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INTRODUCTION

Process dynamics modelling is one of the ma-
jor fields of automatic control branch. Dynamic 
models are used for different purposes. The pri-
mary one is to obtain approximate but relevant in-
formation on process dynamic behaviour. These 
approximate models are generally used tune the 
controller properly (classical PI or PID) or even 
design control procedure (Model Base Predictive 
Control). Another application of Dynamic mod-
els is to build so called “Digital Twins” which 
are precise simulators of a given technological 
process. One should be aware that complexity of 
the model is usually related to model precision; 
however application of the model sometimes re-
quires model complexity on a low level as for 
mentioned primary purpose of modelling. Clas-
sical approach to modelling uses first principle 
modelling that results in form of the model as a 
set of differential equations. This approach, how-
ever, requires a lot of knowledge and experience 
in the technology that are modelled. Even though 
first principle modelling does not result in high 
quality and model precision. The difficulty of 

such modelling approach usually lies in unrecog-
nized phenomena and unknown values of param-
eters in first principle models. To rise the model 
precision, one should obtain the support of ex-
perimental data and make a compromise between 
knowledge based modelling and experimental 
based modelling [1]. However, modern tech-
niques of modelling and technological progress 
in fast computing give the opportunity to develop 
and apply fully experimental models, which does 
not require much knowledge on technology used 
and phenomena existing in controlled process. 

Modelling of dynamic systems appears to 
be one of the crucial issues in operating tech-
nological processes. There are different types of 
systems to be modelled e.g.: pneumatic, chemi-
cal, hydraulic, mechanic. One of the frequently 
type of systems that accompanies another tech-
nological processes is a thermal process [2–6]. 
Modelling of such processes has usually some 
amount of unrecognized phenomena (e.g. non-
ideal mixing) and uncertainty of some parame-
ters (e.g. heat exchange coefficient). This makes 
first principle modelling inaccurate without any 
support of measurement data. Thus, it may be 
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concluded that the more precise model is need-
ed, the more experimental data is required. On 
the other hand, a well-prepared model can be 
used to design a control system and to create 
advanced control algorithms based on the ob-
ject’s model [7, 8]. One of the modern model-
ling techniques that is on the focus recently is 
based on artificial intelligence with application 
of recurrent neural networks (RNN). There are 
few research reports that show application of 
RNN in PID related issues [9] and ANN for tun-
ing of PID algorithm [10, 11]. However, the ap-
proach proposed in this paper does not replace 
PID with AI technique or does not apply ANN 
as online supplement for PID control loop. The 
approach proposed in this paper applies RNN 
for control plant modelling and afterwards for 
tuning PID algorithm. RNN enables accurate 
modelling, even with limited knowledge of the 
internal structure of a modelled technological 
unit, relying solely on the provided input/output 
data. This approach of modelling is considered 
in presented research for modelling of flow-
through (circulation) electric heater. 

PROCESS DESCRIPTION AND 
MODELLING

An experimental setup with circulation elec-
tric heater was used to present applicability of 
considered methodology. The setup consists of 
the 6 kW heater supplied with water and ac-
cessories of two temperature sensors for inlet 
and outlet as well as flow sensor. Measurement 
equipment is wired to the analogue input mod-
ule of Siemens Simatic S7-1500 PLC. Data log-
ging is performed using application in Siemens 
WinCC Runtime environment with 100 ms cy-
cle. The setup allows changing the power val-
ue of the heater using PWM hardware device. 
Thus, the power is expressed in this research 
as a percentage of maximal power of the heater 
that relates to the duty period in PWM modula-
tor. Experimental data was collected at constant 
flow and randomly changed power of the heater. 

That set of data was used in training procedure 
for training the artificial neural network.

The access to experimental past data of mod-
elled system is required to train artificial neural 
network. Traditional artificial neural networks 
(ANN) are design only to depict simple in-
put-output relations where output depends only 
on current input data values. That type of artifi-
cial neural network does not able to retain past 
or historical information, because it does not any 
internal memory mechanism. That type of ANN 
might be successfully used to map an unknown 
physical relation or parameter values e.g. coeffi-
cients for first principle heat exchanger models 
[8]. However, it might be a challenging task for 
complex systems [9]. An alternative approach 
for ANN was proposed to cope with a demands 
for mapping not only static but also dynamic re-
lations/ The recurrent neural networks (RNNs) 
achieve a memory through a local feedback loop 
(in the cell) or global feedback loop (for a whole 
network), which gives the opportunity to capture 
temporal dependencies in sequential data [10]. 
There are different types of RNNs depending on 
what information is relevant enough to be kept 
in the memory. In this research long-short-term-
memory recurrent neural network (LSTM) is 
used, while it is capable to to capture long-term 
dependencies by handling the vanishing gradient 
problem in back propagation [11]. The LSTM de-
fined for the purpose of this research is presented 
in the below figure (Figure 1).

