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INTRODUCTION

The widespread usage of machine learning and 
artificial intelligence has made model evaluation a 
central concern in both academic and applied re-
search. Whether working with classical algorithms 
or state-of-the-art AI systems, practitioners face 
the challenge of selecting evaluation strategies 
that meaningfully reflect model behavior across 
diverse datasets and tasks. Far from being a mere 
afterthought, evaluation metrics now play a critical 
role in shaping how results are interpreted, com-
pared, and communicated, ultimately influencing 
which models are trusted, deployed, or discarded. 
Across current studies, there emerges a common 
thread. While a wide variety of evaluation metrics 
have been proposed, each with their own assump-
tions and domains of applicability, there is still no 
consensus on how to systematically compare these 
metrics. There is a necessity to introduce a single 
metric that aggregates classical measures in order 
to provide an unambiguous evaluation of classi-
fier quality, especially under complex conditions 

such as class imbalance or temporal ambiguity. 
Such fusion enables more coherent model com-
parison, particularly when individual metrics yield 
conflicting or ambiguous results. In this context, 
techniques from multi-criteria decision making 
(MCDM), including the ordered weighted averag-
ing (OWA) operator [1] and the Choquet integral 
[2] offer robust tools for combining performance
indicators while capturing user-defined preferenc-
es or dependencies among metrics. These methods
go beyond conventional arithmetic mean by incor-
porating notions of importance, interaction, and
non-linearity, making them especially suitable for
high-stakes evaluations such as anomaly detection
under class imbalance.

Challenges in model evaluation and metric 
diversity

Although metrics are a tool rather than a 
topic of their own, there are some academic pa-
pers emerging on new methodologies for evaluat-
ing the quality of machine learning models. The 
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paper [3] introduces a benchmark-based method-
ology for aggregating software quality metrics 
into ratings. Instead of relying solely on direct 
numerical aggregation (such as averages or in-
equality indices like Gini), the authors propose 
a two-stage process. Firstly, raw metric values 
are mapped to risk profiles using thresholds de-
rived from benchmark datasets. Secondly, these 
profiles are converted into interpretable ratings. 
The approach is demonstrated on a benchmark of 
100 software systems, showcasing its applicabil-
ity to real-world quality assessment scenarios and 
its robustness to data variations. In [4] the chal-
lenge of aggregating low-level software quality 
metrics into meaningful system-level indicators 
is considered. The Squale model is introduced, 
which uses normalization and weighting to unify 
diverse metrics. The method is validated on the 
Eclipse project and compared against traditional 
and inequality-based aggregations. The meth-
odology proposed in [5] includes the use of the 
Choquet integral to aggregate multi-dimensional 
quality indicators in the context of data fusion 
from heterogeneous sources. Although its focus 
is on data quality dimensions such as freshness 
and consistency, the paper offers valuable insight 
into how conflicting criteria can be systematically 
combined into a unified score. This methodology 
is conceptually aligned with efforts in model eval-
uation that aim to reconcile diverse performance 
metrics into coherent, interpretable outcomes. 
The paper [6] introduces the unified performance 
measure (UPM), a modified F1-score designed to 
better handle imbalanced classification problems. 
UPM is tested on synthetic and real datasets, 
showing superior stability and informativeness 
compared to classical metrics. It offers a prom-
ising direction for standardizing binary classifier 
evaluation.

Many scientific papers focus on potential prob-
lems arising from the incorrect application of some 
metric. The widespread use of reciever operating 
characteristic (ROC) curve for imbalanced binary 
classification tasks is criticized in [7]. The authors 
argue that such plots can mislead performance in-
terpretation. They advocate for precision-recall 
(PR) curve, which more accurately reflect classi-
fier behavior when positive cases are rare. Experi-
mental and theoretical results support PR curves 
as a more reliable evaluation tool in real-world 
imbalanced scenarios. In [8] a theoretical relation-
ship between ROC and PR curves is explored, 
particularly in the context of imbalanced datasets. 

They demonstrate that dominance in ROC space 
implies dominance in PR space and introduce the 
concept of the achievable PR curve. The study also 
highlights that improving the ROC AUC metrics 
may not result in optimal PR AUC performance, 
which is critical for algorithm evaluation. The 
paper [9] investigates how to select optimal deci-
sion thresholds for classifiers to maximize the F1 
score in binary and multilabel contexts. It derives 
theoretical thresholds under different assumptions, 
such as well-calibrated probabilities or uninforma-
tive classifiers. Results reveal unintuitive behav-
iors and underscore the need for careful threshold 
selection in imbalanced classification settings. In 
[10] the Matthews correlation coefficient (MCC) 
is compared with F1 score and accuracy in binary 
classification, especially under class imbalance. 
They demonstrate that MCC offers more balanced 
and informative evaluations by incorporating all 
four elements of the confusion matrix. Experimen-
tal results across synthetic and real datasets support 
MCC as a superior and more reliable evaluation 
metric. The research [11] critically examines the 
ROC area under the curve (AUC) as a performance 
metric for classification systems, highlighting a 
fundamental inconsistency: AUC implicitly ap-
plies different misclassification cost assumptions 
across classifiers. The author argues that such a 
practice is incoherent since misclassification costs 
are inherent to the classification problem, not de-
pendent on the classifier. As a solution, a coherent 
alternative metric is proposed that preserves con-
sistency in cost assumptions, offering a more reli-
able basis for comparative evaluation.

