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INTRODUCTION

With current manufacturing standards, the 
need for rapid access to tools and equipment 
needed for machine retooling has necessitated 
the establishment of tool storage facilities in 
all major manufacturing plants. In order to en-
sure high-quality tool logistics in companies, 
automated vertical storage systems are a fre-
quently used solution [1, 2]. In such a storage 
system, each item is assigned a location within 
the storage space, which facilitates control over 
the quantity and state of tools and equipment. 

Operator errors, such as retrieving wrong items 
or returning them to the incorrect positions, can 
disrupt the inventory system and cause discrep-
ancies between the actual stock and the reported 
virtual stock. Such discrepancies can lead to a 
number of problems during production and even 
result in a halt of the production line [3, 4] – this 
highlights the need to ensure adequate order in 
storage spaces and to minimise or completely 
eliminate irregularities in inventory systems. 
The solution to this problem is a system that 
monitors inventory changes and detects poten-
tial inaccuracies.
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A common approach currently employed in 
storage facilities is the use of RFID (radio-fre-
quency identification) tags [5–7]. By placing a 
unique tag on each object, it is possible to track 
its status and accurately supervise the inventory. 
A significant disadvantage of this approach is the 
high cost of the required infrastructure as well as 
the need to place tags on all objects, which may 
not be possible for systems storing small tools and 
equipment in manufacturing companies. Another 
possible solution is the system developed by Aioi 
Systems (India), in which each storage compart-
ment is covered by a flexible screen on which in-
formation is displayed for the warehouse operator 
(location, type of operation) [8]. Change detection 
is performed by sensing screen deformation. In 
the configuration presented, the system cannot de-
tect the direction of the change, only its location.

Vision systems are commonly used to solve 
the problem of detecting inventory changes. For 
the detection of changes in images, it is common 
to use methods such as SSIM (Structural simi-
larity index measure) [9] or absolute difference 
analysis. However, these classical approaches 
have a number of shortcomings, such as inabil-
ity to determine the direction of  change, low 
flexibility (in terms of variability of acquisition 
conditions and analysed objects), and suscep-
tibility to false-positive errors. The subject of 
change detection (CD) at the pixel level is often 
addressed in remote sensing issues. As a solution 
to this problem, researchers have proposed their 
own deep neural network architectures based on 
vision transformers [10–12] or graph networks 
[13]. These new architectures are highly efficient 
but require a large amount of training data and a 
high level of computing power to be developed 
and are characterised by substantial size and large 
inference times, making them significantly more 
difficult to use in an ’on-edge’ setting.

In the case of implemented solutions based 
on machine vision, two solutions could be dis-
tinguished. Amazon Technologies (USA) has de-
veloped a container content monitoring solution 
using an overhead camera that takes before and 
after images and a processing system based on 
depth feature extractors [14]. Each image is di-
vided into smaller segments (tiles) and encoded 
in a feature vector. The before and after vectors 
are compared with each other to detect and lo-
calise changes. An example of a machine vision 
system implemented for commercial use is the 
system developed by Accel Robotics Corp (USA) 

to monitor the recovery of goods from a store 
shelf [15]. It is a solution that uses a two-camera 
system to first identify the area of change using 
stereometrics, and then to extract the ROI (region 
of interest) area and transfer it to a classifier. This 
solution allows for the determination of the loca-
tion of the change, its volume, and the class of 
the collected object. The disadvantages of such 
approach are that a database of objects has to be 
created, a training set has to be prepared for the 
classification task, and there is little flexibility 
in the event of a change in the appearance of the 
products, as well as the need for a set-up of two 
calibrated cameras for each working area.

