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ABSTRACT

This article deals with non-minimal phase systems, which are characterized by unstable zeros in the transfer function.
Such systems are more difficult to control, because they can cause opposite transient phenomena than expected. In
addition, time delays occur in many technical applications, which complicates the design of the controller. To model
this, the paper used Padé approximation, which allows the delay to be replaced by a rational transfer function. The
aim of the article was to analyze the influence of non-minimum phase characteristics and delay on system behavior.
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INTRODUCTION

The issue of dynamic system control can be
characterized as a synergistic combination of
rigorous theoretical foundations with advanced
design strategies that reflect practical limitations
and model uncertainties.

Chen and Francis provided a comprehensive
theory of optimal control of sampled systems
based on continuous models, formally analyzing
the transformation to the discrete domain as well as
formulating LQR and Heo controller designs with
an emphasis on the accuracy of the mathematical
formulation and implementation in both the time
and frequency domains [1]. He et al. (2019) fo-
cused on the issue of delay in non-minimum phase
systems, where classical compensation approach-
es fail due to inherent instabilities. They proposed
an adaptive method based on online delay estima-
tion and dynamic control law adjustment, thereby
achieving improved robustness and performance
in real-time industrial applications [2]. Skogestad
and Postlethwaite elaborated on the methodology
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for the design and analysis of multiple-input mul-
tiple-output (MIMO) feedback systems with a
focus on robustness to model uncertainties, sen-
sitivity to disturbances, and advanced design ap-
proaches, including Hoo and p-synthesis. Their
work provided a bridge between formal theory
and engineering practice through practical design
guidelines and heuristics [3].

Zhou et al. (2020) presented a modern theory
of robust and optimal control with an emphasis
on Hoo optimization, p-analysis, as well as the de-
sign of controllers with guaranteed stability and
performance under structural and parametric un-
certainties [1, 4]. From an integration framework
perspective, the works of Chen and Francis and
Zhou et al. represent a fundamental theoretical
basis, while Skogestad and Postlethwaite and He
et al. provide application-oriented methodologies
enabling the implementation of robust and adap-
tive strategies into real technological processes,
taking into account system constraints, delays,
and uncertainties [1-5]. In control theory, sys-
tems with non-minimal phase play an important
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role, mainly due to their specific dynamic proper-
ties, which significantly influence the design of
control algorithms. Non-minimal phase refers to
the systems the transfer function of which con-
tains zeros in the right half of the complex plane
(for continuous systems) or zeros outside the unit
circle (for discrete systems). These zeros cause
transient phenomena that are counterintuitive -
for example, the output first changes sign in the
opposite direction to that implied by the input
signal. Such behavior has a fundamental impact
on feedback stability, control performance limita-
tions, and, in particular, the feasibility of inverse
control. For many technical applications, such as
aircraft control, robotic arms, or process control,
it is necessary to take this property into account
when designing controllers [6, 7].

The theoretical foundations of non-minimal
phase systems were intensively studied as early
as the 1970s, with significant contributions such
as [8], which pointed out the limits of feedback
performance in such systems. In modern times,
research focuses mainly on optimization meth-
ods, robust control, and model predictive control
(MPC) applied to non-minimum phase systems
[9, 10]. As it was mentioned above, the systems
with non-minimal phase are the systems the trans-
fer function of which has at least one zero in the
right half of the complex variable s. Their presence
is reflected in the frequency characteristics as well
as in the time responses. In the frequency charac-
teristics, the relationship between the slope of the
amplitude frequency characteristic and the phase
ceases to apply because the phase is no longer min-
imal. In the time domain, the presence of an un-
stable zero manifests itself as an initial undershoot
of the transition characteristic to negative values.
An example of such a system is a coal dust boiler.
Pouring coal dust into the boiler initially causes a
kind of extinguishing, which manifests itself in an
initial drop in temperature. After a while, however,
the fuel ignites and the temperature rises.

