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INTRODUCTION

Over the past two decades, depth-sensing 
technologies such as light detection and ranging 
(LiDAR), time-of-flight (ToF) cameras, struc-
tured-light RGB-D sensors, and passive stereo vi-
sion systems have evolved from specialized labo-
ratory tools to widely adopted instruments across 
numerous applied domains. Despite significant 
advances in acquiring detailed three-dimensional 
(3D) data, point cloud processing continues to 
face persistent challenges that remain evident in 
photogrammetric workflows [1]. These include 
noise, occlusions, non-uniform point densities, 
and difficulty preserving accurate geometric fea-
tures. These challenges have become more prom-
inent as depth-sensing system transition from 
specialized metrology laboratories to a broader 

range of practical applications in uncontrolled or 
dynamic environments.  This research addresses 
these challenges within the specific context of 
object dimensioning using consumer-grade depth 
sensors, specifically the Kinect sensor. It focuses 
on improving the interpretation of sensor data 
and enhancing volumetric measurement accuracy 
under real-world conditions, where cost-effective 
and robust solutions are critical for logistics, 
packaging, and industrial automation.

Applications in industrial environments

Depth sensing technologies have found wide-
spread use in industrial environments, enabling 
accurate 3D reconstruction, quality control, and 
robotic automation. Hoegg et al. developed a 
multi-camera Time-of-Flight system for real-time 
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3D vehicle reconstruction, improving automated 
car-wash optimization [2]. In a separate automo-
tive context, Józwik and Dziedzic employed opti-
cal 3D scanning to analyse the geometric accuracy 
of polymer fuel tanks, enabling dimensional verifi-
cation of complex components directly on the pro-
duction line [3]. In rubber processing, Huang et al. 
used an RGB-D sensor and point-cloud analysis to 
measure tread profiles with millimetre-level accu-
racy, providing a reliable inline alternative to man-
ual callipers [4]. More recently, some approaches 
have explored the fusion of RGB image features 
with point cloud data to aid object boundary refine-
ment in cluttered or reflective environments [5], 
highlighting ongoing interest in improving point 
cloud interpretation through complementary sens-
ing modalities. An illustrative example of close-
range human-sensor interaction is presented in the 
context of human-robot collaboration [6]: Kinect 
sensors were deployed in a shared robotized work-
cell, with a focus on sensor calibration and integra-
tion within ROS-based control environments. This 
demonstrated the practical viability of low-cost 
ToF sensing for interactive, safe, and dynamically 
reconfigurable industrial setups.

Precise 3D object maps are crucial for do-
mestic robots in cluttered environments. Rusu 
et al. used a laser scanner on a manipulator arm 
to create semantically annotated kitchen mod-
els, linking geometric perception with symbolic 
action planning [7]. Finally in the context of 
transport logistics, dimension detection of ir-
regularly shaped items such as airline baggage 
has also been addressed using purely geometric 
methods. The minimum elastic bounding box 
(MEBB) algorithm adapts bounding surfaces to 
point cloud structure, effectively reducing over-
estimation errors from appendages and noise in 
cluttered settings [8].

Consumer-grade depth-sensing hardware

Depth cameras form the backbone of many 3D 
workflows, but their performance ultimately hing-
es on sensor quality. In the consumer and prototyp-
ing space, Microsoft and Intel remain the dominant 
vendors, with a variety of third-party and industrial 
systems available for more specialized needs.

Scientific studies have shown that new ad-
vancement Azure Kinect, as the successor to Ki-
nect v2, significantly improves depth precision (≤ 
17 mm SD) and distance accuracy (< 11 mm + 
0.1%) thanks to its time-of-flight sensing [9]. It 

demonstrates about half the random depth error 
of Kinect v2 at close range and maintains under 
2 mm spatial accuracy from 1 to 2 meters. These 
improvements make it more reliable in controlled 
indoor settings, though limitations remain under 
reflective or bright outdoor conditions [10].

Comparative studies confirm the Kinect v2’s 
past value, while emphasizing ToF systems’ edge 
over stereo-based ones. Azure Kinect and Blaze 
101 outperformed Intel RealSense D435 and 
OAK-D in depth accuracy, residuals, and perfor-
mance under varied lighting and textures [11]. 
In medical use, Kinect v2 also showed better 3D 
reconstruction and repeatability than the D435, 
despite the latter’s faster frame rates and custom-
ization options [12].

Stereo-based systems like the RealSense 
D415, which uses active stereoscopy, have prov-
en effective in challenging settings with transpar-
ency and translucency. Its IR-enhanced stereo 
method is less impacted by light scattering than 
the ToF-based L515 or Structured Light-based 
SR305 [13]. Metrological studies also show the 
D415 excels at close range, the L515 is best on 
flat surfaces, and the D455 offers the strongest 
overall accuracy by ISO standards [14].

Recent LiDAR advances, particularly in pho-
ton-counting LiDAR, show strong potential for 
high-precision use in extreme conditions. These 
systems perform well in bright sunlight, offering 
over 24 km range and high-resolution 3D imag-
ing – far beyond what consumer-grade sensors 
can achieve [15].

In this context, Kinect v2 continues to serve 
as an important reference benchmark for evaluat-
ing newer systems. While it has been surpassed in 
several technical dimensions, its role in shaping 
expectations and methodologies for depth accu-
racy and performance across real-world scenarios 
remains vital.

