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INTRODUCTION

The research problem of computer sys‑
tems understood as mass service systems, per‑
formance, has been one of the key challenges 
for more than fifty years [1, 2]. Today, in com‑
parison to past times, it is possible not only to 
consider this challenge in terms of theoretical 
analysis but also to collect huge real datasets 
that can be further analyzed [3, 4]. On the ba‑
sis of obtained statistics, experts are able to 
create exact statistical models that can be used 
for modeling. Data sets can be collected after 
experiments with different hardware configura‑
tions, operating systems generations. They can 
also include different types of workloads gen‑
erated by benchmarks and human users. Here, 
in this paper, the authors focus on Windows 
operating system built‑in solutions. Compared 
with the approaches known in the literature [1, 
2], where analytical solutions assume a single, 

unchanging Gaussian‑domain distribution, our 
study not only collects data but also applies 
several statistical approaches to reveal data‑set 
properties that are particularly interesting from 
a statistical point of view. In real data, compared 
to the models considered in literature, we can 
have a mixture of different probability distri‑
butions with power-law properties. One of the 
main motivations for this paper is to discover 
and obtain new knowledge about the real behav‑
ior of computer memory system considered as a 
whole. This means that hardware is processing 
tasks and is also working together with oper‑
ating system software. The research presented 
here constitutes an extension of earlier works, 
in which the cache‐byte counter was analyzed, 
revealing the presence of self‐similarity and 
long‐range dependencies [5, 6]. That work is 
now complemented by an additional analysis 
of power‐law distributions. Previous research 
is supported by new sets of collected data with 
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new hardware configurations. However, to meet 
the challenges of accurately analyzing comput‑
er system performance, it is important to look 
for statistical methods. These methods must 
enable more accurate data collection, analysis, 
and interpretation.

The analysis of counters and probability 
distribution densities for collected data is nec‑
essary to gain a deeper understanding of system 
behavior at the cache level, which plays a key 
role in system performance. In the literature, a 
similar approach can be seen in: origins of the 
long-range correlations of ionic current fluc‑
tuations in membrane channels [7], water lev‑
els [8], financial and volcanic time series [9], 
paper citations [10], mechanical systems [11]. 
In paper it is shown that precise monitoring of 
operating system counters allows identification, 
for example, cache efficiency patterns, which 
have a direct impact on the speed and the sta‑
bility of entire system application. In the case 
of computer systems analysis this is not widely 
used approach with well-established method‑
ology, but for instance some examples can be 
referred to: computer programs [12], software 
[13], system-on-chip (SoC) and power-efficient 
network-on-chip (NoC) topologies [14]. Re‑
garding memory-system analysis based on col‑
lected time series, it is worth mentioning paper 
[15]. There memory-access traces were col‑
lected over time and were analyzed using auto‑
correlation and alpha-stable process models to 
characterize time‑series patterns in CPU bench‑
mark workloads are used. But in comparison to 
the presented paper, the authors mostly focused 
on CPU. In paper [16], chaos theory and nonlin‑
ear dynamical systems analysis are used to ana‑
lyze system performance counters, including 
memory usage. However, it is not related to the 
existence of power-laws. The understanding of 
probability distributions, especially the obser‑
vation of “heavy tails”, enables the prediction 
of extreme events that may require intervention 
or optimization [17]. For this reason, in-depth 
analysis of counters and their probability den‑
sity distributions becomes a key element in the 
process of managing the performance and reli‑
ability of computer systems.

In successive sections, the following topics 
will be discussed. After the introduction, in Sec‑
tion 2 the architecture and different types and 
groups of counters will be considered. Next, a 
comparison of different counter-groups will be 

presented as a review of their development in ac‑
cordance with the development of Windows op‑
erating systems. In Section 4 several practical ex‑
amples related to the use of this internal systems 
solution will be shown. Finally, the paper will be 
summarized in Section 5.