Related work on metric aggregation

The article [12] presents a statistically 
grounded comparison of five text classification 
algorithms across varying category distributions 
and training data volumes. While it does not pro-
pose new evaluation metrics, it highlights how 
model performance can fluctuate significantly 
depending on dataset characteristics, implicitly 
demonstrating the limitations of fixed evalua-
tion criteria. These observations support the case 
for data-sensitive model ranking, reinforcing the 
need for adaptable and context-aware evaluation 
strategies. The study [13] examines the perfor-
mance of two variants of the Naive Bayes clas-
sifier, multivariate Bernoulli and multinomial, 
across multiple text classification tasks. Although 
not framed as a metric-focused study, its detailed 
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empirical comparisons reveal how performance is 
influenced by factors such as vocabulary size and 
feature representation. These findings underscore 
the importance of context-aware analysis, echoing 
broader challenges in constructing reliable ranking 
frameworks that account for data-specific behav-
ior. The review paper [14] offers a broad overview 
of commonly used evaluation metrics in machine 
learning, particularly in classification tasks across 
binary, multi-class, and multi-label settings. It 
highlights the limitations of traditional metrics 
such as accuracy and F1-score when used in isola-
tion, and emphasizes the lack of standardization 
in metric usage as a major obstacle for meaning-
ful model comparison. The authors of [15] pres-
ent a detailed taxonomy of 20 evaluation metrics 
used in time series anomaly detection. They de-
fine a set of desirable metric properties and evalu-
ate each metric’s suitability through case studies 
and experiments. Their analysis underscores the 
need for domain- and task-specific metric selec-
tion, reinforcing the importance of metric-aware 
model evaluation frameworks. In [16], affiliation 
precision/recall is proposed, which is a new class 
of evaluation metrics designed for anomaly de-
tection in time series. Unlike traditional metrics, 
these are parameter-free, interpretable, and resil-
ient to adversarial predictions. Their framework 
enables local, fine-grained evaluation of detection 
quality, addressing significant shortcomings in 
conventional approaches. The study [17] evalu-
ates the limitations of traditional metrics, such as 
accuracy and F1-score, when applied to anomaly 
detection in time series data from industrial con-
trol systems. The authors propose an improved, 
range-based evaluation metric by modifying the 
Time-series aware precision and recall (TaPR) to 
account for ambiguous temporal boundaries of 
anomalies. Their approach highlights the impor-
tance of tailoring metrics to data characteristics 
and operational contexts, reinforcing the inad-
equacy of point-based evaluation for real-world 
detection tasks. The authors of [18] present a 
mathematical extension of classical precision and 
recall tailored to detect and evaluate range-based 
anomalies in time series data. Their model allows 
for customization based on domain-specific pri-
orities, bridging the gap between generic metrics 
and real-world anomaly detection needs. This 
work offers a formal foundation for evaluating 
detection systems beyond point-based accuracy, 
aligning closely with efforts to develop composite, 
context-aware evaluation frameworks.

Motivation for a unified aggregated metric

Across a variety of recent studies in anoma-
ly detection, classification and image analysis, a 
common dependency emerges: the effectiveness 
of the algorithms is closely tied to the choice 
of evaluation metrics and similarity measures. 
Whether in visual imperfection detection under 
weak supervision [19], deep learning-based medi-
cal diagnostics [20], patient survival prediction 
[21] or ensemble-based intrusion detection sys-
tems [22], model performance is typically report-
ed through standard metrics such as accuracy, pre-
cision, recall, or F1 score. Similarly, in unsuper-
vised anomaly detection approaches, such as the 
modified negative selection algorithm [23], evalu-
ation hinges on metrics capable of reflecting sensi-
tivity to rare events, often prioritizing recall at the 
cost of precision. In high-dimensional industrial 
cybersecurity contexts [24] or general intrusion 
detection benchmarks involving multiple classi-
fiers [25], the metric space directly shapes how 
model output is interpreted and compared. These 
examples illustrate the diversity of metric require-
ments across domains – ranging from robustness 
to class imbalance, to interpretability, to discrimi-
native sensitivity in complex feature spaces. 

Despite the rich spectrum of available metrics, 
this diversity often presents challenges rather than 
clarity. Researchers must navigate a wide range 
of evaluation criteria, each emphasizing differ-
ent aspects of performance sometimes leading to 
contradictory conclusions and inflated analytical 
complexity. Furthermore, strong correlations and 
redundancies among metrics can distort the over-
all assessment of model performance and hinder 
efforts to construct consistent and meaningful 
rankings of algorithms. These issues are particu-
larly pronounced in anomaly detection, a class of 
problems often treated as binary classification. 
Here, the task involves identifying observations 
that significantly deviate from the norm, and is 
especially sensitive to class imbalance. While ac-
curacy may suffice for multiclass classification, 
binary tasks require a broader and more nuanced 
set of metrics, such as precision, recall, F1-score, 
specificity, ROC AUC, PR AUC and balanced 
accuracy to capture performance reliably. Faced 
with this multitude of options, researchers often 
struggle to determine which metrics to prioritize, 
and whether their conclusions hold consistently 
across different measures. To address this, this 
study proposes a unified evaluation framework: 
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a composite performance metric designed to in-
tegrate the strengths of individual criteria while 
reducing ambiguity and inconsistency in model 
assessment. This unified approach seeks to sim-
plify the evaluation process, enhance interpret-
ability, and support the construction of robust 
rankings, particularly in challenging settings such 
as anomaly detection, where classical metrics 
may yield misleading insights due to inherent data 
imbalances.

We also aim to use the most recent, refined ag-
gregation methods. Recent development in metric 
aggregation emphasize generalized operators and 
smoothing techniques to enhance interpretability 
and robustness. [26] introduce smooth OWA op-
erators inspired by Newton-Cotes quadratures, 
demonstrating notable gains in classification ac-
curacy through pre-aggregation smoothing. Sim-
ilarly, in [27] a generalized and smoothed variant 
of the Choquet integral are proposed, retaining its 
theoretical properties while improving numeri-
cal precision. These innovations reflect a broader 
trend toward flexible, mathematically grounded 
aggregation strategies suited for high-stakes, mul-
ti-metric evaluation scenarios.Unlike simple aver-
aging or heuristic scoring, our method leverages 
structured aggregation and multi-criteria ranking 
techniques to produce a consistent evaluation out-
put across different model types and tasks.

BACKGROUND

Anomaly detection metrics

Among the metrics that determine the qual-
ity of an anomaly detection algorithm, a division 
can be made into those dependent and indepen-
dent of the decision threshold. To the first group 
belong precision, recall, their combination F1 
score, specificity, accuracy. All these metrics are 
based on different measurements of the propor-
tion of true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN) cas-
es. Metrics independent of the decision thresh-
old include ROC AUC and PR AUC, measur-
ing the area under a respectively defined curve. 
These metrics, in addition to anomaly detection, 
can be used identically for binary classification 
algorithms, and in modified form for multiclass 
classification, where the metric is calculated 
separately for each class and the results are av-
eraged across all classes.