Challenges in LIDAR devices and algorithms

As 3D sensors produce more detailed and 
dense data, algorithmic solutions play a key role in 
handling common point cloud issues. Challenges 
like noise, outliers, occlusions, uneven non-uni-
form densities, and geometric feature loss can seri-
ously affect tasks such as segmentation, classifica-
tion, and measurement if not properly addressed.

Early methods like the bilateral mesh filter 
(BMF) [16] improved on standard bilateral filter-
ing by better preserving edges and reducing noise 
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in mesh data. It also showed higher PSNR (peak 
signal-to-noise ratio) scores in grayscale contexts, 
highlighting its effectiveness.

A detailed review [17] found L0 minimiza-
tion and Edge Aware Resampling (EAR) to be 
highly effective for noise removal and structure 
preservation in 3D point clouds, though they are 
computationally intensive. In contrast, simpler 
methods like the voxel grid (VG) filter offer faster 
performance at the cost of geometric accuracy for 
precision-critical tasks.

Recent methods like Elliptic Gabriel Taubin 
(EGT) smoothing [18] improved efficiency by 
using only point coordinates. EGT outperformed 
techniques like moving least squares (MLS), Jet 
Smoothing, and Weighted Locally Optimal Pro-
jection (WLOP) in preserving features, while us-
ing less memory and running faster by avoiding 
repeated neighbour searches.

Segmentation and classification are key 
for object-level understanding in point clouds. 
RANSAC remains a fast, reliable choice for 
simple geometric forms, outperforming the 
Hough Transform in noisy conditions. However, 
it lacks automation and struggles with complex 
geometries, highlighting the need for adaptive 
or learning-based methods [19]. New denoising 
techniques based on normal voting tensors and 
constrained quadratic error metrics – better pre-
serve sharp features and structure, with lower an-
gular deviation and minimal shrinkage compared 
to earlier methods [20].

The field has increasingly moved toward deep 
learning methods. Architectures such as graph 
convolutional networks and autoencoders show 
strong performance in handling noise and preserv-
ing fine details [21]. While they often outperform 
classical techniques in noise reduction and feature 
retention, they require substantial training data 
and high computational resources which can hin-
der real-time application in lightweight systems.

Object dimensioning approaches

Recent advancements in object dimension-
ing integrate algorithmic improvements with 
enhanced depth-sensing hardware. Ladplee et 
al. (2022) [22] showed real-time parcel dimen-
sioning with a single LiDAR camera using flood 
fill-based top-plane detection. Rodriguez et al. 
(2023) [23] improved accuracy on noisy ToF data 
through bounding-based superquadric fitting for 
both cuboid and cylindrical objects. 

This study extends prior approaches by sys-
tematically evaluating the impact of point cloud 
filtering techniques on volumetric estimation ac-
curacy in depth-sensing systems. It specifically 
addresses practical challenges related to noisy 
data interpretation and geometric models fitting 
under varying object shapes and data acquisition 
conditions. This work contributes to the develop-
ment of robust, accurate, and computationally ef-
ficient, object dimensioning pipelines suitable for 
practical deployment in real-world applications.

MATERIAL AND METHODS

This study focuses on the acquisition, pro-
cessing, and geometric analysis of point cloud 
data to enable accurate dimension extraction of 
rigid objects. The experimental methodology 
integrates consumer-grade depth sensing using 
Kinect v2 device, data acquisition protocols, and 
a customized point cloud processing pipeline 
designed to assess the influence of filtering tech-
niques on volumetric measurement accuracy.

The process is detailed in the further parts of 
the following study. This approach ensures reli-
able and repeatable dimensional measurements 
based on point cloud analysis.

Sensor configuration and experimental setup

Depth Data were captured using a Microsoft 
Kinect v2 ToF sensor mounted in a nadir (top-
down) orientation, clearly visualizing the surface 
of a dedicated workbench. The experimental set-
up featured a laboratory workbench with a hori-
zontal surface elevated 60 cm from the floor. The 
Kinect sensor was attached to an overhead arm 
positioned 140 cm above the workbench surface. 
The workspace was illuminated uniformly by 
fluorescent lighting, provided by six lamps, each 
rated at approximately 5000 lumens, distributed 
across a 16 m2 controlled laboratory environment 
to minimize shadowing and specular interference.

Evaluated object dataset

The dataset preparation involved capturing 
point clouds and corresponding colour, infrared 
(IR) images of 14 types of objects, each placed at 
the center/edges of the table in varying orienta-
tions. While these objects are referred to as boxes 
in the technical setup, we sometimes use the term 
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parcels in the context of our application-oriented 
approach, as it better reflects practical, real-world 
scenarios. Parcels were systematically positioned 
on each of three unique side surfaces (considering 
distinct form-factor features) and rotated along 
the Z-axis. In total, the final dataset encompassed 
639 captures of the table’s upper surfaces along-
side the parcels, incorporating relevant calibra-
tion data for each measurement scenario.

The dataset includes both standard cuboidal 
geometries and distorted variants with non-or-
thogonal edges intended to simulate real-world 
packaging irregularities. The test objects varied in 
edge lengths size from as small as 3.3 cm up to 80 
cm. They were grouped into the following types:
	• Standard cuboidal objects (8 variants): rigid, 

cuboidal-shaped items with well-defined or-
thogonal edges and planar surfaces.

