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INTRODUCTION

The issue of dynamic system control can be 
characterized as a synergistic combination of 
rigorous theoretical foundations with advanced 
design strategies that reflect practical limitations 
and model uncertainties.

Chen and Francis provided a comprehensive 
theory of optimal control of sampled systems 
based on continuous models, formally analyzing 
the transformation to the discrete domain as well as 
formulating LQR and H∞ controller designs with 
an emphasis on the accuracy of the mathematical 
formulation and implementation in both the time 
and frequency domains [1]. He et al. (2019) fo-
cused on the issue of delay in non-minimum phase 
systems, where classical compensation approach-
es fail due to inherent instabilities. They proposed 
an adaptive method based on online delay estima-
tion and dynamic control law adjustment, thereby 
achieving improved robustness and performance 
in real-time industrial applications [2]. Skogestad 
and Postlethwaite elaborated on the methodology 

for the design and analysis of multiple-input mul-
tiple-output (MIMO) feedback systems with a 
focus on robustness to model uncertainties, sen-
sitivity to disturbances, and advanced design ap-
proaches, including H∞ and µ-synthesis. Their 
work provided a bridge between formal theory 
and engineering practice through practical design 
guidelines and heuristics [3].

Zhou et al. (2020) presented a modern theory 
of robust and optimal control with an emphasis 
on H∞ optimization, µ-analysis, as well as the de-
sign of controllers with guaranteed stability and 
performance under structural and parametric un-
certainties [1, 4]. From an integration framework 
perspective, the works of Chen and Francis and 
Zhou et al. represent a fundamental theoretical 
basis, while Skogestad and Postlethwaite and He 
et al. provide application-oriented methodologies 
enabling the implementation of robust and adap-
tive strategies into real technological processes, 
taking into account system constraints, delays, 
and uncertainties [1–5].  In control theory, sys-
tems with non-minimal phase play an important 
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role, mainly due to their specific dynamic proper-
ties, which significantly influence the design of 
control algorithms. Non-minimal phase refers to 
the systems the transfer function of which con-
tains zeros in the right half of the complex plane 
(for continuous systems) or zeros outside the unit 
circle (for discrete systems). These zeros cause 
transient phenomena that are counterintuitive - 
for example, the output first changes sign in the 
opposite direction to that implied by the input 
signal. Such behavior has a fundamental impact 
on feedback stability, control performance limita-
tions, and, in particular, the feasibility of inverse 
control. For many technical applications, such as 
aircraft control, robotic arms, or process control, 
it is necessary to take this property into account 
when designing controllers [6, 7].

The theoretical foundations of non-minimal 
phase systems were intensively studied as early 
as the 1970s, with significant contributions such 
as [8], which pointed out the limits of feedback 
performance in such systems. In modern times, 
research focuses mainly on optimization meth-
ods, robust control, and model predictive control 
(MPC) applied to non-minimum phase systems 
[9, 10]. As it was mentioned above, the systems 
with non-minimal phase are the systems the trans-
fer function of which has at least one zero in the 
right half of the complex variable s. Their presence 
is reflected in the frequency characteristics as well 
as in the time responses. In the frequency charac-
teristics, the relationship between the slope of the 
amplitude frequency characteristic and the phase 
ceases to apply because the phase is no longer min-
imal. In the time domain, the presence of an un-
stable zero manifests itself as an initial undershoot 
of the transition characteristic to negative values. 
An example of such a system is a coal dust boiler. 
Pouring coal dust into the boiler initially causes a 
kind of extinguishing, which manifests itself in an 
initial drop in temperature. After a while, however, 
the fuel ignites and the temperature rises.