Considering the problem we have posed, it 
is worth noting the eagerly addressed issue of 
semi-supervised anomaly detection by research-
ers [16]. This approach is based on the develop-
ment of a training set that contains only sample-
free anomalies and the detection of anomalies 
during production based on the deviation of test 
samples from the training samples. A distinction 
can be made between the reconstruction-based 
[17] and distribution-based [18, 19] approaches 
depending on the method used to determine the 
anomaly score. Reconstruction-based approaches 
use autoencoders to obtain a condensed represen-
tation of the image in the bottleneck and deter-
mine the anomaly score by calculating the differ-
ence between the image at the input and output 
of the autoencoder. Only anomaly-free images 
are used to train the autoencoder with the corre-
sponding loss function, e.g. MSE (mean squared 
error) as a standard approach, or SSIM [17]. For 
distribution-based approaches, the distribution of 
deep features is determined, e.g. by estimating a 
multivariate normal distribution for the anomaly-
free samples. Then, the anomaly score is deter-
mined based on the distance of the test sample 
from the distribution. The described semi-super-
vised anomaly detection methods also have limi-
tations, among which the need for high homoge-
neity among the anomaly-free samples should be 
first noted. For the problem posed, it is possible 
to apply the methods shown, but the model needs 
to be trained to detect anomalies in the form of 
changes after each tool pick-up/drop-off, which is 
not an optimal solution. The proposed approach 
also does not solve the problem of determining 
the directionality of changes. With this in mind 
and considering the solution’s versatility, we de-
cided to use supervised methods with a focus on 
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improving (speeding up) the process of develop-
ing training data.

Taking into account existing methods, authors 
concluded that the problem posed requires a new 
approach due to: (1) the lack of knowledge regard-
ing all object types that may occur during infer-
ence, (2) significant object overlap and similarity 
(which rules out a counting-based solution), (3) 
the need for robustness to noise and disturbances 
(such as object displacement and small changes 
in acquisition conditions), (4) the requirement 
for real-time inference in an ’on-edge’ setting, 
(5) the necessity to determine the directionality 
of changes, and (6) the requirement to pass in-
dustrial validation. The authors propose a solu-
tion based on a task-specific architectural modi-
fication of an existing machine learning (ML) 
model, enabling an increase in the dimensionality 
of input data. YOLOv8 models were chosen as 
they [20, 21] represent state-of-the-art solutions 
designed for, among other tasks, real-time object 
detection and instance segmentation. Their high 
detection quality, short inference times, and ease 
of development have made models of this archi-
tecture frequently used in computer vision tasks.

The main highlights of our research include: 
(1) a synthetic dataset generation system, (2) a cus-
tom-modified machine learning solution based on 
the YOLO architecture allowing processing of 
six-channel images, (3) hybrid image processing 
with SSIM analysis providing a high level of re-
call. The proposed methods allow for rapid solu-
tion development and high scalability whilst also 
ensuring high robustness to domain shifts. The 
task-oriented modification of already existing and 
proven ML solutions enables easy deployment in 
industrial applications and further development. 
The proposed modification is characterized by 
significant flexibility and the potential for straight-
forward adaptation to other applications requiring 
inference on multi-channel images.

MATERIAL AND METHODS

Problem definition

The described problem concerns a vision 
system that is a component of a tool storage in-
ventory monitoring system (Figure 1). The infer-
ence results of the vision module – the location 
of  changes and their type – are compared with 
operations recorded in the IT inventory system 

controlling tool withdrawals and returns. The sys-
tem associates each tool with a specific segment 
(box) of the tray where it is located. This allows 
for the detection of irregularities during ware-
house operations performed by the operator and 
enables appropriate responses, such as displaying 
information on a screen or indicating the object’s 
location using a multi-coloured light indicator.

The main task of the developed vision sys-
tem is detecting changes between two images in 
the RGB (red-green-blue) colour space, depict-
ing states before and after changes to the storage 
area, along with determining the direction of the 
change – either the addition or removal of an ob-
ject (Figure 2).

In developing a solution for the presented 
research problem, certain aspects of the vertical 
tool storage system (Figure 3), with which the 
system is to be integrated, were considered:
	• the system stores multiple trays, each contain-

ing tools collected in cardboard boxes of fixed 
sizes;

	• the operator can make changes only within a 
selected tray, and only after it has moved out 
of the lift;

	• once the ‘return to magazine’ option has been 
selected, it is no longer possible to make 
changes within the tray working area.

After analysing the above characteristics of the 
target system, the following design and operating 
principles for the vision system were adopted:
	• the ‘before’ image is captured immediately af-

ter the selected tray leaves the lift of the storage 
system, before any operator action is taken;

	• the ‘after’ image is captured after the operator 
has performed operations inside the tray and 
selected the ‘return to magazine’ option; 

	• the vision system is integrated into the struc-
tural design of the storage system, ensuring a 
constant orientation and location of the trays 
relative to the camera between shots.