A SHORT REVIEW OF PERFORMANCE 
COUNTERS HISTORY IN OPERATING 
SYSTEMS: FROM WINDOWS XP 		
TO WINDOWS 11 

In the family of Windows operating systems, 
counters as internal elements of the system ap‑
peared for the first time in Windows NT3.1 [17]. 
Initially, direct access was limited and required 
additional actions done by the user, for instance, 
system upgrade with installation of software 
package, but later in new versions of operating 
systems direct access to counters via perfmon 
tool was allowed. This created the possibility of 
dealing with long-term records of operating sys‑
tem counters. Because there are no similar com‑
parisons of counters in the literature, this paper 
gives some details on these issues. 

The Microsoft company calls each type of 
data collected by the operating system, for ex‑
ample, the amount of RAM used, % CPU usage, 
etc., a performance counter [18, 19]. The data of 
such counters contains detailed information about 
the behavior of the system. Each counter in MS 
Windows has an assigned counter type. This type 
determines how the information collected by the 
counter is calculated and displayed. Looking at 
the current available in MS Windows 10 (21H1) 
list, there are more than 800 different counters. It 
should also be emphasized that, depending on the 
installed hardware and the MS Windows operat‑
ing system version, the number of counters and 
groups may vary. This is because, for example, 
equipment manufacturers can write their own 
counter for their device.

Each counter in MS Windows is based on 
some mathematical functions that allow calcula‑
tions to be done. For example, in MS Windows 
10 (21H1), there are 34 types of counters, show‑
ing the methods of downloading raw data, e.g., 
from the processor, and then passing this value to 
the appropriate type of counter. An example of a 
counter type is presented in Table 1 [20].

As can be seen in Table 1, the method of re‑
trieving data is immediate, i.e. when the command 
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is invoked, the data are read and then processed 
by the function returning the result. This type re‑
turns data that has been calculated as the average 
of the last two measurements over time.

One of the default limits of the built-in data 
collection tools is the available time interval, 
which typically is from 1 second to 1 minute 
[22]. However, it is possible to collect data at 
smaller intervals, even every 100 ms using, for 
example, the performance API or using Power‑
Shell [18]. Collecting data from system counters 
more frequently than the default limit of 1 sec‑
ond (it is assumed in the Perfmon – performance 
monitor – system tool) may be justified in situ‑
ations requiring precise, real-time performance 
analysis. For time-intensive applications such 
as network traffic or video games, shorter mea‑
surement intervals can help identify and resolve 
performance problems as they arise. However, 
an increased frequency of data collection can 
also lead to a significant system load, especially 
when monitoring multiple counters simultane‑
ously. Therefore, it is crucial to strike a balance 
between the need for detailed data, the poten‑
tial impact on system performance, and the type 
of counter itself [22]. In the case of sampling 
strategy, authors decided to take 1 second inter‑
val. This decision was based on the observation 
that data variability in smaller time intervals was 
very low. Also, several tests were done with dif‑
ferent sampling rates: 10, 30, and 60 seconds, 
and in any case the existence of non-heavy-
tailed distributions was confirmed. This is di‑
rect proof that heavy-tails (power-law distribu‑
tions) properties are scale independent and may 
do not vanish at coarse resolutions. Moreover, 
higher (i.e. above 1 second) sampling rates lead 
to the loss of data precision – accidentally such 
extreme phenomena like memory dumps, com‑
puter resets, high jumps in memory usage can be 
deleted from time series.

For example, the cache bytes counter indi‑
cates the size, in bytes, of the portion of the system 

file cache that currently resides in and is active in 
physical memory. According to the documenta‑
tion, this counter only shows the last measured 
value [21, 23]. Table 2 shows the counter data re‑
turned with a resolution of 100 milliseconds and 
1 second. As can be seen in the table, the vari‑
ability in smaller time intervals is so small that it 
is not recommended to use sampling smaller than 
1 second. However, this is not a rule, and it is rec‑
ommended to adapt the method of selecting the 
intervals for each counter separately [22].

