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ABSTRACT

In this study, we evaluate the influence of different cloud point filtering algorithms on the process of accurately di-
mensioning objects. This is critical in vision-based measurement systems, particularly for logistics and packaging
applications. We assess three smoothing algorithms: bilateral filtering, statistical outlier removal, shadow filtering
algorithm alongside baseline unfiltered data. We extract object dimensions by fitting a convex hull applied to the
processed point cloud, and evaluate across different positions, parcel types, and edge lengths. We employ various
statistical metrics to evaluate algorithm performance. Our research utilizes point clouds of cardboard boxes for
evaluation, collected with the ToF Kinect v2 depth camera. Study includes both cuboidal objects and distortion-
simulated shapes. We assessed a dataset of 639-point cloud samples. The data was collected under controlled
lighting with top-down camera orientation and processed using the PCL library. Our findings show that shadow
filtering consistently and significantly outperforms the other methods on standard cuboid geometries. However, in
the presence of shape distortions, it occasionally introduces large-magnitude outliers, reflecting overly aggressive
filtering behaviour. Additionally, we observe scale-dependent error pattern across all object types, with dimen-

sional accuracy decreasing as object size increases.

Keywords: point cloud processing, time of flight depth camera, filt ering algorithms.

INTRODUCTION

Over the past two decades, depth-sensing
technologies such as light detection and ranging
(LiDAR), time-of-flight (ToF) cameras, struc-
tured-light RGB-D sensors, and passive stereo vi-
sion systems have evolved from specialized labo-
ratory tools to widely adopted instruments across
numerous applied domains. Despite significant
advances in acquiring detailed three-dimensional
(3D) data, point cloud processing continues to
face persistent challenges that remain evident in
photogrammetric workflows [1]. These include
noise, occlusions, non-uniform point densities,
and difficulty preserving accurate geometric fea-
tures. These challenges have become more prom-
inent as depth-sensing system transition from
specialized metrology laboratories to a broader

range of practical applications in uncontrolled or
dynamic environments. This research addresses
these challenges within the specific context of
object dimensioning using consumer-grade depth
sensors, specifically the Kinect sensor. It focuses
on improving the interpretation of sensor data
and enhancing volumetric measurement accuracy
under real-world conditions, where cost-effective
and robust solutions are critical for logistics,

packaging, and industrial automation.

Applications in industrial environments

Depth sensing technologies have found wide-
spread use in industrial environments, enabling
accurate 3D reconstruction, quality control, and
robotic automation. Hoegg et al. developed a
multi-camera Time-of-Flight system for real-time
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3D vehicle reconstruction, improving automated
car-wash optimization [2]. In a separate automo-
tive context, Jozwik and Dziedzic employed opti-
cal 3D scanning to analyse the geometric accuracy
of polymer fuel tanks, enabling dimensional verifi-
cation of complex components directly on the pro-
duction line [3]. In rubber processing, Huang et al.
used an RGB-D sensor and point-cloud analysis to
measure tread profiles with millimetre-level accu-
racy, providing a reliable inline alternative to man-
ual callipers [4]. More recently, some approaches
have explored the fusion of RGB image features
with point cloud data to aid object boundary refine-
ment in cluttered or reflective environments [5],
highlighting ongoing interest in improving point
cloud interpretation through complementary sens-
ing modalities. An illustrative example of close-
range human-sensor interaction is presented in the
context of human-robot collaboration [6]: Kinect
sensors were deployed in a shared robotized work-
cell, with a focus on sensor calibration and integra-
tion within ROS-based control environments. This
demonstrated the practical viability of low-cost
ToF sensing for interactive, safe, and dynamically
reconfigurable industrial setups.

Precise 3D object maps are crucial for do-
mestic robots in cluttered environments. Rusu
et al. used a laser scanner on a manipulator arm
to create semantically annotated kitchen mod-
els, linking geometric perception with symbolic
action planning [7]. Finally in the context of
transport logistics, dimension detection of ir-
regularly shaped items such as airline baggage
has also been addressed using purely geometric
methods. The minimum elastic bounding box
(MEBB) algorithm adapts bounding surfaces to
point cloud structure, effectively reducing over-
estimation errors from appendages and noise in
cluttered settings [8].

Consumer-grade depth-sensing hardware

Depth cameras form the backbone of many 3D
workflows, but their performance ultimately hing-
es on sensor quality. In the consumer and prototyp-
ing space, Microsoft and Intel remain the dominant
vendors, with a variety of third-party and industrial
systems available for more specialized needs.

Scientific studies have shown that new ad-
vancement Azure Kinect, as the successor to Ki-
nect v2, significantly improves depth precision (<
17 mm SD) and distance accuracy (< 11 mm +
0.1%) thanks to its time-of-flight sensing [9]. It
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demonstrates about half the random depth error
of Kinect v2 at close range and maintains under
2 mm spatial accuracy from 1 to 2 meters. These
improvements make it more reliable in controlled
indoor settings, though limitations remain under
reflective or bright outdoor conditions [10].

Comparative studies confirm the Kinect v2’s
past value, while emphasizing ToF systems’ edge
over stereo-based ones. Azure Kinect and Blaze
101 outperformed Intel RealSense D435 and
OAK-D in depth accuracy, residuals, and perfor-
mance under varied lighting and textures [11].
In medical use, Kinect v2 also showed better 3D
reconstruction and repeatability than the D435,
despite the latter’s faster frame rates and custom-
ization options [12].