Precision indicates the proportion of samples 
predicted as anomalies that are actually anomalous.
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Recall (sensitivity, true positive rate) mea-
sures the proportion of actual anomalies that are 
correctly identified.
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F1 score is the harmonic mean of precision 
and Recall. This metric balances both aspects 
and is especially useful when a trade-off between 
false alarms and missed detections is required.

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (3)

Specificity (true negative rate) indicates the 
proportion of normal samples correctly identified 
as normal.

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (4)

Accuracy represents the overall proportion 
of correctly classified samples, including both 
anomalies and normal.

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (5)

In anomaly detection, accuracy can be mis-
leading if the data is highly imbalanced, e.g. 95% 
normal cases.

ROC AUC (area under the receiver oper-
ating characteristic curve) represents the area 
under the ROC curve, which plots the true posi-
tive rate ( TPR= 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

FPR= 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 

 

∑𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 

 

∪ 

) versus the false positive 
rate (

TPR= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

FPR= 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 

 

∑𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 

 

∪ 

) at various decision thresh-
olds. The area is usually calculated by the trap-
ezoidal rule, which involves approximating the 
area under the ROC curve by dividing it into 
trapezoids with vertical lines at the FPR values 
and horizontal lines at the TPR values. Then, 
the area is computed by summing the areas of 
the trapezoids. ROC AUC equal to 1 indicates 
excellent classification performance, 0.5 corre-
sponds to random guessing.

PR AUC (area under the Precision-Recall 
curve) represents the area under the curve plotting 
Precision against Recall at various thresholds. It 
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is particularly suitable for evaluating models on 
imbalanced datasets. For various thresholds, Pre-
cision-Recall pairs are computed, thus forming 
the PR curve. The area is calculated usually by 
the trapezoidal rule, similarly as for ROC AUC. 
A high PR AUC score indicates that the model 
detects anomalies effectively without generating 
too many false positives.

Aggregation methods

There exists a vast number of aggregation 
methods, including the most basic ones like the 
mean and weighted average. In this section, a 
few more sophisticated ones are recalled, such 
as the OWA operator and Choquet integral, and 
recent modification of the OWA operator – its 
smoothed version.

OWA [28] is a flexible aggregation method  
which applies weights not to specific compo-
nents, but to their ordered values.

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (6)

where:	

TPR= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

FPR= 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 

 

∑𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 

 

∪ 

 and x(i) is the i-th largest value in 
the vector (x1, x2, ... , xn).

Smooth OWA operator [26] is a modification 
of the OWA operator, associated additionally with 
smoothing method denoted as Q:

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (7)

where:	Q(x(i)) means an application of a chosen 
Newton-Cotes formula to the element x(i). 
Let us recall few Newton-Cotes quadra-
tures that can be used for such smoothing:

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (8)

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (9)

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	 (10)

	

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 

= ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑄𝑄(𝑥𝑥(𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑆𝑆(𝑥𝑥(𝑖𝑖)) = 1
6 𝑥𝑥(𝑖𝑖−1) + 2

3 𝑥𝑥(𝑖𝑖) + 1
6 𝑥𝑥(𝑖𝑖+1) 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄3
8

(𝑥𝑥(𝑖𝑖)) = 1
8 𝑥𝑥(𝑖𝑖−1) + 3

8 𝑥𝑥(𝑖𝑖) 

+ 3
8 𝑥𝑥(𝑖𝑖+1) + 1

8 𝑥𝑥(𝑖𝑖+2)  (3 8⁄  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

𝑄𝑄𝑇𝑇(𝑥𝑥(𝑖𝑖)) = 1
2 𝑥𝑥(𝑖𝑖) + 1

2 𝑥𝑥(𝑖𝑖+1) 
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 

 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂3(𝑥𝑥(𝑖𝑖)) = 2
3 𝑥𝑥(𝑖𝑖−1) − 1

3 𝑥𝑥(𝑖𝑖) + 2
3 𝑥𝑥(𝑖𝑖+1) 

(3 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) 
 

 
 

	(11)

With such operation of applying the Newton-
Cotes quadratures, each element x(i) is smoothed by 
its neighboring elements in the vector of sorted in-
put. Note that if the index of an element is less than 
1, we take the value of x(1) instead of that element, 
and if the index is greater than n, we take x(n).

The Choquet integral [29] is a nonlinear aggre-
gation function that not only considers the magni-
tude of input values but also the interactions be-
tween them, as defined by a fuzzy measure g. It is 
especially useful when the importance of a group 
of criteria depends on their combination, not just 
individual relevance. Let (X, Ω) be a measurable 
space and h: X → [0,1] be an Ω -measurable func-
tion. The Choquet integral of function h with re-
spect to a fuzzy measure g [30] is expressed as

	
Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))

𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	(12)

where:	x(i) are sorted inputs, Ai = {x(i), ... x(n)} and 
g is a monotonic set function – Sugeno 
λ-fuzzy measure. The fuzzy measure g of 
any subset 

TPR= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

FPR= 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 

 

∑𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 

 

∪ 
i∈I{x(i), ... x(n)}, where I ∈ {1, 2, 

..., n} is calculated as

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	(13)

which can be also presented in the form of

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (14)

The value of λ ∈ (–1, 0) 

TPR= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

FPR= 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 

 

∑𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 

 

∪  (0, ∞)  is obtained 
from a polynomial eqaution solved for λ:

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (15)

where: g1 = g({x(1)}, g2 = g({x(2)}, gn = g({x(n)}.

The Choquet integral generalizes the weight-
ed mean and can model redundancy or synergy 
between features. It is widely used in multicrite-
ria decision making and information fusion. In a 
practical application, the measure g can be used 
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to model the relevance of various information 
sources, while h may denote results obtained from 
those sources. The fuzzy integral is then used to 
combine the outcomes nonlinearly.

