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ABSTRACT

Bayesian filters are most often used to predict the behaviour of dynamic objects in the presence of noise with a
non-Gaussian distribution. Another application can be the filtration of measurement data obtained from measure-
ment systems. Noise is present in almost all experimental data, and its distribution is often non-Gaussian. The
article presents the application of Bayesian filtering methods to noisy data. For testing, real experimental data and
artificially generated and noisy data with a known distribution were used. The following were used for testing:
generic particle filter, SIR particle filter, auxiliary particle filter, and regularized particle filter. The effect of the
number of inserted particles on the estimated result data was examined. The peak signal-to-noise ratio (PSNR)
measure was used to assess the quality of the estimation. The results showed a significant advantage of the auxil-
iary particle filter over the other Bayesian filters. The same data sets were then subjected to Kalman filters. A basic
and an extended Kalman filter were used. It turned out that all the Bayesian filters used, even for a small number

of particles, give higher PSNR values than the commonly used extended Kalman filter.
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INTRODUCTION

In today’s world, advances in technology and
the increasing complexity of systems have made
state estimation and signal filtering special issues
in many scientific fields. Faced with the chal-
lenge of determining the precise state of systems
under conditions of uncertainty and disturbance,
estimation and filtering methods such as Bayes
filters and Kalman filters have been developed.
Bayesian filters, based on Bayes’ theorem, make
it possible to update probabilities based on the in-
coming data. They are widely used in localization
[1-2], navigation [3-4], robotics [5], medicine [6],
economics [7], Bayesian classifiers [8-9], and
many others [10-11].

Paper [1] describes a method for dynamic
estimation of the path attenuation exponent as a
function of distance, based on actual received sig-
nal strength indicator (RSSI) measurements. The
main goal was to develop a method for accurate
distance estimation using a small measurement
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data set. For this purpose, a particle filter was
used, allowing precise radio signal attenuation
modeling. The sensitivity of the method to chang-
ing the number of particles and computational it-
erations was analyzed. The experimental results
confirm the effectiveness of the proposed method
in terms of improving the accuracy of path attenu-
ation estimation. The method shows high utility
in systems with limited hardware resources, mak-
ing it attractive for sensor network (WSNs) ap-
plications and other wireless systems.

Paper [2] focuses on the problem of robot
localization. Bayes filters were used to improve
the results measured with the sensor, reducing the
noise so that the results were closer to the real
ones. This paper introduces an innovative meth-
od for the sensor model, referred to as the pre-
dictive sensor model, which incorporates a pre-
diction mechanism to enhance the effectiveness
of measurement updates in Bayesian filters. By
adding sensor prediction, the original Bayes filter
was extended to an anticipatory Bayes filter.
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In-building navigation systems based on RSSI
data are described in the article [3], in which the
authors focus on the use of particle filters and
Kalman filters based on Bayesian theory for state
updating and improving, smoothing the measure-
ment results. The paper mentions that particle fil-
ters and Kalman filters can be used in any case
where the algorithm relies on updating the state
of the particles.

Article [4] presents an application of Bayes’
theory to data smoothing in a multi-target track-
ing application. The study uses a finite labeled da-
taset. It is shown that if the multi-target transition
kernel used in the backward smoothing step does
not take into account the birth and decay process-
es of the targets, the resulting smoothing density
is identical to the filtering density. Simulations
conducted by the authors in MTT scenarios indi-
cate that smoothing performs better than a gener-
alized labeled multi-Bernoulli filter in the context
of an optimal subpattern assignment matrix.

Particle filters based on Bayes’ theory are also
used in robotics. Study [5], the author states that
Bayes and Kalman particle filters are a standard
approach in mobile robotics. The authors mainly
focus on the robot’s location and navigation us-
ing LIDAR laser sensors. For the experiment,
they used a mobile robot with a laser sensor with
a range of 0-25 m and an aperture angle of 270°.
The authors compare particle filters with neural
networks. The study results show that particle fil-
ters perform worse than trained neural networks,
however, the latter require supervised learning
and time for the training process itself, while fil-
ters can work immediately.

