented: NDCG which derives from cumulative
gain (CG) — metric often used for search en-
gines; and MAP which originates in the preci-
sion metric for classification.

Discounted cumulative gain (DCG) is a mea-
sure of ranking quality. It is often normalized so
that it is easier comparable, giving normalized
discounted cumulative gain (NDCG) [31]. DCG
is a refinement of a simpler metric (cumulative
gain), which is a sum of the relevance values of
all elements in the ranking:

k

CGy, ZZreli (16)

i=1

where: rel. is the relevance score (e.g. the real
algorithm quality) and £ is the number of
elements considered.

CG does not take into account the position in
ranking, only the relevance. To include the posi-
tion in ranking, DCG is used. There are two ver-
sions of this metric, namely standard:

k
rel;

- 17

rely + ; log,(i+1) {17

or with logarithm starting from the beginning:

k

DCG,, = Z—Tel" (18)
= log,(i+1)
i=

The logarithm causes that the lower positions,
e.g i=5, 6, ..., have less impact on the score. This
means that DCG rewards ranking which puts rel-
evant elements higher in order.

To enable comparison between different rank-
ings and scenarios, DCG is normalized with re-
spect to ideal ranking (IDCG) as follows:

DCG,
IDCGy,

NDCG,, = (19)

where: IDCG, is a DCG value computed for
an ideally sorted ranking. The value of

NDCG, belongs to range [0, 1], and the
value of 1 corresponds to an ideal ranking.

Another measure which can be used to assess
the quality of ranking is mean average precision
(MAP). MAP measures how well relevant ele-
ments are ranked, rewarding those ranked higher.
Unlike NDCG, MAP treats the ranking task as a
set of binary decisions: whether an element is rel-
evant or not — and checks the precision with which
all relevant elements are found in subsequent po-
sitions. Let us first define average precision

k
1
AP = Ez P(i) - rel; (20)
i=1

where: k is the number of elements in ranking,
R is the number of actually relevant ele-
ments in ranking, P(i) is the precision for
position i, computed as the proportion of
relevant items at i to the number 7 and rel,
e {0,1} is the relevance of the i-th posi-
tion (1 for relevant or 0 for non-relevant).

Next, MAP is an average of AP for multiple
rankings

Q
1
MAP 252 AP, Q1)
q=1

where Q is the number of queries or test cases
(e.g. different datasets that algorithms
were tested on) and AP, is the average
Precision for the g-th case.

In the context of evaluating methods for ag-
gregating the rankings of algorithms (e.g., anom-
aly detection classifiers), MAP can be used to see
how well a ranking method positions algorithms
that are among the “relevant” (e.g., top-3 best).
What matters is not only their presence in the
ranking, but also their positions — the higher they
are, the greater the contribution to the MAP score.
MAP is a stricter metric than NDCG because it
only rewards matches of relevant objects.

PROPOSED METHODOLOGY

In this section, an overview of our proposed
ranking method is presented. Its computational
complexity is discussed.
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Aggregation algorithm

Let N algorithms be given (e.g., anomaly de-
tection, as is the case in this research). For each
of them, the values of n metrics (e.g., recall, ac-
curacy) have been calculated. An aggregation
method is chosen and, if necessary, appropriate
weights must be assigned (e.g., for weighted av-
erage, OWA operator, for calculation of fuzzy
measures for Choquet integral). Using the chosen
method, aggregation of n metrics for each of the
N algorithms is performed. In this way, N values
of the aggregated metric are obtained. They can
be compared between algorithms, assuming that
they speak in the most broad way about the qual-
ity of models’ performance. Based on the aggre-
gated results, we rank the algorithms. Thus, the
aggregated metric provided good interpretability
and ease of comparison between algorithms. The
process of ranking creation with the use of aggre-
gation method is presented in Figure 1.

If several different aggregation methods were
used for testing purposes, or if the real ranking or-
der of the algorithms is known, metrics for evalu-
ating the quality of ranking (such as NDCG or
MAP) can be applied to the obtained rankings to
compare them. Based on this, the weights of the
metrics and the aggregation method most suitable
for the considered issue could be selected.

