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ABSTRACT

Tool storage systems are an integral component of the production chain in modern manufacturing facilities. Au-
tomated vertical storage systems are commonly employed to store and manage tools and equipment required for
rapid replacement or re-tooling during the production process. In such a scenario, any error made by a warehouse
operator can disrupt the inventory system, leading to operational issues or even halting the production line. To ad-
dress the challenges of storage control and operator error identification, this paper proposes a vision-based system
capable of detecting changes within the storage space and determining their directionality. The proposed solution
leverages a custom synthetic dataset generation process and a hybrid processing method, combining a 6-channel
enhanced YOLOVS (you only look once) model with structural similarity index measure (SSIM) analysis. This ap-
proach effectively identifies the location and direction of changes (e.g. object removal or addition) and is character-
ised by robustness to domain shifts and other disturbances, such as variations in illumination or object relocation,
which commonly occur during normal operation. The enhanced model utilises a 6-channel input, integrating ‘be-
fore’ and ‘after’ images while retaining full colour space information - a capability not achievable with the standard
YOLO models. Furthermore, the two-stage processing method that incorporates SSIM analysis significantly im-
proves the recall rate of the developed solution. Comprehensive validation on prepared test datasets demonstrated
an F -score of 95.1, with Average Precision (AP, ) and Average Recall (AR, ) of 88.1 and 79.7, respectively.

Keywords: deep learning, object detection, industrial automation, synthetic dataset, tool management.

INTRODUCTION

With current manufacturing standards, the
need for rapid access to tools and equipment
needed for machine retooling has necessitated
the establishment of tool storage facilities in
all major manufacturing plants. In order to en-
sure high-quality tool logistics in companies,
automated vertical storage systems are a fre-
quently used solution [1, 2]. In such a storage
system, each item is assigned a location within
the storage space, which facilitates control over
the quantity and state of tools and equipment.
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Operator errors, such as retrieving wrong items
or returning them to the incorrect positions, can
disrupt the inventory system and cause discrep-
ancies between the actual stock and the reported
virtual stock. Such discrepancies can lead to a
number of problems during production and even
result in a halt of the production line [3, 4] — this
highlights the need to ensure adequate order in
storage spaces and to minimise or completely
eliminate irregularities in inventory systems.
The solution to this problem is a system that
monitors inventory changes and detects poten-
tial inaccuracies.
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A common approach currently employed in
storage facilities is the use of RFID (radio-fre-
quency identification) tags [5—7]. By placing a
unique tag on each object, it is possible to track
its status and accurately supervise the inventory.
A significant disadvantage of this approach is the
high cost of the required infrastructure as well as
the need to place tags on all objects, which may
not be possible for systems storing small tools and
equipment in manufacturing companies. Another
possible solution is the system developed by Aioi
Systems (India), in which each storage compart-
ment is covered by a flexible screen on which in-
formation is displayed for the warehouse operator
(location, type of operation) [8]. Change detection
is performed by sensing screen deformation. In
the configuration presented, the system cannot de-
tect the direction of the change, only its location.

Vision systems are commonly used to solve
the problem of detecting inventory changes. For
the detection of changes in images, it is common
to use methods such as SSIM (Structural simi-
larity index measure) [9] or absolute difference
analysis. However, these classical approaches
have a number of shortcomings, such as inabil-
ity to determine the direction of change, low
flexibility (in terms of variability of acquisition
conditions and analysed objects), and suscep-
tibility to false-positive errors. The subject of
change detection (CD) at the pixel level is often
addressed in remote sensing issues. As a solution
to this problem, researchers have proposed their
own deep neural network architectures based on
vision transformers [10—12] or graph networks
[13]. These new architectures are highly efficient
but require a large amount of training data and a
high level of computing power to be developed
and are characterised by substantial size and large
inference times, making them significantly more
difficult to use in an ’on-edge’ setting.

