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INTRODUCTION

In the author’s earlier work on a fuzzy con-
troller [1], human thinking processes were shown 
to be effectively equated with the control of two-
phase gas-liquid flow phenomena. The adaptabil-
ity of  this method was further enhanced by ad-
justing the slopes of the membership functions. 
The concept of remapping membership functions 
was an effort to demonstrate that while functions 
with regular shapes tend to produce acceptable 
results, they may fail under certain circumstances 
or need to be supplemented by support functions. 
Evidence revealed that slight modifications in the 
membership function topology could enhance 

their sensitivity to the operating conditions of 
installations and the regulation of gas and liquid 
flow streams. It is imperative to note that the ex-
tent of these adjustments must be tailored to the 
specific requirements of each installation.

The selection of fuzzy logic as a control sys-
tem is attributed to the distinctive characteristics 
of two-phase gas-liquid flow phenomena. Given 
the extensive range of instruments available for 
the classification of two-phase flow phenomena 
with varying degrees of accuracy, the effective-
ness of the proposed approach was primarily eval-
uated through expert opinions. The determination 
of the flow type is typically made by experts based 
on their experience and knowledge, a qualitative 
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process. This reliance on human expertise is con-
sistent with the application of fuzzy logic, which, 
according to Professor Zadeh, emulates human 
reasoning processes [2]. The utilization of fuzzy 
logic facilitates the automation and formalization 
of expert knowledge through the implementation 
of fuzzy rules within a knowledge base.

Note that other artificial intelligence tech-
niques, such as neural networks, also hold prom-
ise for the classification of two-phase flows and 
for determining void fractions [3]. However, 
these techniques have additional complexities 
and limitations. To obtain adequate performance 
from neural networks, professionals must ac-
cumulate and label training data. Extensive and 
varied datasets are also needed to generalize the 
network well, and these might be hard to acquire. 
In the context of two-phase flow processes, the 
acquisition of such data necessitates extensive 
and time-consuming experimental campaigns. 
Alternative approaches, such as synthetic data 
generation through computational fluid dynamics 
(CFD), data augmentation [4], and transfer learn-
ing, can be employed to address these challenges. 
Transfer learning involves using pre-trained mod-
els or applying publicly available datasets from 
fellow researchers.

A promising approach to addressing these 
challenges is using generative networks and plat-
forms that facilitate the development and adapta-
tion of AI agents for specific tasks [5]. Advance-
ments in generative artificial intelligence and large 
language models have enabled the development 
of specialized agents with the capacity to perform 
complex cognitive tasks. Integrating these intelli-
gent systems with process control software could 
enhance automation and decision-making pro-
cesses. The research would implement a  hybrid 
model incorporating the strengths of fuzzy logic 
and deep learning techniques to emulate human 
cognitive abilities. The model could be founded 
on the concepts described in the cited source [1], 
in which fuzzy rules were employed to build a 
system of decision-making logic. For example:

“If the desired flow type is slug flow, and the 
current flow type is plug flow, then set the liquid 
stream to medium and the gas stream too high”.

This method is familiar to most fuzzy control-
lers. Nevertheless, the innovation in the suggest-
ed solution lies in its utilization of fuzzy signals 
derived from an identification module as inputs to 
the controller.

The method’s applicability to deep learning 
models is a notable feature. The overarching ob-
jective is to attain interpretability that approxi-
mates human reasoning in generating control 
commands. The aim is to transition from rigid 
control parameters, where gas and liquid flow 
rates are defined within fixed, predefined ranges 
with safety margins, to more advanced control 
tuning, thus providing high precision in realizing 
the desired flow characteristics. The proposed 
model endeavors to interpret commands such as: 
“Maintain the plug flow, but increase the plugs’ 
length slightly.”

The qualitative term “slightly” necessitates 
a relative adjustment strategy, considering both 
past system parameters and, more crucially, the 
intention behind the issued command. Integrating 
these interpretation schemes within the proposed 
framework is expected to enhance the responsive-
ness and flexibility of control systems in response 
to variations in operating conditions.

RELATED WORKS

The control of two-phase gas-liquid flow phe-
nomena has long been interesting in control en-
gineering. This interest has resulted in the estab-
lishment of varied methodologies for process sta-
bility and operational efficiency enhancement. In 
particular, fuzzy logic-based control systems [6] 
have proven to be an extremely viable approach 
due to their ability to mimic human thought and 
efficiently counter uncertainty.

This section provides an overview of the state 
of the art of fuzzy logic applications, fuzzy logic-
deep learning hybrid control models, and data-
driven models in two-phase flow systems.