Computational complexity

To consider computational complexity of our
method, few components are analyzed. The compu-
tation of anomaly detection metrics, the complexity
of PCA algorithm (if it is used for weight acquire-
ment) and finally the chosen aggregation method.

‘ Algorithm 1

/ \ / \

{Metric 1‘1] LEREX [Memc 1, n] [Metric 2.1} LR {Melric 2, n]

’ ‘ Algorithm 2 ’

The basic binary metrics (precision, recall, F1
score, accuracy, specificity) rely on the counting of
TP, TN, FP, FN values, resulting in very low com-
plexity of O(n), where n is the number of observa-
tions in the dataset. The threshold-independent met-
rics: ROC AUC and PR AUC have higher complex-
ity, because they require sorting of predictions and
calculating the area under the respective curve. The
complexity of such calculations equals O(nlog n).

Computational complexity of PCA algorithm
[32], which in some variants of our proposal is
used to obtain aggregation weights, depends on
the number n of observations in dataset and the
number of features d. The value of this complex-
ity is O(min(n*d, nd?)).

Basic aggregations like average or weighted
average have the complexity of O(n). Both OWA
operator and Choquet integral are characterized
by O(nlog n) complexity, because they require
sorting of input data.

NUMERICAL EXPERIMENTS

This section includes the description of the
dataset used for experiments, two methods of
weight selection and two variants of metric aggre-
gation: with and without analysis of their correla-
tion and removal of redundant information. In the
end, the rankings of the algorithms are obtained
and compared, using NDCG and MAP metrics.

Dataset description

The experimental dataset contains 260 records
corresponding to the application of 10 anomaly
detection algorithms evaluated on 26 distinct

------ Algorithm N

AV AV

[ Aggregated metric 1 ] [ Aggregated metric 2 ]

« Chosen aggregation method

» Chosen set of weights
for aggregation if necessary

Aggregated metric N

A "}

i

Ranking of the algorithms

Easy comparison of aggregated metric value between the algorithms

Figure 1. The process of algorithms ranking with aggregated metric
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benchmark datasets. For metric computation, the
following algorithms were tested: dimensionali-
ty reduction-based isolation forest (DRIF), fuzzy
dimensionality reduction-based isolation forest
(FDRIF), isolation forest (IF), k-nearest neigh-
bors detector (KNN), local outlier factor (LOF),
minimal spanning tree clustering for isolation
forest (MSTCIF), minimal spanning tree-based
isolation forest with evaluation function built on
the fuzzy rules in Takagi-Sugeno model (MSTIF-
TS), minimal spanning tree-based isolation forest
(MSTIF), one-class support vector machine de-
tector (OCSVM), principal component analysis
outlier detector (PCA), while the datasets were:
Annthyroid, Arrhytmia, Breast, Cardio, Forest
Cover, Glass, Http, lonosphere, Letter, Lympho,
Mammography, Mnist, Musk, Optdigits, Pendig-
its, Pima, Satellite, Satimage-2, Shuttle, Smtp,
Speech, Thyroid, Vertebral, Vowels, WBC, Wine
—all are publicly available and widely recognized
datasets for anomaly detection. For each dataset —
algorithm combination, seven evaluation metrics
were computed to evaluate the models’ perfor-
mance. The following metrics were selected: ac-
curacy (overall effectiveness of algorithm), preci-
sion (correctness of positive predictions), recall
(detection of positive cases), F1 score (balance
of precision and recall), Specificity (recognition
of negative cases), ROC AUC (ability to distin-
guish between classes regardless of threshold),
and PR AUC (evaluation of effectiveness with
unbalanced data). Since this article aims not to
compare algorithms per se, but to present a uni-
versal method for ranking models, thenames of
the algorithms have been disguised as Algorithm
A, B, and so on.

To analyze general differences between the
metric values, a boxplot is created, as shown on
Figure 2. Among the evaluated metrics, precision
generally yielded the lowest values. The F1 and
PR AUC metrics followed, both characterized by
rather similar distributions. Conversely, the met-
rics accuracy, ROC AUC, recall, and specificity
generally exhibited higher scores, albeit with the
presence of some lower-valued outliers in each
case.The exact statistics values are presented in
Table 1 and discussed below.