Stereo-based systems like the RealSense
D415, which uses active stereoscopy, have prov-
en effective in challenging settings with transpar-
ency and translucency. Its IR-enhanced stereo
method is less impacted by light scattering than
the ToF-based L515 or Structured Light-based
SR305 [13]. Metrological studies also show the
D415 excels at close range, the L515 is best on
flat surfaces, and the D455 offers the strongest
overall accuracy by ISO standards [14].

Recent LiDAR advances, particularly in pho-
ton-counting LiDAR, show strong potential for
high-precision use in extreme conditions. These
systems perform well in bright sunlight, offering
over 24 km range and high-resolution 3D imag-
ing — far beyond what consumer-grade sensors
can achieve [15].

In this context, Kinect v2 continues to serve
as an important reference benchmark for evaluat-
ing newer systems. While it has been surpassed in
several technical dimensions, its role in shaping
expectations and methodologies for depth accu-
racy and performance across real-world scenarios
remains vital.

Challenges in LIDAR devices and algorithms

As 3D sensors produce more detailed and
dense data, algorithmic solutions play a key role in
handling common point cloud issues. Challenges
like noise, outliers, occlusions, uneven non-uni-
form densities, and geometric feature loss can seri-
ously affect tasks such as segmentation, classifica-
tion, and measurement if not properly addressed.

Early methods like the bilateral mesh filter
(BMF) [16] improved on standard bilateral filter-
ing by better preserving edges and reducing noise
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in mesh data. It also showed higher PSNR (peak
signal-to-noise ratio) scores in grayscale contexts,
highlighting its effectiveness.

A detailed review [17] found L minimiza-
tion and Edge Aware Resampling (EAR) to be
highly effective for noise removal and structure
preservation in 3D point clouds, though they are
computationally intensive. In contrast, simpler
methods like the voxel grid (VG) filter offer faster
performance at the cost of geometric accuracy for
precision-critical tasks.

Recent methods like Elliptic Gabriel Taubin
(EGT) smoothing [18] improved efficiency by
using only point coordinates. EGT outperformed
techniques like moving least squares (MLS), Jet
Smoothing, and Weighted Locally Optimal Pro-
jection (WLOP) in preserving features, while us-
ing less memory and running faster by avoiding
repeated neighbour searches.

Segmentation and classification are key
for object-level understanding in point clouds.
RANSAC remains a fast, reliable choice for
simple geometric forms, outperforming the
Hough Transform in noisy conditions. However,
it lacks automation and struggles with complex
geometries, highlighting the need for adaptive
or learning-based methods [19]. New denoising
techniques based on normal voting tensors and
constrained quadratic error metrics — better pre-
serve sharp features and structure, with lower an-
gular deviation and minimal shrinkage compared
to earlier methods [20].

The field has increasingly moved toward deep
learning methods. Architectures such as graph
convolutional networks and autoencoders show
strong performance in handling noise and preserv-
ing fine details [21]. While they often outperform
classical techniques in noise reduction and feature
retention, they require substantial training data
and high computational resources which can hin-
der real-time application in lightweight systems.

Object dimensioning approaches

Recent advancements in object dimension-
ing integrate algorithmic improvements with
enhanced depth-sensing hardware. Ladplee et
al. (2022) [22] showed real-time parcel dimen-
sioning with a single LIDAR camera using flood
fill-based top-plane detection. Rodriguez et al.
(2023) [23] improved accuracy on noisy ToF data
through bounding-based superquadric fitting for
both cuboid and cylindrical objects.

This study extends prior approaches by sys-
tematically evaluating the impact of point cloud
filtering techniques on volumetric estimation ac-
curacy in depth-sensing systems. It specifically
addresses practical challenges related to noisy
data interpretation and geometric models fitting
under varying object shapes and data acquisition
conditions. This work contributes to the develop-
ment of robust, accurate, and computationally ef-
ficient, object dimensioning pipelines suitable for
practical deployment in real-world applications.

MATERIAL AND METHODS

This study focuses on the acquisition, pro-
cessing, and geometric analysis of point cloud
data to enable accurate dimension extraction of
rigid objects. The experimental methodology
integrates consumer-grade depth sensing using
Kinect v2 device, data acquisition protocols, and
a customized point cloud processing pipeline
designed to assess the influence of filtering tech-
niques on volumetric measurement accuracy.

The process is detailed in the further parts of
the following study. This approach ensures reli-
able and repeatable dimensional measurements
based on point cloud analysis.

Sensor configuration and experimental setup

Depth Data were captured using a Microsoft
Kinect v2 ToF sensor mounted in a nadir (top-
down) orientation, clearly visualizing the surface
of a dedicated workbench. The experimental set-
up featured a laboratory workbench with a hori-
zontal surface elevated 60 cm from the floor. The
Kinect sensor was attached to an overhead arm
positioned 140 cm above the workbench surface.
The workspace was illuminated uniformly by
fluorescent lighting, provided by six lamps, each
rated at approximately 5000 lumens, distributed
across a 16 m? controlled laboratory environment
to minimize shadowing and specular interference.

Evaluated object dataset

The dataset preparation involved capturing
point clouds and corresponding colour, infrared
(IR) images of 14 types of objects, each placed at
the center/edges of the table in varying orienta-
tions. While these objects are referred to as boxes
in the technical setup, we sometimes use the term

309



Advances in Science and Technology Research Journal 2025, 19(12), 307-322

parcels in the context of our application-oriented
approach, as it better reflects practical, real-world
scenarios. Parcels were systematically positioned
on each of three unique side surfaces (considering
distinct form-factor features) and rotated along
the Z-axis. In total, the final dataset encompassed
639 captures of the table’s upper surfaces along-
side the parcels, incorporating relevant calibra-
tion data for each measurement scenario.