In the case of implemented solutions based
on machine vision, two solutions could be dis-
tinguished. Amazon Technologies (USA) has de-
veloped a container content monitoring solution
using an overhead camera that takes before and
after images and a processing system based on
depth feature extractors [14]. Each image is di-
vided into smaller segments (tiles) and encoded
in a feature vector. The before and after vectors
are compared with each other to detect and lo-
calise changes. An example of a machine vision
system implemented for commercial use is the
system developed by Accel Robotics Corp (USA)

to monitor the recovery of goods from a store
shelf [15]. It is a solution that uses a two-camera
system to first identify the area of change using
stereometrics, and then to extract the ROI (region
of interest) area and transfer it to a classifier. This
solution allows for the determination of the loca-
tion of the change, its volume, and the class of
the collected object. The disadvantages of such
approach are that a database of objects has to be
created, a training set has to be prepared for the
classification task, and there is little flexibility
in the event of a change in the appearance of the
products, as well as the need for a set-up of two
calibrated cameras for each working area.
Considering the problem we have posed, it
is worth noting the eagerly addressed issue of
semi-supervised anomaly detection by research-
ers [16]. This approach is based on the develop-
ment of a training set that contains only sample-
free anomalies and the detection of anomalies
during production based on the deviation of test
samples from the training samples. A distinction
can be made between the reconstruction-based
[17] and distribution-based [18, 19] approaches
depending on the method used to determine the
anomaly score. Reconstruction-based approaches
use autoencoders to obtain a condensed represen-
tation of the image in the bottleneck and deter-
mine the anomaly score by calculating the differ-
ence between the image at the input and output
of the autoencoder. Only anomaly-free images
are used to train the autoencoder with the corre-
sponding loss function, e.g. MSE (mean squared
error) as a standard approach, or SSIM [17]. For
distribution-based approaches, the distribution of
deep features is determined, e.g. by estimating a
multivariate normal distribution for the anomaly-
free samples. Then, the anomaly score is deter-
mined based on the distance of the test sample
from the distribution. The described semi-super-
vised anomaly detection methods also have limi-
tations, among which the need for high homoge-
neity among the anomaly-free samples should be
first noted. For the problem posed, it is possible
to apply the methods shown, but the model needs
to be trained to detect anomalies in the form of
changes after each tool pick-up/drop-off, which is
not an optimal solution. The proposed approach
also does not solve the problem of determining
the directionality of changes. With this in mind
and considering the solution’s versatility, we de-
cided to use supervised methods with a focus on
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improving (speeding up) the process of develop-
ing training data.

Taking into account existing methods, authors
concluded that the problem posed requires a new
approach due to: (1) the lack of knowledge regard-
ing all object types that may occur during infer-
ence, (2) significant object overlap and similarity
(which rules out a counting-based solution), (3)
the need for robustness to noise and disturbances
(such as object displacement and small changes
in acquisition conditions), (4) the requirement
for real-time inference in an ’on-edge’ setting,
(5) the necessity to determine the directionality
of changes, and (6) the requirement to pass in-
dustrial validation. The authors propose a solu-
tion based on a task-specific architectural modi-
fication of an existing machine learning (ML)
model, enabling an increase in the dimensionality
of input data. YOLOV8 models were chosen as
they [20, 21] represent state-of-the-art solutions
designed for, among other tasks, real-time object
detection and instance segmentation. Their high
detection quality, short inference times, and ease
of development have made models of this archi-
tecture frequently used in computer vision tasks.

The main highlights of our research include:
(1) a synthetic dataset generation system, (2) a cus-
tom-modified machine learning solution based on
the YOLO architecture allowing processing of
six-channel images, (3) hybrid image processing
with SSIM analysis providing a high level of re-
call. The proposed methods allow for rapid solu-
tion development and high scalability whilst also
ensuring high robustness to domain shifts. The
task-oriented modification of already existing and
proven ML solutions enables easy deployment in
industrial applications and further development.
The proposed modification is characterized by
significant flexibility and the potential for straight-
forward adaptation to other applications requiring
inference on multi-channel images.

MATERIAL AND METHODS

Problem definition

The described problem concerns a vision
system that is a component of a tool storage in-
ventory monitoring system (Figure 1). The infer-
ence results of the vision module — the location
of changes and their type — are compared with
operations recorded in the IT inventory system
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controlling tool withdrawals and returns. The sys-
tem associates each tool with a specific segment
(box) of the tray where it is located. This allows
for the detection of irregularities during ware-
house operations performed by the operator and
enables appropriate responses, such as displaying
information on a screen or indicating the object’s
location using a multi-coloured light indicator.

The main task of the developed vision sys-
tem is detecting changes between two images in
the RGB (red-green-blue) colour space, depict-
ing states before and after changes to the storage
area, along with determining the direction of the
change — either the addition or removal of an ob-
ject (Figure 2).

