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INTRODUCTION

In today’s world, advances in technology and 
the increasing complexity of systems have made 
state estimation and signal filtering special issues 
in many scientific fields. Faced with the chal-
lenge of determining the precise state of systems 
under conditions of uncertainty and disturbance, 
estimation and filtering methods such as Bayes 
filters and Kalman filters have been developed. 
Bayesian filters, based on Bayes’ theorem, make 
it possible to update probabilities based on the in-
coming data. They are widely used in localization 
[1-2], navigation [3-4], robotics [5], medicine [6], 
economics [7], Bayesian classifiers [8-9], and 
many others [10-11].

Paper [1] describes a method for dynamic 
estimation of the path attenuation exponent as a 
function of distance, based on actual received sig-
nal strength indicator (RSSI) measurements. The 
main goal was to develop a method for accurate 
distance estimation using a small measurement 

data set. For this purpose, a particle filter was 
used, allowing precise radio signal attenuation 
modeling. The sensitivity of the method to chang-
ing the number of particles and computational it-
erations was analyzed. The experimental results 
confirm the effectiveness of the proposed method 
in terms of improving the accuracy of path attenu-
ation estimation. The method shows high utility 
in systems with limited hardware resources, mak-
ing it attractive for sensor network (WSNs) ap-
plications and other wireless systems.

Paper [2] focuses on the problem of robot 
localization. Bayes filters were used to improve 
the results measured with the sensor, reducing the 
noise so that the results were closer to the real 
ones.  This paper introduces an innovative meth-
od for the sensor model, referred to as the pre-
dictive sensor model, which incorporates a pre-
diction mechanism to enhance the effectiveness 
of measurement updates in Bayesian filters. By 
adding sensor prediction, the original Bayes filter 
was extended to an anticipatory Bayes filter.
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In-building navigation systems based on RSSI 
data are described in the article [3], in which the 
authors focus on the use of particle filters and 
Kalman filters based on Bayesian theory for state 
updating and improving, smoothing the measure-
ment results. The paper mentions that particle fil-
ters and Kalman filters can be used in any case 
where the algorithm relies on updating the state 
of the particles.

Article [4] presents an application of Bayes’ 
theory to data smoothing in a multi-target track-
ing application. The study uses a finite labeled da-
taset. It is shown that if the multi-target transition 
kernel used in the backward smoothing step does 
not take into account the birth and decay process-
es of the targets, the resulting smoothing density 
is identical to the filtering density. Simulations 
conducted by the authors in MTT scenarios indi-
cate that smoothing performs better than a gener-
alized labeled multi-Bernoulli filter in the context 
of an optimal subpattern assignment matrix.

Particle filters based on Bayes’ theory are also 
used in robotics. Study [5], the author states that 
Bayes and Kalman particle filters are a standard 
approach in mobile robotics. The authors mainly 
focus on the robot’s location and navigation us-
ing LIDAR laser sensors. For the experiment, 
they used a mobile robot with a laser sensor with 
a range of 0-25 m and an aperture angle of 270°. 
The authors compare particle filters with neural 
networks. The study results show that particle fil-
ters perform worse than trained neural networks, 
however, the latter require supervised learning 
and time for the training process itself, while fil-
ters can work immediately.

Another discipline where particle filters are 
applied is in medicine. This is described in the 
article [6], where the authors focus on the ECG 
signal. They note that the ECG signal used in 
noninvasive cardiac electrophysiology is a very 
convenient and helpful tool. Unfortunately, most 
often the signal is noisy. They emphasize that 
data cleanliness is crucial in the further study of 
the obtained signal. They use Bayesian methods 
to average the weighted received signal from the 
measuring device. Ultimately, the study shows 
that the use of particle filters significantly im-
proves, reducing noise in the ECG signal.

The next paper related to economics is [7]. It 
describes the use of Bayesian filtering in electric-
ity forecasting, with a focus on prioritization to 
improve forecasting accuracy. The authors review 
the general structure of Bayesian forecasting, 

highlighting the computational techniques used 
to implement the approach. 

The authors [8] focused on the use of the na-
ive Bayes (NB) classifier, which was applied to 
data from social networks. In order to analyze 
these data, a network version of the naive Bayes 
classifier, which is an extension of the classical 
NB model, was proposed. The statistical proper-
ties of the NNB model were theoretically ana-
lyzed, and its effectiveness was evaluated through 
simulations. In addition, an analysis of real data 
was carried out, which confirmed the practical ap-
plication of the method.

In [9], the authors focused on applying a naive 
Bayes classifier to predict the risk of contracting 
and developing type 2 diabetes. The analysis was 
carried out on the Pima Indians Diabetes Data 
Set, which contains information on people with 
type 2 diabetes, as well as healthy individuals. 
The results show that the model used was highly 
effective, confirming that the Bayes network can 
effectively predict type 2 diabetes.

The authors of this paper [10] focus on 
email spam detection. They propose using a hy-
brid spam detection technique combining Naive 
Bayes and Markov Random Field algorithms. 
Naive Bayes identifies spam using probabilistic 
classification based on Bayes’ theorem, while 
Markov Random Field models the statistical de-
pendencies of spam patterns.  This approach im-
proves spam detection performance in terms of 
accuracy and processing time.

The paper discusses various approaches to 
learning and implementing Bayesian Network 
(BN) classifiers [11]. The authors evaluated al-
gorithms of four different types of BN classifi-
ers and determined their effectiveness compared 
to established methods. Thie study highlights 
that they offer a powerful alternative to other 
types while maintaining reasonable computa-
tional requirements.

In paper [12], a method for improving the 
quality of biomedical ECG signals based on non-
linear dynamic models and Bayesian filtering was 
used. The proposed approach is based on a realis-
tic, synthetic ECG model, which was used in the 
extended Kalman filter (EKF) and its smoothed 
variant (EKS) and the unscented Kalman filter 
(UKF). The applied solution gave better results 
than classical filtration techniques in a wide range 
of SNR values. This approach allows not only to 
preserve the signal morphology, but also to effec-
tively track its changes in low SNR conditions.
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In [13], a PPG signal filtering using a parti-
cle filter was proposed to improve the accuracy 
of emotion recognition in wearable systems. The 
applied approach enables effective signal tracking 
in the presence of typical dynamic typical motion 
disturbances. The conducted experiments showed 
an increase in emotion recognition accuracy by an 
average of 11.8% and an improvement in SNR by 
4.5 dB compared to the baseline NLMS method.

