
502

INTRODUCTION

The research problem of computer sys‑
tems understood as mass service systems, per‑
formance, has been one of the key challenges
for more than fifty years [1, 2]. Today, in com‑
parison to past times, it is possible not only to
consider this challenge in terms of theoretical
analysis but also to collect huge real datasets
that can be further analyzed [3, 4]. On the ba‑
sis of obtained statistics, experts are able to
create exact statistical models that can be used
for modeling. Data sets can be collected after
experiments with different hardware configura‑
tions, operating systems generations. They can
also include different types of workloads gen‑
erated by benchmarks and human users. Here,
in this paper, the authors focus on Windows
operating system built‑in solutions. Compared
with the approaches known in the literature [1,
2], where analytical solutions assume a single,

unchanging Gaussian‑domain distribution, our
study not only collects data but also applies
several statistical approaches to reveal data‑set
properties that are particularly interesting from
a statistical point of view. In real data, compared
to the models considered in literature, we can
have a mixture of different probability distri‑
butions with power-law properties. One of the
main motivations for this paper is to discover
and obtain new knowledge about the real behav‑
ior of computer memory system considered as a
whole. This means that hardware is processing
tasks and is also working together with oper‑
ating system software. The research presented
here constitutes an extension of earlier works,
in which the cache‐byte counter was analyzed,
revealing the presence of self‐similarity and
long‐range dependencies [5, 6]. That work is
now complemented by an additional analysis
of power‐law distributions. Previous research
is supported by new sets of collected data with

Power law distributions evidences in cache memory bytes –
Windows performance counter

Bartosz Kowal1* , Dominik Strzałka1

1	 Department of Complex Systems, Rzeszów University of Technology, Al. Powstańców Warszawy 12,
35-959 Rzeszów, Poland

* Corresponding author’s e-mail: b.kowal@prz.edu.pl

ABSTRACT
In this paper, the main attention is paid to the analysis of Windows operating system counter Memory Cache Bytes.
Thanks to the Windows Perfmon tool, it was possible to gather long time series that show interesting, from statisti‑
cal point of view, behavior of different Windows Desktop operating system versions (Windows 7, 8, 10) in idle
and loaded mode. The comparative analysis of this counter behavior, understood as a time series that represents
cache memory, will show that based on internal memory management mechanisms power law distributions are
omnipresent phenomena. We focused on McCulloch, Kout methods and Hill estimator for calculations of alpha
stability index and Q-Q plot with Anderson-Darling test for distribution normality test. All of the tested time series
indicated the existence of deep probability heavy-tailed distributions for extreme values, confirming that operating
system has to deal with anomalous cache memory behavior. This feature is common for all tested 64-bit hardware
configurations regardless of the workload mode.

Keywords: operating systems, counters, performance tests, long-term behavior, long-range dependencies, Lévy
processes, power laws.

Received: 2025.05.30
Accepted: 2025.09.15
Published: 2025.10.01

Advances in Science and Technology Research Journal, 2025, 19(11), 502–514
https://doi.org/10.12913/22998624/209581
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0000-0002-7909-6484
https://orcid.org/0000-0002-8887-4321

503

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

new hardware configurations. However, to meet
the challenges of accurately analyzing comput‑
er system performance, it is important to look
for statistical methods. These methods must
enable more accurate data collection, analysis,
and interpretation.

The analysis of counters and probability
distribution densities for collected data is nec‑
essary to gain a deeper understanding of system
behavior at the cache level, which plays a key
role in system performance. In the literature, a
similar approach can be seen in: origins of the
long-range correlations of ionic current fluc‑
tuations in membrane channels [7], water lev‑
els [8], financial and volcanic time series [9],
paper citations [10], mechanical systems [11].
In paper it is shown that precise monitoring of
operating system counters allows identification,
for example, cache efficiency patterns, which
have a direct impact on the speed and the sta‑
bility of entire system application. In the case
of computer systems analysis this is not widely
used approach with well-established method‑
ology, but for instance some examples can be
referred to: computer programs [12], software
[13], system-on-chip (SoC) and power-efficient
network-on-chip (NoC) topologies [14]. Re‑
garding memory-system analysis based on col‑
lected time series, it is worth mentioning paper
[15]. There memory-access traces were col‑
lected over time and were analyzed using auto‑
correlation and alpha-stable process models to
characterize time‑series patterns in CPU bench‑
mark workloads are used. But in comparison to
the presented paper, the authors mostly focused
on CPU. In paper [16], chaos theory and nonlin‑
ear dynamical systems analysis are used to ana‑
lyze system performance counters, including
memory usage. However, it is not related to the
existence of power-laws. The understanding of
probability distributions, especially the obser‑
vation of “heavy tails”, enables the prediction
of extreme events that may require intervention
or optimization [17]. For this reason, in-depth
analysis of counters and their probability den‑
sity distributions becomes a key element in the
process of managing the performance and reli‑
ability of computer systems.

