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ABSTRACT

The presented research results are related to the modelling and simulation of technological processes using recur-
rent neural networks (RNN). This paper presents the application of such modelling technique for a flow-through
heater. The structure of the RNN was presented and the correctness of the obtained modelling results was verified.
The application of such a model for the classical PI algorithm controller tuning was presented. The results were
compared with the popular PI algorithm tuning rule (Chien-Hrones-Reswick). The advantage of the proposed ap-

proach to tuning controllers over traditional methods was pointed out.
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INTRODUCTION

Process dynamics modelling is one of the ma-
jor fields of automatic control branch. Dynamic
models are used for different purposes. The pri-
mary one is to obtain approximate but relevant in-
formation on process dynamic behaviour. These
approximate models are generally used tune the
controller properly (classical PI or PID) or even
design control procedure (Model Base Predictive
Control). Another application of Dynamic mod-
els is to build so called “Digital Twins” which
are precise simulators of a given technological
process. One should be aware that complexity of
the model is usually related to model precision;
however application of the model sometimes re-
quires model complexity on a low level as for
mentioned primary purpose of modelling. Clas-
sical approach to modelling uses first principle
modelling that results in form of the model as a
set of differential equations. This approach, how-
ever, requires a lot of knowledge and experience
in the technology that are modelled. Even though
first principle modelling does not result in high
quality and model precision. The difficulty of

such modelling approach usually lies in unrecog-
nized phenomena and unknown values of param-
eters in first principle models. To rise the model
precision, one should obtain the support of ex-
perimental data and make a compromise between
knowledge based modelling and experimental
based modelling [1]. However, modern tech-
niques of modelling and technological progress
in fast computing give the opportunity to develop
and apply fully experimental models, which does
not require much knowledge on technology used
and phenomena existing in controlled process.
Modelling of dynamic systems appears to
be one of the crucial issues in operating tech-
nological processes. There are different types of
systems to be modelled e.g.: pneumatic, chemi-
cal, hydraulic, mechanic. One of the frequently
type of systems that accompanies another tech-
nological processes is a thermal process [2—6].
Modelling of such processes has usually some
amount of unrecognized phenomena (e.g. non-
ideal mixing) and uncertainty of some parame-
ters (e.g. heat exchange coefficient). This makes
first principle modelling inaccurate without any
support of measurement data. Thus, it may be
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concluded that the more precise model is need-
ed, the more experimental data is required. On
the other hand, a well-prepared model can be
used to design a control system and to create
advanced control algorithms based on the ob-
ject’s model [7, 8]. One of the modern model-
ling techniques that is on the focus recently is
based on artificial intelligence with application
of recurrent neural networks (RNN). There are
few research reports that show application of
RNN in PID related issues [9] and ANN for tun-
ing of PID algorithm [10, 11]. However, the ap-
proach proposed in this paper does not replace
PID with AI technique or does not apply ANN
as online supplement for PID control loop. The
approach proposed in this paper applies RNN
for control plant modelling and afterwards for
tuning PID algorithm. RNN enables accurate
modelling, even with limited knowledge of the
internal structure of a modelled technological
unit, relying solely on the provided input/output
data. This approach of modelling is considered
in presented research for modelling of flow-
through (circulation) electric heater.

PROCESS DESCRIPTION AND
MODELLING

An experimental setup with circulation elec-
tric heater was used to present applicability of
considered methodology. The setup consists of
the 6 kW heater supplied with water and ac-
cessories of two temperature sensors for inlet
and outlet as well as flow sensor. Measurement
equipment is wired to the analogue input mod-
ule of Siemens Simatic S7-1500 PLC. Data log-
ging is performed using application in Siemens
WinCC Runtime environment with 100 ms cy-
cle. The setup allows changing the power val-
ue of the heater using PWM hardware device.
Thus, the power is expressed in this research
as a percentage of maximal power of the heater
that relates to the duty period in PWM modula-
tor. Experimental data was collected at constant
flow and randomly changed power of the heater.

That set of data was used in training procedure
for training the artificial neural network.

The access to experimental past data of mod-
elled system is required to train artificial neural
network. Traditional artificial neural networks
(ANN) are design only to depict simple in-
put-output relations where output depends only
on current input data values. That type of artifi-
cial neural network does not able to retain past
or historical information, because it does not any
internal memory mechanism. That type of ANN
might be successfully used to map an unknown
physical relation or parameter values e.g. coeffi-
cients for first principle heat exchanger models
[8]. However, it might be a challenging task for
complex systems [9]. An alternative approach
for ANN was proposed to cope with a demands
for mapping not only static but also dynamic re-
lations/ The recurrent neural networks (RNNs)
achieve a memory through a local feedback loop
(in the cell) or global feedback loop (for a whole
network), which gives the opportunity to capture
temporal dependencies in sequential data [10].
There are different types of RNNs depending on
what information is relevant enough to be kept
in the memory. In this research long-short-term-
memory recurrent neural network (LSTM) is
used, while it is capable to to capture long-term
dependencies by handling the vanishing gradient
problem in back propagation [11]. The LSTM de-
fined for the purpose of this research is presented
in the below figure (Figure 1).