By adopting the described principles, constant 
acquisition conditions were ensured. Despite this, 
several problems were identified that could nega-
tively affect the reliability of the developed system, 
such as: (1) the possibility of significant overlap 
of tools in individual boxes, (2) the presence of 
many similar objects in the container, resulting in 
a low level of variability between images, and (3) 
changes in the position and orientation of tools in-
side the tray, caused by vibration or other activities 



465

Advances in Science and Technology Research Journal 2026, 20(1) 462–476

performed by the operator inside the tray (further 
referred to as disturbances).

Proposed machine learning solution

Two approaches have been proposed as a so-
lution to this problem: (1) a vanilla (unmodified) 
YOLOv8 with 3-channel input, or (2) an extended 
YOLOv8 model capable of inference on 6-channel 
images. The first method involves using existing 

instance segmentation models operating on spe-
cially prepared input images (Table 1). For the 
6-channel approach, referred to as YOLO6C, it 
was proposed to use the YOLOv8 model with ar-
chitectural and framework modifications to enable 
inference on 6-channel R1G1B1R2G2B2 images. 
The input image for this model consisted sequen-
tially of the RGB channels of the ’before’ image 
followed by the RGB channels of the ’after’ image.

Figure 1. Schematic of the operation of the tool inventory management system with the proposed vision 
component

Figure 2. Visual representation of the problem
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Multistage processing

The application of the developed solution ne-
cessitates achieving a high recall, placing great 
importance on detecting changes occurring in the 
tool magazine, while allowing for a certain level 
of false positive errors. Therefore, an additional 
processing step was proposed to capture changes 
missed by the ML model. To detect these changes, 
SSIM values for individual pixels were used, de-
scribing differences in both colour space data and 
structure between the two RGB ‘before’ and ‘after’ 

images. To avoid redundant detection of changes 
already identified by the first-stage ML model, the 
input images are masked in the areas covered by 
the detected segments (Figure 4). The SSIM values 
are pre-processed to filter out noise and enhance the 
data, and then thresholded using a predetermined 
value, manually selected for the target domain.

Data acquisition

The images of objects, containers, and back-
grounds used to generate the training dataset 

Figure 3. Example of a vertical storage system — vertical lift module (VLM): (a) tray, (b) storage zone with 
multiple shelves, (c) lift, (d) work area for tool deposition and retrieval [22]
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were captured using a Lori Plus webcam (Natec, 
Poland) with GC2053 sensor (Galaxycore Mi-
croelectronics, China) providing a resolution of 
1920 × 1080 pixels. The images of objects and 
containers were taken with the camera mounted 
on a stand, utilizing an LFDW201 flat dome illu-
minator (Wenglor, Germany) that emits diffused 
light with a colour temperature of 6500 K, match-
ing natural daylight. Background images were 
captured under the ambient lighting conditions 
available at the recording location.

Test images were recorded in various config-
urations and using different equipment. The ‘tar-
get’ conditions for image acquisition on the stor-
age tray were simulated in a specially prepared 
setup (Figure 5). For this purpose, a Raspberry 
Pi Camera v2 (Raspberry Pi Foundation, United 
Kingdom) equipped with a Sony IMX219 sensor 
(Sony Corporation, Japan) providing a resolu-
tion of 3280 × 2464 pixels was used. The setup 
also included an integrated 3.04 mm focal length 
lens and an LBDW201 bar illuminator (Wenglor, 

Table 1. Channel diagram of the input image for the YOLO3C approach
Model type Input - channel R Input - channel G Input - channel B

YOLO3C-A Grayscale(IBefore) Zero Grayscale(IAfter)

YOLO3C-B Grayscale(IBefore) Mean(IBefore, IAfter) Grayscale(IAfter)

YOLO3C-C Grayscale(IBefore) AbsDiff(IBefore, IAfter) Grayscale(IAfter)

YOLO3C-D Grayscale(IBefore) SSIM(IBefore, IAfter) Grayscale(IAfter)

Table 2. Comparison of the proposed methods of dataset generation
Parameter Automatic Customised

Used objects COCO dataset objects Industrial tools and equipment

Generation method Copy-and-paste Customised method

No. of objects 1266 146

No. of backgrounds 1500 71

No. of containers N/A 18

Figure 4. Processing scheme of the developed solution
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Germany). To reduce the impact of noise on sub-
sequent system performance, the test images were 
downscaled to the target input size of the models 
using bilinear interpolation.