In [14], a comprehensive comparison of two 
Bayesian image denoising methods Total Varia-
tion (TV) and Bayesian least squares – Gauss-
ian scale mixture (BLS-GSM) was presented. 
The authors showed that the TV-based approach 
better preserves sharp edges and fine anatomical 
structures, while the wavelet method (BLS-GSM) 
provides higher global image quality, especially 
in low-frequency regions. The studies were con-
ducted on both simulated images and real dental 
radiographs. The authors’ conclusions suggest 
that there is no universal solution, the choice of 
the algorithm should be adapted to the image 
characteristics and the expected compromise be-
tween noise reduction and detail preservation.

The main purpose of the present work is 
to perform a detailed analysis of the suitability 
of various Bayesian filters for use with differ-
ent types of experimental data. Four commonly 
used Bayesian filters in standard versions were 
chosen for testing: generic particle filter, SIR 
particle filter, auxiliary particle filter, and regu-
larized particle filter. The peak signal-to-noise 
ratio measure was used to assess the quality of 
the level of noise reduction. Next, the results ob-
tained were compared with those obtained using 
Kalman filters.

BAYESIAN FILTERING METHODS

Particle filters are based on Thomas Bayes’ 
theorem, which is a fundamental theorem in prob-
ability theory. The theory makes it possible to cal-
culate conditional probabilities, hence allowing 
updating the probabilities with the updated data. 
The theorem is presented in formula (1)
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where:	P(A|B) – probability of the occurrence of 
event A under the condition that event B 
occurred (conditional probability), P(B|A) 

– probability of event B under the condi-
tion that event A has occurred, P(A) – a 
priori probability of event A, before con-
sidering event B, P(B) – probability of 
event B.

In the case of the filters discussed in the ar-
ticle, this is the basis for tracking the state (xk) of 
dynamic systems when the system is nonlinear or 
the noise does not come from a Gaussian distribu-
tion. Bayes’ theorem makes it possible to calcu-
late the posterior probability, which is shown in 
the formula (2)
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where:	 z denotes measured data, x – hidden state 
of system, P(xk|z1:k) – a posteriori distri-
bution of the state, P(zk|xk) – reliability 
function, P(xk|z1:k−1) – a priori distribution 
of the state, and P(zk) is a normalizer that 
ensures that the result is a probability.

Particle filters consist of three phases:
	• prediction: updating the state of each particle 

based on the system dynamics model,
	• updating: changing the particle weights based 

on new observations and Bayes’ theorem,
	• resampling: removing particles with high 

weights to better represent the posterior 
distribution.

Resampling algorithm

The systematic resampling algorithm [15] 
shown in Algorithm 1 was used in all particle fil-
ters. This is one of the possible implementations 
of the algorithm for performing resampling. This 
implementation was chosen because it is the most 
widely used in other research works [1, 16-17]. 
The task of the resampling process is to remove 
particles that represent low weight and focus on 
those with high weight. 

During the resampling process, new particles 
are created by calculating them from an approxi-
mate discrete representation defined by:
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Used in the algorithm, the variable CDF for 
the following particles is calculated from:
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The average (u) for each particle is calculated from:
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Sequential importance sampling
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The SIS aims to overcome the limitations of 
traditional Monte Carlo methods for complex 
engineering models and rare failure events. SIS 
works by generating samples that progressively 
approach the optimal sampling density. This se-
quential approach helps efficiently sample the 
failure domain. Article [18] emphasizes how SIS 
can improve the proposal distribution by using 
information from previous iterations, making 
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it well-suited for structural reliability problems 
where the failure is complex or difficult to char-
acterize in advance.

Generic particle filter

The generic particle filter (GPF) presented 
in Algorithm 3 is based on the sequential impor-
tance sampling filter. SIS is the base filter in terms 
of construction; however, it has several problems 
solved in GPF. The first problem is degeneration, 
which means that a negative value can be assigned 
to the importance weight after several iterations. 
The paper [19] shows that the variance of impor-
tance weights can only increase, thus eliminating 
the degeneration problem. Another problem is the 
selection of the correct importance weight. In this 
case, some methods can be used, described in de-
tail in paper [16]. One of them was chosen for 
the study, where importance density is a priori. 
Finally, resampling is the creation of new samples 
based on calculated weights. For the purposes of 
this study, systematic resampling was used in [15] 
as presented in Algorithm 1. This resulted in a fil-
ter based on SIS, but without its drawbacks.

The initial value of the particles is assigned 
using equation (7)
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Initial weights are calculated using equation (8)
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Next weights can be calculated using equa-
tion (6), and to ensure that the problem of degen-
eration does not affect the results, resampling was 
used only if Neff  shown in formula (9) goes above 
some threshold NT
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Finally, resampled values are calculated using 
formula (10)
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Correct selection of the NT threshold [20-22] 
is another crucial task to balance computational 
cost and filter performance. The most common 
methods for selecting the value of NT are the rela-
tive threshold, the fixed threshold, and the adap-
tive threshold. The value of NT  also determines 
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the problem of particle degeneration. Too low a 
threshold value will cause degeneration to occur, 
but it will reduce the execution times of the al-
gorithm. A large threshold value will zap many 
samples by triggering resampling more frequent-
ly, increasing the computational cost.

The relative threshold method is to select the 
threshold as a fraction of the selected number of 
particles. A popular choice is NT = αN, where α 
= [0.5, 0.8]. This fraction says that resampling 
is triggered when αN particles make an effective 
contribution.

The fixed threshold method involves deter-
mining NT  values based on empirical studies or 
specific application requirements. This approach 
provides consistent behavior across runs, making 
it easier to compare performance metrics. How-
ever, it may not adapt well to dynamic changes in 
the system or varying levels of noise.