The dataset includes both standard cuboidal
geometries and distorted variants with non-or-
thogonal edges intended to simulate real-world
packaging irregularities. The test objects varied in
edge lengths size from as small as 3.3 cm up to 80
cm. They were grouped into the following types:
e Standard cuboidal objects (8 variants): rigid,

cuboidal-shaped items with well-defined or-

thogonal edges and planar surfaces.

e Distorted objects (6 variants): items with low
height profiles, slanted edges, non-parallel
faces or irregular shapes.

This package set was deliberately chosen to
test the robustness and adaptability of dimen-
sioning methods across a range of challenging,
practical scenarios.

Data processing pipeline

Point cloud data were processed using a cus-
tom-built pipeline designed to isolate and mea-
sure individual packages from unfiltered sensor
output. The pipeline integrated calibration, fil-
tering, segmentation, and geometric analysis,
with particular focus on evaluating the impact of
smoothing techniques on dimensional accuracy.

Calibration and ROl definition

We performed initial calibration using physi-
cal markers placed in the scene, enabling the
identification of table boundaries and defining the
region of interest (ROI). The table surface was
subsequently aligned with the XY-plane. This
alignment allowed us to extract object height di-
rectly from Z-coordinates relative to the tabletop.

Noise reduction

We filtered out non-numeric or undefined val-
ues, points beyond the sensor’s operational range,
and spurious points such as those arising from
shadowing effects at depth discontinuities.
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Smoothing and surface refinement

Three algorithms - Bilateral filtering, statisti-
cal outlier removal (SOR) and custom developed
Shadow filtering — were tested to assess their im-
pact on local surface consistency and the final
dimension estimates (parameters for those steps
were carried manually to ensure proper param-
eters for general use). This step was crucial given
the known variability in point density and noise
across the sensor’s field of view.

Segmentation and object isolation

We segmented each object in two stages. First,
we identified and removed the dominant plane
corresponding to the table surface using SAC-
based model fitting. Next, we applied Euclidean
Cluster Extraction to isolate individual objects.
We refined cluster boundaries using Progressive
Morphological Filtering with adaptive thresholds.

Dimension estimation

We extracted object dimensions using two
steps approach. We estimated height by averag-
ing the Z-values of the topmost 1.5% points rela-
tive to the table plane in each cluster. To estimate
width and length, we computed minimal surface
in the XY-plane of the segmented point cloud
and extracted the axis-aligned bounding box. We
then compared the estimated dimensions against
manually recorded ground-truth measurements to
evaluate the accuracy of the pipeline under differ-
ent smoothing configurations.

Accuracy metrics

We assess accuracy for each of the three di-
mensions independently, reflecting their different
computational origins: length and width are de-
rived from a 3D bounding box, while height is tak-
en from the highest points in the 3D point cloud.
We used mean absolute error (MAE) to quantify
the average magnitude of absolute error between
estimated and ground-truth measurements.

To investigate spatial consistency in sensor
performance, we introduced Corner-to-Center Er-
ror Ratio. This metric compares dimensioning ac-
curacy between two spatial placements of the ob-
ject on the workbench: the geometric centre and
the table corners. It highlights potential edge-field
performance degradation due to sensor perspec-
tive and occlusion.
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EVALUATION AND RESULTS

We analysed how each filtering technique
affected both dimensional accuracy and compu-
tational cost. By evaluating under uniform hard-
ware and software conditions, we ensured a fair
comparison of algorithmic efficiency and effec-
tiveness and therefore practical relevance.

Overall dimensioning accuracy

The use of various point cloud filtering tech-
niques has demonstrated a considerable impact
on the accuracy of parcel measurement. The
analysis of dimensional measurement accuracy
extends beyond individual spatial parameters to
include derived metrics of significant commercial
relevance. We evaluated the volumetric weight
(DIM weight), an industry-standard metric used
in shipping cost calculations. This metric serves
as a billing determinant in the logistics and trans-
port industry where volume rather than actual
weight is the limiting factor.

L-W-H
DIMWeight = S—F (1)
where: L — length of the object, W — width of the
object, H —height of the object, SF'— ship-
ping factor (e.g. 5000).

Figure 1 illustrates the mean absolute error
in volumetric weight estimation for each point
cloud filtering technique, accompanied by the
standard deviation bars. The results demonstrate
that unfiltered baseline data exhibited the high-
est error (0.199 kg), whereas the Shadow Filter-
ing algorithm consistently achieved the lowest
(0.079 kg), corresponding to a 60.3% relative
improvement over unfiltered data. Statistical
Outlier Removal achieved the second-best ac-
curacy (0.106 kg), followed by Bilateral Filter-
ing (0.148 kg) showing moderate improvements
compared to unfiltered data.

To further analyse the results, the overall
measurement accuracy was decomposed into in-
dividual dimensional components. By evaluating
the Mean Absolute Error, calculated according
to Eq. (2), for each principal dimension (height,
width, and length) we gain deeper insights into
the specific strengths and limitations of each fil-
tering method.

MAE, =
m 1Mm

M Nm (2)

Z Z (d) (d)

m=1i=

where: d — index of the measured dimension,
with d e {1,2,3}, corresponding to
height, width and length, respectively, M
— total number of objects, n — number of

samples for the m-th object, x l-(:,il) — ground
truth value of dimension d for the m-th

sample in package m, x( ) _ estimated
value of dimension d of the m-th object in
the i-th sample.