CHARACTERIZATION OF SYSTEM
POLES AND ZEROS IN STATE-SPACE
REPRESENTATION

A continuous system with one input and one
output is defined Equation 1:

X(t) = AX(t) + Bu(t)
y(t) = CX(t) + Du(t) (1

where: u(f) — represents the input, y(f) — repre-
sents the output, the state vector X(¢) is
a column vector that includes n elements
for the nth order of the system, and its
components represent state variables
Equation 2.

X(®) = (510, x2(8) 2 (8))" )

The matrix of system A consists of n x n ele-
ments and represents the matrix of internal con-
nections (system or feedback matrix). Vector B
contains 7 x / columns and represents the effect
of the action elements. Row vector C has a di-
mension of / x n and represents the links between
the output and the state. D represents the direct
links between the output and the input in Equa-
tion 3. If D=0, then the input u(?) has no direct
influence on the output y(z).

Y(s) —
G(s) = e C(sI—A)"'B (3)

The non-minimal phase is not directly “vis-
ible” from the state description - matrix 4 may
be stable, but the system may have unstable ze-
ros that cause a non-minimal phase. These zeros
do not depend only on A4, but on all matrices 4,
B, C, D. Therefore, the transfer function or the
so-called invariant zeros of the system (system
zeros), which are formally defined as values s
for which the system (5) is singular, must be ana-
lyzed. The poles and zeros can be determined by
writing the transfer G(s) Equation 4 as:

G(s) = % (4)

where: the numerator polynomial is Equation 5:

N(s) £ det (SCI —4 _OB) (5)

and the polynomial of the denominator Equation 6:
D(s) = det (s — A) (6)

The functions N(s) and D(s) represent the nu-
merator and denominator of the transfer function
G(s), and their roots correspond to the zeros and
poles of the system, respectively. This relation-
ship holds only if N(s) and D(s) do not share any
common roots. The poles of the transfer function
G(s) are fundamental in determining the system’s
natural frequency and damping ratio. Additional-
ly, they play a crucial role in defining the stability
of the system.
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The system with non-minimal phase

Let us consider the standard form of a trans-
fer function that contains a single zero and a pair
of complex-conjugate poles, which is common
in many control system applications, such as
modeling second-order systems with added ze-
ros in Eq. (7):

promas’
F(s) = # (7)

2422041
(1)2 n

In this expression, the numerator includes a
zero at s = —a{w,, , while the denominator rep-
resents a standard second-order system with natu-
ral frequency o, . Substitution @ and damping
ratio . The presence of the zero alters the system
dynamics by modifying the frequency response
and transient behavior. To facilitate analysis, a
common step is to perform frequency normaliza-
tion by s = wi . This substitution not only nor-
malizes the fréquency variable but also effective-
ly corresponds to normalizing the time scale of
the system, since w, relates to the system’s natu-
ral oscillation frequency. The normalized transfer
function is then given by Equation 8:

S

F(s) = _wtt (3)

s2+2{s+1

This normalized form is advantageous because
it simplifies the analysis by removing explicit de-
pendence on @ , allowing the focus to be on the
effects of the zero and the damping ratio. This stan-
dard transfer function F(s) can be decomposed into
the sum of two separate functions Equation 9:

Fr(s) = Fi(s) + F,(s) =
1 1 s )
120+l T @lsT v 20+ 1

Here, represents the

Fi(s) = ————
1) = T T
original second-order system without any zeros.

On the other hand, F,(s) = L >

a¢ s2+2{s+1
counts for the effect of the zero introduced in the
numerator. By expressing the transfer function as
a sum of these two parts, the system’s behavior
can be interpreted as a combination of the base
second-order response plus an additional compo-
nent influenced by the zero.

In the time domain, considering the Laplace
transform properties, the derivative of the output
y(t) corresponds to multiplication by sss in the

L d
Laplace domain, i.e., L {d_}t]} = sY(s).