Another discipline where particle filters are
applied is in medicine. This is described in the
article [6], where the authors focus on the ECG
signal. They note that the ECG signal used in
noninvasive cardiac electrophysiology is a very
convenient and helpful tool. Unfortunately, most
often the signal is noisy. They emphasize that
data cleanliness is crucial in the further study of
the obtained signal. They use Bayesian methods
to average the weighted received signal from the
measuring device. Ultimately, the study shows
that the use of particle filters significantly im-
proves, reducing noise in the ECG signal.

The next paper related to economics is [7]. It
describes the use of Bayesian filtering in electric-
ity forecasting, with a focus on prioritization to
improve forecasting accuracy. The authors review
the general structure of Bayesian forecasting,

highlighting the computational techniques used
to implement the approach.

The authors [8] focused on the use of the na-
ive Bayes (NB) classifier, which was applied to
data from social networks. In order to analyze
these data, a network version of the naive Bayes
classifier, which is an extension of the classical
NB model, was proposed. The statistical proper-
ties of the NNB model were theoretically ana-
lyzed, and its effectiveness was evaluated through
simulations. In addition, an analysis of real data
was carried out, which confirmed the practical ap-
plication of the method.

In [9], the authors focused on applying a naive
Bayes classifier to predict the risk of contracting
and developing type 2 diabetes. The analysis was
carried out on the Pima Indians Diabetes Data
Set, which contains information on people with
type 2 diabetes, as well as healthy individuals.
The results show that the model used was highly
effective, confirming that the Bayes network can
effectively predict type 2 diabetes.

The authors of this paper [10] focus on
email spam detection. They propose using a hy-
brid spam detection technique combining Naive
Bayes and Markov Random Field algorithms.
Naive Bayes identifies spam using probabilistic
classification based on Bayes’ theorem, while
Markov Random Field models the statistical de-
pendencies of spam patterns. This approach im-
proves spam detection performance in terms of
accuracy and processing time.

The paper discusses various approaches to
learning and implementing Bayesian Network
(BN) classifiers [11]. The authors evaluated al-
gorithms of four different types of BN classifi-
ers and determined their effectiveness compared
to established methods. Thie study highlights
that they offer a powerful alternative to other
types while maintaining reasonable computa-
tional requirements.

In paper [12], a method for improving the
quality of biomedical ECG signals based on non-
linear dynamic models and Bayesian filtering was
used. The proposed approach is based on a realis-
tic, synthetic ECG model, which was used in the
extended Kalman filter (EKF) and its smoothed
variant (EKS) and the unscented Kalman filter
(UKF). The applied solution gave better results
than classical filtration techniques in a wide range
of SNR values. This approach allows not only to
preserve the signal morphology, but also to effec-
tively track its changes in low SNR conditions.
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In [13], a PPG signal filtering using a parti-
cle filter was proposed to improve the accuracy
of emotion recognition in wearable systems. The
applied approach enables effective signal tracking
in the presence of typical dynamic typical motion
disturbances. The conducted experiments showed
an increase in emotion recognition accuracy by an
average of 11.8% and an improvement in SNR by
4.5 dB compared to the baseline NLMS method.

In [14], a comprehensive comparison of two
Bayesian image denoising methods Total Varia-
tion (TV) and Bayesian least squares — Gauss-
ian scale mixture (BLS-GSM) was presented.
The authors showed that the TV-based approach
better preserves sharp edges and fine anatomical
structures, while the wavelet method (BLS-GSM)
provides higher global image quality, especially
in low-frequency regions. The studies were con-
ducted on both simulated images and real dental
radiographs. The authors’ conclusions suggest
that there is no universal solution, the choice of
the algorithm should be adapted to the image
characteristics and the expected compromise be-
tween noise reduction and detail preservation.

The main purpose of the present work is
to perform a detailed analysis of the suitability
of various Bayesian filters for use with differ-
ent types of experimental data. Four commonly
used Bayesian filters in standard versions were
chosen for testing: generic particle filter, SIR
particle filter, auxiliary particle filter, and regu-
larized particle filter. The peak signal-to-noise
ratio measure was used to assess the quality of
the level of noise reduction. Next, the results ob-
tained were compared with those obtained using
Kalman filters.