Dimensional error analysis, as visualized in
Figure 2, reveals that measurement accuracy var-
ies significantly across the three principal axes.
Height measurements consistently exhibited
the lowest error magnitudes (0.329—0.343 cm)
regardless of filtering approach, likely due to
their orthogonal orientation relative to the sen-
sor. In contrast, width (0.482—0.849 cm) and par-
ticularly length measurements (0.463—1.581 cm)
showed much greater sensitivity to the filtering
method employed.

We evaluated the distributional properties
of dimensional and volumetric weight measure-
ment errors using the Shapiro-Wilk normality
test for each filtering method (Table 1). Across
all filtering techniques and measurement types,
the resulting p-values were significantly below
the conventional threshold of 0.05, indicating
strong evidence against normality. This outcome
suggests that the errors in both dimensional and
volumetric weight measurements do not fol-
low a normal distribution, regardless of whether
point cloud filtering was applied. This justifies
the use of non-parametric statistical methods in
subsequent analysis.

Given the consistent non-normality ob-
served in the Shapiro-Wilk tests, we employed
the Kruskal-Wallis non-parametric test to as-
sess whether the differences in measurement er-
rors across filtering methods were statistically
significant (Table 2). The results show a clear
divergence in filtering impact depending on the
measured dimension. Results showed no signifi-
cant difference in height error (p = 0.83), align-
ing with its overall measurement stability. In
contrast, width, length, and volumetric weight
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Figure 1. Comparative analysis of volumetric weight estimation precision across filtering techniques,
presented as mean absolute error (kg) with corresponding standard deviation error indicators

175 Filter Type
B Raw (No Filter)
[ Bilateral Filter
10| @ Shadow Filter
I SOR Filter

= =3 IS
a S G

Mean Absolute Error (cm)

e
wn
S

0.25

Best: 0.329 cm

0.00

Height

Best: 0.482 cm

Best: 0.463 cm

Width Length

Measurement Dimension

Figure 2. Quantitative assessment of dimensional measurement accuracy across point cloud filtering methods,
illustrating Mean Absolute Error values with 95% confidence intervals for principal spatial dimensions.
For each dimension, the optimal results were annotated

errors differed significantly (p < 0.05), confirm-
ing that filtering has a statistically significant
effect — particularly on planar dimensions and
derived metrics like volumetric weight.
Following the identification of statistically
significant differences through the Kruskal-
Wallis test (Table 2), we performed a compre-
hensive post hoc pairwise comparisons analysis
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using Dunn’s test to determine specific differ-
ences between filtering methodologies. Figure 3
presents the results of this analysis through heat
maps of p-values. For width, length and volu-
metric weight error demonstrated significant dif-
ferences in the initial analysis.

Post hoc comparisons reveal distinct perfor-
mance clusters among the filtering approaches.
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Table 1. Shapiro-Wilk normality test for dimensional and volumetric weight errors across different point cloud
filtering methods, with p-values indicating the probability of data following normal distribution

Dimension error Unfiltered Bilateral filter Shadow filter SOR filter
Width (cm) 3.67E-26 1.33E-19 3.36E-20 2.09E-13
Length (cm) 3.77E-18 4.77E-15 4.90E-21 4.70E-11
Height (cm) 3.45E-14 8.26E-14 3.45E-14 3.56E-14
Volumetric weight (kg) 2.29E-33 7.28E-36 1.05E-28 4.64E-28

For width measurements, both the statistical out-
lier removal (SOR) and Shadow filters demon-
strated statistically significant improvements (p <
0.0001) compared to the Bilateral filtering meth-
od and the unfiltered baseline (i.e., unfiltered data
without any point cloud manipulation). Similarly,
for length error analysis showed significant supe-
riority of SOR and Shadow filters to two other
methods, though a slight statistical difference
was also detected between the SOR and Shadow
methods (p = 0.0003).

The volumetric weight error analysis pres-
ents a more complex pattern of relationships.
Statistical Outlier Filter demonstrated significant
improvements over all other methodologies (p <
0.0001), while the Bilateral filter showed signifi-
cant advantages over both unfiltered and Shadow
approaches (p < 0.0001). Interestingly, no signifi-
cant difference was observed between unfiltered
and Shadow filtering methods for volumetric
weight calculations (p = 1.0000), suggesting that
the Shadow filter’s improvements in dimensional
accuracy may not translate proportionally to vol-
umetric weight estimation.

While the Shadow filter achieved the lowest
mean absolute error in volumetric weight estima-
tion, the difference was not statistically signifi-
cant (as seen in Figure 3) compared to the unfil-
tered method. In contrast, the SOR filter demon-
strated statistically significant improvements over
all other filters, indicating greater robustness and
consistency. Therefore, while Shadow may offer
the highest observed precision, SOR emerges as

the most statistically reliable filtering approach
for practical deployment.

Parcel type

Standard objects, characterised by uniform
cardboard faces and consistently sharp edges,
present a geometrically regular cuboid structure.
Contrastingly, distorted boxes exhibit pronounced
morphological distortion. Most notably, these ob-
jects present fundamentally different edge charac-
teristics across dimensions:

e Length measurement (longer dimension) in-
volves faces with sharp edges, though the per-
pendicular cardboard face is inset by several
centimetres.

e Width measurement (shorter dimension) in-
volves faces with non-sharp, bulging edges

This inherent structural dichotomy estab-
lishes fundamentally different measurement chal-
lenges for each dimension.