For Precision, the mean value is only
28.64%, with the median even lower. The F1 and
PR AUC metrics had slightly higher means, just
above 35%. In contrast, the remaining metrics
demonstrated average values ranging between
74% and 78%. The standard deviations across

all metrics ranged from 20% to 30%, indicating
moderate variability. Minimum values are typi-
cally close to 0%, while maximum values are
most often at or near 100%.

The correlation analysis of the evaluation
metrics reveals several noteworthy patterns. As
one can observe from correlation matrix visible
on Figure 3, strong positive correlations areob-
served between F1 score and precision, as well
as between F1 score and PR AUC, indicating
that these metrics convey highly similar infor-
mation. A similarly high correlation is noted be-
tween accuracy and specificity, and to a slightly
lesser extent between accuracy and ROC AUC,
suggesting that accuracy is largely driven by cor-
rect classification of negative cases. Additionally,
ROC AUC showed substantial correlation with
specificity, while PR AUC is highly correlated
with Precision. On the other hand, recall exhibit-
ed low or negligible correlations with most other
metrics (e.g. -0.03 with accuracy, -0.1 with speci-
ficity), highlighting its distinct role in capturing
the model’s ability to detect positive (anomalous)
instances. These findings suggest potential redun-
dancy among several metrics, particularly within
the groups F1—precision-PR AUC and accuracy—
specificity. Therefore, when designing aggrega-
tion strategies or selecting key metrics for evalu-
ation, it may be worth considering to retain only
one representative from each highly correlated
group to avoid overemphasizing overlapping as-
pects of model performance.

Aggregation of all metrics

Firstly, we present more automated variant of
our methodology, where all available metrics are
aggregated, regardless of their correlation. Two
approaches to weight selection have been made to
allow better comparison of aggregation methods.
One way of selecting the weights is based on the
relationships found in our dataset, and the other is
expert selection based on knowledge of the met-
rics. The selected sets of weights were used for
weighted average, OWA and smooth OWA opera-
tors, and they served as the g, values for calculat-
ing the fuzzy measures in Choquet integral.

In the first weighting strategy, the columns
with metrics’ values are treated as input features
for principal component analysis. The contribu-
tion of each metric to the first (and therefore most
significant) of the principal components (which
explains about 66% of the variance in the original
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Figure 2. Boxplot of metric values

Table 1. The statistics for the metrics results for the analyzed algorithms and datasets

Metric Min Mean Median Max Std
ROC AUC 22 77.99 82.40 100.0 20.06
Accuracy 3.1 74.59 78.70 100.0 21.39
F1 score 0.2 35.94 30.90 99.1 27.03

PR AUC 0.4 3717 25.55 100.0 30.65
Precision 0.1 28.64 18.75 100.0 26.85

Recall 1.3 77.97 84.70 100.0 22.37

Specificity 0.0 74.25 80.00 100.0 23.47

data) is examined. In the Figure 4 the weights are

shown after normalization to a sum of 1.

The largest weight, about 0.22, was assigned
to the PR AUC metric. Slightly smaller weights
(around 0.18-0.19) belong to the F1 score and
precision metrics. This is followed by weights of
about 0.11-0.12 for the specificity, accuracy and
AUC metrics. The smallest weight of about 0.05
is assigned to the recall metric.

Based on expert knowledge, the metrics are
assigned the weights visible on the barplot in Fig-
ure 5, with following explanations:

e Recall — crucial metric, because missed anom-
alies (false negatives) are oftentimes the most
expensive.

e FI1 score — a compromise between recall and
precision

e Precision — reduces the number of false alerts
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e Specificity — ensures that normal cases don’t
fall into the bag of anomalies.

e PR AUC —especially informative with strong-
ly unbalanced classes (typical in anomalies)

e ROC AUC —describes ability to distinguish be-
tween classes, but in extremely unbalanced data
is sometimes less informative than PR AUC.

e Accuracy — easy to interpret, but in anomaly
detection often overestimated by the large
number of normal class examples.