As shown in the figure, the network has three
inputs: the power P [%] of heating element, the
flow of the water F [L/min], and the inlet tem-
perature of water T, [°C]. The input layer is used
for normalizing these values to make further ma-
nipulation more suitable. The first fully connected
layer captures possible relations and then outputs
to the next LSTM layer, which is responsible for
capturing long-term relations. The application of
more than one LSTM layer is preferred [12] in this
case, due to the complexity of the required data
prediction and the typical use of large data sets
for training as well as subsequent prediction. The
last two layers are necessary to properly shape the
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Figure 1. Scheme of neural network for circulation electric heater

250



Advances in Science and Technology Research Journal 2025, 19(12) 249-256

output value that is the outlet water temperature
T , [°C], and to train the network for regression.
Additionally, ReLU layers may be used at the in-
put and output of the LSTM layers to additionally
prevent the vanishing of gradients and improve
the learning property of the network.

Any neural network has to be properly
trained, to complete the modelling task using
this methodology. The training data might be
acquired from the real technological plant; how-
ever, this process is time consuming and some-
times expensive for the primary experiments
with ANN structure and training process. To be
time efficient, the training data were generated
using very precise first principle model for this
research. This model was developed in previous
researches and supported with some experimen-
tal relations. This model was validated and its
high quality was proven [13, 14]. This first prin-
ciple model in time domain has a form of nonlin-
ear differential equation (Equation 1) [10].

ATout(t) _ Fmod(t)
o;tt = "51ng (Tin(t) _Tout(t))+

Pc,mod (t)Pmax (1)
100 Vpcg

where: V' = 1.6 L — heater volume, P, = 6000
J — maximal power of the heater, p = 1
kg/L — water density, ¢ = 42000 kg/(J °C)
is water specific heat capacity. P, and

c,mod

F , are mapping additional dynamic rela-

mo

tions and are presented in form of simple
transfer functions (Equation 2-5).

1
Pc,mod(s) = PC(S) 115 Se_STOPc (2)
TOPc = 9.7F~0427 (3)
Finoa(s) = F(s)e™*Ter )
Tor = Top, =4 (5)

Hence the model quality is proven, it allows
rapid dynamic properties analysis at low cost
without time and media consuming experiments.
This model was used for experiments with neural
network training, since it does not matter in this
case the source of data for training. It was as-
sume that if artificial neural network with a given
structure is capable to map dynamic properties of
the above first principle model, it can also map
a real plant properties, even if some relations

slightly differs from the physical model. Thus,
for the tests with RNN training, a set of input-
output data generated with the above high class
model was used. It is worth noticing at this point
that designing the above first principle model
required knowledge of the technological unit
structure and phenomena, while artificial neural
network model is based on training data without
such specific information as for model expressed
by Equation 1-5. In other words, RNN models
are more universal for many different processes
whenever input-output data is accessible.

TRAINING PROCEDURE OF THE RNN
MODEL AND VERIFICATION

Once the training data is collected, the model
must be properly trained. This is where the num-
ber of neurons in each layer and additional set-
tings matter. The number of neurons in the input
and output layers are fixed and should be equal
to the number of inputs and outputs, respective-
ly. As for the internal layers, a different number
of neurons has an impact on prediction quality.
At this stage, it is worth noting that an excessive
number of neurons can not only significantly
affect the training procedure duration, but also
cause over-fitting, resulting in poor quality pre-
dictions for cases that do not appear in training
data. The MATLAB environment allows specify-
ing additional training settings, such as the solver
used, the gradient threshold (to prevent exploding
gradient problem) or modifications to the training
schedule for additional improvements.

To simulate this particular electric heater,
each LSTM layer was designed with 500 neurons
trained over multiple iterations. The root mean
square propagation optimization algorithm [13]
was chosen for its adaptive learning rate, which
improves the learning efficiency of the neural
network and enhances performance on time se-
ries or training data with significant measurement
noise level. A piecewise learning rate was chosen
to achieve variable learning rates throughout the
training process. This approach allows faster re-
tention of information at the beginning of train-
ing, which is then refined in later iterations. Addi-
tionally, the gradient was constrained to prevent
the occurrence of gradient explosion.