The setup included a movable shelf on which 
cardboard boxes with objects were placed, en-
abling the simulation of the tray sliding in a real 
storage system and clearly defining the moment of 
reference image acquisition ’before’ any changes 
were introduced in the storage. Subsequent image 
acquisitions were manually triggered ’after’ in-
troducing changes. However, the developed setup 
also offers the ability to continuously monitor the 

storage tray, which, although not utilized in this 
study, could be employed in future research.

Synthetic image generation

Creating an extensive and diverse training 
dataset is a significant challenge when develop-
ing any system based on machine learning tech-
niques. To address this, the authors proposed 
an automatic system for generating image pairs, 
enabling rapid data generation and facilitating the 
development of the proposed solution. This paper 
presents and analyses two approaches to  auto-
mated training data generation: ’Automatic’ and 
’Customised’ (Table 2).

The first method is simple and efficient. Im-
ages are created by combining backgrounds and 
segmented objects from the widely used com-
mon objects in context (COCO) dataset [23], 
thus eliminating the need for additional data ac-
quisition. The ’copy-and-paste’ technique [24], 
commonly used for dataset augmentation, is em-
ployed to generate these images.

The ’Customised’ approach extends the first 
method by incorporating domain knowledge 
about the target station, such as placing tools in-
side containers and arranging them in a grid (Fig-
ure 6). Additionally, this approach uses images of 
various tools – ranging from industrial warehouse 
items to laboratory equipment – captured at the 
image acquisition station. Custom photographs of 
industrial surfaces, including stainless steel, plas-
tics, and rubber, were used as backgrounds.

Before detailing the dataset generation method, 
it is necessary to explain the data storage approach 

Figure 5. Acquisition setup; (a) camera, (b) 
illuminator, (c) movable shelf, (d) containers with 

objects, (e) support frame, (f) laboratory table

Figure 6. Simplified scheme for the image generation process
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for this particular task. As the system operates by 
analysing two images taken at different time points, 
the dataset should consist of pairs rather than indi-
vidual images. Each pair, differing in the presence 
or absence of an object, can be stored in two con-
figurations: normal [Image 1, Image 2] or inverted 
[Image 2, Image 1]. This inversion changes the di-
rectionality of the change (indicating whether an 
object is added or removed). Saving each pair in 
both configurations ensures class balance.

For the ’Automatic’ method, image pair gen-
eration is significantly simplified. In the first step, 
a set of objects (segmented from the COCO da-
taset) is selected and randomly placed against 
a  random background. The last object is placed 
only in the first image, thereby creating a differ-
ence (change) between the generated pair.

The ’Customised’ generation process is more 
complex and consists of multiple stages. Similar 
to the ’Automatic’ approach, a set of segmented 
tools is randomly selected. However, instead of 
being placed on a random background, the tools 
are positioned on a container image (e.g., a card-
board box), ensuring they remain within contain-
er boundaries. The process is repeated to create 
several pairs of container images, which are then 
assembled into grids ranging from 2 × 2 to 4 × 4 
and overlaid onto a random background.

To maintain high diversity in the generated im-
ages, various random geometric and colour-space 
modifications are applied to the objects, such as 
rotation, translation, vertical or horizontal flipping, 
resizing, and colour adjustments (brightness, satu-
ration, hue, and gamma). Additional transforma-
tions include RGB channel shuffling and artificial 
light reflection effects. Randomly selected objects 
were moved and/or rotated between images in a 
generated pair to simulate minor displacements 
that may occur during regular warehouse opera-
tions. Artificial light reflection was simulated by 
thresholding the object’s ‘value’ channel and 
blending it back with a random weight.

In addition to object-level augmentations, 
several random modifications were applied to the 

final images, including vertical or horizontal flip-
ping, JPEG compression, noise addition (RGB or 
salt-and-pepper), colour corrections (brightness, 
saturation, hue, and gamma), median blur, and 
perspective warping. Slightly different colour-
correction parameters were applied to the ’before’ 
and ’after’ images to enhance the model’s robust-
ness to changes in lighting conditions. Using each 
method, 2.500 image pairs were generated, form-
ing the basis for further ML model development.