The adaptive threshold method involves 
selecting NT values based on application noise 
or system state in real time. It dynamically ad-
justs NT during runtime, which helps maintain 
a balance between accuracy and efficiency 
under changing conditions. This method often 
relies on statistical measures such as variance 
or entropy to determine the optimal threshold 
of NT  choice.

SIR particle filter

SIR particle filter (sampling importance resa-
mpling), which was presented in papers [16, 23], 
can be applied to recursive Bayesian filtering us-
ing the Monte Carlo (MC) method. The SIR Par-
ticle Filter is a modification of the SIS algorithm, 
in which the method of counting the density of 
importance is chosen from the available options. 
In this case, the density of priority is calculated 
using the prior (11)
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Then substitution of (11) into (6) gives 
equation:

	

𝑃𝑃(𝐴𝐴|𝐵𝐵) =   𝑃𝑃(𝐵𝐵|𝐴𝐴) ⋅ 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  

 

𝑃𝑃(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) = 

=  𝑃𝑃(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘) ⋅ 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘−1)
𝑃𝑃(𝑧𝑧𝑘𝑘)  

 

𝑝𝑝( 𝑥𝑥𝑘𝑘 ∣∣  𝑧𝑧1−𝑘𝑘 ) ≈ ∑ 𝑤𝑤𝑘𝑘
𝑖𝑖 𝛿𝛿(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘

𝑖𝑖 )
𝑁𝑁

𝑖𝑖=1
 

 

CDFk = CDFk−1 + wk 

 

u = u1 + j/N 

 

wk
i ∝ wk−1

i  

p( zk ∣∣ xk
i )p( xk

i ∣∣ xk−1
i )

q( xk
i ∣∣ xk−1

i , zk )
 

 

𝑥𝑥𝑘𝑘 ∼ 𝒩𝒩 (init_state, init_variance) 

 

𝑤𝑤𝑘𝑘 = 1/𝑁𝑁 

 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = 1
∑ 𝑤𝑤𝑘𝑘

𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑥𝑥𝑘𝑘 = ∑ 𝑥𝑥𝑘𝑘
𝑗𝑗

𝑁𝑁

𝑗𝑗=0
⋅ 𝑤𝑤𝑘𝑘

𝑗𝑗 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘−1
𝑖𝑖 , 𝑧𝑧𝑘𝑘 ) = 

=  𝑝𝑝( 𝑥𝑥𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘−1
𝑖𝑖 ) 

 

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑖𝑖 ) 	 (12)

However, given that resampling is performed 
at each time index where wk

i
−1 = 1/N∀i, this for-

mula can be simplified to formula (13)

	 𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘

𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1

i ] 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘, 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 ) = 

=  𝑞𝑞( 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 )𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑖𝑖, 𝑧𝑧1:𝑘𝑘 ) 

 

𝑤𝑤𝑘𝑘
𝑗𝑗 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑝𝑝( 𝑧𝑧𝑘𝑘∣∣
∣𝑥𝑥𝑘𝑘

𝑗𝑗 )𝑝𝑝( 𝑥𝑥𝑘𝑘
𝑗𝑗

∣∣
∣𝑥𝑥𝑘𝑘−1

𝑖𝑖𝑗𝑗
)

𝑞𝑞( 𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗

∣∣
∣𝑧𝑧1:𝑘𝑘 )

 = 

= 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑗𝑗 )

𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
𝑖𝑖𝑖𝑖 )

 

 

𝑆𝑆𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉 ({𝑥𝑥𝑘𝑘
𝑖𝑖 , 𝑤𝑤𝑘𝑘

𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 ) 

 

𝐷𝐷𝑘𝑘 = √𝑆𝑆𝑘𝑘 

 

𝐾𝐾(𝜖𝜖) = 3
4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

	 (13)

Another change compared to SIS is that resa-
mpling is done at each time index.
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Auxiliary particle filter

Auxiliary particle filter (APF) is another iter-
ation of the SIR filter presented in the paper [24]. 
This filter can be derived from the baseline SIS 
by introducing the importance density q(xk,i|z1:k), 
which operates on {𝑥𝑥𝑘𝑘

𝑗𝑗, 𝑖𝑖𝑗𝑗}𝑗𝑗=1
𝑀𝑀𝑠𝑠  

 

μ𝑘𝑘𝑖𝑖  

 where ij refers to the 
index in k – 1 and Ms refers to number of samples 
generated as a result of resampling. After using 
Bayes’ theorem, and introducing the mean (

{𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗}𝑗𝑗=1

𝑀𝑀𝑠𝑠  

 

μ𝑘𝑘𝑖𝑖   ) 
shown in equation (14)

	

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘

𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1

i ] 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘, 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 ) = 

=  𝑞𝑞( 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 )𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑖𝑖, 𝑧𝑧1:𝑘𝑘 ) 

 

𝑤𝑤𝑘𝑘
𝑗𝑗 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑝𝑝( 𝑧𝑧𝑘𝑘∣∣
∣𝑥𝑥𝑘𝑘

𝑗𝑗 )𝑝𝑝( 𝑥𝑥𝑘𝑘
𝑗𝑗

∣∣
∣𝑥𝑥𝑘𝑘−1

𝑖𝑖𝑗𝑗
)

𝑞𝑞( 𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗

∣∣
∣𝑧𝑧1:𝑘𝑘 )

 = 

= 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑗𝑗 )

𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
𝑖𝑖𝑖𝑖 )

 

 

𝑆𝑆𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉 ({𝑥𝑥𝑘𝑘
𝑖𝑖 , 𝑤𝑤𝑘𝑘

𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 ) 

 

𝐷𝐷𝑘𝑘 = √𝑆𝑆𝑘𝑘 

 

𝐾𝐾(𝜖𝜖) = 3
4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

	 (14)

where:	E denotes an expected value operator, xk  
– state in stem k, 

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘

𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1

i ] 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘, 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 ) = 

=  𝑞𝑞( 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 )𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑖𝑖, 𝑧𝑧1:𝑘𝑘 ) 

 

𝑤𝑤𝑘𝑘
𝑗𝑗 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑝𝑝( 𝑧𝑧𝑘𝑘∣∣
∣𝑥𝑥𝑘𝑘

𝑗𝑗 )𝑝𝑝( 𝑥𝑥𝑘𝑘
𝑗𝑗

∣∣
∣𝑥𝑥𝑘𝑘−1

𝑖𝑖𝑗𝑗
)

𝑞𝑞( 𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗

∣∣
∣𝑧𝑧1:𝑘𝑘 )

 = 

= 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑗𝑗 )

𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
𝑖𝑖𝑖𝑖 )

 

 

𝑆𝑆𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉 ({𝑥𝑥𝑘𝑘
𝑖𝑖 , 𝑤𝑤𝑘𝑘

𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 ) 

 

𝐷𝐷𝑘𝑘 = √𝑆𝑆𝑘𝑘 

 

𝐾𝐾(𝜖𝜖) = 3
4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

 – state of i-th par-
ticle at previous step.