Figure 4 presents a comprehensive com-
parison of width and length measurement errors
across different filtering methods for both parcel
types. Particularly striking is the disparity ob-
served in width measurements for distorted par-
cels with the SOR filter, which exhibits dramati-
cally elevated error levels (1.24 cm) compared to
length measurements (0.43 cm). This pronounced
discrepancy corresponds directly to the morpho-
logical differences, as SOR filtering struggles
with the bulging edges characteristic of width
measurement in distorted parcels.

Table 2. Summary of Kruskal-Wallis non-parametric test results examining statistical differences in measurement
errors across filtering methodologies. Test statistics (H) and corresponding p-values indicate statistical significance

for the given sample

Metric Test Statistic (H) p-value Significant
Height error (cm) 0.87 0.83 False
Width error (cm) 153.42 4.82E-33 True
Length error (cm) 526.77 7.53E-114 True
Volumetric weight error (kg) 91.48 1.05E-19 True
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Figure 3. Post Hoc analysis of filter performance using Dunn’s Test. Heat maps displaying p-values from Dunn’s
test for pairwise comparisons of filtering methods across width error, length error, and volumetric
weight error dimensions

Conversely, the unfiltered and Bilateral fil-
tered datasets exhibit the opposite pattern for
distorted parcels, with substantially higher errors
for length measurements (2.56 cm and 2.43 cm
respectively) than width measurements (0.87 cm
and 0.88 cm). This suggests these methods handle
the bulging edges of width measurements more
effectively than the sharp-but-inset edges of
length measurements.

Each filtering method demonstrates distinc-
tive responses to the geometric challenges pre-
sented by different parcel types. The bilateral
filter, despite offering modest improvements over
unfiltered processing for standard parcels, strug-
gles substantially with distorted parcel length
determination (2.43 cm error), offering negli-
gible improvement over unfiltered processing
(2.56 cm), despite the presence of sharp edges.

Gl
2.5 }
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n

Mean Absolute Error (cm)
5

0.5
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Raw (No Filter)
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Shadow filtering demonstrates more balanced
performance, achieving substantial error reduc-
tions across both dimensions and parcel types.
Particularly noteworthy is its relatively consistent
performance for both width and length measure-
ments of distorted parcels (0.43 cm and 1.44 cm
respectively), suggesting effective handling of
both bulging and sharp-but-inset edges.

Most intriguing is the SOR filter’s perfor-
mance pattern. [t demonstrates exceptional length
accuracy for distorted parcels (0.43 cm, repre-
senting an extraordinary 83.2% improvement
over unfiltered processing), indicating remark-
able efficacy in handling the sharp-but-inset edg-
es. However, this comes at considerable cost to
width accuracy for the same parcel type, where
error increases to 1.24 cm — 42.5% worse than
unfiltered processing. This suggests SOR filtering

Parcel Type - Dimension
B Standard - Width
[ Skewed - Width

0 Standard - Length
[ Skewed - Length

Shadow Filter SOR Filter

Filtering Method

Figure 4. Mean absolute error comparison for width and length measurements across different filtering methods,
segregated by parcel type. Bars are also marked with standard error of the mean
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particularly struggles with the bulging edges used
for width determination in distorted parcels.

Figure 5 illustrates the impact of parcel type
on volumetric weight determination, a crucial
metric for logistics operations. Unfiltered pro-
cessing shows nearly identical errors for both
parcel types (0.200 kg for standard, 0.195 kg for
distorted), suggesting minimal inherent bias in
unfiltered measurement.

The application of filtering methods produces
distinctive effects based on parcel geometry. The
bilateral filter demonstrates stronger improve-
ment for distorted parcels (43.1% reduction to
0.111 kg) than for standard parcels (18.0% reduc-
tion to 0.164 kg). This contrasts with its dimen-
sional measurement performance, highlighting
the complex relationship between individual di-
mension accuracy and volumetric calculation.

Shadow filtering achieves the lowest abso-
lute errors for both parcel types (0.077 kg for
standard, 0.085 kg for distorted), with more sub-
stantial relative improvement for standard par-
cels (61.5% versus 56.4%). SOR filtering pro-
duces intermediate results, with greater accuracy
for standard parcels (0.098 kg) than distorted
parcels (0.126 kg).

The algorithm-specific dimensional weak-
nesses observed in Figure 4 reflect fundamen-
tal mismatches between filtering mechanisms
and geometric measurement requirements. The
shadow filter’s poor performance in length esti-
mation for skewed parcels occurs because noise
characteristics near edge features fall outside its

0.200
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37.9%

f=3
—
3]
W

0.100

o
=)
3
wn

0.050

Mean Absolute Error (kg)
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detection parameters, allowing spurious points to
persist and thereby compromise edge localization
accuracy. Conversely, the SOR filter poor perfor-
mance in width estimation likely results from the
width measurements in skewed plots dominated
by curved edges, where point-to-neighbour dis-
tances exhibit maximum variance. This variance
causes SOR to systematically remove the exact
boundary-defining points that are critical for ac-
curate width determination. Such dimensional
selectivity reflects each algorithm’s fundamental
design limitations.