Fuzzy logic in control two-phase flow 
processes as non-linear systems

As defined by Zadeh [2], fuzzy logic is a 
mathematical system that allows reasoning under 
imprecise information. Unlike conventional bi-
nary logic, fuzzy logic provides truth values on 
a continuous range from 0 to 1, making it suit-
able for complex systems where it isn’t easy to 
develop precise models. The approach is particu-
larly well suited to systems with high uncertainty 
and variability, such as two-phase flow processes. 
The first practical implementation of fuzzy logic 
in control systems was realized by Mamdani and 
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Assilian [7], where they developed a fuzzy con-
troller for a steam engine. This initial effort paved 
the way for using fuzzy inference systems in vari-
ous industrial applications. Two general catego-
ries of fuzzy inference systems are widely used: 
the Mamdani and Takagi-Sugeno models [8]. The 
Mamdani model is used because of its simplicity 
of interpretation, which makes it suitable for ap-
plications where reasoning like human thinking 
is critical, e.g., two-phase flow control. However, 
the Takagi-Sugeno model is computationally fast-
er and ideal for systems requiring accurate out-
puts. Fuzzy logic is quite efficient in process con-
trol in dealing with the non-linearities and uncer-
tainties characteristic of two-phase flow systems. 
Research by Shteimberg et al. [9] has shown that 
fuzzy control systems can provide improved per-
formance over conventional PID controllers in 
the control of non-linear and time-varying in-
dustrial processes. Other researchers have inves-
tigated fuzzy logic in several industrial applica-
tions. To illustrate this point, the application of 
fuzzy control systems in various settings has been 
documented. These settings include chemical re-
actor operation [10], heating, ventilation, and air 
conditioning systems [11], directional emissiv-
ity regulation [12], and water treatment facilities 
[13]. These studies demonstrate the breadth of 
fuzzy control system applications across various 
industries, hence the increased support for using 
them to control two-phase flow. 

Two-phase flow processes involve intricate 
and dynamic gas-liquid phase interactions that 
are difficult to simulate with conventional ap-
proaches. Conventional classification techniques 
rely heavily on expert knowledge and visual per-
ception, introducing variability and subjectivity. 
Some empirical models have been proposed to 
classify flow regimes; however, their accuracy is 
typically constrained to specific operating condi-
tions [14, 15]. A significant research study [16, 
17] compared several artificial intelligence mod-
els to classify two-phase flow patterns in pipeline 
systems. Using an extensive dataset, the research-
ers ascertained that the Extra Trees model at-
tained the most optimal classification. The study 
identified the superficial velocities of gas and liq-
uid, as well as the inclination angle and diameter 
of the pipe, as the primary parameters influencing 
flow patterns. However, the study also identified 
constraints related to the models’ flexibility in 
accommodating diverse operational conditions, 
emphasizing the necessity for comprehensive, 

high-quality datasets to enhance the reliability 
of predictions. Fuzzy logic provides an alterna-
tive solution in the form of fuzzy rules that en-
capsulate expert experience. The application of 
expert-derived rules facilitates the delineation of 
boundaries between diverse flow regimes, uti-
lizing measurable parameters such as pressure, 
gas flow rate, temperature, and liquid flow rate. 
This approach [18] serves to minimize subjectiv-
ity and enhance automation. Fuzzy logic in two-
phase flow control systems has been explored ex-
tensively due to its ability to handle uncertainty 
and adapt to varying operating conditions. De-
spite the referenced author’s work, Wang et al. 
[19] proposed a fuzzy logic-based controller for 
regulating two-phase flow in process industries. 
Their work focused on using fuzzy controllers to 
regulate flow stability and robustness of systems. 
These controllers are based on expert knowledge-
generated fuzzy rules, enabling them to produce 
decisions that imitate humans when identifying 
and altering flow parameters.

However, fuzzy logic systems are not im-
mune to limitations despite their efficiency. A 
disadvantage of conventional fuzzy controllers is 
the requirement for extensive fine-tuning and rule 
presetting, which is time-consuming and subject 
to experience. The usage of human expertise is 
inherently prone to limitations and potential bi-
ases. Consequently, the proposed methodology is 
contingent on operator expertise and susceptibil-
ity to bias, thereby circumventing the necessity 
for extensive manual formulation of vague rules, 
which can be time-consuming. Recent literature 
in the field has sought to integrate fuzzy logic 
into machine learning approaches based on deep 
learning to address these limitations.

Hybrid models: fuzzy logic and deep learning

Hybrid methods combining fuzzy logic and 
deep learning have garnered significant attention 
to enhance control systems’ flexibility and preci-
sion. Castillo and Melin [20] present a compre-
hensive review of hybrid methods, proposing that 
deep learning can enhance fuzzy systems through 
data-driven calibration of membership functions 
and rules. Nguyen et al. [21] illustrated a hybrid 
model using fuzzy logic and neural networks for 
dynamic process control. This strategy exploits 
the transparency provided by fuzzy rules while 
simultaneously leveraging the inherent predic-
tive capacity in deep learning models. The idea 
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of creating a hybrid fuzzy-deep learning frame-
work to control non-linear systems was investi-
gated in references [22, 23]. The findings in these 
publications reveal system performance gains 
relative to conventional controllers. A significant 
challenge in implementing deep learning for two-
phase flow control is the requirement for exten-
sive, meticulously annotated datasets. Collecting 
experimental data related to these processes re-
quires substantial labor and time investments. In 
light of this challenge, researchers have explored 
approaches for creating synthetic data and using 
data augmentation techniques. Brunton and Kutz 
[24] discuss the role of computational fluid dy-
namics (CFD) in generating synthetic data used 
for training machine learning models. Shorten and 
Khoshgoftaar [25] describe several data augmen-
tation methods that can be applied to increase the 
training data available for neural networks. These 
techniques can potentially minimize the necessity 
for extensive experimental campaigns by gener-
ating diverse and comprehensive datasets. 