	• Distorted objects (6 variants): items with low 
height profiles, slanted edges, non-parallel 
faces or irregular shapes.

This package set was deliberately chosen to 
test the robustness and adaptability of dimen-
sioning methods across a range of challenging, 
practical scenarios.

Data processing pipeline

Point cloud data were processed using a cus-
tom-built pipeline designed to isolate and mea-
sure individual packages from unfiltered sensor 
output. The pipeline integrated calibration, fil-
tering, segmentation, and geometric analysis, 
with particular focus on evaluating the impact of 
smoothing techniques on dimensional accuracy.

Calibration and ROI definition

We performed initial calibration using physi-
cal markers placed in the scene, enabling the 
identification of table boundaries and defining the 
region of interest (ROI). The table surface was 
subsequently aligned with the XY-plane. This 
alignment allowed us to extract object height di-
rectly from Z-coordinates relative to the tabletop. 

Noise reduction

We filtered out non-numeric or undefined val-
ues, points beyond the sensor’s operational range, 
and spurious points such as those arising from 
shadowing effects at depth discontinuities.

Smoothing and surface refinement

Three algorithms - Bilateral filtering, statisti-
cal outlier removal (SOR) and custom developed 
Shadow filtering – were tested to assess their im-
pact on local surface consistency and the final 
dimension estimates (parameters for those steps 
were carried manually to ensure proper param-
eters for general use). This step was crucial given 
the known variability in point density and noise 
across the sensor’s field of view.

Segmentation and object isolation

We segmented each object in two stages. First, 
we identified and removed the dominant plane 
corresponding to the table surface using SAC-
based model fitting. Next, we applied Euclidean 
Cluster Extraction to isolate individual objects. 
We refined cluster boundaries using Progressive 
Morphological Filtering with adaptive thresholds.

Dimension estimation

We extracted object dimensions using two 
steps approach. We estimated height by averag-
ing the Z-values of the topmost 1.5% points rela-
tive to the table plane in each cluster. To estimate 
width and length, we computed minimal surface 
in the XY-plane of the segmented point cloud 
and extracted the axis-aligned bounding box. We 
then compared the estimated dimensions against 
manually recorded ground-truth measurements to 
evaluate the accuracy of the pipeline under differ-
ent smoothing configurations.

Accuracy metrics

We assess accuracy for each of the three di-
mensions independently, reflecting their different 
computational origins: length and width are de-
rived from a 3D bounding box, while height is tak-
en from the highest points in the 3D point cloud. 
We used mean absolute error (MAE) to quantify 
the average magnitude of absolute error between 
estimated and ground-truth measurements.

To investigate spatial consistency in sensor 
performance, we introduced Corner-to-Center Er-
ror Ratio. This metric compares dimensioning ac-
curacy between two spatial placements of the ob-
ject on the workbench: the geometric centre and 
the table corners. It highlights potential edge-field 
performance degradation due to sensor perspec-
tive and occlusion.
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EVALUATION AND RESULTS

We analysed how each filtering technique 
affected both dimensional accuracy and compu-
tational cost. By evaluating under uniform hard-
ware and software conditions, we ensured a fair 
comparison of algorithmic efficiency and effec-
tiveness and therefore practical relevance.

Overall dimensioning accuracy

The use of various point cloud filtering tech-
niques has demonstrated a considerable impact 
on the accuracy of parcel measurement. The 
analysis of dimensional measurement accuracy 
extends beyond individual spatial parameters to 
include derived metrics of significant commercial 
relevance. We evaluated the volumetric weight 
(DIM weight), an industry-standard metric used 
in shipping cost calculations. This metric serves 
as a billing determinant in the logistics and trans-
port industry where volume rather than actual 
weight is the limiting factor.
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where:	L – length of the object, W – width of the 
object, H – height of the object, SF – ship-
ping factor (e.g. 5000).

Figure 1 illustrates the mean absolute error 
in volumetric weight estimation for each point 
cloud filtering technique, accompanied by the 
standard deviation bars. The results demonstrate 
that unfiltered baseline data exhibited the high-
est error (0.199 kg), whereas the Shadow Filter-
ing algorithm consistently achieved the lowest 
(0.079 kg), corresponding to a 60.3% relative 
improvement over unfiltered data. Statistical 
Outlier Removal achieved the second-best ac-
curacy (0.106 kg), followed by Bilateral Filter-
ing (0.148 kg) showing moderate improvements 
compared to unfiltered data.

To further analyse the results, the overall 
measurement accuracy was decomposed into in-
dividual dimensional components. By evaluating 
the Mean Absolute Error, calculated according 
to Eq. (2), for each principal dimension (height, 
width, and length) we gain deeper insights into 
the specific strengths and limitations of each fil-
tering method.
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where:	d – index of the measured dimension, 
with d ∈ {1,2,3}, corresponding to 
height, width and length, respectively, M 
– total number of objects, nm – number of 
samples for the m-th object, 
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 – estimated 
value of dimension d of the m-th object in 
the i-th sample.