The following equation, shown in (15), was 
reached:

	

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘

𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1

i ] 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘, 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 ) = 

=  𝑞𝑞( 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 )𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑖𝑖, 𝑧𝑧1:𝑘𝑘 ) 

 

𝑤𝑤𝑘𝑘
𝑗𝑗 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑝𝑝( 𝑧𝑧𝑘𝑘∣∣
∣𝑥𝑥𝑘𝑘

𝑗𝑗 )𝑝𝑝( 𝑥𝑥𝑘𝑘
𝑗𝑗

∣∣
∣𝑥𝑥𝑘𝑘−1

𝑖𝑖𝑗𝑗
)

𝑞𝑞( 𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗

∣∣
∣𝑧𝑧1:𝑘𝑘 )

 = 

= 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑗𝑗 )

𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
𝑖𝑖𝑖𝑖 )

 

 

𝑆𝑆𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉 ({𝑥𝑥𝑘𝑘
𝑖𝑖 , 𝑤𝑤𝑘𝑘

𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 ) 

 

𝐷𝐷𝑘𝑘 = √𝑆𝑆𝑘𝑘 

 

𝐾𝐾(𝜖𝜖) = 3
4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

	 (15)

which, after the necessary transformations de-
scribed in [16], finally looks as shown in equa-
tion (16):

	

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝ 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘

𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1

i ] 

 

𝑞𝑞( 𝑥𝑥𝑘𝑘, 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 ) = 

=  𝑞𝑞( 𝑖𝑖 ∣∣ 𝑧𝑧1:𝑘𝑘 )𝑞𝑞( 𝑥𝑥𝑘𝑘 ∣∣ 𝑖𝑖, 𝑧𝑧1:𝑘𝑘 ) 

 

𝑤𝑤𝑘𝑘
𝑗𝑗 ∝ 𝑤𝑤𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑝𝑝( 𝑧𝑧𝑘𝑘∣∣
∣𝑥𝑥𝑘𝑘

𝑗𝑗 )𝑝𝑝( 𝑥𝑥𝑘𝑘
𝑗𝑗

∣∣
∣𝑥𝑥𝑘𝑘−1

𝑖𝑖𝑗𝑗
)

𝑞𝑞( 𝑥𝑥𝑘𝑘
𝑗𝑗, 𝑖𝑖𝑗𝑗

∣∣
∣𝑧𝑧1:𝑘𝑘 )

 = 

= 𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝑥𝑥𝑘𝑘
𝑗𝑗 )

𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
𝑖𝑖𝑖𝑖 )

 

 

𝑆𝑆𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉 ({𝑥𝑥𝑘𝑘
𝑖𝑖 , 𝑤𝑤𝑘𝑘

𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 ) 

 

𝐷𝐷𝑘𝑘 = √𝑆𝑆𝑘𝑘 

 

𝐾𝐾(𝜖𝜖) = 3
4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

	 (16)

After transformations, the algorithm looks as 
shown in Algorithm 5.
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Regularized particle filter

The regularized particle filter (RPF) [25-26] 
is an enhanced version of the generic particle 
filter, where the resampling process has been re-
fined and expanded. The modification includes 
the incorporation of variance calculation and 
the application of the Epanechnikov Kernel. The 
variances (Sk) are computed using equation (17). 
A detailed presentation of the RPF can be found 
in Algorithm 6

	

𝑤𝑤𝑘𝑘
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𝑝𝑝( 𝑧𝑧𝑘𝑘 ∣∣ 𝜇𝜇𝑘𝑘
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4 (1 − 𝜖𝜖2),  |𝜖𝜖| ≤ 1 

 

𝑥𝑥𝑘𝑘
𝑖𝑖 = 𝑥𝑥𝑘𝑘

𝑖𝑖 + ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑤𝑤
2 𝜖𝜖𝑖𝑖 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝐷𝐷2

𝑀𝑀𝑀𝑀𝑀𝑀 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ log10
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑀𝑀𝑀𝑀𝑀𝑀  

 

 

	 (17)

and then standard deviation in step (Dk) was de-
rived using equation (18) because the experiment 
was conducted for one-dimensional data
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	 (18)

Then the previously used resampling algo-
rithm was used, after which a value was gener-
ated for each sample using the Epanechnikov 
Kernel (K(∈)), described by the equation (19) for 
one-dimensional data
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	 (19)

Finally, the value of the particle is updated ac-
cording to the equation:
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𝑖𝑖 ) 

 

μk
i = 𝐸𝐸[ xk ∣∣ xk−1
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where:	hopt denotes optimal bandwidth used for 
smoothing the particle distribution, 
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 – 
representance of variance of the particle 
weights, ∈i – sample drawn from the Ep-
anechnikov Kernel function described by 
equation (19)
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EXPERIMENT

For this work, four versions of programs were 
written in C to implement the four filters described 
before. The programs were compiled using stan-
dard compiler settings. The free and open-source 
C/C++ GNU Compiler in version 13.2.0 was used. 
The computer used for the experiment is built 
with the following components: an Intel Core i7 
8700K processor, 32GB DDR4 memory, and an 
SSD disk.