A training data set was generated using first
principle model, basing on the described above
approach and assumptions. The input signals of
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power P and inlet temperature were changed in
steps with respect to map different input values
configuration and obtain the best representative
data for training. Each step change of input gener-
ated respective time evolution change of the output
temperature which was recorded. Thus, the output
temperature time chart is a set of step change re-
sponses of the inputs. Figure 2 presents the time
series generated in the described procedure. Once
the network is trained for the mentioned number
of iterations, it was used to predict the output val-
ue of the system based on the given time series of
the inputs. In verification procedure the output of
RNN model was compared with the output value
of first principle model represented by Equations
1-5. Time series of the inputs generated for veri-
fication are different from the time series used for
RNN training. The result of verification is shown
in the Figure 3. Result shows that both outputs of
RNN and first principle models are very close,
thus it may be assumed that training procedure of
RNN was successful and the RNN model depicts
dynamics of the source object.

APPLICATION OF RNN FORTUNING THE
PID CONTROLLER

Once the network is trained, it might be
used for different purposes. One of the appli-
cation is to use it for building digital twin in
simulation procedure. Another one that was

considered is to use it for tuning the control-
ler. The PID controller was considered in this
case and the results of the proposed procedure
were compared with one of popular tuning rule
for this algorithm. In the previous section, it
was proven that RNN with the proposed struc-
ture is capable to capture dynamic properties
of the considered process (electric heater). In
this case, the RNN was trained using new data
set (Figure 4) assuming stable operating point
of flow F =2 L/min. constraining data set with
such assumption makes the model quality high-
er for the chosen flow value. Training process
gave positive results as for previous case with
variable flow rate. The trained RNN was used
then in controller tunig procedure. This proce-
dure assumed searching for a pair of parame-
ters of PI algorithm that minimizes an objective
function J (Eq. 6). This objective function con-
sists of MSE factor and additional cost function
that penalizes overshooting.

N
1 . 2
= 3205 @y +

=1
+ (max(yser) — max (y))z

where: y  — setpoint value, y — process output
value, N — number of discrete time in-
stances (samples).

The possible space of PI tuning param-
eter combination (gain and integral time)
was searched to minimize objective function
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Figure 2. Data set generated for RNN training
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Figure 3. Output prediction comparison between RNN and physical model, compared to real output
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Figure 4. Data set for training RNN used for PI algorithm tuning procedure

represented in Equation 6. Schematic repre-
sentation of this idea is presented in Figure
5. Sample results for objective function J val-
ues and different PI parameter combinations
are presented in Figure 6. PI controller tuning
parameters were compared with the one cal-
culated using one of the most popular Chien-
Hrones-Reswick (CHR) tuning rule [14, 15].
In this case, the CHR rule was chosen with
the option for fast settling time and limit for

overshooting. That option is likely compatible
with the demands defined for tuning proce-
dure with RNN and objective function defined
in Equation 6. Results of both PI algorithm
tuning approaches are presented in Table 1.
In the next step, the PI controller performance
was compared with both set of tuning param-
eters (Figure 7). For comparison of controller
performance J objective function in both cases
was calculated (Table 2).
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Figure 5. Schematic diagram of the PID controller tuning system using a RNN model
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Figure 7. Result of experiment with PID controller tuned with CHR rule and using RNN simulation
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Table 1. Comparison of PI tuning results

Table 2. Comparison of quality functions

Tuning procedure Kr [°C/%] Ti [s] Parameter J
CHR 2.02 131 RNN 66.63
RNN 1.38 9.1 CHR 113.31

CONCLUSIONS

The proposed approach for PI algorithm tun-
ing with artificial neural networks gave positive
results that are comparable to classical methods
for tuning that algorithm. Although this proce-
dure requires designing RNN network structure,
in some aspects it is more convenient in appli-
cation than classical tuning rules. The main ad-
vantage of the proposed tuning procedure is that
it is time efficient and requires minimal initial
setup. The object dynamics adaptation ability is
based solely on collected I/O measurements, thus
it does not require any prepared experiment and
can be based on any historical data stored in the
monitoring system of a given technological pro-
cess. In the paper proposed structure of RNN was
used to predict the output temperature of circulat-
ing heater. Good quality of the model based on
artificial intelligence was proved.

The proposed PI algorithm tuning procedure
might be very useful in the case where the process
is constantly disturbed and any experiment with
step response to manipulated value can be prob-
lematic if not impossible. The only drawback is
that RNN requires some time for learning on the
basis of the data set acquired from the technologi-
cal process. This procedure might be used in the
cases when the process is tuned for the first time
or for the process with poorly tuned controller as
well with a little interference to the technological
process flow.
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