Dimensional error analysis, as visualized in 
Figure 2, reveals that measurement accuracy var-
ies significantly across the three principal axes. 
Height measurements consistently exhibited 
the lowest error magnitudes (0.329–0.343 cm) 
regardless of filtering approach, likely due to 
their orthogonal orientation relative to the sen-
sor. In contrast, width (0.482–0.849 cm) and par-
ticularly length measurements (0.463–1.581 cm) 
showed much greater sensitivity to the filtering 
method employed.

We evaluated the distributional properties 
of dimensional and volumetric weight measure-
ment errors using the Shapiro-Wilk normality 
test for each filtering method (Table 1). Across 
all filtering techniques and measurement types, 
the resulting p-values were significantly below 
the conventional threshold of 0.05, indicating 
strong evidence against normality. This outcome 
suggests that the errors in both dimensional and 
volumetric weight measurements do not fol-
low a normal distribution, regardless of whether 
point cloud filtering was applied. This justifies 
the use of non-parametric statistical methods in 
subsequent analysis.

Given the consistent non-normality ob-
served in the Shapiro-Wilk tests, we employed 
the Kruskal-Wallis non-parametric test to as-
sess whether the differences in measurement er-
rors across filtering methods were statistically 
significant (Table 2). The results show a clear 
divergence in filtering impact depending on the 
measured dimension. Results showed no signifi-
cant difference in height error (p = 0.83), align-
ing with its overall measurement stability. In 
contrast, width, length, and volumetric weight 
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errors differed significantly (p < 0.05), confirm-
ing that filtering has a statistically significant 
effect – particularly on planar dimensions and 
derived metrics like volumetric weight.

Following the identification of statistically 
significant differences through the Kruskal-
Wallis test (Table 2), we performed a compre-
hensive post hoc pairwise comparisons analysis 

using Dunn’s test to determine specific differ-
ences between filtering methodologies. Figure 3 
presents the results of this analysis through heat 
maps of p-values. For width, length and volu-
metric weight error demonstrated significant dif-
ferences in the initial analysis.

Post hoc comparisons reveal distinct perfor-
mance clusters among the filtering approaches. 

Figure 1. Comparative analysis of volumetric weight estimation precision across filtering techniques,
presented as mean absolute error (kg) with corresponding standard deviation error indicators

Figure 2. Quantitative assessment of dimensional measurement accuracy across point cloud filtering methods, 
illustrating Mean Absolute Error values with 95% confidence intervals for principal spatial dimensions.

For each dimension, the optimal results were annotated
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For width measurements, both the statistical out-
lier removal (SOR) and Shadow filters demon-
strated statistically significant improvements (p < 
0.0001) compared to the Bilateral filtering meth-
od and the unfiltered baseline (i.e., unfiltered data 
without any point cloud manipulation). Similarly, 
for length error analysis showed significant supe-
riority of SOR and Shadow filters to two other 
methods, though a slight statistical difference 
was also detected between the SOR and Shadow 
methods (p = 0.0003).

The volumetric weight error analysis pres-
ents a more complex pattern of relationships. 
Statistical Outlier Filter demonstrated significant 
improvements over all other methodologies (p ≤ 
0.0001), while the Bilateral filter showed signifi-
cant advantages over both unfiltered and Shadow 
approaches (p < 0.0001). Interestingly, no signifi-
cant difference was observed between unfiltered 
and Shadow filtering methods for volumetric 
weight calculations (p = 1.0000), suggesting that 
the Shadow filter’s improvements in dimensional 
accuracy may not translate proportionally to vol-
umetric weight estimation.

While the Shadow filter achieved the lowest 
mean absolute error in volumetric weight estima-
tion, the difference was not statistically signifi-
cant (as seen in Figure 3) compared to the unfil-
tered method. In contrast, the SOR filter demon-
strated statistically significant improvements over 
all other filters, indicating greater robustness and 
consistency. Therefore, while Shadow may offer 
the highest observed precision, SOR emerges as 

the most statistically reliable filtering approach 
for practical deployment.

Parcel type

Standard objects, characterised by uniform 
cardboard faces and consistently sharp edges, 
present a geometrically regular cuboid structure. 
Contrastingly, distorted boxes exhibit pronounced 
morphological distortion. Most notably, these ob-
jects present fundamentally different edge charac-
teristics across dimensions:
	• Length measurement (longer dimension) in-

volves faces with sharp edges, though the per-
pendicular cardboard face is inset by several 
centimetres.

	• Width measurement (shorter dimension) in-
volves faces with non-sharp, bulging edges

This inherent structural dichotomy estab-
lishes fundamentally different measurement chal-
lenges for each dimension.

Figure 4 presents a comprehensive com-
parison of width and length measurement errors 
across different filtering methods for both parcel 
types. Particularly striking is the disparity ob-
served in width measurements for distorted par-
cels with the SOR filter, which exhibits dramati-
cally elevated error levels (1.24 cm) compared to 
length measurements (0.43 cm). This pronounced 
discrepancy corresponds directly to the morpho-
logical differences, as SOR filtering struggles 
with the bulging edges characteristic of width 
measurement in distorted parcels.