In developing a solution for the presented
research problem, certain aspects of the vertical
tool storage system (Figure 3), with which the
system is to be integrated, were considered:

e the system stores multiple trays, each contain-
ing tools collected in cardboard boxes of fixed
sizes;

e the operator can make changes only within a
selected tray, and only after it has moved out
of the lift;

e once the ‘return to magazine’ option has been
selected, it is no longer possible to make
changes within the tray working area.

After analysing the above characteristics of the
target system, the following design and operating
principles for the vision system were adopted:

e the ‘before’ image is captured immediately af-
ter the selected tray leaves the lift of the storage
system, before any operator action is taken;

e the ‘after’ image is captured after the operator
has performed operations inside the tray and
selected the ‘return to magazine’ option;

e the vision system is integrated into the struc-
tural design of the storage system, ensuring a
constant orientation and location of the trays
relative to the camera between shots.

By adopting the described principles, constant
acquisition conditions were ensured. Despite this,
several problems were identified that could nega-
tively affect the reliability of the developed system,
such as: (1) the possibility of significant overlap
of tools in individual boxes, (2) the presence of
many similar objects in the container, resulting in
a low level of variability between images, and (3)
changes in the position and orientation of tools in-
side the tray, caused by vibration or other activities
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Figure 1. Schematic of the operation of the tool inventory management system with the proposed vision
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Figure 2. Visual representation of the problem

performed by the operator inside the tray (further
referred to as disturbances).

Proposed machine learning solution

Two approaches have been proposed as a so-
lution to this problem: (1) a vanilla (unmodified)
YOLOvVS with 3-channel input, or (2) an extended
YOLOv8 model capable of inference on 6-channel
images. The first method involves using existing

instance segmentation models operating on spe-
cially prepared input images (Table 1). For the
6-channel approach, referred to as YOLOO6C, it
was proposed to use the YOLOvVE model with ar-
chitectural and framework modifications to enable
inference on 6-channel R G B R,GB,
The input image for this model consisted sequen-
tially of the RGB channels of the ’before’ image

followed by the RGB channels of the ’after’ image.

images.
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Figure 3. Example of a vertical storage system — vertical lift module (VLM): (a) tray, (b) storage zone with
multiple shelves, (c) lift, (d) work area for tool deposition and retrieval [22]

Multistage processing

The application of the developed solution ne-
cessitates achieving a high recall, placing great
importance on detecting changes occurring in the
tool magazine, while allowing for a certain level
of false positive errors. Therefore, an additional
processing step was proposed to capture changes
missed by the ML model. To detect these changes,
SSIM values for individual pixels were used, de-
scribing differences in both colour space data and
structure between the two RGB ‘before’ and “after’
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images. To avoid redundant detection of changes
already identified by the first-stage ML model, the
input images are masked in the areas covered by
the detected segments (Figure 4). The SSIM values
are pre-processed to filter out noise and enhance the
data, and then thresholded using a predetermined
value, manually selected for the target domain.

Data acquisition

The images of objects, containers, and back-
grounds used to generate the training dataset
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Table 1. Channel diagram of the input image for the YOLO3C approach

Model type Input - channel R Input - channel G Input - channel B
YOLO3C-A Grayscale(l,, ) Zero Grayscale(l,,.)
YOLO3C-B Grayscale(l,,...) Mean(lg .o Iaer) Grayscale(l,,..)
YOLO3C-C Grayscale(l,...) AbSDIff(l5 0 Tager) Grayscale(l,.)
YOLO3C-D Grayscale(l,,,..) SSIM(l0re0 Matier) Grayscale(l,,..)
b
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Figure 4. Processing scheme of the developed solution

were captured using a Lori Plus webcam (Natec,
Poland) with GC2053 sensor (Galaxycore Mi-
croelectronics, China) providing a resolution of
1920 x 1080 pixels. The images of objects and
containers were taken with the camera mounted
on a stand, utilizing an LFDW201 flat dome illu-
minator (Wenglor, Germany) that emits diffused
light with a colour temperature of 6500 K, match-
ing natural daylight. Background images were
captured under the ambient lighting conditions
available at the recording location.