Experiments and ablation studies

To perform an extensive and comprehensive 
evaluation of the proposed solutions, a series of 
experiments was conducted:
1.	Evaluation of the individual ML solutions de-

scribed in subsection Proposed machine learn-
ing solution,

2.	Comparison of models trained on datasets gener-
ated using the fast automatic approach, the cus-
tomised method, and mixed data (50:50 ratio),

3.	Comparison of one-stage and two-stage 
approaches,

4.	Evaluation of the final model.

The evaluation for individual ML solutions, 
the impact of training data, and the final model 
assessment was carried out for two classes: ‘add-
ed’ and ‘removed’. For the comparison between 
the one-stage and two-stage approaches, metrics 
were determined for the combined class labelled 
as ‘change’. For the evaluation of the proposed 
solutions, five test sets differing in camera type, 
contained objects, or background were prepared 
– one set corresponding to the target conditions 
and four additional domains (Figure 7, Table 3). 
A total of 189 image pairs from different domains 
were prepared.

Evaluation of developed solutions

The evaluation was carried out as cross-val-
idation. A total of 500 randomly selected imag-
es were divided into 5 independent segments, 

Figure 7. Example images from datasets representing various test domains
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forming 5 unique datasets. To maintain class bal-
ance after the data split, each pair of images was 
saved in both normal and inverted forms. Con-
sequently, each of the five datasets consisted of 
400 image pairs for model training and 100 for 
validation during training.

Pre-trained models were used during training: 
YOLOv8n-seg for the YOLO3C solutions or a 
modified version of it for YOLO6C. The training 
parameters were set as follows: batch size = 10 
and epochs = 75. 

Each of the 5 models was evaluated on each 
of the 5 test sets. The mean values and standard 
deviations of the metrics were determined for 
each test domain as well as for the entire test set.

The confidence threshold (working point) was 
set to 0.5. Using the pycocotools library, average 
precision (AP50) [25] and average recall (AR50) 
[26] were determined. The F1-score [27] metric 
was calculated as shown in Equation 1:

	 𝐹𝐹1  =  2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (1) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 ×  100% (2) 
 
 

	 (1)

where:

	

𝐹𝐹1  =  2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (1) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 ×  100% (2) 
 
 

	

	

𝐹𝐹1  =  2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (1) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 ×  100% (2) 
 
 

	

and TP, FP, and FN represent the total number 
of true positive, false positive, and false negative 
predictions, respectively.

Evaluation and testing were carried out on a 
workstation equipped with an Nvidia RTX4080 
GPU (Nvidia Corporation, USA) and an Intel 
Xeon Silver 4110 CPU (Intel Corporation, USA).

Analysis of the effects of disturbances

As mentioned earlier in section, the devel-
oped solution must be robust to disturbances such 
as minor tool displacements, rotations, and illu-
mination changes – it should effectively ignore 

these variations. To assess this robustness, an 
experiment was designed to test the model’s be-
haviour under variable translation, rotation, and 
brightness conditions.

A test dataset was created comprising 25 
non-symmetrical objects of size 480 × 480 pix-
els, positioned at the centre of randomly selected 
backgrounds of size 1760 × 1760 pixels. The fol-
lowing test cases were performed: rotation – ob-
jects were rotated around their centres from −180 
to 180 degrees in increments of 5 degrees, trans-
lation – objects were shifted along the X and Y 
axes from −240 to 240 pixels in increments of 4 
pixels, and brightness variation –  the brightness 
between image pairs was varied in the range of 
−50% to +50%.

As the performance quality metric, the ratio 
of the number of correct negative predictions to 
the total number of predictions was selected. This 
metric, known as the true negative rate (TNR), is 
defined by Equation 2:
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where:	TN denotes the number of true negative 
predictions and F P the number of false 
positive predictions.

Preparation and evaluation of final model

The final version of the model was trained on 
a dataset consisting of 2000 unique pairs of  im-
ages. Training was conducted with a batch size 
of 8 and for 50 epochs, using weights from the 
pre-trained YOLOv8n-seg model. The evaluation 
was carried out for two tasks: (1) detection and 
classification of changes according to their direc-
tion (‘added’ / ‘removed’), (2) detection of any 
changes without classification (a combination of 
the ‘added’, ‘removed’, and ‘change’ classes). 
The model was evaluated on a dataset comprising 
images from all test domains, using the methods 
and metrics described in Table 3.