In successive sections, the following topics
will be discussed. After the introduction, in Sec‑
tion 2 the architecture and different types and
groups of counters will be considered. Next, a
comparison of different counter-groups will be

presented as a review of their development in ac‑
cordance with the development of Windows op‑
erating systems. In Section 4 several practical ex‑
amples related to the use of this internal systems
solution will be shown. Finally, the paper will be
summarized in Section 5.

A SHORT REVIEW OF PERFORMANCE
COUNTERS HISTORY IN OPERATING
SYSTEMS: FROM WINDOWS XP 		
TO WINDOWS 11

In the family of Windows operating systems,
counters as internal elements of the system ap‑
peared for the first time in Windows NT3.1 [17].
Initially, direct access was limited and required
additional actions done by the user, for instance,
system upgrade with installation of software
package, but later in new versions of operating
systems direct access to counters via perfmon
tool was allowed. This created the possibility of
dealing with long-term records of operating sys‑
tem counters. Because there are no similar com‑
parisons of counters in the literature, this paper
gives some details on these issues.

The Microsoft company calls each type of
data collected by the operating system, for ex‑
ample, the amount of RAM used, % CPU usage,
etc., a performance counter [18, 19]. The data of
such counters contains detailed information about
the behavior of the system. Each counter in MS
Windows has an assigned counter type. This type
determines how the information collected by the
counter is calculated and displayed. Looking at
the current available in MS Windows 10 (21H1)
list, there are more than 800 different counters. It
should also be emphasized that, depending on the
installed hardware and the MS Windows operat‑
ing system version, the number of counters and
groups may vary. This is because, for example,
equipment manufacturers can write their own
counter for their device.

Each counter in MS Windows is based on
some mathematical functions that allow calcula‑
tions to be done. For example, in MS Windows
10 (21H1), there are 34 types of counters, show‑
ing the methods of downloading raw data, e.g.,
from the processor, and then passing this value to
the appropriate type of counter. An example of a
counter type is presented in Table 1 [20].

As can be seen in Table 1, the method of re‑
trieving data is immediate, i.e. when the command

504

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

is invoked, the data are read and then processed
by the function returning the result. This type re‑
turns data that has been calculated as the average
of the last two measurements over time.

One of the default limits of the built-in data
collection tools is the available time interval,
which typically is from 1 second to 1 minute
[22]. However, it is possible to collect data at
smaller intervals, even every 100 ms using, for
example, the performance API or using Power‑
Shell [18]. Collecting data from system counters
more frequently than the default limit of 1 sec‑
ond (it is assumed in the Perfmon – performance
monitor – system tool) may be justified in situ‑
ations requiring precise, real-time performance
analysis. For time-intensive applications such
as network traffic or video games, shorter mea‑
surement intervals can help identify and resolve
performance problems as they arise. However,
an increased frequency of data collection can
also lead to a significant system load, especially
when monitoring multiple counters simultane‑
ously. Therefore, it is crucial to strike a balance
between the need for detailed data, the poten‑
tial impact on system performance, and the type
of counter itself [22]. In the case of sampling
strategy, authors decided to take 1 second inter‑
val. This decision was based on the observation
that data variability in smaller time intervals was
very low. Also, several tests were done with dif‑
ferent sampling rates: 10, 30, and 60 seconds,
and in any case the existence of non-heavy-
tailed distributions was confirmed. This is di‑
rect proof that heavy-tails (power-law distribu‑
tions) properties are scale independent and may
do not vanish at coarse resolutions. Moreover,
higher (i.e. above 1 second) sampling rates lead
to the loss of data precision – accidentally such
extreme phenomena like memory dumps, com‑
puter resets, high jumps in memory usage can be
deleted from time series.

For example, the cache bytes counter indi‑
cates the size, in bytes, of the portion of the system

file cache that currently resides in and is active in
physical memory. According to the documenta‑
tion, this counter only shows the last measured
value [21, 23]. Table 2 shows the counter data re‑
turned with a resolution of 100 milliseconds and
1 second. As can be seen in the table, the vari‑
ability in smaller time intervals is so small that it
is not recommended to use sampling smaller than
1 second. However, this is not a rule, and it is rec‑
ommended to adapt the method of selecting the
intervals for each counter separately [22].

COMPARATIVE ANALYSIS OF COUNTERS
IN WINDOWS SYSTEMS – FROM XP TO 11

In the previous chapter, a short description of
system counters was given. Over the years, tech‑
nological progress has forced operating system
designers to generate more information. Taking
into account the beginning of the Windows desk‑
top operating system family investigated in the
paper, the authors checked how many counters
and counter groups there are in XP-11 operating
systems. Windows XP allowed collecting only
554 counters from 30 different groups, e.g. cache,
memory, and processor. From the time perspec‑
tive and subsequent versions of the system, this
number seems to be quite small. For example,
the next generation of the system, i.e. Windows
Vista, already has 965 counters in 60 groups,
while Windows 7 64 bit allows to collect data
from 1.473 counters in 91 groups. As can be read
in Table 3, in each subsequent generation of the
operating system, there is a significant increase in
the number of built-in system counters.