As shown in the figure, the network has three 
inputs: the power P [%] of heating element, the 
flow of the water F [L/min], and the inlet tem-
perature of water Tin [°C]. The input layer is used 
for normalizing these values to make further ma-
nipulation more suitable. The first fully connected 
layer captures possible relations and then outputs 
to the next LSTM layer, which is responsible for 
capturing long-term relations. The application of 
more than one LSTM layer is preferred [12] in this 
case, due to the complexity of the required data 
prediction and the typical use of large data sets 
for training as well as subsequent prediction. The 
last two layers are necessary to properly shape the 

Figure 1. Scheme of neural network for circulation electric heater
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output value that is the outlet water temperature 
Tout [°C], and to train the network for regression. 
Additionally, ReLU layers may be used at the in-
put and output of the LSTM layers to additionally 
prevent the vanishing of gradients and improve 
the learning property of the network.

Any neural network has to be properly 
trained, to complete the modelling task using 
this methodology. The training data might be 
acquired from the real technological plant; how-
ever, this process is time consuming and some-
times expensive for the primary experiments 
with ANN structure and training process. To be 
time efficient, the training data were generated 
using very precise first principle model for this 
research. This model was developed in previous 
researches and supported with some experimen-
tal relations. This model was validated and its 
high quality was proven [13, 14]. This first prin-
ciple model in time domain has a form of nonlin-
ear differential equation (Equation 1) [10].
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	 (1)

where:	V = 1.6 L – heater volume, Pmax = 6000 
J – maximal power of the heater, ρ = 1 
kg/L – water density, cs = 42000 kg/(J ℃) 
is water specific heat capacity. Pc,mod and 
Fmod are mapping additional dynamic rela-
tions and are presented in form of simple 
transfer functions (Equation 2–5).
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Hence the model quality is proven, it allows 
rapid dynamic properties analysis at low cost 
without time and media consuming experiments. 
This model was used for experiments with neural 
network training, since it does not matter in this 
case the source of data for training. It was as-
sume that if artificial neural network with a given 
structure is capable to map dynamic properties of 
the above first principle model, it can also map 
a real plant properties, even if some relations 

slightly differs from the physical model. Thus, 
for the tests with RNN training, a set of input-
output data generated with the above high class 
model was used. It is worth noticing at this point 
that designing the above first principle model 
required knowledge of the technological unit 
structure and phenomena, while artificial neural 
network model is based on training data without 
such specific information as for model expressed 
by Equation 1–5. In other words, RNN models 
are more universal for many different processes 
whenever input-output data is accessible.

TRAINING PROCEDURE OF THE RNN 
MODEL AND VERIFICATION

Once the training data is collected, the model 
must be properly trained. This is where the num-
ber of neurons in each layer and additional set-
tings matter. The number of neurons in the input 
and output layers are fixed and should be equal 
to the number of inputs and outputs, respective-
ly. As for the internal layers, a different number 
of neurons has an impact on prediction quality. 
At this stage, it is worth noting that an excessive 
number of neurons can not only significantly 
affect the training procedure duration, but also 
cause over-fitting, resulting in poor quality pre-
dictions for cases that do not appear in training 
data. The MATLAB environment allows specify-
ing additional training settings, such as the solver 
used, the gradient threshold (to prevent exploding 
gradient problem) or modifications to the training 
schedule for additional improvements.

To simulate this particular electric heater, 
each LSTM layer was designed with 500 neurons 
trained over multiple iterations. The root mean 
square propagation optimization algorithm [13] 
was chosen for its adaptive learning rate, which 
improves the learning efficiency of the neural 
network and enhances performance on time se-
ries or training data with significant measurement 
noise level. A piecewise learning rate was chosen 
to achieve variable learning rates throughout the 
training process. This approach allows faster re-
tention of information at the beginning of train-
ing, which is then refined in later iterations. Addi-
tionally, the gradient was constrained to prevent 
the occurrence of gradient explosion.

A training data set was generated using first 
principle model, basing on the described above 
approach and assumptions. The input signals of 
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power P and inlet temperature were changed in 
steps with respect to map different input values 
configuration and obtain the best representative 
data for training. Each step change of input gener-
ated respective time evolution change of the output 
temperature which was recorded. Thus, the output 
temperature time chart is a set of step change re-
sponses of the inputs. Figure 2 presents the time 
series generated in the described procedure. Once 
the network is trained for the mentioned number 
of iterations, it was used to predict the output val-
ue of the system based on the given time series of 
the inputs. In verification procedure the output of 
RNN model was compared with the output value 
of first principle model represented by Equations 
1–5. Time series of the inputs generated for veri-
fication are different from the time series used for 
RNN training. The result of verification is shown 
in the Figure 3. Result shows that both outputs of 
RNN and first principle models are very close, 
thus it may be assumed that training procedure of 
RNN was successful and the RNN model depicts 
dynamics of the source object.