Quality of ranking metrics

Two metrics for comparing rankings are pre-
sented: NDCG which derives from cumulative 
gain (CG) – metric often used for search en-
gines; and MAP which originates in the preci-
sion metric for classification.

Discounted cumulative gain (DCG) is a mea-
sure of ranking quality. It is often normalized so 
that it is easier comparable, giving normalized 
discounted cumulative gain (NDCG) [31]. DCG 
is a refinement of a simpler metric (cumulative 
gain), which is a sum of the relevance values of 
all elements in the ranking:

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (16)

where:	reli is the relevance score (e.g. the real 
algorithm quality) and k is the number of 
elements considered. 

CG does not take into account the position in 
ranking, only the relevance. To include the posi-
tion in ranking, DCG is used. There are two ver-
sions of this metric, namely standard:

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (17)

or with logarithm starting from the beginning:

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (18)

The logarithm causes that the lower positions, 
e.g i=5, 6, ..., have less impact on the score. This 
means that DCG rewards ranking which puts rel-
evant elements higher in order.

To enable comparison between different rank-
ings and scenarios, DCG is normalized with re-
spect to ideal ranking (IDCG) as follows:

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
+ 𝜆𝜆𝑔𝑔(𝐴𝐴𝑖𝑖)𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) 

 
 

1 + 𝜆𝜆 = ∏(1 + 𝜆𝜆)𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝐶𝐶𝑘𝑘 = ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,
𝑘𝑘

𝑖𝑖=1
 

 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟1 + ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) ,

𝑘𝑘

𝑖𝑖=2
 

 
 

𝐷𝐷𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑖𝑖 + 1) .

𝑘𝑘

𝑖𝑖=1
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘

 

 

𝐴𝐴𝐴𝐴 = 1
𝑅𝑅∑𝑃𝑃(𝑖𝑖) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,

𝑘𝑘

𝑖𝑖=1
 

 

MAP = 1
𝑄𝑄∑𝐴𝐴𝐴𝐴𝑞𝑞

Q

q=1
 

 
 

 

	 (19)

where:	 IDCGk is a DCG value computed for 
an ideally sorted ranking. The value of  

NDCGk belongs to range [0, 1], and the 
value of 1 corresponds to an ideal ranking.

Another measure which can be used to assess 
the quality of ranking is mean average precision 
(MAP). MAP measures how well relevant ele-
ments are ranked, rewarding those ranked higher. 
Unlike NDCG, MAP treats the ranking task as a 
set of binary decisions: whether an element is rel-
evant or not – and checks the precision with which 
all relevant elements are found in subsequent po-
sitions. Let us first define average precision

	

Ch ∫ℎ ∘ 𝑔𝑔 = ∑(ℎ(𝑥𝑥(𝑖𝑖)) − ℎ(𝑥𝑥(𝑖𝑖+1)))
𝑛𝑛

𝑖𝑖=1
 

𝑔𝑔(𝐴𝐴𝑖𝑖), 𝑥𝑥(𝑖𝑖+1) = 0 
 
 

𝑔𝑔(⋃{𝑥𝑥(𝑖𝑖)}
i∈𝐈𝐈

) = 1
𝜆𝜆 [∏(1 + 𝜆𝜆𝑔𝑔𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
− 1] 

 
 

𝑔𝑔(𝐴𝐴𝑖𝑖+1) = 𝑔𝑔(𝐴𝐴𝑖𝑖) + 𝑔𝑔({𝑥𝑥(𝑖𝑖+1)}) + 
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where:	k is the number of elements in ranking, 
R is the number of actually relevant ele-
ments in ranking, P(i) is the precision for 
position i, computed as the proportion of 
relevant items at i to the number i and reli 
∈ {0,1} is the relevance of the i-th posi-
tion (1 for relevant or 0 for non-relevant).

Next, MAP is an average of AP for multiple 
rankings
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where	 Q is the number of queries or test cases 
(e.g. different datasets that algorithms 
were tested on) and APq is the average 
Precision for the q-th case.

In the context of evaluating methods for ag-
gregating the rankings of algorithms (e.g., anom-
aly detection classifiers), MAP can be used to see 
how well a ranking method positions algorithms 
that are among the “relevant” (e.g., top-3 best). 
What matters is not only their presence in the 
ranking, but also their positions – the higher they 
are, the greater the contribution to the MAP score. 
MAP is a stricter metric than NDCG because it 
only rewards matches of relevant objects.

PROPOSED METHODOLOGY

In this section, an overview of our proposed 
ranking method is presented. Its computational 
complexity is discussed.
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Aggregation algorithm

Let N algorithms be given (e.g., anomaly de-
tection, as is the case in this research). For each 
of them, the values of n metrics (e.g., recall, ac-
curacy) have been calculated. An aggregation 
method is chosen and, if necessary, appropriate 
weights must be assigned (e.g., for weighted av-
erage, OWA operator, for calculation of fuzzy 
measures for Choquet integral). Using the chosen 
method, aggregation of n metrics for each of the 
N algorithms is performed. In this way, N values 
of the aggregated metric are obtained. They can 
be compared between algorithms, assuming that 
they speak in the most broad way about the qual-
ity of models’ performance. Based on the aggre-
gated results, we rank the algorithms. Thus, the 
aggregated metric provided good interpretability 
and ease of comparison between algorithms. The 
process of ranking creation with the use of aggre-
gation method is presented in Figure 1.

If several different aggregation methods were 
used for testing purposes, or if the real ranking or-
der of the algorithms is known, metrics for evalu-
ating the quality of ranking (such as NDCG or 
MAP) can be applied to the obtained rankings to 
compare them. Based on this, the weights of the 
metrics and the aggregation method most suitable 
for the considered issue could be selected.

Computational complexity

To consider computational complexity of our 
method, few components are analyzed. The compu-
tation of anomaly detection metrics, the complexity 
of PCA algorithm (if it is used for weight acquire-
ment) and finally the chosen aggregation method.

The basic binary metrics (precision, recall, F1 
score, accuracy, specificity) rely on the counting of 
TP, TN, FP, FN values, resulting in very low com-
plexity of O(n), where n is the number of observa-
tions in the dataset. The threshold-independent met-
rics: ROC AUC and PR AUC have higher complex-
ity, because they require sorting of predictions and 
calculating the area under the respective curve. The 
complexity of such calculations equals O(nlog n).