One of the issues of this type of tests, is the
existence of various compilations or updates of
operating systems, e.g. service packs for Win‑
dows XP, Vista, and 7, or various compilations of
later operating systems.

The individual operating system builds were
also detailed during the tests:

Table 1. Type of counter: PERF_COUNTER_RAWCOUNT [21]
Description This counter type shows the last observed value only

Data read time Instantaneous

Formula Shows data in RAW form

Average
𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁)

𝑥𝑥
N is used to describe the raw counter data.

Counter example Memory\Cache bytes

505

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

	• Windows XP Professional, Service Pack 3,
	• Windows Vista Business, Service Pack 1,
	• Windows 7 Professional x86, Service Pack 1,
	• Windows 7 Professional x64, Service Pack 1,
	• Windows 8 Professional x86, Build 9200,
	• Windows 8 Professional x64, Build 9200,
	• Windows 8.1 Professional x86, Build 9200,
	• Windows 8.1 Professional x64, Build 9200,
	• Windows 10 Professional x86, version 22H2,
	• Windows 10 Professional x64, version 22H2,
	• Windows 11, version 23H2.

The next test focused on analyzing the coun‑
ters between the presented generations of the
MS Windows system to specify the groups and
the counters themselves that are in each system,
regardless of the processor architecture. Data
analysis revealed the presence of 347 counters
distributed into 19 unique counter groups that are
common to all tested generations of the MS Win‑
dows operating system.

These groups include categories such as
memory, processor(*), and network interface(*),
which emphasizes their fundamental importance
for monitoring and diagnosing the performance of
the operating system. The complete list of groups
and the sum of the counters are presented in Ta‑
ble 4. The presence of these counter groups in
all generations of the Windows operating system
indicates stability and continuity in Microsoft’s

approach to the development of diagnostic and
system monitoring tools, especially in the areas
of memory and processor. Such a broad cover‑
age indicates a key approach to operating system
administration, focused on the performance, re‑
liability, and availability of Windows operating
systems in various work environments.

Analysis of data from counters

The analysis of system counter data is a com‑
plex process that requires detailed planning and
understanding of the operational context. The key
challenges are the amount of data generated by
the counters and their effective storage. This data
can be collected from a variety of sources with a
potentially high sampling rate, which can lead to
a rapid increase in data volume and requires the
use of optimized solutions for their processing.

Table 5 shows how different sampling set‑
tings affect the amount of data we collect. One
key observation is that measuring data every 100
milliseconds may not always be accurate, because
sometimes there are measurement time intervals
in the range of 95–115 milliseconds. This shows
the limitation of data collection precision. More‑
over, the increased amount of data generated by
more frequent sampling requires not only greater
processing throughput from monitoring systems

Table 2. Sample data received from the cache bytes counter in two-time intervals
Time Counter value cache bytes [100 ms] Counter value cache bytes [1 s]

12:40:00.079 539754500

12:40:00.199 539758600

12:40:00.309 539758600 539758600

12:40:00.418 539762700

12:40:00.526 539775000

12:40:00.635 539914200

12:40:00.744 539963400

12:40:00.855 539963400

12:40:00.965 539959300

12:40:01.072 539959300

12:40:01.182 539959300

12:40:01.289 539967500

12:40:01.399 539967500 539967500

12:40:01.508 539967500

12:40:01.617 540004400

12:40:01.726 540004400

12:40:01.835 540004400

12:40:01.945 539848700

506

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

but also increased memory capacity for storing
these data. In turn, the additional counters added
for monitoring at 100-ms intervals proportion‑
ally increases the size of the collected data. This
highlights the need to make careful resource cal‑
culations before initiating long-term monitoring
sessions. The results and conclusions presented in
Table 5 provide important information for design‑
ers of monitoring systems, who must take into ac‑
count both the precision of the collected data and
the system’s efficiency in terms of information
processing and storage.

The analysis and interpretation of particular
counters itself is another challenge, considering that
the number of available counters can range from
554 in XP to as many as 2879 in Windows 11. This
diversity requires system administrators to have a
deep understanding of each counter specifics and
its potential impact on system performance.

Another problem with data analysis is the
fact that counters can be classified into one of 34
types. In these types, data can be processed and
returned in a variety of ways. For example, some
counters provide the average number of opera‑
tions performed in each second of the sampling
period. Others display the average hit ratio for all
operations during the last two sampling periods,
allowing one to evaluate the effectiveness of a
given operation. The others show the ratio of a
subset to its set as a percentage, allowing a quick
assessment of the proportions of individual ele‑
ments in the context of the whole [20].

To show the issues related to counter anal‑
ysis, the memory group and the cache bytes
counter were selected. This counter is one of the

most important counters that indicates the size
(in bytes) of the portion of the system file cache
that currently resides in and is active in physical
memory. This counter, due to its presence in all
systems under analysis, highlights its significant
role in monitoring system performance.