BAYESIAN FILTERING METHODS

Particle filters are based on Thomas Bayes’
theorem, which is a fundamental theorem in prob-
ability theory. The theory makes it possible to cal-
culate conditional probabilities, hence allowing
updating the probabilities with the updated data.
The theorem is presented in formula (1)

P(B|A) - P(A)

2(5) (D

P(AIB) =

where: P(A|B) — probability of the occurrence of
event A under the condition that event B
occurred (conditional probability), P(B|4)
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— probability of event B under the condi-
tion that event A has occurred, P(4) — a
priori probability of event A, before con-
sidering event B, P(B) — probability of
event B.

In the case of the filters discussed in the ar-
ticle, this is the basis for tracking the state (x,) of
dynamic systems when the system is nonlinear or
the noise does not come from a Gaussian distribu-
tion. Bayes’ theorem makes it possible to calcu-
late the posterior probability, which is shown in
the formula (2)

P(xilz1:) =
_ P(zi|xy) - P(xg|z1:-1) 2)
P(zy)

where: z denotes measured data, x — hidden state
of system, P(x,|z ) — a posteriori distri-
bution of the state, P(zx) — reliability
function, P(x |z, ) — a priori distribution
of the state, and P(z,) is a normalizer that
ensures that the result is a probability.

Particle filters consist of three phases:

e prediction: updating the state of each particle
based on the system dynamics model,

e updating: changing the particle weights based
on new observations and Bayes’ theorem,

e resampling: removing particles with high
weights to better represent the posterior
distribution.

Resampling algorithm

The systematic resampling algorithm [15]
shown in Algorithm 1 was used in all particle fil-
ters. This is one of the possible implementations
of the algorithm for performing resampling. This
implementation was chosen because it is the most
widely used in other research works [1, 16-17].
The task of the resampling process is to remove
particles that represent low weight and focus on
those with high weight.

During the resampling process, new particles
are created by calculating them from an approxi-
mate discrete representation defined by:

N
Pl i) = ) wio(ve—x) ()
i=1

Used in the algorithm, the variable CDF for
the following particles is calculated from:
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Algorithm 1: Resampling algorithm

input :

z,-particles values array for k point

wy-particles weight array for k point

ind-indices array
N-number of particles,

Create a cumulative distribution function array CDF

Set CDF{] =0
fork=1to N —-1do

| Assign rest CDF using (4)
end

Draw random starting point u; ~ U [0, N !

Initialize 7 = 1
for j=0to N —-1do
Compute u using (5) .

| Increment 3
end
Assign ind’ =1
nd
for j=0to N —-1do
Resample and reasign particles

®

while u > CDF* & i< N —1do

373: — pind!
wl =1/N
end
CDFy = CDFy_; + wy 4) wli( x wli(_l
The average (u) for each particle is calculated from: p( 7 | Xk )p( X | Xieeq ) ©)

u=u; +j/N (5)

Sequential importance sampling

Sequential importance sampling (SIS) shown
in Algorithm 2 is a basic sequential Monte Carlo
sampling method that allows efficient sampling
from complex probability distributions by se-
quentially updating sample weights over time us-
ing Equation (6):

Q( Xli< | Xli<—1: AR )

The SIS aims to overcome the limitations of
traditional Monte Carlo methods for complex
engineering models and rare failure events. SIS
works by generating samples that progressively
approach the optimal sampling density. This se-
quential approach helps efficiently sample the
failure domain. Article [18] emphasizes how SIS
can improve the proposal distribution by using
information from previous iterations, making

Algorithm 2: Sequential Importance Sampling

input :

z - One dimensional measured data array

N; - number of experimental points,

output: x - calculated values array

w - assigned weight array

for i =0 to N, do
Draw xj, ~ g (xk | x}_q, zk)

Assign the particle weight w} using equation (6)

end
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it well-suited for structural reliability problems
where the failure is complex or difficult to char-
acterize in advance.