Using this, the system’s response to a step in-
put can be expressed as Equation 10:

Ya(®) = y1(0) + y2(0) = y1.(&) + — 3, (£) (10)

where: y (¢) and y,(¢) correspond to the system
responses associated with F (s) and F(s),
respectively. This means that the overall
system response y () can be seen as the
original system response plus a scaled
time derivative of this response, reflect-
ing the influence of the zero.

The system response for the case where a > 0,
corresponding to the introduction of a zero in the

Step Response
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Figure 1. Influence of the position of zero in the left half-plane of the root plane s
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left half of the s-plane, is illustrated in Figure 1. The
derivative term in the output expression y, which
introduces the zero, amplifies the overall response
of the system F /(s) and leads to a larger overshoot.
This effect is characteristic of systems with left-
half-plane zeros, where the initial energy injection
due to the zero can temporarily boost the response
before settling. The response of the system for
the case when a < 0 is shown in Figure 2. If the
transfer zero is located in the right half-plane of the
root plane s, then such a system is called a system
with non-minimal phase. This zero causes negative
overshoot. The transfer of a dynamic system can
generally be written in the form Equation 11:

N(S) _ bmS™+bm—1S™ " 1+--+bys+bg
D(s) AnSt+ap_1S" " 1++a s+ay

G(s) =

(1

The system is strictly pure if the condition n >
m is satisfied. If the transfer function G(s) is asymp-
totically stable, i.e. if the roots of the denominator
D(s) are in the left half of the root plane s, then
each zero has a specific effect on the system for
specific input variables. The roots of the numerator
N(s) can be real or complex. If the zeros are locat-
ed near the poles, they reduce the influence of the
system response on the input variable. Assuming
that the poles of the transfer function pi are real or
complex but conjugate, the transfer function G(s)
can be written in the form Equation 12:

The equation for coefficient C, can be written
as Equation 13:

Ci=(s— pl)G(S)|s=p1 (13)

As it can be seen in this case, if the transfer
function G(s) has a root in the left half-plane with
zero near the pole at s = p, the value of coef-
ficient C, will be reduced. which determines the
contribution of the specific term in the response
will be small. In general, it can be noted that each
zero in the left half-plane of the root plane limits
the specific input signal. However, the question
is what happens if the zero is located in the right
half-plane. This situation can be illustrated by ap-
plying an unbounded signal such as u(f) = ¢’ to
the system input. Figure 3 and Figure 4 show the
response of two transfer functions, namely Equa-
tion 14, Equation 15:

2(S+b1)

Gl(s) - (s+aq)(s+ay) (14)
_ Z(S_bl)
GZ(S) - (s+aq)(s+ay) (15)

A system with a non-minimal phase can be
defined as a system that has a zero or pole in the
right half-plane of the s-plane. It can also be de-
fined as a system whose transfer function con-
tains a zero in the right half-plane of the s-plane,
or has a time delay, or both. In this section, em-

G(s) = G4, G .y G (12) phasis will be placed on syste.ms 'w1th non-mini-
s-pP1 S—D2 5—Pn mal phase, where the output is either an inverse
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Figure 2. Influence of the position of zero in the right half-plane of the root plane s
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Figure 3. Unbounded response of transfer G (s) to unbounded input
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Figure 4. Bounded response of transfer G (s) to unbounded input

response or a time delay. The undershoot refers to
the initial response of the system, which is in the
opposite direction to the steady state. Continuous
systems that have an odd number of real zeros in
the right half-plane are characterized by an in-
verse response to a step change.

THE PADE APPROXIMATION

A system with time delay is a special case of
a system with non-minimum phase. To express a
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transfer function that also includes time delay, the
so-called Padé approximation is often used Equa-
tion 16:

G(s) = ——e=sT (16)

1+st

Padé approximation is a method for approxi-
mating transcendental functions using rational
fractions, i.e., the ratio of two polynomials. In the
field of automatic control, it is often used to ap-
proximate time delay, which in the Laplace do-
main has the form of an exponential function e,
where T is the delay length. Since this function is
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not rational, it is not directly suitable for analysis
using classical tools such as Bode diagrams or PID
controller design. Therefore, the delay is replaced
by a rational approximation using a Padé expan-
sion [11]. Padé approximation is used in the design
of classical controllers (e.g., PID), model predic-
tive control (MPC), and frequency analysis (e.g.,
Bode diagrams), where it is advantageous to work
with rational functions [13, 14]. However, it should
be noted that Padé approximation introduces arti-
ficial poles and zeros into the system, which can
adversely affect the stability or robustness of the
control, especially if the delay is large or if a higher
order of approximation is chosen [6, 15].