DATA ANALYSIS BASED ON THE 		
CACHE BYTE COUNTER

The main assumption of the experiment was
to perform a long-term observation of the perfor‑
mance of Microsoft Windows 7, 8, and 10 oper‑
ating systems (x64 architecture), running in two
environments: on identically configured virtual
machines without any user influence, and on 24
physical computers with user interface (eight per
OS version). A total set of 6 virtual machines took
part in the research; 2 virtual machines for each
of Microsoft 7, 8, 10 operating systems with the
following configuration parameters: 2 GB RAM,
2 vCPU, 50GB HDD. The data collected includes
uninterrupted work of operating systems for a to‑
tal of approximately 30 days. To avoid undefined
behavior of operating systems, computers do not

Table 3. Number of groups of counters and
MS Windows Desktop system counters
over the subsequent generations

OS Counter groups Counters

Windows XP 30 554

Windows Vista 60 965

Windows 7 32bit 91 1473

Windows 7 64bit 91 1473

Windows 8 32bit 105 1696

Windows 8 64bit 105 1698

Windows 8.1 32bit 118 1803

Windows 8.1 64bit 110 1728

Windows 10 32bit 146 2161

Windows 10 64bit 153 2439

Windows 11 171 2879

Table 4. Performance counters that are present
in all generations of the Microsoft Windows
operating system

Counter group Number of Counters

Browser 20

Cache 27

ICMP 27

Job Object Details(*) 27

LogicalDisk(*) 23

Memory 29

NBT Connection(*) 3

Network Interface(*) 17

Objects 6

Paging File(*) 2

PhysicalDisk(*) 21

Print Queue(*) 13

Process(*) 27

Processor(*) 15

Redirector 37

System 17

Telephony 9
Terminal Services
Session(*) 15

Thread(*) 12

507

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

have access to the Internet or internal network, and
the user does not perform any operations.

In addition to the virtual machines, the study
also employed a group of 24 physical computers,
divided into three groups of eight machines each
running Windows 7, Windows 8 and Windows 10
(x64 architecture) with varied hardware configu‑
rations. Unlike the VM set, these physical ma‑
chines were used by real users carrying out their
normal day-to-day tasks without any artificially
generated load throughout the observation period.
In practice, no two users have the same machines,
application sets, or daily routines. Hardware de‑
tails and data sets are given in [24]. In addition,
tracking every action of participants throughout
the experiment would create unresolvable pri‑
vacy and consent problems and can significantly
disturb performed experiments.

Figure 1 shows the cache bytes counter be‑
havior for each operating system separately. As
can be seen, in each version of the presented op‑
erating system, the behavior of this counter is
different, even without any user influence. This
raises a problem with the interpretation of results
and the further proposals of different models, e.g.
for optimizing cache management.

The diversity in the cache bytes counter be‑
havior in different versions of the Microsoft Win‑
dows operating system, shown in Figure 1, indi‑
cates the need for an in-depth analysis of these
patterns, which could contribute to a better under‑
standing of system memory management. Instead
of focusing on differences, the key point can be
the search for common patterns, such as charac‑
teristic changes in data values or typical probabil‑
ity distributions, which would enable the creation
of more universal models of cache processes.

In the future, such an analysis could help
identify potential performance issues before they
occur, making systems more stable and respon‑
sive. Finally, a better understanding of the behav‑
ior of this counter could contribute to the devel‑
opment of advanced monitoring techniques that
could adapt to dynamically changing operating

conditions of the system, which is crucial in
the management of complex computer systems.
However, this work is focused on examining the
statistical properties of the data collected from
counters in order to learn the characteristics of
processes occurring in cache memory during pro‑
cessing in the operating system.

Cache memory bytes counter data analysis

The next stage of the analysis is to determine
the probability distribution for the cache byte
counter, whose behavior is a random process de‑
scribed by the random variable X. This will en‑
able understanding the dynamics of processing
over time and the overall cache utilization pro‑
file. Such an analysis will help determine whether
there are statistical similarities in OS Windows
cache management between operating systems.
This method focusses on understanding the vari‑
ability and characteristics of the data.

Two methods are used mainly to analyze the
random variable X probability distributions, rep‑
resented by the time series Xi(t), i ∈{1,..., n} –
histograms and kernel density estimators. This
analysis focusses on the use of kernel density esti‑
mators, especially the Epanechnikov kernel with
smoothing according to Silverman’s rule, which
is considered to be particularly effective [25–26].

Due to the fact that the counter indicates the to‑
tal value of cache bytes in a given second, i.e. only
the positive ones, it is more difficult to read dy‑
namic changes. An approach was chosen in which
the probability density analysis of each tested data
set was performed using increments, i.e. the dif‑
ference of cache bytes in its current and previous
value: X(t) – X(t – 1). This simple approach allows
us to check how the number of bytes of the cache
used in a given operating system changes every
1 second. Figure 2 shows an example cache byte
counter values chart for selected machines (with
order reference to Figure 1).