It is worth noting that expert weights can be
modified in practical applications if, for exam-
ple, we are primarily concerned with reducing
false alarms, or with eliminating errors resulting
from classifying anomalies as normal observa-
tions. The cost of such errors could be consid-
ered in practice. One can also run the ranking for
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Figure 4. Weight selection for all metrics based on contribution to the first principal component

several sets of weights and see how the order of
the models changes.

A comparison of the obtained aggregated
metric’s values was performed on the boxplot
visible in Figure 6. Typically, the value of the
metric fell within the range from 45 to 65%. For
OWA aggregation, generally higher values of
metrics are obtained with PCA weights than with
expert weights. The opposite is true for weighted
average and Choquet aggregation. Overall, the

highest metrics’ values were for OWA, OWA
Simpson, OWA ONC3 (with PCA weights) with
median value above 60, and generally the lowest
for OWA trapezoidal and 3/8 with expert weights
with median value above 50.

With the use of obtained aggregated metric,
two sets of rankings are created. The ranking based
on aggregation with PCA-derived weights is pre-
sented in Table 2, while the ranking obtained from
aggregation with expert weights is in Table 3.
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Figure 6. Comparison of the aggregated metric’s value for different weights and aggregation methods;
aggregation performed for all individual metrics

It can be seen that almost always the ratings
do not differ between methods. Only the Al-
gorithm G and Algorithm H swap the first two
places when using the arithmetic mean. The same
situation occurs when using PCA weights a for
basic OWA aggregation.

To provide comparison for rankings based
on aggregated metric, seven rankings originating
from individual metrics’ values are presented in
Table 4. While some rankings seem similar to the
aggregated (for example ROC AUC or PR AUC
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yields similar results), some differ for certain al-
gorithms. Considering the accuracy or specificity
metric, the Algorithm A is placed third, while oth-
er metrics rank it at usually fifth or sixth position.
Algorithm D, generally placed near to bottom
(seventh to ninth position), by accuracy or speci-
ficity is classified as second-best model. Algo-
rithm [ is also recognized as one of the worst, by
all metrics except recall which placed in on fourth
position. Accuracy and specificity produce simi-
lar rankings to each other, but differ from other
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Table 2. Ranking obtained from aggregation of all metrics with PCA weights

Algorithm Arithmetic | Weighted OWA | Choguet Smc_)oth OWA | Smooth QWA Smooth OWA | Smooth OWA
average average (Simpson) (trapezoidal) (3/8) (ONC3)
Algorithm A 6 6 6 6 6 6 6 6
Algorithm B 9 9 9 9 9 9 9 9
Algorithm C 4 4 4 4 4 4 4 4
Algorithm D 7 7 7 7 7 7 7 7
Algorithm E 10 10 10 10 10 10 10 10
Algorithm F 3 3 3 3 3 3 3 3
Algorithm G 1 2 1 2 1 1 1 1
Algorithm H 2 1 2 1 2 2 2 2
Algorithm | 8 8 8 8 8 8 8 8
Algorithm J 5 5 5 5 5 5 5 5
Table 3. Ranking obtained from aggregation of all metrics with PCA weights
Algorithm A 6 6 6 6 6 6 6 6
Algorithm B 9 9 9 9 9 9 9 9
Algorithm C 4 4 4 4 4 4 4 4
Algorithm D 7 7 7 7 7 7 7 7
Algorithm E 10 10 10 10 10 10 10 10
Algorithm F 3 3 3 3 3 3 3 3
Algorithm G 1 2 2 2 2 2 2 2
Algorithm H 2 1 1 1 1 1 1 1
Algorithm | 8 8 8 8 8 8 8 8
Algorithm J 5 5 5 5 5 5 5 5
Table 4. Ranking obtained on the basis of individual metrics’ values
Algorithm ROC AUC Accuracy F1 Score PRAUC Precision Recall Specificity
Algorithm A 5 3 6 6 6 8 3
Algorithm B 8 10 9 8 9 7 9
Algorithm C 4 5 4 4 3 5 4
Algorithm D 7 2 8 7 7 9 2
Algorithm E 10 8 10 10 10 10 8
Algorithm F 3 6 3 3 5 2 7
Algorithm G 1 1 2 2 2 3 1
Algorithm H 2 4 1 1 1 1 5
Algorithm | 9 9 7 9 8 4 10
Algorithm J 6 7 5 5 4 6 6

metrics in many cases. Recall also provides some
diversification in ranking. Some general conclu-
sions can be drawn for most of the algorithms.
However we can observe that different metrics
yield inconsistent results.