COMPARATIVE ANALYSIS OF COUNTERS 
IN WINDOWS SYSTEMS – FROM XP TO 11

In the previous chapter, a short description of 
system counters was given. Over the years, tech‑
nological progress has forced operating system 
designers to generate more information. Taking 
into account the beginning of the Windows desk‑
top operating system family investigated in the 
paper, the authors checked how many counters 
and counter groups there are in XP-11 operating 
systems. Windows XP allowed collecting only 
554 counters from 30 different groups, e.g. cache, 
memory, and processor. From the time perspec‑
tive and subsequent versions of the system, this 
number seems to be quite small. For example, 
the next generation of the system, i.e. Windows 
Vista, already has 965 counters in 60 groups, 
while Windows 7 64 bit allows to collect data 
from 1.473 counters in 91 groups. As can be read 
in Table 3, in each subsequent generation of the 
operating system, there is a significant increase in 
the number of built-in system counters. 

One of the issues of this type of tests, is the 
existence of various compilations or updates of 
operating systems, e.g. service packs for Win‑
dows XP, Vista, and 7, or various compilations of 
later operating systems.

The individual operating system builds were 
also detailed during the tests:

Table 1. Type of counter: PERF_COUNTER_RAWCOUNT [21]
Description This counter type shows the last observed value only 

Data read time Instantaneous 

Formula Shows data in RAW form 

Average 
𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁)

𝑥𝑥  
N is used to describe the raw counter data. 

Counter example Memory\Cache bytes 
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	• Windows XP Professional, Service Pack 3,
	• Windows Vista Business, Service Pack 1,
	• Windows 7 Professional x86, Service Pack 1,
	• Windows 7 Professional x64, Service Pack 1,
	• Windows 8 Professional x86, Build 9200,
	• Windows 8 Professional x64, Build 9200,
	• Windows 8.1 Professional x86, Build 9200,
	• Windows 8.1 Professional x64, Build 9200,
	• Windows 10 Professional x86, version 22H2,
	• Windows 10 Professional x64, version 22H2,
	• Windows 11, version 23H2.

The next test focused on analyzing the coun‑
ters between the presented generations of the 
MS Windows system to specify the groups and 
the counters themselves that are in each system, 
regardless of the processor architecture. Data 
analysis revealed the presence of 347 counters 
distributed into 19 unique counter groups that are 
common to all tested generations of the MS Win‑
dows operating system.

These groups include categories such as 
memory, processor(*), and network interface(*), 
which emphasizes their fundamental importance 
for monitoring and diagnosing the performance of 
the operating system. The complete list of groups 
and the sum of the counters are presented in Ta‑
ble 4. The presence of these counter groups in 
all generations of the Windows operating system 
indicates stability and continuity in Microsoft’s 

approach to the development of diagnostic and 
system monitoring tools, especially in the areas 
of memory and processor. Such a broad cover‑
age indicates a key approach to operating system 
administration, focused on the performance, re‑
liability, and availability of Windows operating 
systems in various work environments.

Analysis of data from counters

The analysis of system counter data is a com‑
plex process that requires detailed planning and 
understanding of the operational context. The key 
challenges are the amount of data generated by 
the counters and their effective storage. This data 
can be collected from a variety of sources with a 
potentially high sampling rate, which can lead to 
a rapid increase in data volume and requires the 
use of optimized solutions for their processing. 

Table 5 shows how different sampling set‑
tings affect the amount of data we collect. One 
key observation is that measuring data every 100 
milliseconds may not always be accurate, because 
sometimes there are measurement time intervals 
in the range of 95–115 milliseconds. This shows 
the limitation of data collection precision. More‑
over, the increased amount of data generated by 
more frequent sampling requires not only greater 
processing throughput from monitoring systems 

Table 2. Sample data received from the cache bytes counter in two-time intervals 
Time Counter value cache bytes [100 ms] Counter value cache bytes [1 s]