Based on the increments shown in Figure 2,
four complementary steps can be carried out to

Table 5. Comparison of data collections efficiency
Number of counters Sampling rate Number of rows Data size (bytes) Data size per second (bytes/sec)

1 1 s 3.562 276,990 76.94

1 100 ms 32.535 2,530,428 703.45

2 1 s 3.562 383,074 106.41

2 100 ms 32.535 3,498,994 971.94

508

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

verify the hypothesis of the heavy-tailed distribu‑
tions occurrence in all tested cases:
1.	Tail index estimation α (McCulloch, Kout,

Kogon-McCulloch methods) [27].
2.	Analysis of Q–Q charts and the Anderson-

Darling test for compliance with the normal
distribution.

3.	Hill exponent estimation – see reference [28]
for more details.

4.	Graphical analysis.

Table 6 shows the results of the three α
heavy-tail index estimation methods for all
tested operating systems and hardware configu‑
rations. Due to specific properties of analyzed
time series (e.g. large number of zeros; in some
time series it is even 90% of the records), some
numerical algorithms for α stability index re‑
turned NA. NA indicates that selected methods
could not reliably estimate this parameter, but
the reasons for this result are not known. For
example, the McCulloch quantile estimator re‑
lies on matching five sample quantiles to pre-
computed lookup tables that map those quantiles
to the stable distribution parameters α and β.
Whenever two or more required quantiles coin‑
cide or the result falls outside the range of the
tables, the procedure fails to converge, and the
function returns the fallback value α = 0.5. This

value could be merely an error flag and could
therefore be treated the same as NA. There are
also data for which the McCulloch, Kout and
Kogon-McCulloch (IG) methods returned re‑
sults indicating the presence of heavy-tails. In
the case of the McCulloch method, returning a
value of 0.5 suggests a possible problem with
the algorithm’s operation and could be also
treated as NA. Thus, also graphical tests were
performed, like Q-Q plots and visualizations of
probability distributions.

From the results presented in Table 6, it is
clear that because not always used numerical
methods can effectively prove the existence of
heavy tails, thus a further test can be performed
comparing the empirical distributions with the
theoretical normal distribution. It will help to
confirm or reject the thesis about the existence of
distribution “heavy tails”.

One such test is the empirical analysis of
Q-Q plot for selected machines, which is pre‑
sented in Figure 3. Graphical analysis and com‑
parison with the normal distribution in all ana‑
lyzed cases showed significant differences in the
shape of the distribution, with dominant heavy
tails in the data, especially visible in the extreme
quantile values.

In the case of the Anderson-Darling test,
each tested time series returned a p-value of

Figure 1. Cache bytes comparison between selected machines: left column – virtual machines,
right column – PCs from group 1

509

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

3.7 × 10-24, which indicates a strong rejection
of the null hypothesis of compliance with the
normal distribution – the tested data statistical‑
ly significantly deviate from the normal distri‑
bution. It should be emphasized, according to
paper [5], that the data can exhibit long-range
dependencies, which violates the classical as‑
sumption of samples independence. The Hurst
exponent determined for the studied series sig‑
nificantly exceeds 0.5, “confirming the exis‑
tence of deep statistical long-term dependen‑
cies in all studied time series” – the samples
are strongly dependent over time. Neverthe‑
less, the extremely low p-value of the Ander‑
son-Darling test (on the order of 10-24) clearly
indicates a deviation from normal distribu‑
tion. In this paper, an emphasis was placed on
qualitative conclusions derived from the Q-Q
plots and estimator values (e.g., Hill’s). By the
use of data increments and very large sample
size, the influence of dependencies between
subsequent observations was minimized, and
the characteristics of heavy tails of the distri‑
butions were highlighted. In the future work,
it is planned to utilize significant verification
methods that take into account dependencies
(e.g., block bootstrap procedures) to formally
confirm the obtained results.

Another test for the occurrence of heavy-
tailed distributions is the analysis of the Hill ex‑
ponent, which is shown in Figure 4.

The analysis of the Hill exponent for all the
operating systems and load mode shows that
there are heavy tails for a certain range of the or‑
dinal statistics k. One of the difficulties in estimat‑
ing this parameter is finding the optimal value of
the parameter k that will be free of bias; therefore,
one method is to take the last 5–20% of the k val‑
ue and look for the value of the α parameter there
or use one of the optimization methods.

In order to find the optimal order statistic k,
the Tea package from the Crane repository [29]
was used to select the dAMSE function, which
aims to provide the optimal number of order sta‑
tistics k for the Hill estimator. The results of the
estimated α parameter are presented in Table 7.

Although the numerical dAMSE method pro‑
duces unstable, extreme values ​​of α in some situ‑
ations (when the optimal k falls outside the rec‑
ommended range of the last 10–20% of the order
statistics k), the empirical, graphical Hill exponent
confirms the existence of heavy-tails. This is a
general problem with calculations of the α stability
index [30]. There is no commonly accepted, uni‑
versal method, thus in paper several were used to
compare obtained results [31, 32]. Some obtained
results indicate extreme α values calculated by

Figure 2. Cache byte increments comparison between selected machines

510

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

numerical methods, but also a graphical approach
was taken together with Q-Q plots. Extreme α val‑
ue could be a prerequisite for a non-heavy-tailed
distribution. In the case of Table 7, α values were
returned by the dAMSE method, which can yield
unexpected optimal k values that reflect α values
outside the Lévy domain. Therefore, in case of in‑
consistencies, each series should be manually ana‑
lyzed in addition to the dAMSE method.