Test images were recorded in various config-
urations and using different equipment. The ‘tar-
get’ conditions for image acquisition on the stor-
age tray were simulated in a specially prepared
setup (Figure 5). For this purpose, a Raspberry
Pi Camera v2 (Raspberry Pi Foundation, United
Kingdom) equipped with a Sony IMX219 sensor
(Sony Corporation, Japan) providing a resolu-
tion of 3280 x 2464 pixels was used. The setup
also included an integrated 3.04 mm focal length
lens and an LBDW201 bar illuminator (Wenglor,

Table 2. Comparison of the proposed methods of dataset generation

Parameter

Automatic

Customised

Used objects

COCO dataset objects

Industrial tools and equipment

Generation method Copy-and-paste Customised method

No. of objects 1266 146
No. of backgrounds 1500 71
No. of containers N/A 18
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Figure 5. Acquisition setup; (a) camera, (b)
illuminator, (c) movable shelf, (d) containers with
objects, (e) support frame, (f) laboratory table

Germany). To reduce the impact of noise on sub-
sequent system performance, the test images were
downscaled to the target input size of the models
using bilinear interpolation.

The setup included a movable shelf on which
cardboard boxes with objects were placed, en-
abling the simulation of the tray sliding in a real
storage system and clearly defining the moment of
reference image acquisition ’before’ any changes
were introduced in the storage. Subsequent image
acquisitions were manually triggered ’after’ in-
troducing changes. However, the developed setup
also offers the ability to continuously monitor the

Tools/Objects

Pair of images - single container

storage tray, which, although not utilized in this
study, could be employed in future research.

Synthetic image generation

Creating an extensive and diverse training
dataset is a significant challenge when develop-
ing any system based on machine learning tech-
niques. To address this, the authors proposed
an automatic system for generating image pairs,
enabling rapid data generation and facilitating the
development of the proposed solution. This paper
presents and analyses two approaches to auto-
mated training data generation: ’Automatic’ and
’Customised’ (Table 2).

The first method is simple and efficient. Im-
ages are created by combining backgrounds and
segmented objects from the widely used com-
mon objects in context (COCO) dataset [23],
thus eliminating the need for additional data ac-
quisition. The ’copy-and-paste’ technique [24],
commonly used for dataset augmentation, is em-
ployed to generate these images.

The Customised’ approach extends the first
method by incorporating domain knowledge
about the target station, such as placing tools in-
side containers and arranging them in a grid (Fig-
ure 6). Additionally, this approach uses images of
various tools — ranging from industrial warehouse
items to laboratory equipment — captured at the
image acquisition station. Custom photographs of
industrial surfaces, including stainless steel, plas-
tics, and rubber, were used as backgrounds.

Before detailing the dataset generation method,
it is necessary to explain the data storage approach

Containers

Backgrounds

Final pair of images

-

Figure 6. Simplified scheme for the image generation process
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for this particular task. As the system operates by
analysing two images taken at different time points,
the dataset should consist of pairs rather than indi-
vidual images. Each pair, differing in the presence
or absence of an object, can be stored in two con-
figurations: normal [Image 1, Image 2] or inverted
[Image 2, Image 1]. This inversion changes the di-
rectionality of the change (indicating whether an
object is added or removed). Saving each pair in
both configurations ensures class balance.

For the ’Automatic’ method, image pair gen-
eration is significantly simplified. In the first step,
a set of objects (segmented from the COCO da-
taset) is selected and randomly placed against
a random background. The last object is placed
only in the first image, thereby creating a differ-
ence (change) between the generated pair.

The *Customised’ generation process is more
complex and consists of multiple stages. Similar
to the *Automatic’ approach, a set of segmented
tools is randomly selected. However, instead of
being placed on a random background, the tools
are positioned on a container image (e.g., a card-
board box), ensuring they remain within contain-
er boundaries. The process is repeated to create
several pairs of container images, which are then
assembled into grids ranging from 2 x 2 to 4 x 4
and overlaid onto a random background.

To maintain high diversity in the generated im-
ages, various random geometric and colour-space
modifications are applied to the objects, such as
rotation, translation, vertical or horizontal flipping,
resizing, and colour adjustments (brightness, satu-
ration, hue, and gamma). Additional transforma-
tions include RGB channel shuffling and artificial
light reflection effects. Randomly selected objects
were moved and/or rotated between images in a
generated pair to simulate minor displacements
that may occur during regular warehouse opera-
tions. Artificial light reflection was simulated by
thresholding the object’s ‘value’ channel and
blending it back with a random weight.