12:40:00.079 539754500

12:40:00.199 539758600

12:40:00.309 539758600 539758600

12:40:00.418 539762700

12:40:00.526 539775000

12:40:00.635 539914200

12:40:00.744 539963400

12:40:00.855 539963400

12:40:00.965 539959300

12:40:01.072 539959300

12:40:01.182 539959300

12:40:01.289 539967500

12:40:01.399 539967500 539967500

12:40:01.508 539967500

12:40:01.617 540004400

12:40:01.726 540004400

12:40:01.835 540004400

12:40:01.945 539848700
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but also increased memory capacity for storing 
these data. In turn, the additional counters added 
for monitoring at 100-ms intervals proportion‑
ally increases the size of the collected data. This 
highlights the need to make careful resource cal‑
culations before initiating long-term monitoring 
sessions. The results and conclusions presented in 
Table 5 provide important information for design‑
ers of monitoring systems, who must take into ac‑
count both the precision of the collected data and 
the system’s efficiency in terms of information 
processing and storage.

The analysis and interpretation of particular 
counters itself is another challenge, considering that 
the number of available counters can range from 
554 in XP to as many as 2879 in Windows 11. This 
diversity requires system administrators to have a 
deep understanding of each counter specifics and 
its potential impact on system performance.

Another problem with data analysis is the 
fact that counters can be classified into one of 34 
types. In these types, data can be processed and 
returned in a variety of ways. For example, some 
counters provide the average number of opera‑
tions performed in each second of the sampling 
period. Others display the average hit ratio for all 
operations during the last two sampling periods, 
allowing one to evaluate the effectiveness of a 
given operation. The others show the ratio of a 
subset to its set as a percentage, allowing a quick 
assessment of the proportions of individual ele‑
ments in the context of the whole [20].

To show the issues related to counter anal‑
ysis, the memory group and the cache bytes 
counter were selected. This counter is one of the 

most important counters that indicates the size 
(in bytes) of the portion of the system file cache 
that currently resides in and is active in physical 
memory. This counter, due to its presence in all 
systems under analysis, highlights its significant 
role in monitoring system performance.

DATA ANALYSIS BASED ON THE 		
CACHE BYTE COUNTER

The main assumption of the experiment was 
to perform a long-term observation of the perfor‑
mance of Microsoft Windows 7, 8, and 10 oper‑
ating systems (x64 architecture), running in two 
environments: on identically configured virtual 
machines without any user influence, and on 24 
physical computers with user interface (eight per 
OS version). A total set of 6 virtual machines took 
part in the research; 2 virtual machines for each 
of Microsoft 7, 8, 10 operating systems with the 
following configuration parameters: 2 GB RAM, 
2 vCPU, 50GB HDD. The data collected includes 
uninterrupted work of operating systems for a to‑
tal of approximately 30 days. To avoid undefined 
behavior of operating systems, computers do not 

Table 3. Number of groups of counters and 
MS Windows Desktop system counters 
over the subsequent generations 

OS Counter groups Counters

Windows XP 30 554

Windows Vista 60 965

Windows 7 32bit 91 1473

Windows 7 64bit 91 1473

Windows 8 32bit 105 1696

Windows 8 64bit 105 1698

Windows 8.1 32bit 118 1803

Windows 8.1 64bit 110 1728

Windows 10 32bit 146 2161

Windows 10 64bit 153 2439

Windows 11 171 2879

Table 4. Performance counters that are present 
in all generations of the Microsoft Windows
operating system

Counter group Number of Counters

Browser 20

Cache 27

ICMP 27

Job Object Details(*) 27

LogicalDisk(*) 23

Memory 29

NBT Connection(*) 3

Network Interface(*) 17

Objects 6

Paging File(*) 2

PhysicalDisk(*) 21

Print Queue(*) 13

Process(*) 27

Processor(*) 15

Redirector 37

System 17

Telephony 9
Terminal Services 
Session(*) 15

Thread(*) 12
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have access to the Internet or internal network, and 
the user does not perform any operations.