Table 1. Shapiro-Wilk normality test for dimensional and volumetric weight errors across different point cloud 
filtering methods, with p-values indicating the probability of data following normal distribution
Dimension error Unfiltered Bilateral filter Shadow filter SOR filter

Width (cm) 3.67E-26 1.33E-19 3.36E-20 2.09E-13

Length (cm) 3.77E-18 4.77E-15 4.90E-21 4.70E-11

Height (cm) 3.45E-14 8.26E-14 3.45E-14 3.56E-14

Volumetric weight (kg) 2.29E-33 7.28E-36 1.05E-28 4.64E-28

Table 2. Summary of Kruskal-Wallis non-parametric test results examining statistical differences in measurement 
errors across filtering methodologies. Test statistics (H) and corresponding p-values indicate statistical significance 
for the given sample

Metric Test Statistic (H) p-value Significant

Height error (cm) 0.87 0.83 False

Width error (cm) 153.42 4.82E-33 True

Length error (cm) 526.77 7.53E-114 True

Volumetric weight error (kg) 91.48 1.05E-19 True
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Conversely, the unfiltered and Bilateral fil-
tered datasets exhibit the opposite pattern for 
distorted parcels, with substantially higher errors 
for length measurements (2.56 cm and 2.43 cm 
respectively) than width measurements (0.87 cm 
and 0.88 cm). This suggests these methods handle 
the bulging edges of width measurements more 
effectively than the sharp-but-inset edges of 
length measurements.

Each filtering method demonstrates distinc-
tive responses to the geometric challenges pre-
sented by different parcel types. The bilateral 
filter, despite offering modest improvements over 
unfiltered processing for standard parcels, strug-
gles substantially with distorted parcel length 
determination (2.43 cm error), offering negli-
gible improvement over unfiltered processing 
(2.56 cm), despite the presence of sharp edges.

Shadow filtering demonstrates more balanced 
performance, achieving substantial error reduc-
tions across both dimensions and parcel types. 
Particularly noteworthy is its relatively consistent 
performance for both width and length measure-
ments of distorted parcels (0.43 cm and 1.44 cm 
respectively), suggesting effective handling of 
both bulging and sharp-but-inset edges.

Most intriguing is the SOR filter’s perfor-
mance pattern. It demonstrates exceptional length 
accuracy for distorted parcels (0.43 cm, repre-
senting an extraordinary 83.2% improvement 
over unfiltered processing), indicating remark-
able efficacy in handling the sharp-but-inset edg-
es. However, this comes at considerable cost to 
width accuracy for the same parcel type, where 
error increases to 1.24 cm – 42.5% worse than 
unfiltered processing. This suggests SOR filtering 

Figure 3. Post Hoc analysis of filter performance using Dunn’s Test. Heat maps displaying p-values from Dunn’s 
test for pairwise comparisons of filtering methods across width error, length error, and volumetric

weight error dimensions

Figure 4. Mean absolute error comparison for width and length measurements across different filtering methods, 
segregated by parcel type. Bars are also marked with standard error of the mean
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particularly struggles with the bulging edges used 
for width determination in distorted parcels.

Figure 5 illustrates the impact of parcel type 
on volumetric weight determination, a crucial 
metric for logistics operations. Unfiltered pro-
cessing shows nearly identical errors for both 
parcel types (0.200 kg for standard, 0.195 kg for 
distorted), suggesting minimal inherent bias in 
unfiltered measurement.

The application of filtering methods produces 
distinctive effects based on parcel geometry. The 
bilateral filter demonstrates stronger improve-
ment for distorted parcels (43.1% reduction to 
0.111 kg) than for standard parcels (18.0% reduc-
tion to 0.164 kg). This contrasts with its dimen-
sional measurement performance, highlighting 
the complex relationship between individual di-
mension accuracy and volumetric calculation.

Shadow filtering achieves the lowest abso-
lute errors for both parcel types (0.077 kg for 
standard, 0.085 kg for distorted), with more sub-
stantial relative improvement for standard par-
cels (61.5% versus 56.4%). SOR filtering pro-
duces intermediate results, with greater accuracy 
for standard parcels (0.098 kg) than distorted 
parcels (0.126 kg).

The algorithm-specific dimensional weak-
nesses observed in Figure 4 reflect fundamen-
tal mismatches between filtering mechanisms 
and geometric measurement requirements. The 
shadow filter’s poor performance in length esti-
mation for skewed parcels occurs because noise 
characteristics near edge features fall outside its 

detection parameters, allowing spurious points to 
persist and thereby compromise edge localization 
accuracy. Conversely, the SOR filter poor perfor-
mance in width estimation likely results from the 
width measurements in skewed plots dominated 
by curved edges, where point-to-neighbour dis-
tances exhibit maximum variance. This variance 
causes SOR to systematically remove the exact 
boundary-defining points that are critical for ac-
curate width determination. Such dimensional 
selectivity reflects each algorithm’s fundamental 
design limitations.

Scale dependent error

Given the large size and heterogeneity of 
the dataset used in this study, we were able to 
investigate how dimensional measurement er-
rors evolve with increasing object size. This al-
lowed for a deeper analysis of scale-dependent 
phenomena that are often hidden in smaller or 
more homogeneous datasets. Most importantly, 
since each spatial dimension is inferred using a 
slightly different methodological approach, it is 
necessary to break down the analysis based not 
only on the measurement axis (length, width, 
height) but also on the dimensional type – planar 
versus vertical.