The four test data sets were selected. These 
datasets contain real measurement data from 
various experiments, comprising several dozen 
to several thousand measurement points. Some 
of them came from IoT devices. It was decided 
to reduce the data sets to 60 measurement points 
(Ns=60) to enable their mutual comparison for 
testing. Moreover, from the original data sets, 
fragments were selected that reflect the typical 
behavior of the actual measurements. For later 
use, the data sets were named ECG, EEG, RSSI, 
STRESS, TTL and XRD for electrocardiograph-
ic data, electroencephalographic data, received 
signal strength indicator data, mean biaxial stress 
data, oscilloscope data and X-ray diffraction 
data, respectively.
	• The electrocardiographic data describe 

the heart’s performance using electri-
cal signals. The data are taken from 
the following source: https://www.kag-
gle.com/datasets/protobioengineering/
mit-biharrhythmia-database-modern-2023.

	• The electroencephalographic data describe 
the electrical activity of the brain. The datas-
ets were recorded for C3-A1 and C4-A1 elec-
trodes. The data are taken from https://www.
kaggle.com/datasets/jbouv27/eeg.

	• The Received Signal Strength Indicator mea-
sures the power present in a received radio 
signal. In this case, the RSSI represents the 
real measurements of radio signal data be-
tween two ZigBee nodes. The measurements 
were carried out for a distance of 15 meters. 
The data are taken from paper [27].

	• The dataset represents simulation data of the 
evolution of the mean biaxial stresses during 
the deposition of Co atoms on the Cu surface. 
The deposition rate equals one atom 1per 2000 
time steps, T = 300K, and the deposition en-
ergy is 1 eV. The data are taken from [28].

	• The real oscilloscope data (TTL, transistor-
transistor logic) represents a slice of the 

astable flip-flop waveform. These are values 
in the range of 0-5V. This is the standard op-
erating voltage of transistors made with this 
technology. Authors’ own data.

	• The part of the X-ray diffraction profiles for 
the Fe-C-Mn-B-Cr-Si alloys quickly cooled in 
water. The data are taken from the paper [29].

RESULTS

In this work, we perform a detailed analysis 
of the suitability of various Bayesian filters for 
reconstructing measurement data, which is al-
ways subject to some noise and uncertainty. Six 
different experimental datasets were selected for 
analysis. These data represented different lev-
els of waveform variability, which enabled the 
evaluation of how individual filters performed 
under different conditions. Both cases with rela-
tively stable characteristics and those with sig-
nificant fluctuations in measurement values over 
time were included. This approach allowed for a 
comprehensive evaluation of the effectiveness of 
selected filtration methods and their potential ap-
plication in real conditions. The series of original 
experimental data are shown in Figure 1. Each 
data set contains 60 measurement points (Ns=60).

This dataset is used as the input file for filter-
ing algorithms. The results, which contained the 
denoised input data, were saved during the calcu-
lations, and the execution times were measured. 
The choice of the number of inserted particles is 
critical for optimal results. Too many of them im-
prove the estimation error but increase the calcula-
tion time. Too few of them speed up the estimation 
time, but give erroneous estimates. The calcula-
tions were performed for a number of inserted par-
ticles equal to 100, 500, 1000, and 2000. 

The computational cost of calculation is di-
rectly proportional to the number of experimental 
points and the number of inserted particles and 
is O(Ns·N). Table 1 presents the average running 
times of selected filters. The data shows that the 
GPF and RPF algorithms are executed much fast-
er than the others. This proves the correctness of 
the dependence of the particle resampling process 
on the value of the NT parameter. Therefore, start-
up times are not comparable.

Real data directly obtained from an experi-
ment are always characterized by some level of 
noise. A commonly used statistical measure for 
determining the scatter of experimental data is 



429

Advances in Science and Technology Research Journal 2025, 19(12) 420–435

the standard deviation [30–32]. The standard de-
viation values for each data set are calculated and 
shown in Table 2. Moreover, the standard devia-
tion values given in Table 2 were used as a pro-
cess noise parameter (σ) in our Bayesian filters.

The standard deviation is a statistical measure 
that indicates the statistical spread of experimen-
tal data [33-35]. When looking at the data pre-
sented in Table 2, it is not possible to compare 
them directly. The standard deviations in the table 
appear in different units and have different values. 
Another important error assessment coefficient is 
the root mean square error [36-38]. This coeffi-
cient also does not allow for comparing numeri-
cally divergent results (different ranges of min 
and max values). With such divergent values of 

the analyzed numerical waveforms, a measure is 
needed that will give normalized values.

A commonly used measure to determine the 
quality of lossy compressed images is the Peak 
signal-to-noise ratio (PSNR) [39-45]. The PSNR 
is a measure that compares the maximum level of 
the expected signal to the level of the accompany-
ing noise. Originally, PSNR is defined as:
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where:	D2 is the dynamical intensity range. 

For an 8-bit image it is 256, and MSE is 
the mean squared error. In our case, we used a 
modification of the PSNR definition as follows:

Figure 1. The curves in the graph represent the electrocardiographic data (a), electroencephalographic data (b), 
received signal strength indicator data (c), mean biaxial stress data (d), oscilloscope data (e),

and X-ray diffraction data (f), respectively. 

Table 1. The average execution time of selected filters for a number of inserted particles equals 100, 500, 1000, 
and 2000. Each data set contained only 60 measurement points

Filter type
Average execution time [ms]

for a number of particles equal to
100 500 1000 2000

Generic particle filter 0.38 3.51 7.10 13.48

SIR particle filter 1.28 6.24 12.40 22.27

Auxiliary particle filter 1.20 5.50 10.79 19.59

Regularized particle filter 0.77 3.90 7.62 14.57
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where: 	Pmin and Pmax determine the minimum and 
maximum values of the experimental data. 

This definition of PSNR introduces normal-
ization of the obtained values and allows com-
parison of the results obtained for all considered 
experimental data.

The selected Bayesian filters were imple-
mented in C. The natural feature of the filters used 
in the scientific experiment is the use of pseudo-
random numbers. Naturally, the built-in SRAND 
generator was used. The PSNR coefficient was 
calculated for each dataset. Figure 2 shows the 
obtained results only for the RSSI data.