In addition to the virtual machines, the study 
also employed a group of 24 physical computers, 
divided into three groups of eight machines each 
running Windows 7, Windows 8 and Windows 10 
(x64 architecture) with varied hardware configu‑
rations. Unlike the VM set, these physical ma‑
chines were used by real users carrying out their 
normal day-to-day tasks without any artificially 
generated load throughout the observation period. 
In practice, no two users have the same machines, 
application sets, or daily routines. Hardware de‑
tails and data sets are given in [24]. In addition, 
tracking every action of participants throughout 
the experiment would create unresolvable pri‑
vacy and consent problems and can significantly 
disturb performed experiments.

Figure 1 shows the cache bytes counter be‑
havior for each operating system separately. As 
can be seen, in each version of the presented op‑
erating system, the behavior of this counter is 
different, even without any user influence. This 
raises a problem with the interpretation of results 
and the further proposals of different models, e.g. 
for optimizing cache management.

The diversity in the cache bytes counter be‑
havior in different versions of the Microsoft Win‑
dows operating system, shown in Figure 1, indi‑
cates the need for an in-depth analysis of these 
patterns, which could contribute to a better under‑
standing of system memory management. Instead 
of focusing on differences, the key point can be 
the search for common patterns, such as charac‑
teristic changes in data values or typical probabil‑
ity distributions, which would enable the creation 
of more universal models of cache processes.

In the future, such an analysis could help 
identify potential performance issues before they 
occur, making systems more stable and respon‑
sive. Finally, a better understanding of the behav‑
ior of this counter could contribute to the devel‑
opment of advanced monitoring techniques that 
could adapt to dynamically changing operating 

conditions of the system, which is crucial in 
the management of complex computer systems. 
However, this work is focused on examining the 
statistical properties of the data collected from 
counters in order to learn the characteristics of 
processes occurring in cache memory during pro‑
cessing in the operating system.

Cache memory bytes counter data analysis

The next stage of the analysis is to determine 
the probability distribution for the cache byte 
counter, whose behavior is a random process de‑
scribed by the random variable X. This will en‑
able understanding the dynamics of processing 
over time and the overall cache utilization pro‑
file. Such an analysis will help determine whether 
there are statistical similarities in OS Windows 
cache management between operating systems. 
This method focusses on understanding the vari‑
ability and characteristics of the data. 

Two methods are used mainly to analyze the 
random variable X probability distributions, rep‑
resented by the time series Xi(t), i ∈{1,..., n} – 
histograms and kernel density estimators. This 
analysis focusses on the use of kernel density esti‑
mators, especially the Epanechnikov kernel with 
smoothing according to Silverman’s rule, which 
is considered to be particularly effective [25–26].

Due to the fact that the counter indicates the to‑
tal value of cache bytes in a given second, i.e. only 
the positive ones, it is more difficult to read dy‑
namic changes. An approach was chosen in which 
the probability density analysis of each tested data 
set was performed using increments, i.e. the dif‑
ference of cache bytes in its current and previous 
value: X(t) – X(t – 1). This simple approach allows 
us to check how the number of bytes of the cache 
used in a given operating system changes every 
1 second. Figure 2 shows an example cache byte 
counter values chart for selected machines (with 
order reference to Figure 1).

Based on the increments shown in Figure 2, 
four complementary steps can be carried out to 

Table 5. Comparison of data collections efficiency 
Number of counters Sampling rate Number of rows Data size (bytes) Data size per second (bytes/sec)

1 1 s 3.562 276,990 76.94

1 100 ms 32.535 2,530,428 703.45

2 1 s 3.562 383,074 106.41

2 100 ms 32.535 3,498,994 971.94
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verify the hypothesis of the heavy-tailed distribu‑
tions occurrence in all tested cases:
1.	Tail index estimation α (McCulloch, Kout, 

Kogon-McCulloch methods) [27].
2.	Analysis of Q–Q charts and the Anderson-

Darling test for compliance with the normal 
distribution.