Generic particle filter

The generic particle filter (GPF) presented
in Algorithm 3 is based on the sequential impor-
tance sampling filter. SIS is the base filter in terms
of construction; however, it has several problems
solved in GPF. The first problem is degeneration,
which means that a negative value can be assigned
to the importance weight after several iterations.
The paper [19] shows that the variance of impor-
tance weights can only increase, thus eliminating
the degeneration problem. Another problem is the
selection of the correct importance weight. In this
case, some methods can be used, described in de-
tail in paper [16]. One of them was chosen for
the study, where importance density is a priori.
Finally, resampling is the creation of new samples
based on calculated weights. For the purposes of
this study, systematic resampling was used in [15]
as presented in Algorithm 1. This resulted in a fil-
ter based on SIS, but without its drawbacks.

The initial value of the particles is assigned
using equation (7)

(7

Xy ~ N (init_state, init_variance)

Initial weights are calculated using equation (8)

wy = 1/N (8)

Next weights can be calculated using equa-
tion (6), and to ensure that the problem of degen-
eration does not affect the results, resampling was
used only if N, shown in formula (9) goes above
some threshold N,

N 1
eff TN
=1 wy

)

Finally, resampled values are calculated using

formula (10)
N
X = Z x,{; . W,{
=0

Correct selection of the N, threshold [20-22]
is another crucial task to balance computational
cost and filter performance. The most common
methods for selecting the value of N, are the rela-
tive threshold, the fixed threshold, and the adap-
tive threshold. The value of N, also determines

(10)

Algorithm 3: Generic Particle Filter

input

: z - One dimensional measured data array

N, - number of experimental points,
N - number of added particles,
Ny - threshold for resampling steps,

output: x - calculated values array

for k=0to N —1do

weights (8)
end
for k=0to N, —1do
fori=0to N —-1do
Draw x}, ~ q (X | X}, %)

end

Calculate total weight: w, =3
fori=0to N —1do

end
Calculate N,y using (9)
if Ne_,rf > Ny then

end

end

N

| Normalize weights: wi = wi fw,

Prepare N random particles and assign base values (7) and base

Assign the particle weight using equation (6)

i
i=1 Wk

| Resample particles using algorithm (1)

Assign denoised value z; using weighted mean (10)
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the problem of particle degeneration. Too low a
threshold value will cause degeneration to occur,
but it will reduce the execution times of the al-
gorithm. A large threshold value will zap many
samples by triggering resampling more frequent-
ly, increasing the computational cost.

The relative threshold method is to select the
threshold as a fraction of the selected number of
particles. A popular choice is N,= aN, where a
=10.5, 0.8]. This fraction says that resampling
is triggered when aN particles make an effective
contribution.

The fixed threshold method involves deter-
mining N, values based on empirical studies or
specific application requirements. This approach
provides consistent behavior across runs, making
it easier to compare performance metrics. How-
ever, it may not adapt well to dynamic changes in
the system or varying levels of noise.

The adaptive threshold method involves
selecting N, values based on application noise
or system state in real time. It dynamically ad-
justs N, during runtime, which helps maintain
a balance between accuracy and efficiency
under changing conditions. This method often
relies on statistical measures such as variance
or entropy to determine the optimal threshold
of N, choice.

SIR particle filter

SIR particle filter (sampling importance resa-
mpling), which was presented in papers [16, 23],
can be applied to recursive Bayesian filtering us-
ing the Monte Carlo (MC) method. The SIR Par-
ticle Filter is a modification of the SIS algorithm,
in which the method of counting the density of
importance is chosen from the available options.
In this case, the density of priority is calculated
using the prior (11)

Q(xk | xlic—lfzk) =

| (11)
= P(xk I xllc—l)

Then substitution of (11) into (6) gives
equation:

wic o< wi_1p( 2 | xic ) (12)

However, given that resampling is performed

at each time index where w/ = 1/NVi, this for-

mula can be simplified to formula (13)

w «p(z | xt) (13)

Another change compared to SIS is that resa-
mpling is done at each time index.