Table 3. Overview of prepared test datasets
Test dataset No. of image pairs Camera Description

Target 69 PiCamera v2 Corresponding to the target domain with tools arranged inside 
8 cardboard boxes

Additional 1 34 Lori Plus Tools placed directly on a metal surface

Additional 2 23 Lori Plus Tools arranged inside 6 cardboard boxes

Additional 3 45 Lori Plus Objects other than tools, arranged on a background of 
coloured posters

Additional 4 27 Lori Plus View of a workstation with tools and small electronic equipment
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RESULTS AND DISCUSSION

Evaluation of developed methods

The developed methods were evaluated sepa-
rately on each test domain as well as on the entire 
set of test images. The results, presented as mean 
values and standard deviations, were aggregated 
in Table 4. The highest metrics were obtained 
for the YOLO6C approach, with the following 
results for evaluation on all test images: AP50 = 
82.55 ± 0.82, AR50 = 67.39 ± 0.38, and F1 = 89.42 
± 0.76. The second highest values were achieved 
by the YOLO3C-D approach using SSIM masks: 
AP50 = 82.46 ± 0.81, AR50 = 66.00 ± 0.67, and F1 
= 87.36 ± 0.74.

Due to the relatively similar results obtained 
for both approaches on the entire test dataset, 
the inference quality of the models was also 
compared across individual test domains. The 
F1 metric values for the YOLO6C solution were 
higher across all tested domains, indicating better 

inference quality at the adopted working point. 
In terms of AP50 and AR50 metrics, neither model 
consistently outperformed the other. However, 
YOLO6C achieved superior results in the target 
domain, with AP50 = 88.27 ± 1.20 and AR50 = 
78.94 ± 1.01, compared to AP50 = 87.05 ± 1.01 
and AR50 = 73.16 ± 1.00 for YOLO3C-D.

Both approaches demonstrated high quality 
metrics across the target and other test domains, 
indicating a degree of robustness to domain 
shift. After analysing the data, the YOLO6C ap-
proach was selected for further work due to its 
superior performance in the target domain. Ad-
ditionally, approaches based on 3-channel pro-
cessing of input images to grayscale are more 
prone to performance degradation when regions 
of pixels have different hues but similar inten-
sities. This issue does not affect the YOLO6C 
solution, as no colour space information is  lost 
during preprocessing. While this problem was 
not observed during testing, it could potentially 
arise during the system’s deployment.

Table 4. Evaluation results for the 5 proposed approaches across all test domains
Model type Test dataset F1 AP50 AR50