Additionally, transfer learning has become an 
essential method for data-driven control systems. 
Pan and Yang [26] present an overview of trans-
fer learning methods, emphasizing their capacity to 
reduce the data requirements for training artificial 
intelligence models by implementing pre-trained 
models on analogous tasks. Zhuang et al. [27] ex-
amine the developments in transfer learning, focus-
ing on its relevance in industrial control systems.

Generative AI and intelligent assistants in 
process control

Recent advancements in generative artificial 
intelligence have given rise to new possibilities 
for developing intelligent control systems. Large 
language models (LLMs), as exemplified by the 
OpenAI GPT-Series [28–30], have exhibited ca-
pabilities for executing intricate cognitive func-
tions, including decision-making and process 
optimization. These models have the flexibility to 
serve as AI assistants for process control through 
the integration of domain knowledge and system 
real-time feedback. In their study, Siddique et al. 
[31] explore the challenges and opportunities of 
AI-assisted industrial process control. They em-
phasize the prospects of generative AI in helping 
automate decision-making mechanisms, minimize 
human knowledge dependence, and enhance the 
overall system efficiency. The amalgamation of 
generative AI with fuzzy logic-based systems has 

the potential to facilitate the development of smart 
agents that can interpret qualitative commands 
and subsequently adjust control parameters. 

However, their hallucination propensity is an 
essential challenge in employing LLMs for pro-
cess control, particularly in two-phase flow sys-
tems [32, 33]. The inherent propensity of these 
systems to generate coherent yet erroneous infor-
mation poses a critical risk factor when applied 
in real industrial contexts. In contrast to the toler-
ance of inaccuracy in exploratory or creative ap-
plications, where the outcome is not significantly 
impacted, process control prediction inaccuracies 
can have disastrous consequences, including sys-
tem crashes, equipment failure, and even acci-
dents. A potential issue that should be highlighted 
is the possibility of an LLM misinterpreting op-
erator input due to hallucinated text, which could 
result in the system regulating incorrect set points 
for system variables. This, in turn, could lead to 
unintended changes in flow rates, pressure ra-
tios, or phase distribution. Errors of this nature, if 
propagated through chains of automated decision-
making, can unintentionally trigger emergency 
shutdowns, destabilize coupled subsystems, or 
engender hazardous situations in industrial fa-
cilities. To neutralize these risks, it is essential to 
ensure that LLMs cannot access external, unveri-
fied knowledge. Instead, they should be supplied 
with only carefully curated, domain-specific in-
formation relating to the prevailing control envi-
ronment [34]. The danger of invalid inferences 
can be significantly reduced by ensuring that de-
cisions are made using only verified operational 
facts and properly framed command inputs. This 
approach aligns with recent research advocating 
for knowledge-constrained LLM architectures, 
in which models are designed to operate within 
established epistemic boundaries to mitigate the 
likelihood of unreliable outputs. Applying these 
constraints within the framework of controlling 
two-phase flow will enhance the system’s robust-
ness, ensuring that intelligent assistants function 
as reliable aids rather than as potential sources of 
uncontrollable variability.

The future of two-phase flow control technol-
ogy lies in developing intelligent systems that le-
verage the strengths of fuzzy logic, deep learning, 
and generative AI. The primary research direc-
tions are as follows: the development of AI-based 
transparent and interpretable control decisions; 
the development of adaptive control systems that 
generate control strategies in real-time to adapt 
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to emerging operating conditions; and the devel-
opment of control systems that engage human 
knowledge enhanced by AI automation to achieve 
optimization of control performance.

Fuzzy logic remains a fundamental compo-
nent of two-phase flow control because it mim-
ics human thought. However, the integration of 
fuzzy logic with machine learning and generative 
AI has the potential to reveal new avenues for 
enhancing control performance and versatility. 
Future research endeavors should focus on devel-
oping hybrid models that balance interpretability 
and performance while addressing the distinc-
tive challenges of two-phase flow processes. The 
research work outlined herein seeks to improve 
the regulation of two-phase flow systems by com-
bining fuzzy inference algorithms and supervi-
sory directive sentiment analysis [35]. The novel 
method exploits the robustness of fuzzy logic 
in dealing with uncertainty and adapting to new 
conditions while concomitantly eliminating its 
drawbacks through sentiment analysis and voice 
command recognition.

Incorporating human emotion into the control 
loop of the system enhances its flexibility. It re-
duces its reliance on precise tuning of member-
ship functions, thereby minimizing the complex-
ity and quantity of inference rules required. The 
novelty of this solution lies in its dual feedback 
loop mechanism, where the expected flow type 
is compared not only with the actual flow gener-
ated but also with the sentiment of the supervising 
engineer. This approach allows for more intuitive 
and adaptive control, making the system more us-
er-friendly and efficient. Additionally, incorporat-
ing voice commands and emotional assessment 
adds a new aspect to human-machine interaction 
and increases the overall effectiveness and perfor-
mance of the control system. Therefore, the pres-
ent study will facilitate the reader in the pursuit 
of responses to the following research questions:
	• How does integrating sentiment analysis with 

fuzzy inference algorithms improve the con-
trol accuracy and adaptability of two-phase 
flow systems?