Scale dependent error

Given the large size and heterogeneity of
the dataset used in this study, we were able to
investigate how dimensional measurement er-
rors evolve with increasing object size. This al-
lowed for a deeper analysis of scale-dependent
phenomena that are often hidden in smaller or
more homogeneous datasets. Most importantly,
since each spatial dimension is inferred using a
slightly different methodological approach, it is
necessary to break down the analysis based not
only on the measurement axis (length, width,
height) but also on the dimensional type — planar
versus vertical.

This distinction stems from operational dif-
ferences in how dimensions are estimated: ver-
tical measurements (i.e., height) are typically
derived from the total height of the point cloud
relative to a stable reference plane, such as a

Parcel Type
I Standard

[ Skewed

Shadow Filter SOR Filter

Filtering Method

Figure 5. Volumetric weight measurement error by filtering method and parcel type. Between package types
marked percent difference
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scanning table. In contrast, horizontal dimen-
sions (length and width) are calculated from the
distribution of points on the upper surface, mak-
ing them more susceptible to point cloud noise,
edge irregularities, and algorithmic interpreta-
tion of object boundaries. As a result, the scale-
dependent nature of the error is not a general
sensor artifact, but rather a direct consequence of
the geometry-based estimation methods used for
different types of dimensions

To better understand this behaviour, we con-
ducted a detailed analysis of scale dependence.
This included comparing absolute measurement
errors for each basic dimension (height, length,
width) as well as for the derived volume mass.
By examining how error magnitudes change with
increasing object size, we were able to reveal sys-
tematic trends unique to each filtering method.
These insights are illustrated in Figure 6 and 7,
which shows the error distributions across dimen-
sional scales for all tested algorithms.

Figure 6 presents the dimension-specific re-
gression analysis for height, width, and length
measurements. For height, all filters demonstrate
equivalent performance (slope = 0.004) with co-
efficient of determination (R? = 0.04-0.05), sug-
gesting inherent stability in height measurements
across all filtering methods.

Width measurements reveal more nuanced be-
haviour. The bilateral filter and unfiltered process-
ing exhibit identical sensitivity (slope = 0.028) but
with higher coefficient of determination (R?=0.18
and 0.10, respectively). The shadow filter’s nega-
tive slope (-0.007, R? = 0.03) represents inversion
of the typical size-error relationship, whilst the

3.5 3.3

SOR filter effectively neutralises width-dependent
errors (slope = 0.002, R? = 0.00).

Length measurements display the most pro-
nounced differentiation between filtering meth-
ods. The unfiltered data shows strong size depen-
dence (slope = 0.051, R? = 0.39), with the bilat-
eral filter offering modest improvement (slope =
0.038, R?=0.38). The shadow filter substantially
reduces size sensitivity (slope =0.014, R*=0.13),
whilst the SOR filter achieves near-complete
elimination of length-dependent errors (slope =
0.000, R2=0.00).

Figure 7 illustrates the relationship between
expected volumetric weight and absolute error for
each filtering methodology. The regression analy-
sis reveals compelling differences in filter perfor-
mance. The unfiltered data exhibits the steepest
slope (0.1008, R? = 0.473), indicating that for
each kilogram increase in volumetric weight,
measurement error increases by approximately
0.1 kg — a 10% error growth rate. The bilateral
filter offers modest improvement (slope = 0.0845,
R?=0.462), reducing the error growth rate by ap-
proximately 16% compared to unfiltered data.

More substantial improvement is observed
with the SOR filter (slope = 0.0409, R? = 0.461),
which reduces the error growth rate by nearly
60%. Most impressive, however, is the shadow
filter’s performance, with a remarkably low
slope of 0.0192 (R? = 0.184). This represents an
81% reduction in error growth rate compared to
the unfiltered data — a significant achievement
in measurement stability. The shadow filter’s
substantially lower R? value suggests its error
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Figure 6. Dimension-specific regression analysis showing the relationship between expected dimension
(height, width, length) and absolute error for each filtering method
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Figure 7. Relationship between expected volumetric weight and absolute error across four filtering methods,
showing regression lines and statistical parameters

behaviour is less determined by size and more
influenced by other factors.

The impact of the object’s position

The position of a parcel within the measure-
ment field of view represents a critical variable
in dimensional measurement systems. This study
specifically investigated how parcel placement
-comparing corner versus center positioning on
the measurement surface — affects the accuracy
of dimensional measurements across different fil-
tering methods.

The influence of parcel position on measure-
ment accuracy was quantified by comparing error
metrics at center versus corner placements. The
ratio of corner to center errors was calculated for
each filter and dimension:

M A E corner

— = 3)
MA ECCl’ltCI'

Pcjc =

where: p_ — denotes the corner-to-center Mean
Absolute Error ratio, MAE, _— MAE
measured for objects placed in corner of
the setup, MAE  — MAE measured for

center

objects placed in center of the setup.

Figure 8 presents the corner-to-center error
ratio across different filtering methods, providing
an immediate visualization of position sensitiv-
ity. A ratio exceeding 1.0 indicates higher mea-
surement errors in corner positions compared to

center positions, while ratios below 1.0 suggest
superior performance in corner positions.

In order to examine the impact of the posi-
tion of the package in the field of view on mea-
surement accuracy, a statistical analysis of mea-
surement errors was performed for the following
filters: unfiltered, Bilateral, Shadow, and SOR,
comparing the results for the center and corner
positions. The Kruskal-Wallis test was used to as-
sess the significance of the differences. As shown
in Table 3, in the vast majority of cases, regard-
less of the filter type and the dimension analysed,
no statistically significant differences were found,
which indicates high stability of the filtration
methods with respect to the position of the object
in the measurement space.