Figure 2a shows the PSNR results obtained 
for different numbers of inserted particles for dif-
ferent types of filters. Initially, we observe an in-
crease in the PSNR value with the increase in the 

number of particles for all types of filters. A low 
number of inserted particles does not guarantee 
a correct estimation of the RSSI value. Hence, 
it has a low PSNR value. Gradually, with the 
increase in the number of inserted particles, the 
PSNR value reaches a constant value. Unfortu-
nately, for the APF, there are quite large fluctua-
tions in the PSNR value. After analyzing the al-
gorithm, it turned out that these fluctuations are 
caused by a poor quality of the generator imple-
mented in C (SRAND) [46]. The APF and SPF 
filters use many more and more frequent pseudo-
random numbers with respect to the other filters.  
Changing the generator to RAN2, as described in 
Numerical Recipes [47], significantly improved 
the results for all used filters. Figure 2b shows the 
same results obtained using a new pseudorandom 
number generator.

It is worth noting that changing the generator 
seed to another value causes a visible change in 
the PSNR value only for a low number of inserted 

Table 2. The standard deviation of the experimental data.
ECG [mV] EEG [mV] RSSI [dBm] STRESS [GPa] TTL [V] XRD [a.u.]

0.311 8.016 4.071 0.660 2.291 59.445

Figure 2. PSNR coefficient for RSSI data for different numbers of inserted particles and different types of filters. 
In part (a), the built-in pseudorandom number generator (SRAND) was used. In part (b), the RAN2 generator 

was used with two different seeds.
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particles (below 200). Above this value, the larg-
est PSNR fluctuations are observed for APF, and 
they amount to a maximum of 2 dB.

Finally, Figure 3 presents the PSNR results 
obtained for various numbers of inserted particles, 
filters, and experimental data types. In all observed 
cases, GPF, SPF, APF and RPF for small N values 
give low PSNR values. With the increase of the 
number of inserted particles, the PSNR value in-
creases, reaching a steady state value. 

Another noteworthy relationship is the sig-
nificant increase in PSNR values obtained by the 
APF for EEG, RSSI, TTL and XRD data. In the 
case of ECG and STRESS data, the APF filter 
generates lower PSNR values similar to those ob-
tained by the SPF filter. The APF filter achieves 
the highest filtering efficiency in the case of data 
characterized by rapid dynamics of signal value 
changes. The above observations are confirmed 
in Figure 4, which presents the original and esti-
mated data obtained from the APF and SPF

The results reveal that the calculated values 
approximate the experimental data very well, 
increasing the PSNR value. The APF filter esti-
mates data very well, especially at the points of 

their rapid change. This is well visible for TTL 
and XRD data, but also for others.

It is interesting from the point of view of the 
usefulness of the Bayesian filters used in this 
work to compare them with other types of fil-
ters. In our work, we compared them with the 
Kalman filter and the extended Kalman filter, 
using the classical configuration provided in pa-
per [48]. It is common knowledge that the Kal-
man filter (KF) gives correct results for linear 
models. Unfortunately, most phenomena in the 
real world are characterized by nonlinearity. In 
such cases, the Kalman filter becomes useless. 
An alternative to the Kalman filter is the extend-
ed Kalman filter (EKF), which transforms the 
nonlinear problem into a linear one using the 
first-order Taylor approximation before apply-
ing the Kalman filter.

Figure 5 presents the PSNR values obtained 
from the analyzed data using particle and Kalman 
filters. We observe that a small number of parti-
cles (N=500) allows achieving higher PSNR val-
ues than Kalman filters. All particle filters used in 
this work provide better estimation of experimen-
tal data than even the extended Kalman filter. It is 

Figure 3. PSNR coefficient for different numbers of inserted particles and different data types: ECG (a),
EEG (b), RSSI (c), STRESS (d), TTL (e) and XRD (f), respectively.

The types of filters are provided in the legend box. The RAN2 generator was used.
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also worth noting that basic versions of Bayesian 
filters were employed.

Finally, we decided to perform additional 
tests on artificial data. For this purpose, we used 
the well-known sine and arctangent functions. 
Then, we added a Gaussian noise parameter to the 

original data with a standard deviation of 2.0 in 
part (a) and 0.1 in part (b). Figure 6 shows the 
application of the APF filter (N = 500) and Kal-
man filters on synthetic data. The results show the 
significant advantage of the APF filter over the 
extended Kalman filter. 

Figure 4. The real experimental data and estimated particle filter data for the number of inserted particles equal 
to 500. The APF and SPF filters are used. The curves in the graph represent the ECG data (a), EEG data (b), 

RSSI data (c), STRESS data (d), TTL data (e), and XRD data (f), respectively. 

Figure 5. Comparison of PSNR coefficient values for different types of filters and different data types.
The types of filters are provided in the legend box. For particle filters, the number of inserted particles was 500. 
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CONCLUSIONS

Data obtained from an experiment are always 
burdened with a certain amount of uncertainty. 
Particle filters are very often used to filter such 
data. As a result, we obtain data with a reduced 
level of interference. In a computer experiment, 
six experimental data sets representing different 
areas of science were used. For the purpose of 
noise reduction, four basic Bayesian filters were 
used: generic particle filter, SIR particle filter, 
auxiliary particle filter, and regularized particle 
filter. The peak signal-to-noise ratio measure 
was used to assess the quality of the level of 
noise reduction. 

The most important results of this study in-
clude the following:
	• Using Bayesian filters on experimental data 

significantly reduced the standard deviation 
values.

	• Gradually increasing the number of inserted 
particles gradually increased the PSNR value 
until a steady state value was reached.

	• The auxiliary particle filter achieved the high-
est PSNR values. The higher the signal change 
dynamics, the better the values were achieved.

	• All Bayesian filters used showed better ability 
to denoise nonlinear data than the EKF filter.

	• Making the resampling process dependent on 
the NT parameter speeds up the calculation 
time but worsens the quality of the estimation, 
resulting in lower PSNR values.