	• What are the potential benefits and limitations 
of using a hybrid approach that combines fuzzy 
logic, sentiment analysis, and voice command 
recognition in two-phase flow control?

	• How can the proposed system be optimized 
for real-time performance and scalability in 
various industrial applications?

The research thoroughly examines the merits 
and demerits of integrating fuzzy logic with sen-
timent analysis and voice command recognition 
in two-phase flow control systems by addressing 
these questions. The findings of this study will pave 
the way for the development of more advanced and 
user-friendly control solutions in the future.

METHODS AND IMPLEMENTATION

A series of interconnected cognitive services 
from the Microsoft Azure public cloud portfolio 
were applied to facilitate sentiment recognition as 
a core analytic feature of the system. Speech-to-
Text and Language Services were initially used 
to implement natural language processing and 
textual analytics. These services enabled the sys-
tem to transform the operator’s commands into 
a structured textual format suitable for compu-
tational analysis. Following this, the sentiment 
recognition stage was initiated, determining each 
command as negative, neutral, or positive, with 
sentiment scores returned in a fuzzy format. Each 
sentiment classification was assigned a probabili-
ty distribution. For instance, a command could be 
classified as 0.8 negative, 0.15 neutral, and 0.05 
positive. This approach was adopted to ensure the 
capture of linguistic nuances and ambiguity, thus 
avoiding a simplistic binary classification. An 
API-based architecture was developed to handle 
sentiment analysis as a function, enabling interac-
tion with external applications. Subsequently, an 
agent was produced in Copilot Studio and inte-
grated into Microsoft Teams to interact in voice 
in real time. This function allowed the system 
to analyze operator speech before the sentiment 
determination classification. A notable feature of 
the system was incorporating a control loop to 
manage an experimental installation. In instances 
where a supervisor was speaking during the con-
trol loop and employed keywords pertinent to the 
domain, such as “bubble”, “plug”, and “slug”, the 
sentiment of the command was integrated into 
a fuzzy inference system. Further contextual in-
formation was dynamically retrieved from an al-
ready established Service Bus topic to which the 
agent was subscribed. The inference results were 
published on another topic, which was created 
for communicating with experimental installation 
control devices. The devices (pump and compres-
sor) subscribed to the topic to receive live up-
dates on the status, ensuring an adequate system 
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response based on supervisor sentiment and con-
textual information. 

The following subsections will detail the 
knowledge base created, the topic configura-
tions, the installation device integration, and 
the sentiment analysis techniques. Additionally, 
these subsections will clarify the implementation 
framework and its operational dynamics.

Knowledge base

The experimental data were prepared based 
on measurements conducted several years ago 
[18]. The measurement campaign included a 
comprehensive dataset incorporating tomograph-
ic data, pressure gauge readings, and flow meter 
measurements. In addition to the fundamental la-
beling of data based on the flow type (e.g., plug, 
slug, foam, etc.), it was necessary to incorporate 
information on supplementary parameters such as 
plug lengths, bubble sizes, and others.

The knowledge base of the proposed solution 
consists of three sets of fuzzy rules. The first set 
is used to determine the current type of two-phase 
flow in the installation. These rules are structured 
as follows:

If
The value of the gas stream is t1,t2,..,tn; the val-

ue of the liquid stream is t’1,t’2,..,t’n; the similarity 
value of the flow to R1/R2/.../Rn is t’’1,t’’2,..,t’’n; then 
the analyzed flow is of type R1/R2/.../Rn where:
	• t1, t2,..,tn are the fuzzy terms for the value of the 

gas stream supplied to the installation during 
the analysis of the two-phase flow,

	• t’1, t’2,..,t’n are the fuzzy terms for the value of 
the liquid stream supplied to the installation 
during the analysis of the two-phase flow,

	• t’’1, t’’2,..,t’’n are the fuzzy terms for the simi-
larity value of the analyzed two-phase flow to 
a  previously defined reference flow type R1/
R2/.../Rn,

	• R1/R2/.../Rn are the fuzzy terms describing the 
possible types of two-phase flow that can be 
generated within the given measurement range.

The second set involves control rules that en-
roll the automatic generation of the desired type 
of two-phase flow. This set of rules is structured 
as follows:

If the value of the gas stream is t1,t2,..,tn; the 
value of the liquid stream is t’1,t’2,..,t’n, the current 
flow in the installation is R1/R2/.../Rn; the desired 
flow type is R1/R2/.../Rn then the value of the gas 

stream is t1,t2,..,tn; the value of the liquid stream is 
t’1,t’2,..,t’n.

The third set in the knowledge base includes 
adjustment rules that facilitate altering a two-
phase flow type based on the perspectives of 
commands. The adjustment rules are developed 
to modify the characteristic properties associated 
with a particular flow type and will vary across 
some measurement ranges. This set of rules is 
structured as follows:

If the current flow in the installation is R1/
R2/.../Rn; the desired structure changes in the 
manner s1,s2,..,sn; the sentiment of the operator’s 
speech is positive/neutral/negative; then the value 
of the gas stream is t1,t2,..,tn; the value of the liquid 
stream is t’1,t’2,..,t’n.