Algorithm 4: SIR Particle filter

input

: z - One dimensional measured data array

N,-number of experimental points,

N-number of added particles,

output: z - calculated values array
for k=0to N —-1do

weights (8)

end

for k=0to N, —1do
fori=0to N—-1do
Draw xj ~ p (x; | x}_,)

end

fori=0to N —-1do

end

end

Calculate wi = p(z; | x%) (13)

. Normalize weights: w}, = w} /w,

Prepare N random particles and assign base values (7) and base

Calculate total weight: w, = Z;’il wh,

Resample particles using algorithm (1)
Assign denoised value xj using weighted mean (10)
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Auxiliary particle filter

Auxiliary particle filter (APF) is another iter-
ation of the SIR filter presented in the paper [24].
This filter can be derived from the baseline SIS
by introducing the importance density g(x,i|z, ),

which operates on {x ,i, i/ } j= j , Where #'refers to the
index in k — [ and M_ refers to number of samples
generated as a result of resampling. After usmg

Bayes’ theorem, and introducing the mean (M )
shown in equation (14)

= E[ s | (14)
where: E denotes an expected value operator, x,

— state in stem k, Xj_, — state of i-th par-
ticle at previous step.

The following equation, shown in (15), was
reached:

q(xk)i | Zl:k) =
(15)
= q(i 1z )qCxp 1 G, 21)

which, after the necessary transformations de-
scribed in [16], finally looks as shown in equa-
tion (16):

| ) X x}
j i ( k| k 1
Wi X Wg_q =
Q<xk;l |Zl:k)

(16)
p(zk |xk)
p(ze | )

After transformations, the algorithm looks as

shown in Algorithm 5.

Algorithm 5: Auxiliary Particle filter

input

: z - One dimensional measured data array

N,-number of experimental points,

N-number of added particles,

output: z - calculated values array
fork=0to N—-1do

weights (8)

end

for k=0to N, —1do
fori=0to N—1do

end

fori=0to N —-1do

end

for j=0to N—-1do
Filter

end

fori=0to N—1do

end

end

Calculate pi using formula (14)
Calculate weights wi, = ¢ (i | z1.%) o< p (zk | pf) wi_;

| Normalize weights: w} = wi/w,

; iohts: i — qpi
| Normalize weights: w] = wi /w,

Prepare N random particles and assign base values (7) and base

Calculate total weight: w, = S~ wi

Resample particles using algorithm (1)
Draw X, ~ q (Xx | ¥/,214) = p (xk | xf_l) as in SIR Particle
Assign weight w] using algorithm (16)

Calculate total weight: w, = Zi\;l wi

Assign denoised value zj using weighted mean (10)
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Regularized particle filter

The regularized particle filter (RPF) [25-26]
is an enhanced version of the generic particle
filter, where the resampling process has been re-
fined and expanded. The modification includes
the incorporation of variance calculation and
the application of the Epanechnikov Kernel. The
variances (S,) are computed using equation (17).
A detailed presentation of the RPF can be found
in Algorithm 6

S, =Var ({x,‘c,w,f,}livil) (17)
and then standard deviation in step (D,) was de-
rived using equation (18) because the experiment
was conducted for one-dimensional data

Dy =[Sk (18)

Then the previously used resampling algo-
rithm was used, after which a value was gener-
ated for each sample using the Epanechnikov
Kernel (K(€)), described by the equation (19) for
one-dimensional data

3
K(e) =Z(1—62), le] <1 (19)

Finally, the value of the particle is updated ac-
cording to the equation:

Xjp = Xj + hopeO€! (20)

where: h . denotes optimal bandwidth used for

smoothmg the particle distribution, T —

representance of variance of the particle

weights, €' — sample drawn from the Ep-

anechnikov Kernel function described by
equation (19)

Algorithm 6: Regularized Particle filter

input

: z - One dimensional measured data array

N-number of experimental points,

N-number of added particles,

Np-treshold for resampling steps,

output: z - calculated values array
fork=0to N —1do

weights (8)

end

for k=0to N, —1do
fori=0to N—-1do

Draw X, ~ q (X | X}_1, %)

end

fori=0to N—1do

end

Calculate N,;; using (9)

if Ne_,rf > Np then

Calculate variance o2 of {x},
Compute Dy, (18)

fori=0to N —-1do

Assign X}, = X}, + hpol€
end

end

end

| Normalize weights: wy = wi/ws

Prepare N random particles and assign base values (7) and base

Assign the particle weight using equation (12)

Calculate total weight: w, = 321, w}

wik ot (17)

Resample particles using algorithm (1)

Draw €' ~ K from the Epanechnikov Kernel (19)

Assign denoised value z; using weighted mean (10)
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EXPERIMENT

For this work, four versions of programs were
written in C to implement the four filters described
before. The programs were compiled using stan-
dard compiler settings. The free and open-source
C/C* GNU Compiler in version 13.2.0 was used.
The computer used for the experiment is built
with the following components: an Intel Core 17
8700K processor, 32GB DDR4 memory, and an
SSD disk.