3.	Hill exponent estimation – see reference [28] 
for more details.

4.	Graphical analysis.

Table 6 shows the results of the three α 
heavy-tail index estimation methods for all 
tested operating systems and hardware configu‑
rations. Due to specific properties of analyzed 
time series (e.g. large number of zeros; in some 
time series it is even 90% of the records), some 
numerical algorithms for α stability index re‑
turned NA. NA indicates that selected methods 
could not reliably estimate this parameter, but 
the reasons for this result are not known. For 
example, the McCulloch quantile estimator re‑
lies on matching five sample quantiles to pre-
computed lookup tables that map those quantiles 
to the stable distribution parameters α and β. 
Whenever two or more required quantiles coin‑
cide or the result falls outside the range of the 
tables, the procedure fails to converge, and the 
function returns the fallback value α = 0.5. This 

value could be merely an error flag and could 
therefore be treated the same as NA. There are 
also data for which the McCulloch, Kout and 
Kogon-McCulloch (IG) methods returned re‑
sults indicating the presence of heavy-tails. In 
the case of the McCulloch method, returning a 
value of 0.5 suggests a possible problem with 
the algorithm’s operation and could be also 
treated as NA. Thus, also graphical tests were 
performed, like Q-Q plots and visualizations of 
probability distributions.

From the results presented in Table 6, it is 
clear that because not always used numerical 
methods can effectively prove the existence of 
heavy tails, thus a further test can be performed 
comparing the empirical distributions with the 
theoretical normal distribution. It will help to 
confirm or reject the thesis about the existence of 
distribution “heavy tails”.

One such test is the empirical analysis of 
Q-Q plot for selected machines, which is pre‑
sented in Figure 3. Graphical analysis and com‑
parison with the normal distribution in all ana‑
lyzed cases showed significant differences in the 
shape of the distribution, with dominant heavy 
tails in the data, especially visible in the extreme 
quantile values.

In the case of the Anderson-Darling test, 
each tested time series returned a p-value of 

Figure 1. Cache bytes comparison between selected machines: left column – virtual machines,
right column – PCs from group 1
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3.7 × 10-24, which indicates a strong rejection 
of the null hypothesis of compliance with the 
normal distribution – the tested data statistical‑
ly significantly deviate from the normal distri‑
bution. It should be emphasized, according to 
paper [5], that the data can exhibit long-range 
dependencies, which violates the classical as‑
sumption of samples independence. The Hurst 
exponent determined for the studied series sig‑
nificantly exceeds 0.5, “confirming the exis‑
tence of deep statistical long-term dependen‑
cies in all studied time series” – the samples 
are strongly dependent over time. Neverthe‑
less, the extremely low p-value of the Ander‑
son-Darling test (on the order of 10-24) clearly 
indicates a deviation from normal distribu‑
tion. In this paper, an emphasis was placed on 
qualitative conclusions derived from the Q-Q 
plots and estimator values (e.g., Hill’s). By the 
use of data increments and very large sample 
size, the influence of dependencies between 
subsequent observations was minimized, and 
the characteristics of heavy tails of the distri‑
butions were highlighted. In the future work, 
it is planned to utilize significant verification 
methods that take into account dependencies 
(e.g., block bootstrap procedures) to formally 
confirm the obtained results.

Another test for the occurrence of heavy-
tailed distributions is the analysis of the Hill ex‑
ponent, which is shown in Figure 4.

The analysis of the Hill exponent for all the 
operating systems and load mode shows that 
there are heavy tails for a certain range of the or‑
dinal statistics k. One of the difficulties in estimat‑
ing this parameter is finding the optimal value of 
the parameter k that will be free of bias; therefore, 
one method is to take the last 5–20% of the k val‑
ue and look for the value of the α parameter there 
or use one of the optimization methods.

In order to find the optimal order statistic k, 
the Tea package from the Crane repository [29] 
was used to select the dAMSE function, which 
aims to provide the optimal number of order sta‑
tistics k for the Hill estimator. The results of the 
estimated α parameter are presented in Table 7.