The first-order Padé aproximation

In Equation 17, k represents the amplification
constant, 7 is the time constant, and 7" denotes the
time delay (also known as time delay) of the sys-
tem. To handle the exponential delay term e*7, a
Padé approximation is used, which provides a ratio-
nal function approximation of the time delay. The
first-order Padé approximation of e*” is given by:

In general, Padé approximation of type n/n
uses the same degree for both the numerator and
denominator, with the aim of making the Taylor
expansion of the resulting fraction coincide with
the expansion of the exponential function of the
highest possible order around the point s=0 [12].

The second-order Padé aproximation

The second order Padého approximation pro-
vides a more accurate approximation of the ex-
ponential term of the time delay " compared to
the first order. Mathematically, it is expressed as
Equation 20:

ST  (sT) 2

-ST ~ __2 " 12 _
- ST (sT)?
1+ 2 + 12

e (20)

This approximation is more accurate than the
first order and better captures the dynamics of
the time delay, but at the same time increases the
order of the transfer function. The second order
of Pad¢ approximation provides a more accurate
capture of the dynamics of time delay compared

—sT . Np(sT) (17) to lower order approximations, thereby reducing
~ Dy(sT) the error between the actual delay and its model.
Where Equation 18 and Equation 19: At the same time, however, it increases the order
of the transfer function, which leads to more com-
_yvr (r-k)! k . )
N,.(sT) = Xk=o K (r—ko)! (—sT) (18) plex dynamic behavior of the system. As a result,
see Figure 5, more poles and zeros appear in the
i) .. .
D,(sT) = X% _, Iil(r _k))' (sT)k (19) mode.l, tl.le position of which in 'tl.le complex plane
AR can significantly affect the stability of the system.
where: r is the degree of approximation. Therefore, it is necessary to thoroughly analyze
1.0 — True delay
-==- Padé (2,2)
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o 0.6}
=
c
S04t
e}
0.2r
0.0r
0 1 2 3 4 5 6 7 8
Time [s]

Figure 5. Comparison of step response with Padé approximation of time delay
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these new poles and zeros to avoid possible insta-
bility. In addition, as with other Padé approxima-
tions, the second order can cause non-minimum-
phase behavior of the system, where the output
after a sudden change in input may initially re-
spond in the opposite direction than expected,
which can affect the design and performance of
the control system [16, 17].

CONCLUSIONS

This article analyzed the properties of systems
with non-minimal phase, which occur in many
technical applications and pose a significant chal-
lenge in control design. Their specific behavior,
caused by unstable zeros, significantly affects
transient phenomena, stability, and the overall per-
formance of the control system. An important part
of the analysis was also the presence of time delay,
which was approximated using Padé approxima-
tion. This made it possible to convert the irrational
term into a rational form and thus simplify the de-
sign of controllers using classical methods.

The analysis shows that the use of Padé ap-
proximation is particularly practical in frequen-
cy analysis and the design of feedback systems,
but caution must be exercised when selecting its
order. Too high a degree can lead to a deteriora-
tion in stability and introduce unrealistic dynam-
ic effects into the system. For the design of non-
minimum phase systems with delay, it is there-
fore advisable to combine the knowledge from
classical and modern control theory, including
robust and optimization methods that can com-
pensate for these negative effects. The simula-
tions and examples presented in the paper con-
firmed the theoretical findings and highlighted
the importance of correct model approximation
and an appropriate approach to control design.
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