This distinction stems from operational dif-
ferences in how dimensions are estimated: ver-
tical measurements (i.e., height) are typically 
derived from the total height of the point cloud 
relative to a stable reference plane, such as a 

Figure 5. Volumetric weight measurement error by filtering method and parcel type. Between package types 
marked percent difference
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scanning table. In contrast, horizontal dimen-
sions (length and width) are calculated from the 
distribution of points on the upper surface, mak-
ing them more susceptible to point cloud noise, 
edge irregularities, and algorithmic interpreta-
tion of object boundaries. As a result, the scale-
dependent nature of the error is not a general 
sensor artifact, but rather a direct consequence of 
the geometry-based estimation methods used for 
different types of dimensions

To better understand this behaviour, we con-
ducted a detailed analysis of scale dependence. 
This included comparing absolute measurement 
errors for each basic dimension (height, length, 
width) as well as for the derived volume mass. 
By examining how error magnitudes change with 
increasing object size, we were able to reveal sys-
tematic trends unique to each filtering method. 
These insights are illustrated in Figure 6 and 7, 
which shows the error distributions across dimen-
sional scales for all tested algorithms.

Figure 6 presents the dimension-specific re-
gression analysis for height, width, and length 
measurements. For height, all filters demonstrate 
equivalent performance (slope = 0.004) with co-
efficient of determination (R² ≈ 0.04-0.05), sug-
gesting inherent stability in height measurements 
across all filtering methods.

Width measurements reveal more nuanced be-
haviour. The bilateral filter and unfiltered process-
ing exhibit identical sensitivity (slope = 0.028) but 
with higher coefficient of determination (R² = 0.18 
and 0.10, respectively). The shadow filter’s nega-
tive slope (-0.007, R² = 0.03) represents inversion 
of the typical size-error relationship, whilst the 

SOR filter effectively neutralises width-dependent 
errors (slope = 0.002, R² = 0.00).

Length measurements display the most pro-
nounced differentiation between filtering meth-
ods. The unfiltered data shows strong size depen-
dence (slope = 0.051, R² = 0.39), with the bilat-
eral filter offering modest improvement (slope = 
0.038, R² = 0.38). The shadow filter substantially 
reduces size sensitivity (slope = 0.014, R² = 0.13), 
whilst the SOR filter achieves near-complete 
elimination of length-dependent errors (slope ≈ 
0.000, R² = 0.00).

Figure 7 illustrates the relationship between 
expected volumetric weight and absolute error for 
each filtering methodology. The regression analy-
sis reveals compelling differences in filter perfor-
mance. The unfiltered data exhibits the steepest 
slope (0.1008, R² = 0.473), indicating that for 
each kilogram increase in volumetric weight, 
measurement error increases by approximately 
0.1 kg – a 10% error growth rate. The bilateral 
filter offers modest improvement (slope = 0.0845, 
R² = 0.462), reducing the error growth rate by ap-
proximately 16% compared to unfiltered data.

More substantial improvement is observed 
with the SOR filter (slope = 0.0409, R² = 0.461), 
which reduces the error growth rate by nearly 
60%. Most impressive, however, is the shadow 
filter’s performance, with a remarkably low 
slope of 0.0192 (R² = 0.184). This represents an 
81% reduction in error growth rate compared to 
the unfiltered data – a significant achievement 
in measurement stability. The shadow filter’s 
substantially lower R² value suggests its error 

Figure 6. Dimension-specific regression analysis showing the relationship between expected dimension
(height, width, length) and absolute error for each filtering method
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behaviour is less determined by size and more 
influenced by other factors.

The impact of the object’s position

The position of a parcel within the measure-
ment field of view represents a critical variable 
in dimensional measurement systems. This study 
specifically investigated how parcel placement 
-comparing corner versus center positioning on 
the measurement surface – affects the accuracy 
of dimensional measurements across different fil-
tering methods.

The influence of parcel position on measure-
ment accuracy was quantified by comparing error 
metrics at center versus corner placements. The 
ratio of corner to center errors was calculated for 
each filter and dimension:
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where:	pc/c – denotes the corner-to-center Mean 
Absolute Error ratio, MAEcorner – MAE 
measured for objects placed in corner of 
the setup, MAEcenter – MAE measured for 
objects placed in center of the setup.

Figure 8 presents the corner-to-center error 
ratio across different filtering methods, providing 
an immediate visualization of position sensitiv-
ity. A ratio exceeding 1.0 indicates higher mea-
surement errors in corner positions compared to 

center positions, while ratios below 1.0 suggest 
superior performance in corner positions.

In order to examine the impact of the posi-
tion of the package in the field of view on mea-
surement accuracy, a statistical analysis of mea-
surement errors was performed for the following 
filters: unfiltered, Bilateral, Shadow, and SOR, 
comparing the results for the center and corner 
positions. The Kruskal-Wallis test was used to as-
sess the significance of the differences. As shown 
in Table 3, in the vast majority of cases, regard-
less of the filter type and the dimension analysed, 
no statistically significant differences were found, 
which indicates high stability of the filtration 
methods with respect to the position of the object 
in the measurement space.