The four test data sets were selected. These
datasets contain real measurement data from
various experiments, comprising several dozen
to several thousand measurement points. Some
of them came from IoT devices. It was decided
to reduce the data sets to 60 measurement points
(N=60) to enable their mutual comparison for
testing. Moreover, from the original data sets,
fragments were selected that reflect the typical
behavior of the actual measurements. For later
use, the data sets were named ECG, EEG, RSSI,
STRESS, TTL and XRD for electrocardiograph-
ic data, electroencephalographic data, received
signal strength indicator data, mean biaxial stress
data, oscilloscope data and X-ray diffraction
data, respectively.

e The electrocardiographic data describe
the heart’s performance using electri-
cal signals. The data are taken from
the following source: https://www.kag-
gle.com/datasets/protobioengineering/
mit-biharrhythmia-database-modern-2023.

e The electroencephalographic data describe
the electrical activity of the brain. The datas-
ets were recorded for C3-A1l and C4-Al elec-
trodes. The data are taken from https:/www.
kaggle.com/datasets/jbouv27/eeg.

e The Received Signal Strength Indicator mea-
sures the power present in a received radio
signal. In this case, the RSSI represents the
real measurements of radio signal data be-
tween two ZigBee nodes. The measurements
were carried out for a distance of 15 meters.
The data are taken from paper [27].

e The dataset represents simulation data of the
evolution of the mean biaxial stresses during
the deposition of Co atoms on the Cu surface.
The deposition rate equals one atom 1per 2000
time steps, T = 300K, and the deposition en-
ergy is 1 eV. The data are taken from [28].

e The real oscilloscope data (TTL, transistor-
transistor logic) represents a slice of the
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astable flip-flop waveform. These are values
in the range of 0-5V. This is the standard op-
erating voltage of transistors made with this
technology. Authors’ own data.

e The part of the X-ray diffraction profiles for
the Fe-C-Mn-B-Cr-Si alloys quickly cooled in
water. The data are taken from the paper [29].

RESULTS

In this work, we perform a detailed analysis
of the suitability of various Bayesian filters for
reconstructing measurement data, which is al-
ways subject to some noise and uncertainty. Six
different experimental datasets were selected for
analysis. These data represented different lev-
els of waveform variability, which enabled the
evaluation of how individual filters performed
under different conditions. Both cases with rela-
tively stable characteristics and those with sig-
nificant fluctuations in measurement values over
time were included. This approach allowed for a
comprehensive evaluation of the effectiveness of
selected filtration methods and their potential ap-
plication in real conditions. The series of original
experimental data are shown in Figure 1. Each
data set contains 60 measurement points (N =60).

This dataset is used as the input file for filter-
ing algorithms. The results, which contained the
denoised input data, were saved during the calcu-
lations, and the execution times were measured.
The choice of the number of inserted particles is
critical for optimal results. Too many of them im-
prove the estimation error but increase the calcula-
tion time. Too few of them speed up the estimation
time, but give erroneous estimates. The calcula-
tions were performed for a number of inserted par-
ticles equal to 100, 500, 1000, and 2000.

The computational cost of calculation is di-
rectly proportional to the number of experimental
points and the number of inserted particles and
is O(Ns'N). Table 1 presents the average running
times of selected filters. The data shows that the
GPF and RPF algorithms are executed much fast-
er than the others. This proves the correctness of
the dependence of the particle resampling process
on the value of the N, parameter. Therefore, start-
up times are not comparable.

Real data directly obtained from an experi-
ment are always characterized by some level of
noise. A commonly used statistical measure for
determining the scatter of experimental data is
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Figure 1. The curves in the graph represent the electrocardiographic data (a), electroencephalographic data (b),
received signal strength indicator data (c), mean biaxial stress data (d), oscilloscope data (e),
and X-ray diffraction data (f), respectively.