Computational complexity of PCA algorithm 
[32], which in some variants of our proposal is 
used to obtain aggregation weights, depends on 
the number n of observations in dataset and the 
number of features d. The value of this complex-
ity is 0(min(n2d, nd2)).

Basic aggregations like average or weighted 
average have the complexity of O(n). Both OWA 
operator and Choquet integral are characterized 
by O(nlog n) complexity, because they require 
sorting of input data.

NUMERICAL EXPERIMENTS

This section includes the description of the 
dataset used for experiments, two methods of 
weight selection and two variants of metric aggre-
gation: with and without analysis of their correla-
tion and removal of redundant information. In the 
end, the rankings of the algorithms are obtained 
and compared, using NDCG and MAP metrics.

Dataset description

The experimental dataset contains 260 records 
corresponding to the application of 10 anomaly 
detection algorithms evaluated on 26 distinct 

Figure 1. The process of algorithms ranking with aggregated metric
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benchmark datasets. For metric computation, the 
following algorithms were tested: dimensionali-
ty reduction-based isolation forest (DRIF), fuzzy 
dimensionality reduction-based isolation forest 
(FDRIF), isolation forest (IF), k-nearest neigh-
bors detector (KNN), local outlier factor (LOF), 
minimal spanning tree clustering for isolation 
forest (MSTCIF), minimal spanning tree-based 
isolation forest with evaluation function built on 
the fuzzy rules in Takagi-Sugeno model (MSTIF-
TS), minimal spanning tree-based isolation forest 
(MSTIF), one-class support vector machine de-
tector (OCSVM), principal component analysis 
outlier detector (PCA), while the datasets were: 
Annthyroid, Arrhytmia, Breast, Cardio, Forest 
Cover, Glass, Http, Ionosphere, Letter, Lympho, 
Mammography, Mnist, Musk, Optdigits, Pendig-
its, Pima, Satellite, Satimage-2, Shuttle, Smtp, 
Speech, Thyroid, Vertebral, Vowels, WBC, Wine 
– all are publicly available and widely recognized 
datasets for anomaly detection. For each dataset –
algorithm combination, seven evaluation metrics 
were computed to evaluate the models’ perfor-
mance. The following metrics were selected: ac-
curacy (overall effectiveness of algorithm), preci-
sion (correctness of positive predictions), recall 
(detection of positive cases), F1 score (balance 
of precision and recall), Specificity (recognition 
of negative cases), ROC AUC (ability to distin-
guish between classes regardless of threshold), 
and PR AUC (evaluation of effectiveness with 
unbalanced data). Since this article aims not to 
compare algorithms per se, but to present a uni-
versal method for ranking models, thenames of 
the algorithms have been disguised as Algorithm 
A, B, and so on.

To analyze general differences between the 
metric values, a boxplot is created, as shown on 
Figure 2. Among the evaluated metrics, precision 
generally yielded the lowest values. The F1 and 
PR AUC metrics followed, both characterized by 
rather similar distributions. Conversely, the met-
rics accuracy, ROC AUC, recall, and specificity 
generally exhibited higher scores, albeit with the 
presence of some lower-valued outliers in each 
case.The exact statistics values are presented in 
Table 1 and discussed below.

For Precision, the mean value is only 
28.64%, with the median even lower. The F1 and 
PR AUC metrics had slightly higher means, just 
above 35%. In contrast, the remaining metrics 
demonstrated average values ranging between 
74% and 78%. The standard deviations across 

all metrics ranged from 20% to 30%, indicating 
moderate variability. Minimum values are typi-
cally close to 0%, while maximum values are 
most often at or near 100%.

The correlation analysis of the evaluation 
metrics reveals several noteworthy patterns. As 
one can observe from correlation matrix visible 
on Figure 3, strong positive correlations areob-
served between F1 score and precision, as well 
as between F1 score and PR AUC, indicating 
that these metrics convey highly similar infor-
mation. A similarly high correlation is noted be-
tween accuracy and specificity, and to a slightly 
lesser extent between accuracy and ROC AUC, 
suggesting that accuracy is largely driven by cor-
rect classification of negative cases. Additionally, 
ROC AUC showed substantial correlation with 
specificity, while PR AUC is highly correlated 
with Precision. On the other hand, recall exhibit-
ed low or negligible correlations with most other 
metrics (e.g. -0.03 with accuracy, -0.1 with speci-
ficity), highlighting its distinct role in capturing 
the model’s ability to detect positive (anomalous) 
instances. These findings suggest potential redun-
dancy among several metrics, particularly within 
the groups F1–precision–PR AUC and accuracy–
specificity. Therefore, when designing aggrega-
tion strategies or selecting key metrics for evalu-
ation, it may be worth considering to retain only 
one representative from each highly correlated 
group to avoid overemphasizing overlapping as-
pects of model performance.

Aggregation of all metrics

Firstly, we present more automated variant of 
our methodology, where all available metrics are 
aggregated, regardless of their correlation. Two 
approaches to weight selection have been made to 
allow better comparison of aggregation methods. 
One way of selecting the weights is based on the 
relationships found in our dataset, and the other is 
expert selection based on knowledge of the met-
rics. The selected sets of weights were used for 
weighted average, OWA and smooth OWA opera-
tors, and they served as the gi values for calculat-
ing the fuzzy measures in Choquet integral.

In the first weighting strategy, the columns 
with metrics’ values are treated as input features 
for principal component analysis. The contribu-
tion of each metric to the first (and therefore most 
significant) of the principal components (which 
explains about 66% of the variance in the original 
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data) is examined. In the Figure 4 the weights are 
shown after normalization to a sum of 1.

The largest weight, about 0.22, was assigned 
to the PR AUC metric. Slightly smaller weights 
(around 0.18-0.19) belong to the F1 score and 
precision metrics. This is followed by weights of 
about 0.11-0.12 for the specificity, accuracy and 
AUC metrics. The smallest weight of about 0.05 
is assigned to the recall metric. 