CHARACTERIZATION OF SYSTEM 
POLES AND ZEROS IN STATE-SPACE 
REPRESENTATION

A continuous system with one input and one 
output is defined Equation 1:

	
𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (1)

where:	u(t) – represents the input, y(t) – repre-
sents the output, the state vector X(t) is 
a column vector that includes n elements 
for the nth order of the system, and its 
components represent state variables 
Equation 2.
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+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1
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2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (2)

The matrix of system A consists of n x n ele-
ments and represents the matrix of internal con-
nections (system or feedback matrix). Vector B 
contains n x 1 columns and represents the effect 
of the action elements. Row vector C has a di-
mension of 1 x n and represents the links between 
the output and the state. D represents the direct 
links between the output and the input in Equa-
tion 3. If D=0, then the input u(t) has no direct 
influence on the output y(t).
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The non-minimal phase is not directly “vis-
ible” from the state description - matrix A may 
be stable, but the system may have unstable ze-
ros that cause a non-minimal phase. These zeros 
do not depend only on A, but on all matrices A, 
B, C, D. Therefore, the transfer function or the 
so-called invariant zeros of the system (system 
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𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (4)

where:	 the numerator polynomial is Equation 5:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (5)

and the polynomial of the denominator Equation 6: 

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (6)

The functions N(s) and D(s) represent the nu-
merator and denominator of the transfer function 
G(s), and their roots correspond to the zeros and 
poles of the system, respectively. This relation-
ship holds only if N(s) and D(s) do not share any 
common roots. The poles of the transfer function 
G(s) are fundamental in determining the system’s 
natural frequency and damping ratio. Additional-
ly, they play a crucial role in defining the stability 
of the system.
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The system with non-minimal phase 

Let us consider the standard form of a trans-
fer function that contains a single zero and a pair 
of complex-conjugate poles, which is common 
in many control system applications, such as 
modeling second-order systems with added ze-
ros in Eq. (7):

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (7)

In this expression, the numerator includes a 
zero at 𝑠𝑠 = −𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛 

 
 𝑠𝑠 = 𝑠𝑠

𝜔𝜔𝑛𝑛
 

 

𝐹𝐹1(𝑠𝑠) = 1
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐹𝐹2(𝑠𝑠) = 1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐿𝐿 {𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠) 

n ≥ m  
 

, while the denominator rep-
resents a standard second-order system with natu-
ral frequency ωn. Substitution ωn and damping 
ratio ζ. The presence of the zero alters the system 
dynamics by modifying the frequency response 
and transient behavior. To facilitate analysis, a 
common step is to perform frequency normaliza-
tion by 

𝑠𝑠 = −𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛 
 
 𝑠𝑠 = 𝑠𝑠

𝜔𝜔𝑛𝑛
 

 

𝐹𝐹1(𝑠𝑠) = 1
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐹𝐹2(𝑠𝑠) = 1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐿𝐿 {𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠) 

n ≥ m  
 

. This substitution not only nor-
malizes the frequency variable but also effective-
ly corresponds to normalizing the time scale of 
the system, since ωn relates to the system’s natu-
ral oscillation frequency. The normalized transfer 
function is then given by Equation 8:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (8)

This normalized form is advantageous because 
it simplifies the analysis by removing explicit de-
pendence on ωn, allowing the focus to be on the 
effects of the zero and the damping ratio. This stan-
dard transfer function F(s) can be decomposed into 
the sum of two separate functions Equation 9:

	

𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) = 
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 + + 1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 	

(9)

Here, 

𝑠𝑠 = −𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛 
 
 𝑠𝑠 = 𝑠𝑠

𝜔𝜔𝑛𝑛
 

 

𝐹𝐹1(𝑠𝑠) = 1
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐹𝐹2(𝑠𝑠) = 1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐿𝐿 {𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠) 

n ≥ m  
 

 represents the 

original second-order system without any zeros. 

On the other hand, 

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

 ac-

counts for the effect of the zero introduced in the 
numerator. By expressing the transfer function as 
a sum of these two parts, the system’s behavior 
can be interpreted as a combination of the base 
second-order response plus an additional compo-
nent influenced by the zero.