To better visualize the distribution features
of the analyzed increments of cache bytes in the
graph (Figure 5), the vertical axis is presented
on a logarithmic scale. In Figure 5, the blue
curve shows the estimated real probability dis‑
tribution using Epanechnikov kernel, whereas
the red curve represents the theoretical normal

distribution. The results provide information
about the analyzed systems’ performance: in
each of the tested virtual machines the cache
byte counter values do not change without user
intervention for at least 90% of the system op‑
eration time. This conclusion may give the false
impression that there is no visible process dy‑
namics in the operating system (colloquially:
the system does nothing) – the system should re‑
main in a stable state. A look at Figure 5 shows
that the probability density graph visualized on
a log-lin scale shows the potential occurrence
of the so-called “heavy tails” in the probability
distribution (right and left tails show extreme
events and are slowly vanishing). These types of
distributions are characteristic of processes with

Table 6. Distribution of α index stability estimation
OS McCulloch [α] Kout [α] IG [α]

VM1 Windows 7 2GB 0.5 NA NA

VM2 Windows 7 2GB 0.5 NA NA

VM1 Windows 8 2GB 0.5 NA NA

VM2 Windows 8 2GB 0.5 NA NA

VM1 Windows 10 2GB 0.5 0.127 0.0093

VM2 Windows 10 2GB 0.5 0.1279 0.0053

PC1 Windows 7 0.5 0.236 0.303

PC2 Windows 7 0.5 0.739 0.709

PC3 Windows 7 0.576 0.408 0.454

PC4 Windows 7 0.586 0.483 0.487

PC5 Windows 7 0.5 NA NA

PC6 Windows 7 0.5 NA NA

PC7 Windows 7 0.663 0.413 0.563

PC8 Windows 7 0.5 0.299 0.367

PC1 Windows 8 0.5 NA NA

PC2 Windows 8 0.685 0.142 0.372

PC3 Windows 8 0.5 NA NA

PC4 Windows 8 0.5 NA NA

PC5 Windows 8 0.5 NA NA

PC6 Windows 8 0.554 0.766 0.786

PC7 Windows 8 0.79 0.515 0.683

PC8 Windows 8 0.568 0.209 0.18

PC1 Windows 10 0.5 NA 0.037

PC2 Windows 10 0.597 0.268 0.306

PC3 Windows 10 0.5 NA NA

PC4 Windows 10 0.5 NA NA

PC5 Windows 10 0.5 NA NA

PC6 Windows 10 0.5 NA NA

PC7 Windows 10 0.5 NA NA

PC8 Windows 10 0.5 0.158 0.212

511

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

extreme values. This effect is known in many
different cases [17] and means that the process
cannot always be modelled using a random walk
– from a statistical perspective. An approach
based on the Lévy processes may be needed.
Figure 5 shows that the heavy tails appear in the

probability distributions for each operating sys‑
tem regardless of its version and its load. This
effect can be much better observed if the prob‑
ability distribution is plotted on a double loga‑
rithmic scale, but it will be only visible for incre‑
ments greater than 0.

Figure 3. Q-Q graphs for selected machines

Figure 4. Hill estimator for selected machines

512

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

CONCLUSIONS

In this paper authors were able to discover in‑
teresting patterns that can be also found in com‑
puter systems behavior. This is the main achieve‑
ment of presented work. It seems to be a little bit
surprising bearing in mind that computer systems
technical time is going much faster than in other
physical systems. Power-law distributions exist
in many different natural phenomena, and their
appearance is one of the first key indicators of
complex behavior with long-range dependencies.
In the case of computer systems, it is an indicator
of their dynamical behavior that was caused by
human generated workload. From the presented
paper, in comparison to the so far used analyti‑
cal models from queuing theory, it is clear the
computer systems managed by Windows oper‑
ating systems can behave in scale-free regime
with dynamical behavior that influences their
performance. This is visible at least via the cache
memory counter.

The proposed paper draws attention to the
presence of “heavy tails” in the analyzed data,
which indicates the characteristic Lévy processes
in computer systems. This observation not only
confirms the complexity of computer systems be‑
havior, but also highlights the need for further re‑
search in this direction. This problem is not well-
recognized in literature, since most of the existing
approaches refer to classical queuing models pro‑
posed more than 40 years ago. The development
of current operating systems allows us to collect

Figure 5. Probability distribution of cache bytes increments for selected machines. The Sensity Of Cache bytes
is presented on a log scale. The red line shows the fitted normal distribution; blue line shows the real distribution.