Based on expert knowledge, the metrics are 
assigned the weights visible on the barplot in Fig-
ure 5, with following explanations:
	• Recall – crucial metric, because missed anom-

alies (false negatives) are oftentimes the most 
expensive.

	• F1 score – a compromise between recall and 
precision

	• Precision – reduces the number of false alerts

	• Specificity – ensures that normal cases don’t 
fall into the bag of anomalies.

	• PR AUC – especially informative with strong-
ly unbalanced classes (typical in anomalies)

	• ROC AUC – describes ability to distinguish be-
tween classes, but in extremely unbalanced data 
is sometimes less informative than PR AUC.

	• Accuracy – easy to interpret, but in anomaly 
detection often overestimated by the large 
number of normal class examples.

It is worth noting that expert weights can be 
modified in practical applications if, for exam-
ple, we are primarily concerned with reducing 
false alarms, or with eliminating errors resulting 
from classifying anomalies as normal observa-
tions. The cost of such errors could be consid-
ered in practice. One can also run the ranking for 

Figure 2. Boxplot of metric values 

Table 1. The statistics for the metrics results for the analyzed algorithms and datasets
Metric Min Mean Median Max Std

ROC AUC 2.2 77.99 82.40 100.0 20.06

Accuracy 3.1 74.59 78.70 100.0 21.39

F1 score 0.2 35.94 30.90 99.1 27.03

PR AUC 0.4 37.17 25.55 100.0 30.65

Precision 0.1 28.64 18.75 100.0 26.85

Recall 1.3 77.97 84.70 100.0 22.37

Specificity 0.0 74.25 80.00 100.0 23.47
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several sets of weights and see how the order of 
the models changes.

A comparison of the obtained aggregated 
metric’s values was performed on the boxplot 
visible in Figure 6. Typically, the value of the 
metric fell within the range from 45 to 65%. For 
OWA aggregation, generally higher values of 
metrics are obtained with PCA weights than with 
expert weights. The opposite is true for weighted 
average and Choquet aggregation. Overall, the 

highest metrics’ values were for OWA, OWA 
Simpson, OWA ONC3 (with PCA weights) with 
median value above 60, and generally the lowest 
for OWA trapezoidal and 3/8 with expert weights 
with median value above 50.

With the use of obtained aggregated metric, 
two sets of rankings are created. The ranking based 
on aggregation with PCA-derived weights is pre-
sented in Table 2, while the ranking obtained from 
aggregation with expert weights is in Table 3.

Figure 3. Correlation matrix of al metrics results for the analyzed algorithms and datasets

Figure 4. Weight selection for all metrics based on contribution to the first principal component 
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It can be seen that almost always the ratings 
do not differ between methods. Only the Al-
gorithm G and Algorithm H swap the first two 
places when using the arithmetic mean. The same 
situation occurs when using PCA weights a for 
basic OWA aggregation.

To provide comparison for rankings based 
on aggregated metric, seven rankings originating 
from individual metrics’ values are presented in 
Table 4. While some rankings seem similar to the 
aggregated (for example ROC AUC or PR AUC 

yields similar results), some differ for certain al-
gorithms. Considering the accuracy or specificity 
metric, the Algorithm A is placed third, while oth-
er metrics rank it at usually fifth or sixth position. 
Algorithm D, generally placed near to bottom 
(seventh to ninth position), by accuracy or speci-
ficity is classified as second-best model. Algo-
rithm I is also recognized as one of the worst, by 
all metrics except recall which placed in on fourth 
position. Accuracy and specificity produce simi-
lar rankings to each other, but differ from other 

Figure 5. Weight selection for all metrics based on expert knowledge 

Figure 6. Comparison of the aggregated metric’s value for different weights and aggregation methods; 
aggregation performed for all individual metrics 
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Table 2. Ranking obtained from aggregation of all metrics with PCA weights

Algorithm Arithmetic 
average

Weighted 
average OWA Choquet Smooth OWA 

(Simpson)
Smooth OWA 
(trapezoidal)

Smooth OWA 
(3/8)

Smooth OWA 
(ONC3)

Algorithm A 6 6 6 6 6 6 6 6

Algorithm B 9 9 9 9 9 9 9 9

Algorithm C 4 4 4 4 4 4 4 4

Algorithm D 7 7 7 7 7 7 7 7

Algorithm E 10 10 10 10 10 10 10 10

Algorithm F 3 3 3 3 3 3 3 3

Algorithm G 1 2 1 2 1 1 1 1

Algorithm H 2 1 2 1 2 2 2 2

Algorithm I 8 8 8 8 8 8 8 8

Algorithm J 5 5 5 5 5 5 5 5

Table 3. Ranking obtained from aggregation of all metrics with PCA weights

Algorithm Arithmetic 
average

Weighted 
average OWA Choquet Smooth OWA 

(Simpson)
Smooth OWA 
(trapezoidal)

Smooth OWA 
(3/8)

Smooth OWA 
(ONC3)

Algorithm A 6 6 6 6 6 6 6 6

Algorithm B 9 9 9 9 9 9 9 9

Algorithm C 4 4 4 4 4 4 4 4

Algorithm D 7 7 7 7 7 7 7 7

Algorithm E 10 10 10 10 10 10 10 10

Algorithm F 3 3 3 3 3 3 3 3

Algorithm G 1 2 2 2 2 2 2 2

Algorithm H 2 1 1 1 1 1 1 1

Algorithm I 8 8 8 8 8 8 8 8

Algorithm J 5 5 5 5 5 5 5 5

Table 4. Ranking obtained on the basis of individual metrics’ values
Algorithm ROC AUC Accuracy F1 Score PR AUC Precision Recall Specificity

Algorithm A 5 3 6 6 6 8 3

Algorithm B 8 10 9 8 9 7 9

Algorithm C 4 5 4 4 3 5 4

Algorithm D 7 2 8 7 7 9 2

Algorithm E 10 8 10 10 10 10 8

Algorithm F 3 6 3 3 5 2 7

Algorithm G 1 1 2 2 2 3 1

Algorithm H 2 4 1 1 1 1 5

Algorithm I 9 9 7 9 8 4 10

Algorithm J 6 7 5 5 4 6 6

metrics in many cases. Recall also provides some 
diversification in ranking. Some general conclu-
sions can be drawn for most of the algorithms. 
However we can observe that different metrics 
yield inconsistent results. 