However, the result obtained for the SOR fil-
ter in the case of length error is particularly note-
worthy, where the difference between the corner 
and center positions proved to be statistically sig-
nificant (p = 0.0267). This value was associated 
with a clear reduction in error in corner positions 
– the average difference was -0.05 cm, which cor-
responded to an approximately 10.14% relative 
improvement in accuracy. The test statistic (H = 
4.91) further confirms that this effect is not ac-
cidental. This result suggests that when using the 
SOR filter, corner positioning of the object can 
positively affect the precision of length measure-
ment, probably due to the way the filter handles 
the distribution of points within the more exposed 
edges of the package.

Figure 7. Relationship between expected volumetric weight and absolute error across four filtering methods, 
showing regression lines and statistical parameters
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The other metrics and filters did not show 
a significant impact of the package position on 
measurement accuracy, confirming that all filter 
proposals are resistant to changes in the position 
of the tested object.

Time performance

While accuracy of measurements is essen-
tial, as examined in the previous section, the time 
required to process each point cloud and extract 

dimensional information determines the practical 
applicability of the system in real-world setups. 
The growing interest in edge processing reflects a 
critical paradigm shift in modern automation, em-
phasizing on-site data processing where hardware 
expansion is often impractical.

To better understand the computational char-
acteristics of each filtering approach, we decom-
posed the total processing time into its constituent 
components: filtering, segmentation, dimension-
ing, cropping, and alignment. Figure 9 illustrates 

Figure 8. Corner-to-center error ratio by filter and dimension

Table 3. Summary of Kruskal-Wallis test results examining statistical differences in measurement dimension 
errors across filtering methods

Filter Metric Mean difference Percent difference (%) H statistic p-value

Unfiltered

Height error (cm) 0.03 9.18 2.23 0.136

Width error (cm) 0.02 2.10 0.04 0.849

Length error (cm) 0.03 1.68 0.38 0.536

Volumetric weight error (kg) 0.01 3.66 0.02 0.896

Bilateral filter

Height error (cm) 0.02 5.37 0.27 0.602

Width error (cm) 0.07 10.24 1.79 0.180

Length error (cm) 0.10 7.33 3.17 0.075

Volumetric weight error (kg) 0.01 8.38 0.95 0.330

Shadow filter

Height error (cm) 0.03 9.18 2.23 0.136

Width error (cm) -0.04 8.29 2.20 0.138

Length error (cm) -0.06 9.19 2.26 0.133

Volumetric weight error (kg) 0.00 0.76 1.70 0.193

SOR filter

Height error (cm) 0.03 9.82 2.34 0.126

Width error (cm) -0.02 2.52 0.25 0.619

Length error (cm) -0.05 10.14 4.91 0.027

Volumetric weight error (kg) 0.00 0.08 2.03 0.154
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this breakdown. Our analysis reveals a critical 
insight: the filtering stage is the only component 
that varies significantly across methods, while all 
other processing stages maintain remarkably con-
sistent timing regardless of the filtering approach 
used. This consistency in downstream processing 
demonstrates that the choice of filter affects only 
the initial point cloud processing stage without 
introducing cascading computational impacts on 
subsequent operations.

When comparing the three actual filtering 
methods (excluding the unfiltered approach which 
serves as our baseline), the differences in filter-
ing time are substantial, as shown in Figure 9. 
The Bilateral filter is the most computationally 
efficient at 7.42 ms (7.52% of its total process-
ing time), while the Shadow filter requires 42.66 
ms (33.70% of total time) and the SOR filter de-
mands 119.83 ms (60.01% of total time). This 
means the Shadow filter’s filtering stage takes 
5.75 times longer than the Bilateral filter, while 
the SOR filter requires 16.15 times the processing 
time of the Bilateral approach and 2.81 times that 
of the Shadow filter.

The Bilateral filter’s localized approach to 
noise reduction requires minimal processing, the 
Shadow filter’s moderate complexity results in 
intermediate processing demands, and the SOR 
filter’s statistical analysis of point neighbour-
hoods creates the heaviest computational load. 
It is also worth noting that the relatively long 
processing time for the SOR filter is due not 
only to its computational complexity, but also to 

implementation limitations. This algorithm, in 
the available version of the PCL library, has been 
implemented sequentially and does not allow for 
the effective use of multithreading. The lack of 
support for parallel processing significantly in-
creases the total filtering time, which may limit 
its usefulness in practical applications.

DISCUSSION

The comparative analysis of the Shadow, Bi-
lateral, and SOR smoothing algorithms reveals 
dimension-specific strengths and trade-offs in 
object dimensioning accuracy using depth data. 
While all three filters outperformed unfiltered 
data processing in terms of dimensional accura-
cy (mainly width and length), their effectiveness 
varied depending on the measured dimension and 
the geometry of the object. 

The Shadow filter consistently demonstrated 
strong results, particularly in width measure-
ments, and exhibited the lowest mean absolute 
error (MAE) in volumetric weight estimation. Its 
key advantage lies in striking a favourable balance 
between precision and computational efficiency, 
making it suitable for time-sensitive applications.

The SOR filter, on the other hand, achieved 
the highest accuracy for length measurements, 
performing particularly well on objects with 
sharp, inset edges. This outcome suggests that 
its statistical treatment of outliers makes it 
well-suited for handling well-defined geometric 

Figure 9. Processing time components across filtering methods per one sample dimensioning cycle
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boundaries. However, its performance was less 
stable for width in distorted packages with bulg-
ing edges, where its error exceeded that of un-
filtered data. This trade-off points to a context-
dependent suitability of the SOR filter, where 
geometric characteristics of the object can sig-
nificantly affect its reliability.