Topics

The usage of Copilot Studio noticeably ad-
vanced the implementation of the proposed solu-
tion. The process created using Copilot allowed 
the first training of an LLM (OPEN AI GPT 4.0 
Global Deployment) on the fuzzy rules described 
in the knowledge base. The agent embedding into 
the MS Teams application facilitated seamless 
integration with the system. The most significant 
advancements were achieved by creating topics 
that encapsulate operator commands. The topics 
are based on the sample patterns of the analyzed 
two-phase flows:
	• plug – the plug can be extended or reduced by 

modifying the gas and liquid flow values input 
into the installation,

	• air bubbles – the number of air bubbles can be 
enhanced or reduced by modifying the gas and 
liquid flow values input into the installation,

	• slug – the slug can be extended or reduced 
by modifying the installation’s gas and liquid 
flow values.

Within each topic, the operator’s command 
is first checked against the current type of two-
phase flow in the installation. When the expected 
structure is identified in the analyzed flow, the 
sentiment of the operator’s command is detected. 
The sentiment of the operator’s command, which 
is fuzzy (e.g., ‘slightly’, ‘definitely’, or ‘signifi-
cantly’), is then applied to refine the command 
using the Centre of Gravity principle [1].

The sentiment analysis and fuzzy com-
mand recognition yield an exact adjustment of 
the input signals to the installation, leading to 
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an improved quality of two-phase flow genera-
tion as determined by the supervising operator. 
A reduction in the necessity for extensive human 
fine-tuning of membership functions and infer-
ence rules accompanies this enhancement in 
adaptability and responsiveness.

The integration of the Copilot Studio with MS 
Teams enables dynamic adjustments to occur un-
der the analyzed commands and sentiments from 
the operator, aligning best with the performance 
and satisfaction of the user. Incorporating topics 
and sentiment-based detection into the two-phase 
flow control system represents a significant ad-
vancement, signifying a persistent evolution to-
wards a more intuitive and effective two-phase 
flow control system.

Integration with installation systems

A custom connector was developed with 
Power Automate to establish the connectivity be-
tween the proposed solution and the installation 
management systems (see Figure 1). This connec-
tor integrates the control system with the installa-
tion by means of a message broker, Service Bus, 
designed as a publish-subscribe architecture. The 
Service Bus comprises two primary topics.

The first contains information from the instal-
lation management system, explicitly consolidat-
ing the information of the ‘current state’ as the 
type of two-phase flow, the values of the gas and 
liquid streams that the installation has supplied to 
it, and the fuzzy degree of similarity coming from 
the raw, 3D tomographic data [18, 36]. This first 
topic provides input into the proposed solution.

On the other hand, the second topic contains 
information from the designed agent, precisely 

the ‘desired state’ values for the liquid and gas 
streams. These values are then extracted by the 
controllers that manage the pump and compressor 
operation to ensure that the new expected input 
settings for the installation are recognized.

The integration process employs the func-
tionalities of the Copilot Studio to train the LLM 
model and embed a trained agent in MS Teams. 
This combination facilitates real-time user inter-
action and command execution, enhancing the 
system’s responsiveness and adaptability. Adopt-
ing topics for aggregating operator commands 
enables the system to adapt to evolving condi-
tions and operator preferences. The communica-
tion interfaces have been designed with Human-
Computer Interaction (HCI) principles to ensure 
usability and efficacy. Operators can issue voice 
commands and receive feedback from the agent 
quickly and efficiently via the interface. The im-
plementation of sentiment analysis on the com-
mands enables the refinement of control actions, 
thereby enhancing the overall user-friendliness 
and versatility of the system.

Sentiment analysis

Implementing sentiment analysis in control 
systems for two-phase flow is contingent on cog-
nitive analysis services [37]. The application of 
this technology is to identify the sentiment of the 
commands issued by the operator in three principal 
modes: positive, neutral, or negative. The impact 
of each of these modes on command interpretation 
and subsequent performance of the two-phase flow 
control system is distinct. The sentiment analysis 
employed in the context of two-phase flow con-
trol facilitates the dynamic adjustment of system 

Figure 1. The general structure of the system
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control parameters, with these adjustments being 
based on the emotional sentiment of the command 
issued. In the positive sentiment mode, the emo-
tional sentiment will lead to only a slight adjust-
ment in the values of the input signals, revealing 
that the system is close to the inferred parameters. 
Conversely, if a neutral sentiment is registered, the 
rationale for further tuning holds merit, as the op-
erator will recognize the need to adjust the flow 
system to a moderate extent. Conversely, nega-
tive sentiment commands elicit a more substantial 
adjustment to the input signals through the imple-
mentation of more stringent regulation, as these 
commands typically signal a considerable devia-
tion from expected values, necessitating a change 
in the original input parameters.

Implementing this mechanism involved us-
ing Azure Cognitive Services APIs for natu-
ral language processing and command content 
classification. A notable challenge was ensuring 
sufficient accuracy in analyzing complex, con-
textual operator commands that deviated from 
standard syntax. It was imperative to employ 
techniques to enhance the machine learning 
models by refining the dataset, incorporating ac-
tual operator interactions with the control sys-
tem to address this challenge.