To compare the proposed ranking method
with the classic approach of individual metrics,

NDCG and MAP values are calculated. They
should not be interpreted as a quality measure
per se, but rather as a consistency measure be-
tween the proposed ranking and rankings by
individual metrics. NDCG and MAP metrics
are presented in Table 5.
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Table 5. Consistency of individual metrics’ rankings with proposed ranking (Choquet aggregation with fuzzy

measures based on expert weights)

Metric used for ranking NDCG value MAP value
ROC AUC 0.986 0.967
Accuracy 0.924 0.696
F1 Score 0.999 1.000

PR AUC 1.000 1.000
Precision 0.995 1.000
Recall 0.982 0.927
Specificity 0.918 0.696

The lowest quality is achieved by ranking on
the basis of specificity and very similarly on the
basis of accuracy. The NDCG measure was 91.8%
and 92.4% for these rankings, respectively, relative
to our rankings. For the other metrics, the NDCG
measure is around 98—100% which suggests very
high similarity to our proposed ranking method.

For the computation of MAP measure, the rank-
ing is split in two parts. The & best models are la-
beled 1, and the rest 0. Here k=5 is chosen (meaning
the ranking is divided in half, into better and worse
models). Noticeably the weakest ranking consis-
tency appears if one are to use specificity alone or
accuracy alone, it is around 69.6%. Much higher
is the score for ranking by the recall metric with
92.7% and AUC with 96.7%, and the rankings by
F1 and PR AUC are in accordance with ours by the
MAP metric. The lower MAP scores as compared
to NDCG may suggest that, although the rankings
obtained by specificity and accuracy might seem
similar to other metrics, they have much differences

Precision ROC AUC

0.88

PR AUC Specificity Recall

]
ROC AUC Precision

Recall

as to where they placed the algorithms considered
as the best by the aggregation metric.

Aggregation of less correlated metrics

0.37

Metrics selected for aggregation after dis-

carding the most strongly correlated ones include:
[ ]

Recall — strongly independent, low correlation
with precision and specificity. Very important
in anomaly detection.

Precision — although correlated with F1 and
PR AUC, carries its own score — added value
when evaluating false positives.

ROC AUC - fairly low correlation with preci-
sion/recall/F1 — looks at global discriminating
ability.

PR AUC —similar to F1 score (and highly cor-
related with it), but PR AUC is better with un-
balanced data.

Specificity — virtually identical to accuracy, but
usually more informative in anomaly detection.
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Figure 7. Correlation matrix after removing the most redundant metrics
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The correlation after removal of other metrics
is presented in Figure 7. All correlations higher
than 0.9 are removed. The highest correlation
now is 0.88 between precision and PR AUC.

The weights for aggregation of less correlated
metrics are derived in similar manner as before
for the full set — basing on PCA contribution and
by expert knowledge. The PCA weights are pre-
sented in Figure 8. The highest weight is assigned
to PR AUC metric. The next is precision, and then
specificity and ROC AUC with very similar con-
tributions. Recall holds the smallest value, simi-
larly as is the case for PCA for all metrics.

0.30 -

0.20 -

0.15 -

Weight

0.10 -

[=]

0.05 -

0.00 -

The weights obtained by expert are present-
ed in . Likewise as with analysis of all metrics,
noticeably highest value is assigned to recall
metric. Following it are PR AUC and precision,
both ranked very similarly (and as we know
from correlation matrix, they carry somewhat
similar information). ROC AUC and specificity
are graded least significant on similar level to
each other.