Interestingly, the position of objects within 
the field of view did not lead to statistically sig-
nificant accuracy variations in most cases. How-
ever, minor trends emerged – most notably with 
the Shadow filter showing improved lateral per-
formance and the SOR filter yielding a statisti-
cally significant improvement in length measure-
ments for objects placed in corner positions. This 
latter finding may relate to the SOR’s sensitivity 
to edge distribution, which is more pronounced in 
these spatial placements.

An important observation pertains to scale-
dependent error. Across all algorithms, larger 
objects tended to yield higher dimensional er-
rors, especially for planar dimensions derived 
from convex hull estimates. The Shadow filter 
exhibited the error decrease with object width 
size, indicating strong generalizability, but in 
the case of length it indicated positive slope. In 
contrast the SOR filter showed greater sensitiv-
ity to object width size, but for the length it ex-
hibited near-zero slope indicating its resistance 
to growth in size in this dimension. This indi-
cates that further evaluation is needed to study 
the impact of the geometry on the algorithm per-
formance and accuracy.

In terms of processing efficiency, the Bilat-
eral filter proved to be the fastest, followed by 
the Shadow and SOR filters. Despite its speed, 
the Bilateral filter offered only moderate im-
provements in accuracy, especially for distorted 
shapes. The Shadow filter strikes a practical bal-
ance – moderate processing demands and consis-
tent accuracy –  making it suitable for near real-
time applications. Conversely, the high computa-
tional cost of the SOR filter, exacerbated by the 
lack of multithreading in its current implementa-
tion, may limit its deployment in systems requir-
ing rapid throughput.

Finally, comparative analysis with related 
works reveals that the proposed approach using 
Shadow and SOR filtering achieves superior or 
comparable accuracy with significantly faster 
processing times. The results obtained in this 
study are comparable to the work of Ladplee et 
al. [26], in which a single LiDAR camera was 

used together with a flood fill algorithm to mea-
sure package dimensions. There, the average er-
ror was less than 5%, with a processing time of 
approximately 1.01 seconds. Compared to this 
approach, our solution using the Shadow filter 
achieves a lower average absolute error for vol-
umetric weight (~0.079 kg) and a significantly 
shorter processing time (~126.6 ms), making it 
potentially more effective in the context of real-
time applications.

In the study by Rodriguez et al. [27], a su-
perquadric fitting method was applied to noisy 
and partially occluded ToF data, achieving aver-
age errors of 4–13% depending on the orientation 
of the object and the visibility of the surface. In 
comparison, our approach based on processing 
the full point cloud using filters such as Shadow 
and SOR showed lower absolute errors (MAE for 
lengths up to ~0.463 cm), without the need for 
special geometric models.

CONCLUSIONS

This study demonstrates that point cloud 
smoothing techniques significantly improve ob-
ject dimensioning accuracy when compared to 
unfiltered data. Among the evaluated methods, 
the Shadow algorithm yielded the lowest MAE 
in volumetric weight estimation (~0.079 kg), 
followed by the SOR (~0.106 kg) and Bilat-
eral (~0.148 kg) filters, whereas unfiltered data 
resulted in the highest error (~0.199 kg). For 
individual dimensions, the Shadow filter was 
most effective in width estimation (~0.482 cm), 
while the SOR filter performed best for length 
(~0.463 cm), highlighting the dimension-specific 
strengths of each method.

While package placement in the field of view 
had generally no statistically significant impact 
on measurement accuracy, specific cases - such 
as improved length accuracy with SOR filtering 
in corner positions –  did show localized signifi-
cance. Furthermore, the Shadow filter exhibited 
high resistance to scale-dependent error, reflected 
in the smallest regression slope (~0.041) with in-
creasing object size.

In terms of efficiency, the Bilateral filter of-
fered the shortest processing time (~98.6 ms), 
followed by the Shadow (~126.6 ms), and SOR 
(~199.7 ms). The Shadow filter’s favourable 
trade-off between accuracy and computational 
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demand makes it particularly suited for real-
time applications.

The complementary performance character-
istics observed between Shadow and SOR filters 
present an opportunity to develop adaptive filter-
ing pipelines that dynamically select or combine 
methods based on preliminary object geometry 
assessment, while simultaneously implementing 
custom parallelized versions of these algorithms 
to overcome existing computational limitations in 
libraries such as PCL.

Future research directions should pursue a 
comprehensive advancement of object dimen-
sioning accuracy through multi-modal sensor 
fusion while simultaneously optimizing the 
complementary filtering approaches identified 
in this study. The primary focus involves in-
vestigating YOLO (you only look once) object 
detection integration with LiDAR depth data 
to create a hybrid dimensioning system, where 
LiDAR point clouds provide precise height 
measurements - leveraging the demonstrated 
stability across all filtering methods (MAE ≈ 
0.329–0.343 cm) – while YOLO bounding box-
es determine width and length through calibrat-
ed pixel-to-centimetre conversions. This sensor 
fusion approach could address the scale-depen-
dent errors observed in planar measurements 
and enable direct accuracy comparison between 
traditional point cloud filtering and hybrid com-
puter vision methodologies.
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