The second key element in the implementa-
tion process was converting the sentiment analy-
sis output into the operation of a fuzzy controller 
managing a two-phase flow. The sentiment map-
ping to setpoints had to reflect the idiosyncrasies 
of the two-phase flow process in terms of vari-
ability in flow conditions and the modification of 
manipulated parameters to plug length, generated 
bubbles, and slug duration. The controller was 
designed using interventions based on decision 
matrices that weighed the values of input signals 
across predetermined dimensions of sensitivity.

The primary challenge encountered during 
implementation was maintaining a real-time en-
vironment and ensuring seamless system opera-
tion. The high command processing latency was 
problematic, specifically because it created an 
undesirable delay in the system’s response to op-
erator input, which resulted in uncontrolled pa-
rameter adjustment in a dynamic two-phase flow 
environment. The solution to this issue entailed 
the deployment of optimized natural language 
processing models and the parallel processing of 
inputs. This strategy proved highly effective in 
substantially mitigating the system’s decision-
making delay.

RESULTS AND DISCUSSION

Experimental setup

To evaluate the flow regime control agents, 
sentiment detection, and voice command pro-
cessing, an experimental sequence was designed 
in collaboration with an expert at the two-phase 
flow gas-liquid facility in the institute’s labora-
tory [18]. The experiments employed both hori-
zontal and vertical sections of the test rig. The test 
rig is a closed-loop system consisting of a water 
tank, a pump, an air compressor, and a pipeline 
with horizontal and vertical sections. The pipe-
line is made of transparent acrylic glass with an 
inner diameter of 26  mm. The liquid flow rate 
was measured using a rotameter, and a gas con-
trol valve regulated the gas flow rate. A tomo-
graphic system with 3D Electrical Capacitance 
Tomography (ECT) sensors was used to acquire 
raw data for flow type evaluation. This setup al-
lowed for a comprehensive analysis of various 
two-phase flow phenomena under different op-
erational conditions, providing a solid founda-
tion for evaluating the proposed hybrid control 
system. The operator issued commands verbally 
to the agents via the MS Teams application. The 
agents then performed the commands, recogni-
tion, sentiment analysis, and interpretation of the 
fuzzy commands. Subsequently, the system mod-
ified the input signals to the installation follow-
ing the interpretation of the commands. A camera 
was mounted adjacent to the facility to capture 
images of the stabilized flow regimes within the 
transparent section of the pipeline. The two tables 
below present the transcript of the operator’s dia-
logue (in blue) with the system (in green) for both 
the horizontal and vertical segments. The com-
mands specified the expected flow regime, with 
additional parameters conditioning the structure 
characteristics, such as more extended plugs and 
denser bubbles, depending on the flow regime. 
The ensuing chats illustrate the agent’s response 
to the flow regime and the subsequent inferences 
regarding the command to act. The experiment 
was designed to provide a comprehensive evalua-
tion of the performance of the control agents, the 
accuracy of sentiment analysis, and the accuracy 
of voice commands for the control of two-phase 
flow systems (Table 1 and 2).

The core of this study focuses on the inter-
pretation and analysis of the hybrid control sys-
tem’s performance. The results demonstrate the 
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effectiveness of combining a fuzzy inference en-
gine with sentiment analysis for robust and flex-
ible control of two-phase flow. The system’s abil-
ity to handle ambiguous and emotionally charged 
commands was a key finding. For instance, when 
the operator issued a vague command like ‘Create 
even shorter slugs’ the system’s sentiment analysis 
component detected the underlying dissatisfaction 
and interpreted the command as a request to stabi-
lize the flow regime actively. This is in contrast to 
traditional control systems, which would typically 
fail to process such subjective input. The system’s 
response to emotionally charged commands high-
lights the effectiveness of sentiment analysis. The 

agent not only processes the explicit command 
(‘even shorter’) but also recognizes the urgency 
conveyed by the operator’s frustration, leading to 
a more decisive control action. This aligns with 
findings in human-computer interaction (HCI) 
research, which emphasize the importance of sys-
tems that can understand and adapt to user’s emo-
tional states [38–40].

The real-time operational benefits of this 
hybrid approach are significant. Minimizing 
the time lag between operator command and 
system response makes the control loop more 
efficient and safer. Fuzzy logic allows the sys-
tem to make nuanced adjustments based on the 

Table 1. Chat of human-expert with AI agent to control the flow in the horizontal sectionTable 1. 

Chat with AI agent Installation response  
horizontal section, images taken after 20s 

Start the flow and maintain the bubble type 
OK. Bubble flow started. 

 
OK. It's fine. Create gently fine bubbles 

Sorry, the command not understood. Please repeat. 
Reduce bubbles a little 

OK. Reduced bubbles created. 

------ 

 
OK. It's fine 

Start the foam flow now 
OK. Foam flow started.  

OK. It's fine 
Start the waved flow 

OK. Waved flow started.  
OK. It's fine 

Add some slugs 
OK. Slugs added.  

OK. It's fine. Create shorter slugs a little 
Sorry, the command not understood. Please repeat. 

Reduce slugs a little 
OK. Slugs reduced. 

------ 

 
OK. It's fine. 

Create even shorter slugs 
OK. Shorter slugs created.  

OK. It's fine 
Create longer slugs now 
OK. Longer slugs created.  

OK. It's fine 
Create slugs rarer and longer 

OK. Rarer and longer slugs created.  