However, the result obtained for the SOR fil-
ter in the case of length error is particularly note-
worthy, where the difference between the corner
and center positions proved to be statistically sig-
nificant (p = 0.0267). This value was associated
with a clear reduction in error in corner positions
— the average difference was -0.05 cm, which cor-
responded to an approximately 10.14% relative
improvement in accuracy. The test statistic (H =
4.91) further confirms that this effect is not ac-
cidental. This result suggests that when using the
SOR filter, corner positioning of the object can
positively affect the precision of length measure-
ment, probably due to the way the filter handles
the distribution of points within the more exposed
edges of the package.
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Table 3. Summary of Kruskal-Wallis test results examining statistical differences in measurement dimension

Corner-to-Center Error Ratio

S
=

=

14
3

e
&

0.0

Raw (No Filter)

Figure 8. Corner-to-center error ratio by filter and dimension

errors across filtering methods

Bilateral Filter

Dimension
N Height
=3 Width
I Length

Shadow Filter

Filter Type

SOR Filter

Filter Metric Mean difference Percent difference (%) H statistic p-value
Height error (cm) 0.03 9.18 2.23 0.136
Width error (cm) 0.02 2.10 0.04 0.849
Unfiltered
Length error (cm) 0.03 1.68 0.38 0.536
Volumetric weight error (kg) 0.01 3.66 0.02 0.896
Height error (cm) 0.02 5.37 0.27 0.602
Width error (cm) 0.07 10.24 1.79 0.180
Bilateral filter
Length error (cm) 0.10 7.33 3.17 0.075
Volumetric weight error (kg) 0.01 8.38 0.95 0.330
Height error (cm) 0.03 9.18 2.23 0.136
Width error (cm) -0.04 8.29 2.20 0.138
Shadow filter
Length error (cm) -0.06 9.19 2.26 0.133
Volumetric weight error (kg) 0.00 0.76 1.70 0.193
Height error (cm) 0.03 9.82 2.34 0.126
Width error (cm) -0.02 2.52 0.25 0.619
SOR filter
Length error (cm) -0.05 10.14 4.91 0.027
Volumetric weight error (kg) 0.00 0.08 2.03 0.154

The other metrics and filters did not show
a significant impact of the package position on
measurement accuracy, confirming that all filter
proposals are resistant to changes in the position
of the tested object.

Time performance

While accuracy of measurements is essen-
tial, as examined in the previous section, the time
required to process each point cloud and extract
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dimensional information determines the practical
applicability of the system in real-world setups.
The growing interest in edge processing reflects a
critical paradigm shift in modern automation, em-
phasizing on-site data processing where hardware
expansion is often impractical.

To better understand the computational char-
acteristics of each filtering approach, we decom-
posed the total processing time into its constituent
components: filtering, segmentation, dimension-
ing, cropping, and alignment. Figure 9 illustrates
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this breakdown. Our analysis reveals a critical
insight: the filtering stage is the only component
that varies significantly across methods, while all
other processing stages maintain remarkably con-
sistent timing regardless of the filtering approach
used. This consistency in downstream processing
demonstrates that the choice of filter affects only
the initial point cloud processing stage without
introducing cascading computational impacts on
subsequent operations.

When comparing the three actual filtering
methods (excluding the unfiltered approach which
serves as our baseline), the differences in filter-
ing time are substantial, as shown in Figure9.
The Bilateral filter is the most computationally
efficient at 7.42 ms (7.52% of its total process-
ing time), while the Shadow filter requires 42.66
ms (33.70% of total time) and the SOR filter de-
mands 119.83 ms (60.01% of total time). This
means the Shadow filter’s filtering stage takes
5.75 times longer than the Bilateral filter, while
the SOR filter requires 16.15 times the processing
time of the Bilateral approach and 2.81 times that
of the Shadow filter.

The Bilateral filter’s localized approach to
noise reduction requires minimal processing, the
Shadow filter’s moderate complexity results in
intermediate processing demands, and the SOR
filter’s statistical analysis of point neighbour-
hoods creates the heaviest computational load.
It is also worth noting that the relatively long
processing time for the SOR filter is due not
only to its computational complexity, but also to

Processing Component

Filtering

200 = :
Segmentation

Dimensioning
Cropping
Alignment

%
3

Data Cleaning

Total: 98.6 ms

Processing Time (ms)
s
8

Total: 76.7 ms

50

13.5 ms (13.7%)

implementation limitations. This algorithm, in
the available version of the PCL library, has been
implemented sequentially and does not allow for
the effective use of multithreading. The lack of
support for parallel processing significantly in-
creases the total filtering time, which may limit
its usefulness in practical applications.

DISCUSSION

The comparative analysis of the Shadow, Bi-
lateral, and SOR smoothing algorithms reveals
dimension-specific strengths and trade-offs in
object dimensioning accuracy using depth data.
While all three filters outperformed unfiltered
data processing in terms of dimensional accura-
cy (mainly width and length), their effectiveness
varied depending on the measured dimension and
the geometry of the object.

The Shadow filter consistently demonstrated
strong results, particularly in width measure-
ments, and exhibited the lowest mean absolute
error (MAE) in volumetric weight estimation. Its
key advantage lies in striking a favourable balance
between precision and computational efficiency,
making it suitable for time-sensitive applications.