To compare the proposed ranking method 
with the classic approach of individual metrics, 

NDCG and MAP values are calculated. They 
should not be interpreted as a quality measure 
per se, but rather as a consistency measure be-
tween the proposed ranking and rankings by 
individual metrics. NDCG and MAP metrics 
are presented in Table 5.
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The lowest quality is achieved by ranking on 
the basis of specificity and very similarly on the 
basis of accuracy. The NDCG measure was 91.8% 
and 92.4% for these rankings, respectively, relative 
to our rankings. For the other metrics, the NDCG 
measure is around 98–100% which suggests very 
high similarity to our proposed ranking method.

For the computation of MAP measure, the rank-
ing is split in two parts. The k best models are la-
beled 1, and the rest 0. Here k=5 is chosen (meaning 
the ranking is divided in half, into better and worse 
models). Noticeably the weakest ranking consis-
tency appears if one are to use specificity alone or 
accuracy alone, it is around 69.6%. Much higher 
is the score for ranking by the recall metric with 
92.7% and AUC with 96.7%, and the rankings by 
F1 and PR AUC are in accordance with ours by the 
MAP metric. The lower MAP scores as compared 
to NDCG may suggest that, although the rankings 
obtained by specificity and accuracy might seem 
similar to other metrics, they have much differences 

as to where they placed the algorithms considered 
as the best by the aggregation metric.

Aggregation of less correlated metrics

Metrics selected for aggregation after dis-
carding the most strongly correlated ones include:
	• Recall – strongly independent, low correlation 

with precision and specificity. Very important 
in anomaly detection.

	• Precision – although correlated with F1 and 
PR AUC, carries its own score – added value 
when evaluating false positives.

	• ROC AUC – fairly low correlation with preci-
sion/recall/F1 – looks at global discriminating 
ability.

	• PR AUC – similar to F1 score (and highly cor-
related with it), but PR AUC is better with un-
balanced data.

	• Specificity – virtually identical to accuracy, but 
usually more informative in anomaly detection.

Table 5. Consistency of individual metrics’ rankings with proposed ranking (Choquet aggregation with fuzzy 
measures based on expert weights)

Metric used for ranking NDCG value MAP value

ROC AUC 0.986 0.967

Accuracy 0.924 0.696

F1 Score 0.999 1.000

PR AUC 1.000 1.000

Precision 0.995 1.000

Recall 0.982 0.927

Specificity 0.918 0.696

Figure 7. Correlation matrix after removing the most redundant metrics
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The correlation after removal of other metrics 
is presented in Figure 7. All correlations higher 
than 0.9 are removed. The highest correlation 
now is 0.88 between precision and PR AUC.

The weights for aggregation of less correlated 
metrics are derived in similar manner as before 
for the full set – basing on PCA contribution and 
by expert knowledge. The PCA weights are pre-
sented in Figure 8. The highest weight is assigned 
to PR AUC metric. The next is precision, and then 
specificity and ROC AUC with very similar con-
tributions. Recall holds the smallest value, simi-
larly as is the case for PCA for all metrics.

The weights obtained by expert are present-
ed in . Likewise as with analysis of all metrics, 
noticeably highest value is assigned to recall 
metric. Following it are PR AUC and precision, 
both ranked very similarly (and as we know 
from correlation matrix, they carry somewhat 
similar information). ROC AUC and specificity 
are graded least significant on similar level to 
each other.

The boxplot on Figure 10 presents the com-
parison of aggregated metric value when consid-
ering only less correlated metrics for aggregation. 
The range of values is broader this time than for 

Figure 8. Weights for less correlated metrics based on PCA contribution 

Figure 9. Weights for less correlated metrics based on expert knowledge 
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aggregation of all metrics. Smallest median value is 
achieved for Choquet method with fuzzy measures 
based on PCA weights, around 45. OWA with 3/8 
and trapezoidal smoothing methods fell between 45 
and 50 with the median value (regardless of weights 
used). Median values around 50–55 are achieved 
for OWA with 3/8 and Simpson smoothing (for 
both weight sets) and for Choquet with fuzzy meas-
ures based on expert weights. Significantly higher 
values are obtained from aggregation by arithme-
tic mean, weighted average (especially with expert 
weights) and basic OWA operator (with both sets of 

weights). The highest median is achieved for OWA 
with PCA weights, reaching almost 70.

Large differences in the absolute values of 
the metrics do not reflect in significant changes in 
ranking. Only the 8 to 9 and 1 to 2 positions dif-
fer sometimes for PCA weights (as seen in Table 
6). For example, ranking for Choquet with fuzzy 
measures based on PCA weights differs in these 
positions from the rankings presented for aggre-
gation of all metrics. Same situation occurs for 
weighted average with PCA weights. For expert 
weights (presented in Table 7) the ranking is less 

Figure 10. Comparison of the aggregated metric’s value for different weights and aggregation methods; 
aggregation performed for all individual metrics

Table 6. Ranking obtained from aggregation of less correlated metrics with PCA weights

Algorithm Arithemtic 
average

Weighted 
average OWA Choquet Smooth OWA 

(Simpson)
Smooth OWA 
(trapezoidal)

Smooth OWA 
(3/8)

Smooth OWA 
(ONC3)

Algorithm A 6 6 6 6 6 6 6 6

Algorithm B 9 8 9 8 9 9 9 9

Algorithm C 4 4 4 4 4 4 4 4

Algorithm D 7 7 7 7 7 7 7 7

Algorithm E 10 10 10 10 10 10 10 10

Algorithm F 3 3 3 3 3 3 3 3

Algorithm G 2 2 1 2 1 2 2 2

Algorithm H 1 1 2 1 2 1 1 1

Algorithm I 8 9 8 9 8 8 8 8

Algorithm J 5 5 5 5 5 5 5 5
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dependent on aggregation used. As opposed to 
PCA weights, the positions 8 and 9 never changed. 
Only on the first two positions changes occurred 
between Algorithms G and H. OWA and smooth 
OWA with Simpson smoothing favored Algorithm 
G over H, while all other methods gave opposite 
result. No other changes are observed.