Table 1. The average execution time of selected filters for a number of inserted particles equals 100, 500, 1000,
and 2000. Each data set contained only 60 measurement points

Average execution time [ms]
Filter type for a number of particles equal to
100 500 1000 2000
Generic particle filter 0.38 3.51 7.10 13.48
SIR particle filter 1.28 6.24 12.40 22.27
Auxiliary particle filter 1.20 5.50 10.79 19.59
Regularized particle filter 0.77 3.90 7.62 14.57

the standard deviation [30—32]. The standard de-
viation values for each data set are calculated and
shown in Table 2. Moreover, the standard devia-
tion values given in Table 2 were used as a pro-
cess noise parameter () in our Bayesian filters.
The standard deviation is a statistical measure
that indicates the statistical spread of experimen-
tal data [33-35]. When looking at the data pre-
sented in Table 2, it is not possible to compare
them directly. The standard deviations in the table
appear in different units and have different values.
Another important error assessment coefficient is
the root mean square error [36-38]. This coeffi-
cient also does not allow for comparing numeri-
cally divergent results (different ranges of min
and max values). With such divergent values of

the analyzed numerical waveforms, a measure is
needed that will give normalized values.

A commonly used measure to determine the
quality of lossy compressed images is the Peak
signal-to-noise ratio (PSNR) [39-45]. The PSNR
is a measure that compares the maximum level of
the expected signal to the level of the accompany-
ing noise. Originally, PSNR is defined as:

2

PSNR =10 logio ;o= 1)

where: D?is the dynamical intensity range.

For an 8-bit image it is 256, and MSE is
the mean squared error. In our case, we used a
modification of the PSNR definition as follows:
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Table 2. The standard deviation of the experimental data.

ECG [mV] EEG [mV] RSSI [dBm]

STRESS [GPa] TTL V] XRD [a.u.]

0.311 8.016 4.071

0.660 2.291 59.445

(Pmax - Pmin)2

MSE (22)

PSNR = 10 - logy,

where: P and P, _determine the minimum and
maximum values of the experimental data.

This definition of PSNR introduces normal-
ization of the obtained values and allows com-
parison of the results obtained for all considered
experimental data.

The selected Bayesian filters were imple-
mented in C. The natural feature of the filters used
in the scientific experiment is the use of pseudo-
random numbers. Naturally, the built-in SRAND
generator was used. The PSNR coefficient was
calculated for each dataset. Figure 2 shows the
obtained results only for the RSSI data.

Figure 2a shows the PSNR results obtained
for different numbers of inserted particles for dif-
ferent types of filters. Initially, we observe an in-
crease in the PSNR value with the increase in the

number of particles for all types of filters. A low
number of inserted particles does not guarantee
a correct estimation of the RSSI value. Hence,
it has a low PSNR value. Gradually, with the
increase in the number of inserted particles, the
PSNR value reaches a constant value. Unfortu-
nately, for the APF, there are quite large fluctua-
tions in the PSNR value. After analyzing the al-
gorithm, it turned out that these fluctuations are
caused by a poor quality of the generator imple-
mented in C (SRAND) [46]. The APF and SPF
filters use many more and more frequent pseudo-
random numbers with respect to the other filters.
Changing the generator to RAN2, as described in
Numerical Recipes [47], significantly improved
the results for all used filters. Figure 2b shows the
same results obtained using a new pseudorandom
number generator.

It is worth noting that changing the generator
seed to another value causes a visible change in
the PSNR value only for a low number of inserted
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Figure 2. PSNR coefficient for RSSI data for different numbers of inserted particles and different types of filters.
In part (a), the built-in pseudorandom number generator (SRAND) was used. In part (b), the RAN2 generator
was used with two different seeds.
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particles (below 200). Above this value, the larg-
est PSNR fluctuations are observed for APF, and
they amount to a maximum of 2 dB.

Finally, Figure 3 presents the PSNR results
obtained for various numbers of inserted particles,
filters, and experimental data types. In all observed
cases, GPF, SPF, APF and RPF for small N values
give low PSNR values. With the increase of the
number of inserted particles, the PSNR value in-
creases, reaching a steady state value.