REFERENCES

1.	 Wójcicki P., Zientarski T., Przyłucki S. Ap-
plication of Particle Filter in Path-loss Model-
ling. Advances in Science and Technology Re-
search Journal. 2023; 17(5): 337-349. https://doi.
org/10.12913/22998624/172407

2.	 Zhang G. Suh I.H. Integration of a prediction mech-
anism with a sensor model: An anticipatory Bayes 
filter. IEEE International Conference on Robotics 
and Automation. 2009; 3620-3625, Kobe, Japan. 
https://dl.acm.org/doi/10.5555/1732643.1732695

3.	 Wang W., Ku W.S. Dynamic indoor navigation with 
Bayesian filters, SIGSPATIAL Special, 2017; 8(3): 
9-10. https://doi.org/10.1145/3100243.3100249

4.	 Li Q., Qi B., Liang G. Approximate Bayes multi-
target tracking smoother. IET Radar, Sonar and 
Navigation. 2019; 13(3): 428–437.  https://doi.
org/10.1049/iet-rsn.2018.5297

5.	 Burghardt D., Lanillos P., Robot Localization and 
Navigation Through Predictive Processing Using 
LiDAR. In: Joint European Conference on Machine 
Learning and Knowledge Discovery in Databases. 
Cham: Springer International Publishing. 2021; 857-
864. https://doi.org/10.1007/978-3-030-93736-2_61

6.	 Mamot A., Mamot M., Leski J. Bayesian and em-
pirical Bayesian approach to weighted averaging 
of ECG signal, Bulletin of the Polish Academy of 
Sciences. Technical Sciences. 2007; 55(4): 341-350.

7.	 Martin G.M., Frazier D.T., Maneesoonthorn W., 
Loaiza-Maya R., Huber F., Koop G., Maheu J., Nib-
bering D., Panagiotelis A. Bayesian forecasting in 
economics and finance: A modern review, Interna-
tional Journal of Forecasting. 2024; 40(2): 811–839. 
https://doi.org/10.1016/j.ijforecast.2023.05.002

Figure 6. Estimating a random sine and arctangent signal using APF and EKF for a Gaussian noise added to the 
original data with a standard deviation equal to 2.0 in part (a) and 0.1 in part (b).

The value of PSNR coefficients is provided in the legend box. 



434

Advances in Science and Technology Research Journal 2025, 19(12), 420–435

8.	 Huang D., Guan G., Zhou J. Network-based na-
ive Bayes model for social network. Science Chi-
na Mathematics. 2018; 61: 627–40. https://doi.
org/10.1007/s11425-017-9209-6.

9.	 Guo Y., Bai G., Hu Y. Using Bayes Network for 
Prediction of Type2 Diabetes. In: Proceedings of the 
2012 International Conference for Internet Technol-
ogy and Secured Transactions. London, UK; 2012; 
471–72.

10.	Daisy SJS., Begum A.R. Smart material to build 
mail spam filtering technique using Naive Bayes 
and MRF methodologies. Materials Today: Proceed-
ings 2021; 47: 446–52. https://doi.org/10.1016/j.
matpr.2021.04.630

11.	Cheng J., Greiner R. Comparing Bayesian network 
classifiers. arXiv preprint arXiv:1301.6684. 2013. 
https://doi.org/10.48550/arXiv.1301.6684

12.	Sameni R. S., Mohammad B., Jutten C., Clifford, G. 
D., A Nonlinear Bayesian Filtering Framework for 
ECG Denoising, IEEE Transactions on Biomedical 
Engineering. 2007; 54(12): 2172-2185. https://doi.
org/10.1109/tbme.2007.897817 

13.	Lee Y. K., Kwon O. W., Shin H. S., Jo J., Lee Y.. 
Noise reduction of PPG signals using a particle filter 
for robust emotion recognition. 2011 IEEE Interna-
tional Conference on Consumer Electronics -Berlin. 
2011; 202-205.

14.	Frosio I., Olivieri C., Lucchese M., Borghese N. 
A., Boccacci P. Bayesian denoising in digital ra-
diography: A comparison in the dental field. 
Computerized Medical Imaging and Graphics. 
2006; 37(1): 28-39. http://dx.doi.org/10.1016/j.
compmedimag.2012.10.003

15.	Kitagawa G. Monte Carlo filter and smoother for 
non-Gaussian nonlinear state space models. J. 
Comput. Graph. Statist. 1996; 5(1): 1-25. https://
doi.org/10.2307/1390750

16.	Arulampalam M.S., Maskell S., Gordon N., Clapp 
T. A tutorial on particle filters for online nonlinear/
non-Gaussian Bayesian tracking. IEEE Transac-
tions on Signal Processing. 2002; 50(2): 174–188.

17.	Torta J., Torta E., Van De Molengraft R. Particle 
Filters: A Hands-On Tutorial. Sensors. 2021; 21(2): 
438. https://doi.org/10.3390/ s21020438 

18.	Papaioannou I., Papadimitriou C., Straub D. Se-
quential importance sampling for structural reli-
ability analysis. Structural safety. 2016; 62: 66–75. 
https://doi.org/10.1016/j.strusafe.2016.06.002

19.	Doucet A., Godsill S., Andrieu C. On sequential 
Monte Carlo methods for Bayesian filtering. Sta-
tistics and computing. 2000. 10: 197-208. https://
doi.org/10.1023/A:1008935410038

20.	Bolić M., Djurić P.M., Hong S. Resampling Al-
gorithms for Particle Filters: A Computational 
Complexity Perspective. EURASIP Journal on 

Advances in Signal Processing. 2004; 1-11. https://
doi.org/10.1155/S1110865704405149

21.	Chopin N., Singh S.S., Soto T., Vihola M. On 
resampling schemes for particle filters with 
weakly informative observations. The Annals 
of Statistic. 2022; 50(6): 3197–222. https://doi.
org/10.1214/22-AOS2222

22.	Hol J.D., Schon T.B., Gustafsson F. On Resampling 
Algorithms for Particle Filters. IEEE Nonlinear Sta-
tistical Signal Processing Workshop. 2006; 79-82 

23.	Gordon N., Salmond D., Smith A.F.M. Novel ap-
proach to nonlinear and non-Gaussian Bayesian 
state estimation. Proc. Inst. Elect. Eng. F. 1993; 140: 
107–113. https://doi.org/10.1049/ip-f-2.1993.0015

24.	Pitt M., Shephard N. Filtering via simulation: Aux-
iliary particle filters. J. Amer. Statist. Assoc. 1999; 
94(446): 590–599.