OK. It's fine. Create slugs even rarer and even longer and 
keep the layered flow 

Sorry, the command not understood. Please repeat. 
Create slugs even longer and keep the layered flow 

OK. Longer slugs created. Layered type maintained. 

 
------ 

 

 
OK. It's fine 

Create foam flow with slugs 
OK. Foam flow with slugs created.  

OK. It's fine. STOP 
OK. Flow stopped. 

OK. It's fine  
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operator’s subjective input, which would be im-
possible with binary logic systems. The experi-
mental results confirm that this approach leads 
to a more stable two-phase flow, as evidenced 
by the successful stabilization sequences re-
sponding to imprecise commands. This capabil-
ity is particularly relevant in industrial settings 
where precise, unambiguous commands are not 
always feasible, and human-in-the-loop control 
is essential [41].

Furthermore, the system’s ability to interpret 
and translate subjective human input into ob-
jective, quantifiable control parameters demon-
strates its potential as a next-generation control 
interface. Leveraging sentiment and linguistic 
analysis bridges the gap between human intuition 
and machine precision.

Quantitative analysis of system performance

To validate the system’s robustness, 20 addi-
tional identical experimental runs were conducted 
under consistent conditions. The experimental set-
up was maintained with a constant liquid flow rate 
of 5 L/min and a gas flow rate adjusted to induce 
a churn flow regime known for its instability. Dur-
ing each run, the operator was instructed to issue 

a predefined set of 10 ambiguous and emotionally 
charged commands (e.g., ‘reduce it more!’ or ‘this 
is not good’).

The system’s performance was evaluated 
based on two key issues: system response stabil-
ity and interpretation accuracy. The time taken for 
the system to stabilize the two-phase flow after 
receiving a command was recorded. Across the 
20 repetitions, the average stabilization time was 
7.5 seconds, with a standard deviation of 1.2 sec-
onds. This low variance indicates high stability 
and repeatability of the system’s control actions, 
confirming its consistent performance under sim-
ilar conditions.

Simultaneously, the frequency of successful 
command interpretations was logged. The senti-
ment analysis and fuzzy logic components cor-
rectly interpreted 95% of the predefined ambigu-
ous commands. The 5% of misinterpretations 
primarily occurred with exceptionally quiet com-
mands or overlapped with significant background 
noise, suggesting potential areas for improvement 
in the voice-to-text processing stage. Including 
these quantitative data points complements the 
qualitative insights from the dialogue transcripts, 
providing a comprehensive view of the system’s 
reliability and performance. 

Table 2. Chat of human-expert with AI agent to control the flow in the vertical section

Chat with AI agent 
Installation response 

vertical section, images taken after 20s  
and rotated 90O clockwise 

Start the flow and maintain the slug type 
OK. Slug flow started. 

 
OK. It's fine. 

Create slugs shorter a little 
OK. Shorter slugs created.  

OK. It's fine. Create more gently shorter slugs 
Sorry, the command not understood. Please repeat. 

Create slugs shorter a little 
OK. Shorten slugs created. 

--- 

 
OK. It's fine. 

Create very long slugs 
OK. Very long slugs created.  

OK. It's fine. 
Start the churn flow 

OK. Churn flow started.  
OK. It's fine. 

Extend slugs significantly 
OK. Slugs extended.  

OK. It's fine. 
Make dispersed bubble flow 

OK. Dispersed bubble flow started.  
OK. It's fine. 

Now make the bubbles more dense 
Sorry, the command not understood. Please repeat. 

Increase the bubbles density a little 
OK. Bubbles density increased. 

---- 
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Advantages and limitations

The recommended system has several key 
advantages, allowing for an easier and more ef-
ficient option for sentiment analysis and rule-
based decision-making in an industrial environ-
ment. Nevertheless, the system has limitations 
that must be considered before deployment and 
for its ongoing usability. One of the system’s ad-
vantages is its ease of use, such that the operators 
can operate the sentiment analysis model using 
natural language communication. The integra-
tion with Copilot Studio and MsTeams assists 
in seamless interaction. It does not require prior 
extensive technical knowledge, which is benefi-
cial and lowers the barrier for non-expert users. 
The system’s ease of use facilitates the utiliza-
tion of cognitive services in the cloud environ-
ment, thereby enabling the execution of complex 
manual implementation processes. Consequently, 
developers can focus on modifying the system’s 
functionality rather than expending resources on 
sentiment analysis and analysis from the begin-
ning. This approach can potentially reduce devel-
opment time and effort, resulting in afaster imple-
mentation and customization of existing deploy-
ments to meet specific use cases better. The user’s 
lack of requirement for domain-specific expertise 
is advantageous regarding ease of use and acces-
sibility. The sentiment analysis and fuzzy logic 
processing capabilities are integrated into the au-
tomated system, thereby eliminating the need for 
extensive expertise in artificial intelligence (AI) 
and/or machine learning (ML) modeling, enhanc-
ing the practical usability of the proposed senti-
ment analysis solutions across a broader range of 
industrial applications.