Another noteworthy relationship is the sig-
nificant increase in PSNR values obtained by the
APF for EEG, RSSI, TTL and XRD data. In the
case of ECG and STRESS data, the APF filter
generates lower PSNR values similar to those ob-
tained by the SPF filter. The APF filter achieves
the highest filtering efficiency in the case of data
characterized by rapid dynamics of signal value
changes. The above observations are confirmed
in Figure 4, which presents the original and esti-
mated data obtained from the APF and SPF

The results reveal that the calculated values
approximate the experimental data very well,
increasing the PSNR value. The APF filter esti-
mates data very well, especially at the points of

their rapid change. This is well visible for TTL
and XRD data, but also for others.

It is interesting from the point of view of the
usefulness of the Bayesian filters used in this
work to compare them with other types of fil-
ters. In our work, we compared them with the
Kalman filter and the extended Kalman filter,
using the classical configuration provided in pa-
per [48]. It is common knowledge that the Kal-
man filter (KF) gives correct results for linear
models. Unfortunately, most phenomena in the
real world are characterized by nonlinearity. In
such cases, the Kalman filter becomes useless.
An alternative to the Kalman filter is the extend-
ed Kalman filter (EKF), which transforms the
nonlinear problem into a linear one using the
first-order Taylor approximation before apply-
ing the Kalman filter.

Figure 5 presents the PSNR values obtained
from the analyzed data using particle and Kalman
filters. We observe that a small number of parti-
cles (N=500) allows achieving higher PSNR val-
ues than Kalman filters. All particle filters used in
this work provide better estimation of experimen-
tal data than even the extended Kalman filter. It is
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Z 30 i N
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Figure 3. PSNR coefficient for different numbers of inserted particles and different data types: ECG (a),
EEG (b), RSSI (c), STRESS (d), TTL (e) and XRD (f), respectively.
The types of filters are provided in the legend box. The RAN2 generator was used.
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Figure 4. The real experimental data and estimated particle filter data for the number of inserted particles equal
to 500. The APF and SPF filters are used. The curves in the graph represent the ECG data (a), EEG data (b),
RSSI data (c), STRESS data (d), TTL data (e), and XRD data (f), respectively.
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Figure 5. Comparison of PSNR coefficient values for different types of filters and different data types.
The types of filters are provided in the legend box. For particle filters, the number of inserted particles was 500.

also worth noting that basic versions of Bayesian
filters were employed.

Finally, we decided to perform additional
tests on artificial data. For this purpose, we used
the well-known sine and arctangent functions.
Then, we added a Gaussian noise parameter to the

432

original data with a standard deviation of 2.0 in
part (a) and 0.1 in part (b). Figure 6 shows the
application of the APF filter (N = 500) and Kal-
man filters on synthetic data. The results show the
significant advantage of the APF filter over the
extended Kalman filter.
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Figure 6. Estimating a random sine and arctangent signal using APF and EKF for a Gaussian noise added to the
original data with a standard deviation equal to 2.0 in part (a) and 0.1 in part (b).
The value of PSNR coefficients is provided in the legend box.

CONCLUSIONS

Data obtained from an experiment are always
burdened with a certain amount of uncertainty.
Particle filters are very often used to filter such
data. As a result, we obtain data with a reduced
level of interference. In a computer experiment,
six experimental data sets representing different
areas of science were used. For the purpose of
noise reduction, four basic Bayesian filters were
used: generic particle filter, SIR particle filter,
auxiliary particle filter, and regularized particle
filter. The peak signal-to-noise ratio measure
was used to assess the quality of the level of
noise reduction.

The most important results of this study in-
clude the following:

e Using Bayesian filters on experimental data
significantly reduced the standard deviation
values.

e Gradually increasing the number of inserted
particles gradually increased the PSNR value
until a steady state value was reached.

e The auxiliary particle filter achieved the high-
est PSNR values. The higher the signal change
dynamics, the better the values were achieved.

e All Bayesian filters used showed better ability
to denoise nonlinear data than the EKF filter.

e Making the resampling process dependent on
the N, parameter speeds up the calculation
time but worsens the quality of the estimation,
resulting in lower PSNR values.
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