Normal distribution was estimated by calculated mean and variance

Table 7. The α parameter estimation results
for the Hill estimator

OS Optimal k Estimated α
VM1 Windows 7 2GB 4100 0.571
VM2 Windows 7 2GB 4213 0.433
VM1 Windows 8 2GB 6214 2.007
VM2 Windows 8 2GB 5785 1.941

VM1 Windows 10 2GB 4303 1.688
VM2 Windows 10 2GB 3503 1.314

PC1 Windows 7 772 2.406
PC2 Windows 7 4031 1.633
PC3 Windows 7 29 2.715
PC4 Windows 7 223 1.178
PC5 Windows 7 3662 1.338
PC6 Windows 7 392 1.194
PC7 Windows 7 751 2.105
PC8 Windows 7 32 1.815
PC1 Windows 8 1254 1.592
PC2 Windows 8 424 2.295
PC3 Windows 8 54 4.188
PC4 Windows 8 6385 0.994
PC5 Windows 8 37 2.985
PC6 Windows 8 4859 1.194
PC7 Windows 8 603 3.387
PC8 Windows 8 116 164.929

PC1 Windows 10 142 1.979
PC2 Windows 10 37 54.728
PC3 Windows 10 52 3.145
PC4 Windows 10 888 2.497
PC5 Windows 10 2501 1.629
PC6 Windows 10 45 4.587
PC7 Windows 10 2702 1.858
PC8 Windows 10 129 2.463

513

Advances in Science and Technology Research Journal 2025, 19(11) 502–514

data sets and detect hidden patterns and origins
of long-range correlations. This opens a new
field for future analyses aimed at delving into the
mechanisms responsible for these unique patterns
in probability distributions. The considerations
presented in the paper show evidence that such
patterns can exist in personal computers with MS
Windows operating systems when the workload
is generated by users.

The existence and understanding of Lévy
processes and their impact on computer systems
performance dynamics was indicated as crucial to
the development of more effective monitoring and
optimization methods for computer networks, but
in the case of computer systems is still neglected.
Since the problem is new, a more detailed study
requires other methods for the calculations of the
α stability index. Some of them are based not on
the features of probability or density distributions
but on time series. Among them there are: maxi‑
mum likelihood estimation (MLE), least squares
estimation (LS), weighted least squares estima‑
tion (WLS), percentile method (PM), method of
moments (MoM).

Therefore, it is crucial to adapt the data col‑
lection method to the specificity of the monitored
counters and expectations regarding the accuracy
of the analyses. Even more, it is good to have real
data that is collected in the system where there is
a workload (system is not in the idle state) gener‑
ated by users or other computer programs.

REFERENCES

1.	 Kleinrock L. Queueing Systems Volume 1: Theory.
Journal of the American Statistical Association. 1975.

2.	 Patterson DA, Hennessy JL. Computer architecture:
a quantitative approach. San Francisco (CA): Mor‑
gan Kaufmann Publishers Inc. 1990.

3.	 Fortier PJ, Michel H. Computer Systems performance
evaluation and prediction. Digital Press; 2003.

4.	 Lazowska ED, Zahorjan J, Graham GS, Sevcik
KC. Quantitative system performance: Computer
system analysis using queueing network models.
Englewood Cliffs (NJ): Prentice-Hall, Inc. 1984.

5.	 Kowal B, Strzalka D. Statistical long-range depen‑
dencies and statistical self-similarity in computer
systems processing – the case of cache bytes coun‑
ter. Adv Sci Technol Res J. 2024;18(8):311–18.
https://doi.org/10.12913/22998624/194428

6.	 Strzałka D, Dymora P, Mazurek M. Modified
stretched exponential model of computer system

resources management limitations—The case of
cache memory. Physica A: Statistical Mechanics
and its Applications. 2018;491:490–497. https://
doi.org/10.1016/j.physa.2017.09.012

7.	 Mercik S, Weron K. Stochastic origins of the long-
range correlations of ionic current fluctuations in
membrane channels. Phys Rev E. 2001;63(5):1–10.
https://doi.org/10.1103/PhysRevE.63.051910

8.	 Wang H, Song S, Zhang G, Ayantobo OO, Guo T. Sto‑
chastic volatility modeling of daily streamflow time
series. Water Resources Research. 2023;59(1):1–18.
https://doi.org/10.1029/2021WR031662

9.	 Mariani MC, Asante PK, Bhuiyan MAM, Beccar-Va‑
rela MP, Jaroszewicz S, Tweneboah OK. Long-range
correlations and characterization of financial and
volcanic time series. Mathematics. 2020;8(3):441.
https://doi.org/10.3390/math8030441

10.	Klebanov LB, Kuvaeva-Gudoshnikova YV, Rachev ST.
Heavy-tailed probability distributions: some examples
of their appearance. Mathematics. 2023;11(14):3094.
https://doi.org/10.3390/math11143094