In addition to object-level augmentations,
several random modifications were applied to the

Target domain Additional 1

Additional 2

final images, including vertical or horizontal flip-
ping, JPEG compression, noise addition (RGB or
salt-and-pepper), colour corrections (brightness,
saturation, hue, and gamma), median blur, and
perspective warping. Slightly different colour-
correction parameters were applied to the *before’
and ’after’ images to enhance the model’s robust-
ness to changes in lighting conditions. Using each
method, 2.500 image pairs were generated, form-
ing the basis for further ML model development.

Experiments and ablation studies

To perform an extensive and comprehensive
evaluation of the proposed solutions, a series of
experiments was conducted:

1. Evaluation of the individual ML solutions de-
scribed in subsection Proposed machine learn-
ing solution,

2. Comparison of models trained on datasets gener-
ated using the fast automatic approach, the cus-
tomised method, and mixed data (50:50 ratio),

3. Comparison of one-stage and two-stage
approaches,

4. Evaluation of the final model.

The evaluation for individual ML solutions,
the impact of training data, and the final model
assessment was carried out for two classes: ‘add-
ed’ and ‘removed’. For the comparison between
the one-stage and two-stage approaches, metrics
were determined for the combined class labelled
as ‘change’. For the evaluation of the proposed
solutions, five test sets differing in camera type,
contained objects, or background were prepared
— one set corresponding to the target conditions
and four additional domains (Figure 7, Table 3).
A total of 189 image pairs from different domains
were prepared.

Evaluation of developed solutions

The evaluation was carried out as cross-val-
idation. A total of 500 randomly selected imag-
es were divided into 5 independent segments,

&j

__== -
Additional 3

Additional 4

Figure 7. Example images from datasets representing various test domains
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Table 3. Overview of prepared test datasets

Test dataset No. of image pairs Camera Description
Target 69 PiCamera v2 Corresponding to the target domain with tools arranged inside

8 cardboard boxes

Additional 1 34 Lori Plus Tools placed directly on a metal surface

Additional 2 23 Lori Plus Tools arranged inside 6 cardboard boxes

Additional 3 45 Lori Plus Objects other than tools, arranged on a background of
coloured posters

Additional 4 27 Lori Plus View of a workstation with tools and small electronic equipment

forming 5 unique datasets. To maintain class bal-
ance after the data split, each pair of images was
saved in both normal and inverted forms. Con-
sequently, each of the five datasets consisted of
400 image pairs for model training and 100 for
validation during training.

Pre-trained models were used during training:
YOLOv8n-seg for the YOLO3C solutions or a
modified version of it for YOLOG6C. The training
parameters were set as follows: batch size = 10
and epochs = 75.

Each of the 5 models was evaluated on each
of the 5 test sets. The mean values and standard
deviations of the metrics were determined for
each test domain as well as for the entire test set.

The confidence threshold (working point) was
set to 0.5. Using the pycocotools library, average
precision (AP50) [25] and average recall (AR50)
[26] were determined. The F1-score [27] metric
was calculated as shown in Equation 1:

Precision X Recall

F, =2 X (1)

Precision + Recall

TP

p . . —
recision —TP TFP

TP

Recall = TP+—FN

and TP, FP, and FN represent the total number
of true positive, false positive, and false negative
predictions, respectively.

Evaluation and testing were carried out on a
workstation equipped with an Nvidia RTX4080
GPU (Nvidia Corporation, USA) and an Intel
Xeon Silver 4110 CPU (Intel Corporation, USA).

Analysis of the effects of disturbances

As mentioned earlier in section, the devel-
oped solution must be robust to disturbances such
as minor tool displacements, rotations, and illu-
mination changes — it should effectively ignore
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these variations. To assess this robustness, an
experiment was designed to test the model’s be-
haviour under variable translation, rotation, and
brightness conditions.

A test dataset was created comprising 25
non-symmetrical objects of size 480 x 480 pix-
els, positioned at the centre of randomly selected
backgrounds of size 1760 x 1760 pixels. The fol-
lowing test cases were performed: rotation — ob-
jects were rotated around their centres from —180
to 180 degrees in increments of 5 degrees, trans-
lation — objects were shifted along the X and Y
axes from —240 to 240 pixels in increments of 4
pixels, and brightness variation — the brightness
between image pairs was varied in the range of
=50% to +50%.