In the time domain, considering the Laplace 
transform properties, the derivative of the output 
y(t) corresponds to multiplication by sss in the 
Laplace domain, i.e., 

𝑠𝑠 = −𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛 
 
 𝑠𝑠 = 𝑠𝑠

𝜔𝜔𝑛𝑛
 

 

𝐹𝐹1(𝑠𝑠) = 1
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐹𝐹2(𝑠𝑠) = 1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 

𝐿𝐿 {𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠) 

n ≥ m  
 

.

Using this, the system’s response to a step in-
put can be expressed as Equation 10:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	(10)

where:	y1(t) and y2(t) correspond to the system 
responses associated with F1(s) and F2(s), 
respectively. This means that the overall 
system response yn(t) can be seen as the 
original system response plus a scaled 
time derivative of this response, reflect-
ing the influence of the zero.

The system response for the case where a > 0, 
corresponding to the introduction of a zero in the 

Figure 1. Influence of the position of zero in the left half-plane of the root plane s
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left half of the s-plane, is illustrated in Figure 1. The 
derivative term in the output expression y2 which 
introduces the zero, amplifies the overall response 
of the system Ff(s) and leads to a larger overshoot. 
This effect is characteristic of systems with left-
half-plane zeros, where the initial energy injection 
due to the zero can temporarily boost the response 
before settling. The response of the system for 
the case when a < 0 is shown in Figure 2. If the 
transfer zero is located in the right half-plane of the 
root plane s, then such a system is called a system 
with non-minimal phase. This zero causes negative 
overshoot. The transfer of a dynamic system can 
generally be written in the form Equation 11:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠

𝑎𝑎𝑎𝑎𝜔𝜔𝑛𝑛
+1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+1
       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	(11)

The system is strictly pure if the condition n ≥ 
m is satisfied. If the transfer function G(s) is asymp-
totically stable, i.e. if the roots of the denominator 
D(s) are in the left half of the root plane s, then 
each zero has a specific effect on the system for 
specific input variables. The roots of the numerator 
N(s) can be real or complex. If the zeros are locat-
ed near the poles, they reduce the influence of the 
system response on the input variable. Assuming 
that the poles of the transfer function pi are real or 
complex but conjugate, the transfer function G(s) 
can be written in the form Equation 12:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
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+2 𝜁𝜁𝑠𝑠
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𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 
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𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0
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𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (12)

The equation for coefficient C1 can be written 
as Equation 13:
	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
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𝑠𝑠
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𝑠𝑠2
𝜔𝜔𝑛𝑛2

+2 𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛
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       (7) 

 

𝐹𝐹(𝑠𝑠) =
𝑠𝑠
𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 

 
 
 𝐿𝐿⁡ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} = 𝑠𝑠𝑠𝑠(𝑠𝑠). 
 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 

	 (13)

As it can be seen in this case, if the transfer 
function G(s) has a root in the left half-plane with 
zero near the pole at s = p1, the value of coef-
ficient C1 will be reduced. which determines the 
contribution of the specific term in the response 
will be small. In general, it can be noted that each 
zero in the left half-plane of the root plane limits 
the specific input signal. However, the question 
is what happens if the zero is located in the right 
half-plane. This situation can be illustrated by ap-
plying an unbounded signal such as u(t) = et  to 
the system input. Figure 3 and Figure 4 show the 
response of two transfer functions, namely Equa-
tion 14, Equation 15:

	

𝑋̇𝑋(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡) 

 
 (1) 

 
 
𝑋𝑋(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)… 𝑥𝑥𝑛𝑛(𝑡𝑡))

𝑇𝑇     (2) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)

𝑈𝑈(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵      (3) 
 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠)         (4) 
 
𝑁𝑁(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡ (𝑠𝑠𝑠𝑠𝐶𝐶

−𝐴𝐴 −𝐵𝐵
0 )      (5) 

 
 