DISCUSSION

In addition to standard performance metrics, 
other characteristics of algorithms – such as com-
putational complexity or execution time – can also 
be included in comparative evaluations. This ap-
proach was presented in [33], where metrics such 
as F-Score, Training Time, Testing Time, and Con-
sistency were considered. Such an extension could 
be easily integrated into our framework by record-
ing the mentioned training and testing parameters 
for the evaluated algorithms and including them 
among the aggregated features, with defining their 
respective importance (and thus their weight) in 
the evaluation process. Furthermore, the cited 
work applies an interesting multi-metric decision-
making method based on AHP. While this is an 
advanced and well-established approach, it relies 
heavily on expert input for algorithm evaluation. 
In contrast, our research aims to increase the level 
of automation in the evaluation process.

A related study [34] also considers training 
time alongside accuracy and uses a k-NN-based 
meta-model to generate rankings. The ranking 
system proposed in that work offers a comple-
mentary perspective to ours: while our ranking is 
derived from model performance across multiple 
datasets, the cited method focuses on generating 

a ranking for a specific test dataset by identify-
ing the most similar datasets among previously 
evaluated, usingthe k-NNframework and building 
the ranking accordingly. In contrast, our proposed 
method is primarily designed for use in scien-
tific evaluation settings, where algorithms are as-
sessed based on experiments conducted across a 
diverse set of datasets.

To compare rankings obtained in our study, 
we employed metrics such as NDCG, which is 
commonly used in research for evaluating rank-
ing quality [35]. Other well-known approaches 
include statistical tests, such as the Friedman test 
and post-hoc tests to determine whether rankings 
differ significantly[36].For instance, the Neme-
nyi test has been applied to sports rankings [37], 
but could easily be adapted to other ranking 
domains. In addition, Spearman’s rank correla-
tion is also used for ranking comparisons [34]. 
However, a recurring challenge in such compari-
sons is the lack of an ideal or reference ranking, 
which often necessitates the manual creation of 
a “ground truth” ranking [38]. Our study also 
encounters this issue, which is why for now we 
have limited our comparisons to rankings de-
rived from individual metrics. Designing a more 
reliable evaluation method for rankings remains 
an open challenge for future work.

CONCLUSIONS

This paper presents an interesting and novel 
methodology for aggregating multiple metrics 
used to assess anomaly detection algorithms. 
The proposed aggregated metric is designed to 
simplify interpretation of the results and ranking 

Table 7. Ranking obtained from aggregation of less correlated metrics with expert weights

Algorithm Arithemtic 
average

Weighted 
average OWA Choquet Smooth OWA 

(Simpson)
Smooth OWA 
(Trapezoidal)

Smooth OWA 
(3/8)

Smooth OWA 
(ONC3)

Algorithm A 6 6 6 6 6 6 6 6

Algorithm B 9 9 9 9 9 9 9 9

Algorithm C 4 4 4 4 4 4 4 4

Algorithm D 7 7 7 7 7 7 7 7

Algorithm E 10 10 10 10 10 10 10 10

Algorithm F 3 3 3 3 3 3 3 3

Algorithm G 2 2 1 2 1 2 2 2

Algorithm H 1 1 2 1 2 2 2 2

Algorithm I 8 8 8 8 8 8 8 8

Algorithm J 5 5 5 5 5 5 5 5
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of the best models. Several variants of the meth-
od are presented, including a more automatic 
approach involving aggregation of all metrics, 
as well as a correlation-aware approach that en-
ables the exclusion of redundant information. 
Two weighting strategies for aggregation are 
discussed: one based on the contribution of met-
rics to the PCA components, and another derived 
from expert knowledge regarding the metrics’ 
significance.

The algorithm rankings obtained via differ-
ent metric aggregation strategies showed mini-
mal variation, despite the fact that the aggre-
gated metric values differed significantly (with 
median values ranging from approximately 45% 
to 70%). For the ten ranked algorithms, differ-
ences typically occurred in the ordering of the 
top two algorithms, with occasional changes in 
the placement of algorithms ranked 8th and 9th. 
When comparing the rankings derived from the 
proposed aggregated metric to those based on 
individual metrics, the aggregated results most 
closely resembled the rankings obtained from 
F1-score, PR AUC, and Precision. Slightly larg-
er, but still moderate, differences are observed 
when using ROC AUC or Recall alone. In con-
trast, substantial discrepancies, especially at the 
top of the rankings, are found when using Speci-
ficity or Accuracy as sole metrics. This aligns 
with well-known concerns in anomaly detection 
that Accuracy may be a misleading metric, often 
inflated due to class imbalance.

The proposed aggregated metric framework 
addresses a longstanding challenge in model 
evaluation: the simultaneous interpretation of 
multiple, often conflicting performance indica-
tors. By introducing a principled aggregation 
and ranking mechanism, our approach enables 
the comparison of models using a single metric 
that should reflecta balanced, task-aware synthe-
sis of traditional measures. The novelty lies not 
only in the integration of diverse metrics into 
one scale, but in the flexible design space that 
allows tailoring the metric to domain-specific 
priorities, such as recall-dominant sensitivity 
or robustness to class imbalance. The flexibility 
is achieved due to choice possibilities of aggre-
gation methods and weighting strategies. The 
system contributes to a more interpretable, stan-
dardized, and scalable evaluation process, of-
fering practical utility in benchmarking, model 
selection, and automated reporting.

Future work may involve the development of 
methods to evaluate the quality of rankings ob-
tained through metric aggregation. The proposed 
methodology could potentially be extended be-
yond anomaly detection to tasks such as classifi-
cation or regression, where interpreting multiple 
performance metrics is also a common challenge. 
An intriguing direction for future research would 
be to use the aggregated metric as an objective 
function in neural networks or as a guiding crite-
rion in cross-validation-based fine-tuning.
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