As the performance quality metric, the ratio
of the number of correct negative predictions to
the total number of predictions was selected. This
metric, known as the true negative rate (TNR), is
defined by Equation 2:

TN
TN + FP

TNR =

x 100% )

where: TN denotes the number of true negative
predictions and £ P the number of false
positive predictions.

Preparation and evaluation of final model

The final version of the model was trained on
a dataset consisting of 2000 unique pairs of im-
ages. Training was conducted with a batch size
of 8 and for 50 epochs, using weights from the
pre-trained YOLOv8n-seg model. The evaluation
was carried out for two tasks: (1) detection and
classification of changes according to their direc-
tion (‘added’ / ‘removed’), (2) detection of any
changes without classification (a combination of
the ‘added’, ‘removed’, and ‘change’ classes).
The model was evaluated on a dataset comprising
images from all test domains, using the methods
and metrics described in Table 3.
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RESULTS AND DISCUSSION

Evaluation of developed methods

The developed methods were evaluated sepa-
rately on each test domain as well as on the entire
set of test images. The results, presented as mean
values and standard deviations, were aggregated
in Table 4. The highest metrics were obtained
for the YOLOO6C approach, with the following
results for evaluation on all test images: AP, =
82.55+0.82,AR,, = 67.39+0.38, and F = 89.42
+ 0.76. The second highest values were achieved
by the YOLO3C-D approach using SSIM masks:
AP, =82.46+0.81, AR, = 66.00 = 0.67, and F,
=87.36 £ 0.74.

Due to the relatively similar results obtained
for both approaches on the entire test dataset,
the inference quality of the models was also
compared across individual test domains. The
F, metric values for the YOLO6C solution were
higher across all tested domains, indicating better

inference quality at the adopted working point.
In terms of AP, and AR, metrics, neither model
consistently outperformed the other. However,
YOLOG6C achieved superior results in the target
domain, with AP, = 88.27 + 1.20 and AR, =
78.94 + 1.01, compared to AP, = 87.05 & 1.01
and AR, = 73.16 = 1.00 for YOLO3C-D.

Both approaches demonstrated high quality
metrics across the target and other test domains,
indicating a degree of robustness to domain
shift. After analysing the data, the YOLOO6C ap-
proach was selected for further work due to its
superior performance in the target domain. Ad-
ditionally, approaches based on 3-channel pro-
cessing of input images to grayscale are more
prone to performance degradation when regions
of pixels have different hues but similar inten-
sities. This issue does not affect the YOLO6C
solution, as no colour space information is lost
during preprocessing. While this problem was
not observed during testing, it could potentially
arise during the system’s deployment.

Table 4. Evaluation results for the 5 proposed approaches across all test domains

Model type Test dataset AP50 AR50
All images 77.24 +2.46 59.85 + 3.38 43.82+2.31
Target 79.22 £ 4.64 52.24 + 5.46 38.54 + 3.21
Additional 1 70.13 £ 3.63 65.10 + 3.88 47.32+2.45
YOLO3C-A »
Additional 2 77.99 +4.82 59.31 £4.99 39.56 +3.70
Additional 3 77.52 £ 0.51 66.88 + 1.23 51.32+0.88
Additional 4 74.77 £ 3.01 55.33 + 1.80 40.90 + 1.58
All images 71.44 £2.59 51.11+7.28 38.99 +£5.85
Target 76.24 £ 3.16 49.50 + 8.75 37.57 £6.61
Additional 1 62.06 + 6.18 53.08 £ 9.65 40.34 £+ 6.93
YOLO3C-B »
Additional 2 69.33 £ 5.35 50.33+7.77 36.26 £ 6.05
Additional 3 71.48 +1.68 55.19 £ 8.00 43.70 +7.08
Additional 4 70.70 £ 2.73 43.47 +6.39 32.25+4.82
All images 77.97 +1.53 62.01 £ 2.47 44.04 + 1.55
Target 85.66 + 1.00 59.16 + 2.38 39.17 £1.39
Additional 1 71.61+3.09 67.95+2.94 51.30 £2.00
YOLO3C-C rona
Additional 2 78.67 +3.50 57.34 +1.87 38.04 £ 0.93
Additional 3 76.07 £ 1.17 67.53 £2.72 49.67 + 1.64
Additional 4 66.24 + 4.64 49.69 + 5.24 38.40 + 3.47
All images 87.36 £ 0.74 82.46 + 0.81 66.00 + 0.67
Target 91.47 +1.24 87.05+1.01 73.16 £1.00
Additional 1 82.51+2.04 79.61+1.20 61.88 +0.75
YOLO3C-D »
Additional 2 84.07 +2.62 80.25+2.19 61.23+1.79
Additional 3 89.67 + 1.43 85.60 + 0.92 68.05 + 0.84
Additional 4 76.35+ 1.74 65.66 + 1.93 51.18 £ 0.85
All images 89.42 +0.76 82.55 +0.82 67.39 +0.38
Target 93.00 £ 0.88 88.27 £ 1.20 78.94 £1.01
Additional 1 85.87 + 1.89 78.32 £ 1.47 59.83 £ 0.83
YOLO6C -,
Additional 2 88.26 £ 2.71 82.57 £2.32 63.46 + 1.00
Additional 3 89.69 + 1.33 84.11+1.08 67.56 + 0.76
Additional 4 79.02 + 1.54 65.55 + 2.37 49.32 +0.76