The SOR filter, on the other hand, achieved
the highest accuracy for length measurements,
performing particularly well on objects with
sharp, inset edges. This outcome suggests that
its statistical treatment of outliers makes it
well-suited for handling well-defined geometric

Total: 199.7 ms

Total: 126.6 ms

112.5 ms (56.3%)

36.3 ms (28.7%)

Raw (No Filter)

Bilateral Filter

Shadow Filter

SOR Filter

Filtering Method

Figure 9. Processing time components across filtering methods per one sample dimensioning cycle
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boundaries. However, its performance was less
stable for width in distorted packages with bulg-
ing edges, where its error exceeded that of un-
filtered data. This trade-off points to a context-
dependent suitability of the SOR filter, where
geometric characteristics of the object can sig-
nificantly affect its reliability.

Interestingly, the position of objects within
the field of view did not lead to statistically sig-
nificant accuracy variations in most cases. How-
ever, minor trends emerged — most notably with
the Shadow filter showing improved lateral per-
formance and the SOR filter yielding a statisti-
cally significant improvement in length measure-
ments for objects placed in corner positions. This
latter finding may relate to the SOR’s sensitivity
to edge distribution, which is more pronounced in
these spatial placements.

An important observation pertains to scale-
dependent error. Across all algorithms, larger
objects tended to yield higher dimensional er-
rors, especially for planar dimensions derived
from convex hull estimates. The Shadow filter
exhibited the error decrease with object width
size, indicating strong generalizability, but in
the case of length it indicated positive slope. In
contrast the SOR filter showed greater sensitiv-
ity to object width size, but for the length it ex-
hibited near-zero slope indicating its resistance
to growth in size in this dimension. This indi-
cates that further evaluation is needed to study
the impact of the geometry on the algorithm per-
formance and accuracy.

In terms of processing efficiency, the Bilat-
eral filter proved to be the fastest, followed by
the Shadow and SOR filters. Despite its speed,
the Bilateral filter offered only moderate im-
provements in accuracy, especially for distorted
shapes. The Shadow filter strikes a practical bal-
ance — moderate processing demands and consis-
tent accuracy — making it suitable for near real-
time applications. Conversely, the high computa-
tional cost of the SOR filter, exacerbated by the
lack of multithreading in its current implementa-
tion, may limit its deployment in systems requir-
ing rapid throughput.

Finally, comparative analysis with related
works reveals that the proposed approach using
Shadow and SOR filtering achieves superior or
comparable accuracy with significantly faster
processing times. The results obtained in this
study are comparable to the work of Ladplee et
al. [26], in which a single LiDAR camera was
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used together with a flood fill algorithm to mea-
sure package dimensions. There, the average er-
ror was less than 5%, with a processing time of
approximately 1.01 seconds. Compared to this
approach, our solution using the Shadow filter
achieves a lower average absolute error for vol-
umetric weight (~0.079 kg) and a significantly
shorter processing time (~126.6 ms), making it
potentially more effective in the context of real-
time applications.

In the study by Rodriguez et al. [27], a su-
perquadric fitting method was applied to noisy
and partially occluded ToF data, achieving aver-
age errors of 4-13% depending on the orientation
of the object and the visibility of the surface. In
comparison, our approach based on processing
the full point cloud using filters such as Shadow
and SOR showed lower absolute errors (MAE for
lengths up to ~0.463 cm), without the need for
special geometric models.

CONCLUSIONS

This study demonstrates that point cloud
smoothing techniques significantly improve ob-
ject dimensioning accuracy when compared to
unfiltered data. Among the evaluated methods,
the-Shadow algorithm yielded the lowest MAE
in volumetric weight estimation (~0.079 kg),
followed by the SOR (~0.106 kg) and Bilat-
eral (~0.148 kg) filters, whereas unfiltered data
resulted in the highest error (~0.199 kg). For
individual dimensions, the Shadow filter was
most effective in width estimation (~0.482 cm),
while the SOR filter performed best for length
(~0.463 cm), highlighting the dimension-specific
strengths of each method.

While package placement in the field of view
had generally no statistically significant impact
on measurement accuracy, specific cases - such
as improved length accuracy with SOR filtering
in corner positions — did show localized signifi-
cance. Furthermore, the Shadow filter exhibited
high resistance to scale-dependent error, reflected
in the smallest regression slope (~0.041) with in-
creasing object size.

In terms of efficiency, the Bilateral filter of-
fered the shortest processing time (~98.6 ms),
followed by the Shadow (~126.6 ms), and SOR
(~199.7 ms). The Shadow filter’s favourable
trade-off between accuracy and computational
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demand makes it particularly suited for real-
time applications.

The complementary performance character-
istics observed between Shadow and SOR filters
present an opportunity to develop adaptive filter-
ing pipelines that dynamically select or combine
methods based on preliminary object geometry
assessment, while simultaneously implementing
custom parallelized versions of these algorithms
to overcome existing computational limitations in
libraries such as PCL.

Future research directions should pursue a
comprehensive advancement of object dimen-
sioning accuracy through multi-modal sensor
fusion while simultaneously optimizing the
complementary filtering approaches identified
in this study. The primary focus involves in-
vestigating YOLO (you only look once) object
detection integration with LiDAR depth data
to create a hybrid dimensioning system, where
LiDAR point clouds provide precise height
measurements - leveraging the demonstrated
stability across all filtering methods (MAE =
0.329-0.343 cm) — while YOLO bounding box-
es determine width and length through calibrat-
ed pixel-to-centimetre conversions. This sensor
fusion approach could address the scale-depen-
dent errors observed in planar measurements
and enable direct accuracy comparison between
traditional point cloud filtering and hybrid com-
puter vision methodologies.
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