25.	Bruno M.G.S. Regularized Particle Filters. In: 
Sequential Monte Carlo Methods for Nonlin-
ear Discrete-Time Filtering. Springer Inter-
national Publishing. 2013; 49-50. https://doi.
org/10.1007/978-3-031-02535-8_10

26.	Musso, C., Oudjane, N., Le Gland, F. Improving 
Regularised Particle Filters. In: Doucet, A., de Frei-
tas, N., Gordon, N. (eds) Sequential Monte Carlo 
Methods in Practice. Statistics for Engineering 
and Information Science. Springer, New York, NY. 
2001. https://doi.org/10.1007/978-1-4757-3437-9

27.	Wojcicki P., Zientarski T., Charytanowicz M., Lu-
kasik E. Estimation of the path-loss exponent by 
Bayesian filtering method. Sensors. 2021; 21(6): 
1934. https://doi.org/10.3390/s21061934

28.	Zientarski, T., Chocyk D. Stress induced grain 
boundaries in thin Co layer deposited on Au and 
Cu. Appl. Phys. A 2016; 122: 908. https://doi.
org/10.1007/s00339-016-0432-x

29.	Tisov O., Pashechko M., Yurchuk A., Chocyk D., 
Zubrzycki J., Prus A., Wlazło-Ćwiklińska M. Mi-
crostructure and friction response of a novel eutec-
tic alloy based on the Fe-C-Mn-B system. Mate-
rials. 2022; 15(24): 9031. https://doi.org/10.3390/
ma15249031

30.	Yin T.S., Othman A.R., Sulaiman S., Mohamed-
Ibrahim M.I., Razha-Rashid M. Application of 
mean and standard deviation in questionnaire sur-
veys: Construct validation. Jurnal Teknologi. 2016; 
78: 99–105. https://doi.org/10.11113/jt.v78.8983

31.	Przystupa K., Kolodiy Z., Yatsyshyn S., Majewski 
J., Khoma Y., Petrovska I., Lasarenko S., Hut T. 
Standard deviation in the simulation of statistical 
measurements. Metrology and Measurement Sys-
tems. 2023; 30: 17–30.

32.	Wang C., Zheng Y., Chang H.H. Does standard de-
viation matter? Using “standard deviation” to quan-
tify security of multistage testing. Psychometrika. 



435

Advances in Science and Technology Research Journal 2025, 19(12) 420–435

2014; 79: 154–74. https://doi.org/10.1007/
s11336-013-9356-y

33.	Macaskill P. Standard deviation and standard error: 
Interpretation, usage, and reporting. Medical Jour-
nal of Australia. 2018; 208(2): 63-64. https://doi.
org/10.5694/mja17.00633

34.	Barde M.P., Barde P.J. What to use to express 
the variability of data: Standard deviation or 
standard error of mean? Perspectives in Clini-
cal Research. 2012; 3(3): 113–16. https://doi.
org/10.4103/2229-3485.100662 

35.	Andrade C. Understanding the Difference Between 
Standard Deviation and Standard Error of the Mean, 
and Knowing When to Use Which. Indian Journal 
of Psychological Medicine. 2020;42(4):409-410. 
https://doi.org/10.1177/0253717620933419

36.	Hodson, T.O. Root-mean-square error (RMSE) or 
mean absolute error (MAE): when to use them or not, 
Geoscientific Model Development. 2022; 15: 5481–
5487. https://doi.org/10.5194/gmd-15-5481-2022

37.	Clementz B.A., Iacono W.G., Grove W.M. 
The construct validity of root-mean-square er-
ror for quantifying smooth-pursuit eye track-
ing abnormalities in schizophrenia. Biologi-
cal Psychiatry. 1996; 39: 448–450.  https://doi.
org/10.1016/0006-3223(95)00549-8

38.	Chai T., Draxler R.R. Root mean square error 
(RMSE) or mean absolute error (MAE)? – Argu-
ments against avoiding RMSE in the literature, Geo-
scientific Model Development. 2014; 7: 1247–50. 
https://doi.org/10.5194/gmd-7-1247-2014

39.	Huynh-Thu Q., Ghanbari M. The accuracy of 
PSNR in predicting video quality for different 
video scenes and frame rates, Telecommunication 
Systems. 2012; 49: 35-48 https://doi.org/10.1007/
s11235-010-9351-x

40.	Huynh-Thu Q., Ghanbari M. Scope of validity of 
PSNR in image/video quality assessment, Elec-
tronics Letters. 2008; 44: 800–801. https://doi.
org/10.1049/el:20080522

41.	Lian J. Image Sharpening with Optimized PSNR.
Proceedings of the 2019 IEEE International 
Conference on Signal and Image Processing 
Applications(ICSIPA). 2019; 106–10.

42.	Turaga D.S., Chen Y.W., Caviedes J. No reference 
PSNR estimation for compressed pictures. Signal 
Processing-Image Communication 2004; 19: 173–
84. https://doi.org/10.1016/j.image.2003.09.001

43.	Keles O., Yilmaz M.A., Tekalp A.M., Korkmaz 
C., Dogan Z. On the computation of  PSNR for 
a set of images or video. Proc. 2021 Picture Cod-
ing Symposium (PCS). 2021; 286–90. https://doi.
org/10.48550/arXiv.2104.14868

44.	Szymczyk T., Czajka P. Analysis of the possibility of 
hiding decomposed information in the virtual reality 
environment. Advances in Science and Technology 
Research Journal. 2025; 19(2):283-295. https://doi.
org/10.12913/22998624/195718 

45.	Kozieł G., Malomuzh L. 3D Model Fragile Wa-
termarking Scheme for Authenticity Verifica-
tion. Advances in Science and Technology Re-
search Journal. 2024; 18(8):351-365. https://doi.
org/10.12913/22998624/194146

46.	Gentle, J.E. Random number generation and Monte 
Carlo methods. Vol. 381. New York: Springer, 2003. 
https://doi.org/10.1007/978-1-4757-2960-3

47.	Vetterling, W.T. Numerical recipes example book 
(C) (2nd ed., repr). Cambridge University Press, 
1997

48.	Im, G. Notes on Kalman Filter (KF, EKF, ESKF, 
IEKF, IESKF). arXiv preprint arXiv:2406.06427, 
2024. https://doi.org/10.48550/arXiv.2406.06427