Another advantage of the proposed solution 
is the improved security against the risk of LLM 
misinterpretation. As can easily be seen from the 
illustrated interaction of the operator with the 
agent, the model sometimes fails to acknowledge 
or correctly interpret commands. This could be 
caused by background noise, such as loud equip-
ment or an unintelligible accent from the opera-
tor. Significantly, however, these misinterpreta-
tions did not result in incorrect control actions 
within the rig. This reliability results from the 
model’s deliberate isolation from external, un-
controlled data sources and its focus on a domain 
of knowledge consisting of pre-established flow 
pattern designs. By operating solely within this 
domain-specific framework, the system avoids 

hallucinatory outputs by not allowing erroneous 
interpretations to propagate into high-stakes pro-
cess control actions. This capability is crucial in 
high-stress industrial environments where clear, 
predefined commands are not always feasible. 
Such an approach significantly improves the 
human-in-the-loop interaction, a key aspect dis-
cussed in the literature on advanced industrial 
control systems [42]. Moreover, the time between 
issuing a command and the agent’s response, as 
well as sentiment detection and control setting 
prediction, is several seconds. This is insignifi-
cant compared to the time taken to stabilize the 
flow in the system. As a result, the system’s deci-
sion-making process does not introduce any oper-
ational delays, and sentiment-based adjustments 
are incorporated into the overall control strategy 
without compromising process efficiency. The 
system’s architecture, particularly isolating the 
control model from unvalidated data streams, 
ensures operational reliability and reduces com-
putational latency. The control loop operates in 
near real-time, minimizing the delay between 
command processing and physical actuation. This 
immediate responsiveness significantly improves 
systems that might require more extensive data 
processing, leading to improved safety and effi-
ciency. This design principle aligns with research 
advocating for minimal-latency control architec-
tures in critical applications [43].

Despite its notable advantages, the system ex-
hibits several significant deficiencies. Primarily, the 
system is excessively dependent on a specific ven-
dor of LLM, which complicates transitioning from 
the current provider to a substitute without sub-
stantial alterations to the system. Consequently, the 
greater the demand for flexibility in cloud vendors 
among companies, the more significant the barriers 
to adopting this solution. This reliance on a third-
party service introduces potential issues related to 
cost increases, service instability, or discontinua-
tion. This aspect of the system’s architecture war-
rants further discussion regarding scalability and 
long-term viability, a topic widely explored in the 
context of cloud-based industrial solutions [44].

Furthermore, modifications and revalidations 
are still required throughout the system due to its 
need for updating. Changes to the top-level LLM 
models, or cognition services affecting those 
must also be addressed in the implementation. 
This necessitates a substantial number of manual 
tests and validations for the system to function 
as intended. Critical infrastructure deployments 
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introduce further complexity due to regulatory 
requirements. In this context, robust encryption 
can enhance security, albeit at the expense of 
processing speed. While the system effectively 
handles emotional and ambiguous commands, its 
performance is highly dependent on the quality 
and specificity of the sentiment analysis model. 
A model trained on different linguistic nuances 
might fail to interpret operator commands cor-
rectly. Future research should focus on devel-
oping a more adaptable and customizable senti-
ment model to enhance the system’s performance 
across diverse operational contexts.

Finally, financial considerations must not be 
overlooked. The initial setup and testing of the sys-
tem are estimated to cost 250 dollars (about 10 k 
test messages with voice-to-text conversion, sen-
timent analysis, and developed agent interaction), 
but long-term operating expenses are also high. Es-
timates indicate a cost of $15000 per 100 installa-
tions per month, a figure likely to be a considerable 
expense for users managing multiple installations.

CONCLUSIONS

This study successfully demonstrates a nov-
el hybrid control system for two-phase gas-liq-
uid flow, integrating fuzzy logic with sentiment 
analysis. The primary objective of the research 
was to address key challenges in two-phase flow 
control by enhancing the system’s ability to in-
terpret and respond to an operator’s subjective, 
often emotionally charged, voice commands. 
The experimental results confirm that this ap-
proach significantly improves control accuracy 
and flexibility. By leveraging sentiment analy-
sis, the control loop can make nuanced adjust-
ments to stabilize the flow even with ambiguous 
or emotional commands, a capability supported 
by research in human-computer interaction 
(HCI) and affective computing. This integration 
of human-like reasoning refines the system’s re-
sponsiveness to dynamic changes and addresses 
a principal weakness of conventional fuzzy con-
trollers, namely the manual tuning difficulty of 
membership functions.

The key finding is the system’s demonstrat-
ed robustness and adaptability. The low-latency, 
real-time control architecture is highly effective, 
contributing to the system’s overall efficiency and 
safety, a critical aspect in advanced industrial con-
trol systems. Operators can issue intuitive orders, 

thereby improving the functionality of control 
processes and facilitating harmonious human-
machine coordination. The system’s resilience is 
strengthened by the model’s deliberate isolation 
from external, uncontrolled data sources, effec-
tively preventing faulty command propagation 
and ensuring it does not fail or generate erroneous 
settings even in the presence of misinterpretations 
due to background noise.

However, the system is not without limita-
tions. A key challenge is the reliance on a spe-
cific third-party API for voice-to-text conversion, 
which poses a risk of vendor lock-in and warrants 
further consideration in industrial deployment 
strategies. The system’s scalability to different in-
dustrial applications also requires ongoing refine-
ment. Future research will therefore focus on de-
veloping a more flexible, open-source sentiment 
model to mitigate these limitations and explore 
the system’s applicability in a full-scale industrial 
environment.
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