471



Advances in Science and Technology Research Journal 2026, 20(1), 462-476

Analysis of the effects of disturbances

Through the conducted tests, the applicabil-
ity of the model was evaluated under object rota-
tion, translation in the working area, and changes
in illumination conditions. Quality metric values
were plotted as functions of rotation, translation,
and relative brightness changes (Figure 8). The
minimum acceptable quality metric threshold
was set at 80%. Based on this criterion, the fol-
lowing constraints were established:

e maximum acceptable rotation: 25 degrees;

e maximum acceptable translation in the X or Y
axes: 19% of the object size, which in typical
cases corresponded to approximately 91 pixels;

e maximum acceptable brightness change: -16%
and +26%.

The results presented demonstrate the sig-
nificant robustness of the model to small changes
in the position of objects in the working area that
may occur during normal system operation.

Comparison of image generation methods

Evaluations were carried out for two
training sets generated using the Customised
method and the simpler copy-and-paste auto-
matic approach. The values of the determined
metrics are summarised in Figure 9. Models
trained exclusively on the set created using the
simplified approach with COCO dataset imag-
es exhibited significantly lower values across
all inference quality metrics in every test do-
main compared to the customised generation
method. The Customised method, as well as
the mixed dataset (with a 50:50 ratio), yielded
much better inference quality in all test do-
mains, including domains containing objects
not present in the image pool used by the data
generation system (domains ‘additional 3” and
‘additional 4’). The study demonstrates the
need for data generation methods that take into
account the target appearance of images, clear-
ly demonstrating the disadvantages of a naive,
fully automated approach. Such a significant
drop in the quality of the model for that gen-
eration method could be caused not only by the
significant disparity with the target test domain
but also by high diversity and abstractness of
input images, which prevented the architecture
used from generalising correctly.
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Comparison of the one-stage and two-stage
approaches

The evaluation results for change detection
for the one- and two-stage approaches are sum-
marised in Figure 10. The approach with addi-
tional SSIM processing resulted in a reduction
of the F, metric in all test domains except the
target domain. For the AP50 and AR50 metrics,
significant improvements were observed for all
test domains. The proposed method of additional
post-processing based on analysis of pixel-wise
SSIM values has reduced flexibility and, as such,
requires fine-tuning through the selection of ap-
propriate parameters. Those values were cho-
sen for the target domain; hence it was decided
to restrict further analysis to this test domain.
For two-stage processing, values of F1 = 94.62
+0.29, AP, = 91.56 + 0.75 and AR, = 80.78
+ 0.60 were achieved — higher than the values
for single-stage processing where the values
amounted to F, = 92.80 + 0.19, AP, = 83.47 +
1.07 and AR, = 74.12 + 0.68.