The boxplot on Figure 10 presents the com-
parison of aggregated metric value when consid-
ering only less correlated metrics for aggregation.
The range of values is broader this time than for

Figure 9. Weights for less correlated metrics based on expert knowledge
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Figure 10. Comparison of the aggregated metric’s value for different weights and aggregation methods;
aggregation performed for all individual metrics

aggregation of all metrics. Smallest median value is
achieved for Choquet method with fuzzy measures
based on PCA weights, around 45. OWA with 3/8
and trapezoidal smoothing methods fell between 45
and 50 with the median value (regardless of weights
used). Median values around 50-55 are achieved
for OWA with 3/8 and Simpson smoothing (for
both weight sets) and for Choquet with fuzzy meas-
ures based on expert weights. Significantly higher
values are obtained from aggregation by arithme-
tic mean, weighted average (especially with expert
weights) and basic OWA operator (with both sets of

weights). The highest median is achieved for OWA
with PCA weights, reaching almost 70.

Large differences in the absolute values of
the metrics do not reflect in significant changes in
ranking. Only the 8 to 9 and 1 to 2 positions dif-
fer sometimes for PCA weights (as seen in Table
6). For example, ranking for Choquet with fuzzy
measures based on PCA weights differs in these
positions from the rankings presented for aggre-
gation of all metrics. Same situation occurs for
weighted average with PCA weights. For expert
weights (presented in Table 7) the ranking is less

Table 6. Ranking obtained from aggregation of less correlated metrics with PCA weights

Algorithm Arithemtic Weighted OWA Choquet Smgoth OWA|[Smooth QWA Smooth OWA|Smooth OWA|
average average (Simpson) | (trapezoidal) (3/8) (ONC3)
Algorithm A 6 6 6 6 6 6 6 6
Algorithm B 9 8 9 8 9 9 9 9
Algorithm C 4 4 4 4 4 4 4 4
Algorithm D 7 7 7 7 7 7 7 7
Algorithm E 10 10 10 10 10 10 10 10
Algorithm F 3 3 3 3 3 3 3 3
Algorithm G 2 2 1 2 1 2 2 2
Algorithm H 1 1 2 1 2 1 1 1
Algorithm | 8 9 8 9 8 8 8 8
Algorithm J 5 5 5 5 5 5 5 5
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Table 7. Ranking obtained from aggregation of less correlated metrics with expert weights

Algorithm Arithemtic | Weighted OWA | Choguet Smgoth OWA Smooth QWA Smooth OWA | Smooth OWA
average average (Simpson) (Trapezoidal) (3/8) (ONC3)
Algorithm A 6 6 6 6 6 6 6 6
Algorithm B 9 9 9 9 9 9 9 9
Algorithm C 4 4 4 4 4 4 4 4
Algorithm D 7 7 7 7 7 7 7 7
Algorithm E 10 10 10 10 10 10 10 10
Algorithm F 3 3 3 3 3 3 3 3
Algorithm G 2 2 1 2 1 2 2 2
Algorithm H 1 1 2 1 2 2 2 2
Algorithm | 8 8 8 8 8 8 8 8
Algorithm J 5 5 5 5 5 5 5 5

dependent on aggregation used. As opposed to
PCA weights, the positions 8 and 9 never changed.
Only on the first two positions changes occurred
between Algorithms G and H. OWA and smooth
OWA with Simpson smoothing favored Algorithm
G over H, while all other methods gave opposite
result. No other changes are observed.

DISCUSSION

In addition to standard performance metrics,
other characteristics of algorithms — such as com-
putational complexity or execution time — can also
be included in comparative evaluations. This ap-
proach was presented in [33], where metrics such
as F-Score, Training Time, Testing Time, and Con-
sistency were considered. Such an extension could
be easily integrated into our framework by record-
ing the mentioned training and testing parameters
for the evaluated algorithms and including them
among the aggregated features, with defining their
respective importance (and thus their weight) in
the evaluation process. Furthermore, the cited
work applies an interesting multi-metric decision-
making method based on AHP. While this is an
advanced and well-established approach, it relies
heavily on expert input for algorithm evaluation.
In contrast, our research aims to increase the level
of automation in the evaluation process.