𝐷𝐷(𝑠𝑠) ≜ 𝑑𝑑𝑑𝑑𝑑𝑑⁡(𝑠𝑠𝑠𝑠 − 𝐴𝐴)       (6) 
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       (7) 
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𝑎𝑎𝑎𝑎+1

𝑠𝑠2+2𝜁𝜁𝜁𝜁+1       (8) 
 
𝐹𝐹𝑓𝑓(𝑠𝑠) = 𝐹𝐹1(𝑠𝑠) + 𝐹𝐹2(𝑠𝑠) =

1
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 +

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1     (9) 

 
 

𝐹𝐹1(𝑠𝑠) =
1

𝑠𝑠2 + 2𝜁𝜁𝜁𝜁 + 1 

 
 𝐹𝐹2(𝑠𝑠) =

1
𝑎𝑎𝑎𝑎

𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜁𝜁+1 
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𝑦𝑦𝑛𝑛(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) +

1
𝑎𝑎𝑎𝑎 𝑦̇𝑦1(𝑡𝑡)      (10) 

 
 
𝐺𝐺(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝐷𝐷(𝑠𝑠) =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

     (11) 
 
𝐺𝐺(𝑠𝑠) = 𝐶𝐶1

𝑠𝑠−𝑝𝑝1
+ 𝐶𝐶2

𝑠𝑠−𝑝𝑝2
+ ⋯+ 𝐶𝐶𝑛𝑛

𝑠𝑠−𝑝𝑝𝑛𝑛
     (12) 

 
𝐶𝐶1 = (𝑠𝑠 − 𝑝𝑝1)𝐺𝐺(𝑠𝑠)|𝑠𝑠=𝑝𝑝1        (13) 
 
𝐺𝐺1(𝑠𝑠) =

2(𝑠𝑠+𝑏𝑏1)
(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)

      (14) 	 (14)

	 𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	 (15)

A system with a non-minimal phase can be 
defined as a system that has a zero or pole in the 
right half-plane of the s-plane. It can also be de-
fined as a system whose transfer function con-
tains a zero in the right half-plane of the s-plane, 
or has a time delay, or both. In this section, em-
phasis will be placed on systems with non-mini-
mal phase, where the output is either an inverse 

Figure 2. Influence of the position of zero in the right half-plane of the root plane s
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response or a time delay. The undershoot refers to 
the initial response of the system, which is in the 
opposite direction to the steady state. Continuous 
systems that have an odd number of real zeros in 
the right half-plane are characterized by an in-
verse response to a step change.

THE PADÉ APPROXIMATION

A system with time delay is a special case of 
a system with non-minimum phase. To express a 

transfer function that also includes time delay, the 
so-called Padé approximation is often used Equa-
tion 16:

	

𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	 (16)

Padé approximation is a method for approxi-
mating transcendental functions using rational 
fractions, i.e., the ratio of two polynomials. In the 
field of automatic control, it is often used to ap-
proximate time delay, which in the Laplace do-
main has the form of an exponential function e−sT, 
where T is the delay length. Since this function is 

Figure 3. Unbounded response of transfer G1(s) to unbounded input

Figure 4. Bounded response of transfer G2(s) to unbounded input
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not rational, it is not directly suitable for analysis 
using classical tools such as Bode diagrams or PID 
controller design. Therefore, the delay is replaced 
by a rational approximation using a Padé expan-
sion [11]. Padé approximation is used in the design 
of classical controllers (e.g., PID), model predic-
tive control (MPC), and frequency analysis (e.g., 
Bode diagrams), where it is advantageous to work 
with rational functions [13, 14]. However, it should 
be noted that Padé approximation introduces arti-
ficial poles and zeros into the system, which can 
adversely affect the stability or robustness of the 
control, especially if the delay is large or if a higher 
order of approximation is chosen [6, 15].