YOLO3C-A

All images
Target

Additional 1
Additional 2
Additional 3
Additional 4

77.24 ± 2.46
79.22 ± 4.64
70.13 ± 3.63
77.99 ± 4.82
77.52 ± 0.51
74.77 ± 3.01

59.85 ± 3.38
52.24 ± 5.46
65.10 ± 3.88
59.31 ± 4.99
66.88 ± 1.23
55.33 ± 1.80

43.82 ± 2.31
38.54 ± 3.21
47.32 ± 2.45
39.56 ± 3.70
51.32 ± 0.88
40.90 ± 1.58

YOLO3C-B

All images
Target

Additional 1
Additional 2
Additional 3
Additional 4

71.44 ± 2.59
76.24 ± 3.16
62.06 ± 6.18
69.33 ± 5.35
71.48 ± 1.68
70.70 ± 2.73

51.11 ± 7.28
49.50 ± 8.75
53.08 ± 9.65
50.33 ± 7.77
55.19 ± 8.00
43.47 ± 6.39

38.99 ± 5.85
37.57 ± 6.61
40.34 ± 6.93
36.26 ± 6.05
43.70 ± 7.08
32.25 ± 4.82

YOLO3C-C

All images
Target

Additional 1
Additional 2
Additional 3
Additional 4

77.97 ± 1.53
85.66 ± 1.00
71.61 ± 3.09
78.67 ± 3.50
76.07 ± 1.17
66.24 ± 4.64

62.01 ± 2.47
59.16 ± 2.38
67.95 ± 2.94
57.34 ± 1.87
67.53 ± 2.72
49.69 ± 5.24

44.04 ± 1.55
39.17 ± 1.39
51.30 ± 2.00
38.04 ± 0.93
49.67 ± 1.64
38.40 ± 3.47

YOLO3C-D

All images
Target

Additional 1
Additional 2
Additional 3
Additional 4

87.36 ± 0.74
91.47 ± 1.24
82.51 ± 2.04
84.07 ± 2.62
89.67 ± 1.43
76.35 ± 1.74

82.46 ± 0.81
87.05 ± 1.01
79.61 ± 1.20
80.25 ± 2.19
85.60 ± 0.92
65.66 ± 1.93

66.00 ± 0.67
73.16 ± 1.00
61.88 ± 0.75
61.23 ± 1.79
68.05 ± 0.84
51.18 ± 0.85

YOLO6C

All images
Target

Additional 1
Additional 2
Additional 3
Additional 4

89.42 ± 0.76
93.00 ± 0.88
85.87 ± 1.89
88.26 ± 2.71
89.69 ± 1.33
79.02 ± 1.54

82.55 ± 0.82
88.27 ± 1.20
78.32 ± 1.47
82.57 ± 2.32
84.11 ± 1.08
65.55 ± 2.37

67.39 ± 0.38
78.94 ± 1.01
59.83 ± 0.83
63.46 ± 1.00
67.56 ± 0.76
49.32 ± 0.76
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Analysis of the effects of disturbances

Through the conducted tests, the applicabil-
ity of the model was evaluated under object rota-
tion, translation in the working area, and changes 
in illumination conditions. Quality metric values 
were plotted as functions of rotation, translation, 
and relative brightness changes (Figure 8). The 
minimum acceptable quality metric threshold 
was set at 80%. Based on this criterion, the fol-
lowing constraints were established:
	• maximum acceptable rotation: 25 degrees;
	• maximum acceptable translation in the X or Y 

axes: 19% of the object size, which in typical 
cases corresponded to approximately 91 pixels;

	• maximum acceptable brightness change: -16% 
and +26%.

The results presented demonstrate the sig-
nificant robustness of the model to small changes 
in the position of objects in the working area that 
may occur during normal system operation.

Comparison of image generation methods

Evaluations were carried out for two 
training sets generated using the Customised 
method and the simpler copy-and-paste auto-
matic approach. The values of the determined 
metrics are summarised in Figure 9. Models 
trained exclusively on the set created using the 
simplified approach with COCO dataset imag-
es exhibited significantly lower values across 
all inference quality metrics in every test do-
main compared to the customised generation 
method. The Customised method, as well as 
the mixed dataset (with a 50:50 ratio), yielded 
much better inference quality in all test do-
mains, including domains containing objects 
not present in the image pool used by the data 
generation system (domains ‘additional 3’ and 
‘additional 4’). The study demonstrates the 
need for data generation methods that take into 
account the target appearance of images, clear-
ly demonstrating the disadvantages of a naive, 
fully automated approach. Such a significant 
drop in the quality of the model for that gen-
eration method could be caused not only by the 
significant disparity with the target test domain 
but also by high diversity and abstractness of 
input images, which prevented the architecture 
used from generalising correctly.

Comparison of the one-stage and two-stage 
approaches

The evaluation results for change detection 
for the one- and two-stage approaches are sum-
marised in Figure 10. The approach with addi-
tional SSIM processing resulted in a reduction 
of the F1 metric in all test domains except the 
target domain. For the AP50 and AR50 metrics, 
significant improvements were observed for all 
test domains. The proposed method of additional 
post-processing based on analysis of pixel-wise 
SSIM values has reduced flexibility and, as such, 
requires fine-tuning through the selection of ap-
propriate parameters. Those values were cho-
sen for the target domain; hence it was decided 
to restrict further analysis to this test domain. 
For two-stage processing, values of F1 = 94.62 
± 0.29, AP50 = 91.56 ± 0.75 and AR50 = 80.78 
± 0.60 were achieved – higher than the values 
for single-stage processing where the values 
amounted to F1 = 92.80 ± 0.19, AP50 = 83.47 ± 
1.07 and AR50 = 74.12 ± 0.68.

The application of the two-stage approach im-
proved the AP50 and AR50 metrics for all test do-
mains by increasing the sensitivity of the system. 