APPLICATION OF RNN FOR TUNING THE 
PID CONTROLLER

Once the network is trained, it might be 
used for different purposes. One of the appli-
cation is to use it for building digital twin in 
simulation procedure. Another one that was 

considered is to use it for tuning the control-
ler. The PID controller was considered in this 
case and the results of the proposed procedure 
were compared with one of popular tuning rule 
for this algorithm. In the previous section, it 
was proven that RNN with the proposed struc-
ture is capable to capture dynamic properties 
of the considered process (electric heater). In 
this case, the RNN was trained using new data 
set (Figure 4) assuming stable operating point 
of flow F = 2 L/min. constraining data set with 
such assumption makes the model quality high-
er for the chosen flow value. Training process 
gave positive results as for previous case with 
variable flow rate. The trained RNN was used 
then in controller tunig procedure. This proce-
dure assumed searching for a pair of parame-
ters of PI algorithm that minimizes an objective 
function J (Eq. 6). This objective function con-
sists of MSE factor and additional cost function 
that penalizes overshooting. 
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𝑃𝑃𝑐𝑐,mod(𝑠𝑠) = 𝑃𝑃𝑐𝑐(𝑠𝑠) 1
1 + 5 𝑠𝑠 ⅇ−𝑠𝑠𝑇𝑇𝑜𝑜𝑃𝑃𝑐𝑐  (2) 

 
𝑇𝑇𝑜𝑜𝑃𝑃𝑐𝑐 = 9.7𝐹𝐹−0.427 (3) 

 
𝐹𝐹mod(𝑠𝑠) = 𝐹𝐹(𝑠𝑠)ⅇ−𝑠𝑠𝑇𝑇𝑜𝑜𝑜𝑜  

 
(4) 

 
𝑇𝑇𝑜𝑜𝑜𝑜 =  𝑇𝑇𝑜𝑜𝑃𝑃𝑐𝑐 − 4 (5) 

  

𝐽𝐽 =  1
𝑁𝑁 ∑(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) − 𝑦𝑦(𝑖𝑖))2

𝑁𝑁

𝑖𝑖=1
+ 

+ (max(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠) − max (𝑦𝑦))2 
 

(6) 

 

	 (6)

where:	yset – setpoint value, y – process output 
value, N – number of discrete time in-
stances (samples).

The possible space of PI tuning param-
eter combination (gain and integral time) 
was searched to minimize objective function 

Figure 2. Data set generated for RNN training
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Figure 3. Output prediction comparison between RNN and physical model, compared to real output

Figure 4. Data set for training RNN used for PI algorithm tuning procedure

represented in Equation 6. Schematic repre-
sentation of this idea is presented in Figure 
5. Sample results for objective function J val-
ues and different PI parameter combinations 
are presented in Figure 6. PI controller tuning 
parameters were compared with the one cal-
culated using one of the most popular Chien-
Hrones-Reswick (CHR) tuning rule [14, 15]. 
In this case, the CHR rule was chosen with 
the option for fast settling time and limit for 

overshooting. That option is likely compatible 
with the demands defined for tuning proce-
dure with RNN and objective function defined 
in Equation 6. Results of both PI algorithm 
tuning approaches are presented in Table 1. 
In the next step, the PI controller performance 
was compared with both set of tuning param-
eters (Figure 7). For comparison of controller 
performance J objective function in both cases 
was calculated (Table 2).
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Figure 5. Schematic diagram of the PID controller tuning system using a RNN model

Figure 6. Sample objective function J values with different PI parameters

Figure 7. Result of experiment with PID controller tuned with CHR rule and using RNN simulation
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CONCLUSIONS

The proposed approach for PI algorithm tun-
ing with artificial neural networks gave positive 
results that are comparable to classical methods 
for tuning that algorithm. Although this proce-
dure requires designing RNN network structure, 
in some aspects it is more convenient in appli-
cation than classical tuning rules. The main ad-
vantage of the proposed tuning procedure is that 
it is time efficient and requires minimal initial 
setup. The object dynamics adaptation ability is 
based solely on collected I/O measurements, thus 
it does not require any prepared experiment and 
can be based on any historical data stored in the 
monitoring system of a given technological pro-
cess. In the paper proposed structure of RNN was 
used to predict the output temperature of circulat-
ing heater. Good quality of the model based on 
artificial intelligence was proved.

The proposed PI algorithm tuning procedure 
might be very useful in the case where the process 
is constantly disturbed and any experiment with 
step response to manipulated value can be prob-
lematic if not impossible. The only drawback is 
that RNN requires some time for learning on the 
basis of the data set acquired from the technologi-
cal process. This procedure might be used in the 
cases when the process is tuned for the first time 
or for the process with poorly tuned controller as 
well with a little interference to the technological 
process flow. 
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