A related study [34] also considers training
time alongside accuracy and uses a k-NN-based
meta-model to generate rankings. The ranking
system proposed in that work offers a comple-
mentary perspective to ours: while our ranking is
derived from model performance across multiple
datasets, the cited method focuses on generating

a ranking for a specific test dataset by identify-
ing the most similar datasets among previously
evaluated, usingthe k-NNframework and building
the ranking accordingly. In contrast, our proposed
method is primarily designed for use in scien-
tific evaluation settings, where algorithms are as-
sessed based on experiments conducted across a
diverse set of datasets.

To compare rankings obtained in our study,
we employed metrics such as NDCG, which is
commonly used in research for evaluating rank-
ing quality [35]. Other well-known approaches
include statistical tests, such as the Friedman test
and post-hoc tests to determine whether rankings
differ significantly[36].For instance, the Neme-
nyi test has been applied to sports rankings [37],
but could easily be adapted to other ranking
domains. In addition, Spearman’s rank correla-
tion is also used for ranking comparisons [34].
However, a recurring challenge in such compari-
sons is the lack of an ideal or reference ranking,
which often necessitates the manual creation of
a “ground truth” ranking [38]. Our study also
encounters this issue, which is why for now we
have limited our comparisons to rankings de-
rived from individual metrics. Designing a more
reliable evaluation method for rankings remains
an open challenge for future work.

CONCLUSIONS

This paper presents an interesting and novel
methodology for aggregating multiple metrics
used to assess anomaly detection algorithms.
The proposed aggregated metric is designed to
simplify interpretation of the results and ranking
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of the best models. Several variants of the meth-
od are presented, including a more automatic
approach involving aggregation of all metrics,
as well as a correlation-aware approach that en-
ables the exclusion of redundant information.
Two weighting strategies for aggregation are
discussed: one based on the contribution of met-
rics to the PCA components, and another derived
from expert knowledge regarding the metrics’
significance.

The algorithm rankings obtained via differ-
ent metric aggregation strategies showed mini-
mal variation, despite the fact that the aggre-
gated metric values differed significantly (with
median values ranging from approximately 45%
to 70%). For the ten ranked algorithms, differ-
ences typically occurred in the ordering of the
top two algorithms, with occasional changes in
the placement of algorithms ranked 8th and 9th.
When comparing the rankings derived from the
proposed aggregated metric to those based on
individual metrics, the aggregated results most
closely resembled the rankings obtained from
Fl1-score, PR AUC, and Precision. Slightly larg-
er, but still moderate, differences are observed
when using ROC AUC or Recall alone. In con-
trast, substantial discrepancies, especially at the
top of the rankings, are found when using Speci-
ficity or Accuracy as sole metrics. This aligns
with well-known concerns in anomaly detection
that Accuracy may be a misleading metric, often
inflated due to class imbalance.

The proposed aggregated metric framework
addresses a longstanding challenge in model
evaluation: the simultaneous interpretation of
multiple, often conflicting performance indica-
tors. By introducing a principled aggregation
and ranking mechanism, our approach enables
the comparison of models using a single metric
that should reflecta balanced, task-aware synthe-
sis of traditional measures. The novelty lies not
only in the integration of diverse metrics into
one scale, but in the flexible design space that
allows tailoring the metric to domain-specific
priorities, such as recall-dominant sensitivity
or robustness to class imbalance. The flexibility
is achieved due to choice possibilities of aggre-
gation methods and weighting strategies. The
system contributes to a more interpretable, stan-
dardized, and scalable evaluation process, of-
fering practical utility in benchmarking, model
selection, and automated reporting.

418

Future work may involve the development of
methods to evaluate the quality of rankings ob-
tained through metric aggregation. The proposed
methodology could potentially be extended be-
yond anomaly detection to tasks such as classifi-
cation or regression, where interpreting multiple
performance metrics is also a common challenge.
An intriguing direction for future research would
be to use the aggregated metric as an objective
function in neural networks or as a guiding crite-
rion in cross-validation-based fine-tuning.
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