The application of the two-stage approach im-
proved the AP, and AR, metrics for all test do-
mains by increasing the sensitivity of the system.
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Figure 8. The effect of object’s rotation around its
own axis translation in the X or Y axes and image
brightness change on the true negative rate



Advances in Science and Technology Research Journal 2026, 20(1) 462-476

F1
100
80
o 60
40 I -
20 — - R N——— ——
B Automatic =~ EEE Customised [ Mixed
0
All images Target Add.1 Add.2 Add.3 Add. 4
AP50
100 ‘
8 I Automatic BB Customised [ Mixed
& i
Allimages Target Add.1 Add.2 Add.3 Add. 4
AR50
100 ‘ -
‘ B Automatic BB Customised 3 Mixed
— |
o
un
o
<

All images Target

Add. 1

Add.2 Add.3 Add. 4

Figure 9. Comparison of evaluation results for YOLO6C models trained using two synthetic datasets

As a result, the number of false negatives was re-
duced. On the other hand, the introduction of addi-
tional processing increased the total inference time
as well as decreased the values of the inference
quality metrics for the adopted working point (F, at
thresh conf=0.5) in non-target domains. However,
this is an acceptable drawback given the observed
improvement in comprehensive metrics such as
AP50 and AR50 and can also be circumvented by
further fine-tuning of the solution.

Final system evaluation

The validation of the final version of the
developed system was carried out on the ’tar-
get’ test set. Values of F| = 95.09, AP, = 88.06
and AR, = 79.72 were achieved for detection
of ’added’ and ’removed’ classes (first stage
only) while values of F = 94.95, AP, = 92.72
and AR, = 83.63 were obtained for the task of
detecting any changes without classification

(’added’, ’removed’ and ’change’ combined).
The average total pre-processing and dual-stage
inference time was 0.676 + 0.039 s. Example in-
ference results are shown in Figure 11.

CONCLUSIONS

The results presented in this paper clearly dem-
onstrate the effectiveness of applying task-specific
modifications to state-of-the-art deep learning mod-
els for tasks involving change detection and direc-
tion classification. The proposed solution retains
all the advantages of the YOLOVS architecture and
the Ultralytics framework, such as ease of model
preparation and training, along with short inference
times, while simultaneously expanding the range
of potential applications. By using a synthetically
generated dataset instead of a traditional labelled
image approach, the time required for preparing
training data — and consequently the entire model
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Figure 10. Comparison of evaluation results for one-stage and two-stage approach using YOLO6C models

BEFORE RESULTS

Figure 11. Visualisation of the inference results of the final system
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development process — was significantly reduced.
This streamlined approach facilitated the formula-
tion and extensive evaluation of multiple solutions.
Studies have confirmed the practical applicability
of the developed solution, including its potential
integration into a vertical tool storage system.
The augmentation methods employed during the
generation of learning image pairs significantly
improved robustness against negative phenom-
ena encountered under real operating conditions.
These challenges include domain shifts, small
object displacements or rotations between shots,
and slight variations in illumination. A notable
advantage of the developed system is its ability to
detect changes in stock without prior knowledge
of the type or quantity of objects in the work-
space, unlike solutions based on object detection
and counting.

The adoption of a two-stage approach incor-
porating SSIM post-processing effectively re-
duced the risk of false-negative errors, substan-
tially improving the AP, and AR, metrics across
all test domains. This improvement was achieved
with only a slight decrease in the F1 score for non-
target domains at the selected operating point.

The proposed solution could be practically
deployed within vertical tool storage systems or
similar industrial environments. However, several
additional factors must be considered to ensure re-
liable operation. These include compliance with
interface standards, compatibility with industrial
cameras, and robustness to environmental con-
ditions such as lighting stability and vibrations.
While the presented experiments focused on a
single setup, large-scale deployment would require
handling substantially larger datasets, potentially
across multi-camera installations, which increases
both computational and data-management de-
mands. Another important challenge is domain
drift, arising from the introduction of new object
types, or unexpected backgrounds. To address this,
lightweight retraining pipelines or active learning
strategies could be adopted, enabling the system to
adapt with minimal human supervision.

The solution presented in this publication,
which extends an existing architecture to handle
image data with higher dimensionality than stan-
dard RGB, demonstrates considerable flexibility
and broad application potential. Such modifications
make it possible to adapt widely used architectures
like YOLOVS to process multi- or hyperspectral
imagery, as well as composite data types such as
RGB combined with polarization information.

This capability is particularly relevant for domains
where subtle spectral or structural variations car-
ry critical information, including remote sensing,
medical diagnostics, and industrial inspection. At
the same time, the use of higher-dimensional input
introduces challenges related to increased data vol-
ume, specialized sensor requirements, and greater
computational complexity. Addressing these fac-
tors will be essential for practical large-scale de-
ployment, and future work could explore optimiza-
tion strategies or tailored preprocessing pipelines
to ensure efficient real-world integration.
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