Figure 8. The effect of object’s rotation around its 
own axis translation in the X or Y axes and image 

brightness change on the true negative rate
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Figure 9. Comparison of evaluation results for YOLO6C models trained using two synthetic datasets

As a result, the number of false negatives was re-
duced. On the other hand, the introduction of addi-
tional processing increased the total inference time 
as well as decreased the values of the inference 
quality metrics for the adopted working point (F1 at 
thresh conf = 0.5) in non-target domains. However, 
this is an acceptable drawback given the observed 
improvement in comprehensive metrics such as 
AP50 and AR50 and can also be circumvented by 
further fine-tuning of the solution.

Final system evaluation

The validation of the final version of the 
developed system was carried out on the ’tar-
get’ test set. Values of F1 = 95.09, AP50 = 88.06 
and AR50 = 79.72 were achieved for detection 
of ’added’ and ’removed’ classes (first stage 
only) while values of F1 = 94.95, AP50 = 92.72 
and AR50 = 83.63 were obtained for the task of 
detecting any changes without classification 

(’added’, ’removed’ and ’change’ combined). 
The average total pre-processing and dual-stage 
inference time was 0.676 ± 0.039 s. Example in-
ference results are shown in Figure 11.

CONCLUSIONS

The results presented in this paper clearly dem-
onstrate the effectiveness of applying task-specific 
modifications to state-of-the-art deep learning mod-
els for tasks involving change detection and direc-
tion classification. The proposed solution retains 
all the advantages of the YOLOv8 architecture and 
the Ultralytics framework, such as ease of model 
preparation and training, along with short inference 
times, while simultaneously expanding the range 
of potential applications. By using a synthetically 
generated dataset instead of a traditional labelled 
image approach, the time required for preparing 
training data – and consequently the entire model 
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Figure 10. Comparison of evaluation results for one-stage and two-stage approach using YOLO6C models

Figure 11. Visualisation of the inference results of the final system
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development process – was significantly reduced. 
This streamlined approach facilitated the formula-
tion and extensive evaluation of multiple solutions. 
Studies have confirmed the practical applicability 
of the developed solution, including its potential 
integration into a vertical tool storage system. 
The augmentation methods employed during the 
generation of learning image pairs significantly 
improved robustness against negative phenom-
ena encountered under real operating conditions. 
These challenges include domain shifts, small 
object displacements or rotations between shots, 
and slight variations in  illumination. A notable 
advantage of the developed system is its ability to 
detect changes in stock without prior knowledge 
of the type or quantity of objects in the work-
space, unlike solutions based on object detection 
and counting.

The adoption of a two-stage approach incor-
porating SSIM post-processing effectively re-
duced the risk of false-negative errors, substan-
tially improving the AP50 and AR50 metrics across 
all test domains. This improvement was achieved 
with only a slight decrease in the F1 score for non-
target domains at the selected operating point.

The proposed solution could be practically 
deployed within vertical tool storage systems or 
similar industrial environments. However, several 
additional factors must be considered to ensure re-
liable operation. These include compliance with 
interface standards, compatibility with industrial 
cameras, and robustness to environmental con-
ditions such as lighting stability and vibrations. 
While the presented experiments focused on a 
single setup, large-scale deployment would require 
handling substantially larger datasets, potentially 
across multi-camera installations, which increases 
both computational and data-management de-
mands. Another important challenge is domain 
drift, arising from the introduction of new object 
types, or unexpected backgrounds. To address this, 
lightweight retraining pipelines or active learning 
strategies could be adopted, enabling the system to 
adapt with minimal human supervision.

The solution presented in this publication, 
which extends an existing architecture to handle 
image data with higher dimensionality than stan-
dard RGB, demonstrates considerable flexibility 
and broad application potential. Such modifications 
make it possible to adapt widely used architectures 
like YOLOv8 to process multi- or hyperspectral 
imagery, as well as composite data types such as 
RGB combined with polarization information. 

This capability is particularly relevant for domains 
where subtle spectral or structural variations car-
ry critical information, including remote sensing, 
medical diagnostics, and industrial inspection. At 
the same time, the use of higher-dimensional input 
introduces challenges related to increased data vol-
ume, specialized sensor requirements, and greater 
computational complexity. Addressing these fac-
tors will be essential for practical large-scale de-
ployment, and future work could explore optimiza-
tion strategies or tailored preprocessing pipelines 
to ensure efficient real-world integration.
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