Although the numerical dAMSE method pro‑
duces unstable, extreme values ​​of α in some situ‑
ations (when the optimal k falls outside the rec‑
ommended range of the last 10–20% of the order 
statistics k), the empirical, graphical Hill exponent 
confirms the existence of heavy-tails. This is a 
general problem with calculations of the α stability 
index [30]. There is no commonly accepted, uni‑
versal method, thus in paper several were used to 
compare obtained results [31, 32]. Some obtained 
results indicate extreme α values calculated by 

Figure 2. Cache byte increments comparison between selected machines
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numerical methods, but also a graphical approach 
was taken together with Q-Q plots. Extreme α val‑
ue could be a prerequisite for a non-heavy-tailed 
distribution. In the case of Table 7, α values were 
returned by the dAMSE method, which can yield 
unexpected optimal k values that reflect α values 
outside the Lévy domain. Therefore, in case of in‑
consistencies, each series should be manually ana‑
lyzed in addition to the dAMSE method.

To better visualize the distribution features 
of the analyzed increments of cache bytes in the 
graph (Figure 5), the vertical axis is presented 
on a logarithmic scale. In Figure 5, the blue 
curve shows the estimated real probability dis‑
tribution using Epanechnikov kernel, whereas 
the red curve represents the theoretical normal 

distribution. The results provide information 
about the analyzed systems’ performance: in 
each of the tested virtual machines the cache 
byte counter values do not change without user 
intervention for at least 90% of the system op‑
eration time. This conclusion may give the false 
impression that there is no visible process dy‑
namics in the operating system (colloquially: 
the system does nothing) – the system should re‑
main in a stable state. A look at Figure 5 shows 
that the probability density graph visualized on 
a log-lin scale shows the potential occurrence 
of the so-called “heavy tails” in the probability 
distribution (right and left tails show extreme 
events and are slowly vanishing). These types of 
distributions are characteristic of processes with 

Table 6. Distribution of α index stability estimation
OS McCulloch [α] Kout [α] IG [α]

VM1 Windows 7 2GB 0.5 NA NA

VM2 Windows 7 2GB 0.5 NA NA

VM1 Windows 8 2GB 0.5 NA NA

VM2 Windows 8 2GB 0.5 NA NA

VM1 Windows 10 2GB 0.5 0.127 0.0093

VM2 Windows 10 2GB 0.5 0.1279 0.0053

PC1 Windows 7 0.5 0.236 0.303

PC2 Windows 7 0.5 0.739 0.709

PC3 Windows 7 0.576 0.408 0.454

PC4 Windows 7 0.586 0.483 0.487

PC5 Windows 7 0.5 NA NA

PC6 Windows 7 0.5 NA NA

PC7 Windows 7 0.663 0.413 0.563

PC8 Windows 7 0.5 0.299 0.367

PC1 Windows 8 0.5 NA NA

PC2 Windows 8 0.685 0.142 0.372

PC3 Windows 8 0.5 NA NA

PC4 Windows 8 0.5 NA NA

PC5 Windows 8 0.5 NA NA

PC6 Windows 8 0.554 0.766 0.786

PC7 Windows 8 0.79 0.515 0.683

PC8 Windows 8 0.568 0.209 0.18

PC1 Windows 10 0.5 NA 0.037

PC2 Windows 10 0.597 0.268 0.306

PC3 Windows 10 0.5 NA NA

PC4 Windows 10 0.5 NA NA

PC5 Windows 10 0.5 NA NA

PC6 Windows 10 0.5 NA NA

PC7 Windows 10 0.5 NA NA

PC8 Windows 10 0.5 0.158 0.212
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extreme values. This effect is known in many 
different cases [17] and means that the process 
cannot always be modelled using a random walk 
– from a statistical perspective. An approach 
based on the Lévy processes may be needed. 
Figure 5 shows that the heavy tails appear in the 

probability distributions for each operating sys‑
tem regardless of its version and its load. This 
effect can be much better observed if the prob‑
ability distribution is plotted on a double loga‑
rithmic scale, but it will be only visible for incre‑
ments greater than 0. 