11.	Żórawski W, Vicen M, Trelka-Druzic A, Góral
A, Makrenek M, Adamczak S, Bokuvka O.
Microstructure and mechanical properties
of cold sprayed amorphous coating. Adv Sci
Technol Res J. 2024;18(8):73–85. https://doi.
org/10.12913/22998624/193479

12.	Zhang H. Discovering power laws in computer
programs. Information Processing & Management.
2009;45(4):477–483. https://doi.org/10.1016/j.
ipm.2009.02.001

13.	Louridas P, Spinellis D, Vlachos V. Pow‑
er laws in software. ACM Trans Softw Eng
Methodol. 2008;18(1):1–26. https://doi.
org/10.1145/1391984.1391986

14.	Teuscher C, Chung H, Grimm A, Amarnath A, Para‑
shar N. The power of power-laws: Or how to save
power in SoC. 2011 International Green Comput‑
ing Conference and Workshops. IEEE; 2011. https://
doi.org/10.1109/IGCC.2011.6008603

15.	Zou Q, Zhu Y, Tan Y, Deng Y, Chen W. Temporal
characterization of memory access behaviors in SPEC
CPU2017 workloads: Analysis and synthesis. Future
Generation Computer Systems. 2022;130:33–45.
https://doi.org/10.1016/j.future.2021.12.009

16.	Alexander Z, Mytkowicz T, Diwan A, Bradley E.
Measurement and dynamical analysis of computer
performance data. In: Cohen PR, Adams NM, Ber‑
thold MR, editors. Advances in Intelligent Data
Analysis IX. Lecture Notes in Computer Science, vol
6065. Berlin, Heidelberg: Springer 2010;6065:18–
29. https://doi.org/10.1007/978-3-642-13062-5_4

17.	Vidyasagar M. Modeling extreme events us‑
ing heavy-tailed distributions [internet]. fusion
methodologies in crisis management. Springer

514

Advances in Science and Technology Research Journal 2025, 19(11), 502–514

International Publishing. 2016; 455–65. https://doi.
org/10.1007/978-3-319-22527-2_21

18.	Microsoft. Performance Counters [Internet]. Mi‑
crosoft; [cited 2025 May 20]. Available from:
https://learn.microsoft.com/en-us/windows/win32/
perfctrs/performance-counters-portal

19.	Microsoft. Windows Performance Monitor [Inter‑
net]. Microsoft; [cited 2025 May 20]. Available from:
https://learn.microsoft.com/en-us/previous-versions/
windows/it-pro/windows-server-2008-r2-and-2008/
cc749249(v=ws.11)

20.	Microsoft. Counter Types [Internet]. Microsoft;
[cited 2025 May 20]. Available from: https://learn.
microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2003/cc785636(v=ws.10)

21.	Microsoft. PERF_COUNTER_RAWCOUNT [In‑
ternet]. Microsoft; [cited 2025 May 20]. Available
from: https://learn.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2003/
cc757032(v=ws.10)

22.	Huffman C. Performance monitor. Elsevier eB‑
ooks. 2014; 11–56. https://doi.org/10.1016/
b978-0-12-416701-8.00002-8

23.	Microsoft. Memory Object [Internet]. Microsoft;
[cited 2025 May 20]. Available from: https://learn.
microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2003/cc778082(v=ws.10)

24.	Kowal B, Strzalka D. Cache Memory Bytes – Win‑
dows performance counter (Version 1). figshare. 2025.
https://doi.org/10.6084/m9.figshare.29589116.v1

25.	Racine JS. Nonparametric Econometrics: A Primer.
FNT in Econometrics. 2007;3(1):1–88. https://doi.
org/10.1561/0800000009

26.	Soh Y, Hae Y, Mehmood A, Hadi Ashraf R, Kim I.
Performance Evaluation of Various Functions for
Kernel Density Estimation. OJAppS. 2013;3(1):58–
64. https://doi.org/10.4236/ojapps.2013.31B012

27.	Kharrat T, Boshnakov GN. StableEstim: Estimate
the Four Parameters of Stable Laws using Different
Methods [Internet]. 2014. https://doi.org/10.32614/
cran.package.stableestim

28.	Hofert M, Hornik K, McNeil AJ. qrmtools: Tools
for Quantitative Risk Management [Internet]. 2015.
https://doi.org/10.32614/cran.package.qrmtools

29.	Ossberger J. tea: Threshold Estimation Approach‑
es [Internet]. 2017. https://doi.org/10.32614/cran.
package.tea

30.	Caeiro J, Gomes M I. Threshold selection in ex‑
treme value analysis. in extreme value modeling and
risk analysis. Chapman and Hall/CRC 2016. 2016;
89–106. https://doi.org/10.1201/b19721-8

31.	Terdik G, Gyires T. Lévy flights and fractal modeling
of internet traffic. IEEE/ACM Trans Networking.
2009 Feb;17(1):120–129. https://doi.org/10.1109/
tnet.2008.925630

32.	Nolan JP. Univariate stable distributions. springer
series in operations research and financial engineer‑
ing. Springer International Publishing. 2020. https://
doi.org/10.1007/978-3-030-52915-4