The first-order Padé aproximation 

In Equation 17, k represents the amplification 
constant, τ is the time constant, and T denotes the 
time delay (also known as time delay) of the sys-
tem. To handle the exponential delay term e-sT, a 
Padé approximation is used, which provides a ratio-
nal function approximation of the time delay. The 
first-order Padé approximation of e-sT is given by:

	

𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	 (17)

Where Equation 18 and Equation 19:

	

𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	 (18)

	

𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	
(19)

where:	 r is the degree of approximation.

In general, Padé approximation of type n/n 
uses the same degree for both the numerator and 
denominator, with the aim of making the Taylor 
expansion of the resulting fraction coincide with 
the expansion of the exponential function of the 
highest possible order around the point s=0 [12].

The second-order Padé aproximation 

The second order Padého approximation pro-
vides a more accurate approximation of the ex-
ponential term of the time delay e-sT compared to 
the first order. Mathematically, it is expressed as 
Equation 20:

	

𝐺𝐺2(𝑠𝑠) =
2(𝑠𝑠−𝑏𝑏1)

(𝑠𝑠+𝑎𝑎1)(𝑠𝑠+𝑎𝑎2)
      (15) 

 
 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾

1+𝑠𝑠𝑠𝑠 𝑒𝑒
−𝑠𝑠𝑠𝑠      (16) 

 
𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠)

𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠)
       (17) 

 
𝑁𝑁𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (−𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (18) 
 
 
𝐷𝐷𝑟𝑟(𝑠𝑠𝑠𝑠) = ∑ (2𝑟𝑟−𝑘𝑘)!

𝑘𝑘!(𝑟𝑟−𝑘𝑘)! (𝑠𝑠𝑠𝑠)
𝑘𝑘𝑟𝑟

𝑘𝑘=0      (19) 
 

𝑒𝑒−𝑠𝑠𝑠𝑠 ≅ 1−𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2

1+𝑠𝑠𝑠𝑠2 +
(𝑠𝑠𝑠𝑠)
12

2      (20) 

 
 

	 (20)

This approximation is more accurate than the 
first order and better captures the dynamics of 
the time delay, but at the same time increases the 
order of the transfer function. The second order 
of Padé approximation provides a more accurate 
capture of the dynamics of time delay compared 
to lower order approximations, thereby reducing 
the error between the actual delay and its model. 
At the same time, however, it increases the order 
of the transfer function, which leads to more com-
plex dynamic behavior of the system. As a result, 
see Figure 5, more poles and zeros appear in the 
model, the position of which in the complex plane 
can significantly affect the stability of the system. 
Therefore, it is necessary to thoroughly analyze 

Figure 5. Comparison of step response with Padé approximation of time delay
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these new poles and zeros to avoid possible insta-
bility. In addition, as with other Padé approxima-
tions, the second order can cause non-minimum-
phase behavior of the system, where the output 
after a sudden change in input may initially re-
spond in the opposite direction than expected, 
which can affect the design and performance of 
the control system [16, 17].

CONCLUSIONS

This article analyzed the properties of systems 
with non-minimal phase, which occur in many 
technical applications and pose a significant chal-
lenge in control design. Their specific behavior, 
caused by unstable zeros, significantly affects 
transient phenomena, stability, and the overall per-
formance of the control system. An important part 
of the analysis was also the presence of time delay, 
which was approximated using Padé approxima-
tion. This made it possible to convert the irrational 
term into a rational form and thus simplify the de-
sign of controllers using classical methods. 

The analysis shows that the use of Padé ap-
proximation is particularly practical in frequen-
cy analysis and the design of feedback systems, 
but caution must be exercised when selecting its 
order. Too high a degree can lead to a deteriora-
tion in stability and introduce unrealistic dynam-
ic effects into the system. For the design of non-
minimum phase systems with delay, it is there-
fore advisable to combine the knowledge from 
classical and modern control theory, including 
robust and optimization methods that can com-
pensate for these negative effects. The simula-
tions and examples presented in the paper con-
firmed the theoretical findings and highlighted 
the importance of correct model approximation 
and an appropriate approach to control design.
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