Figure 3. Q-Q graphs for selected machines

Figure 4. Hill estimator for selected machines
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CONCLUSIONS

In this paper authors were able to discover in‑
teresting patterns that can be also found in com‑
puter systems behavior. This is the main achieve‑
ment of presented work. It seems to be a little bit 
surprising bearing in mind that computer systems 
technical time is going much faster than in other 
physical systems. Power-law distributions exist 
in many different natural phenomena, and their 
appearance is one of the first key indicators of 
complex behavior with long-range dependencies. 
In the case of computer systems, it is an indicator 
of their dynamical behavior that was caused by 
human generated workload. From the presented 
paper, in comparison to the so far used analyti‑
cal models from queuing theory, it is clear the 
computer systems managed by Windows oper‑
ating systems can behave in scale-free regime 
with dynamical behavior that influences their 
performance. This is visible at least via the cache 
memory counter. 

The proposed paper draws attention to the 
presence of “heavy tails” in the analyzed data, 
which indicates the characteristic Lévy processes 
in computer systems. This observation not only 
confirms the complexity of computer systems be‑
havior, but also highlights the need for further re‑
search in this direction. This problem is not well-
recognized in literature, since most of the existing 
approaches refer to classical queuing models pro‑
posed more than 40 years ago. The development 
of current operating systems allows us to collect 

Figure 5. Probability distribution of cache bytes increments for selected machines. The Sensity Of Cache bytes 
is presented on a log scale. The red line shows the fitted normal distribution; blue line shows the real distribution. 

Normal distribution was estimated by calculated mean and variance

Table 7. The α parameter estimation results 
for the Hill estimator

OS Optimal k Estimated α
VM1 Windows 7 2GB 4100 0.571
VM2 Windows 7 2GB 4213 0.433
VM1 Windows 8 2GB 6214 2.007
VM2 Windows 8 2GB 5785 1.941

VM1 Windows 10 2GB 4303 1.688
VM2 Windows 10 2GB 3503 1.314

PC1 Windows 7 772 2.406
PC2 Windows 7 4031 1.633
PC3 Windows 7 29 2.715
PC4 Windows 7 223 1.178
PC5 Windows 7 3662 1.338
PC6 Windows 7 392 1.194
PC7 Windows 7 751 2.105
PC8 Windows 7 32 1.815
PC1 Windows 8 1254 1.592
PC2 Windows 8 424 2.295
PC3 Windows 8 54 4.188
PC4 Windows 8 6385 0.994
PC5 Windows 8 37 2.985
PC6 Windows 8 4859 1.194
PC7 Windows 8 603 3.387
PC8 Windows 8 116 164.929

PC1 Windows 10 142 1.979
PC2 Windows 10 37 54.728
PC3 Windows 10 52 3.145
PC4 Windows 10 888 2.497
PC5 Windows 10 2501 1.629
PC6 Windows 10 45 4.587
PC7 Windows 10 2702 1.858
PC8 Windows 10 129 2.463



513

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

data sets and detect hidden patterns and origins 
of long-range correlations. This opens a new 
field for future analyses aimed at delving into the 
mechanisms responsible for these unique patterns 
in probability distributions. The considerations 
presented in the paper show evidence that such 
patterns can exist in personal computers with MS 
Windows operating systems when the workload 
is generated by users.

The existence and understanding of Lévy 
processes and their impact on computer systems 
performance dynamics was indicated as crucial to 
the development of more effective monitoring and 
optimization methods for computer networks, but 
in the case of computer systems is still neglected. 
Since the problem is new, a more detailed study 
requires other methods for the calculations of the 
α stability index. Some of them are based not on 
the features of probability or density distributions 
but on time series. Among them there are: maxi‑
mum likelihood estimation (MLE), least squares 
estimation (LS), weighted least squares estima‑
tion (WLS), percentile method (PM), method of 
moments (MoM). 

Therefore, it is crucial to adapt the data col‑
lection method to the specificity of the monitored 
counters and expectations regarding the accuracy 
of the analyses. Even more, it is good to have real 
data that is collected in the system where there is 
a workload (system is not in the idle state) gener‑
ated by users or other computer programs.
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