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ABSTRACT

This study proposes a novel two-phase flow control technique by integrating fuzzy inference algorithms and su-
pervisory commands sentiment analysis. The innovation of the proposed scheme lies in its two-feedback loop
mechanism, whereby the predicted flow type is compared not only with the actual flow generated but also with the
order sentiment. This renders the control more intuitive and responsive, introducing user-friendliness and system
efficiency. Integrating voice commands and emotional evaluation introduces an additional dimension to human-
machine interaction, enhancing performance in general. The study demonstrated that sentiment-based fuzzy logic
boosts adaptability in control by enabling the system to respond effectively to dynamically varying conditions. Inte-
grating fuzzy inference, sentiment analysis, and voice command recognition introduces a degree of working flexibil-
ity whilst circumventing the limitations of conventional fuzzy controllers, such as manual tuning complexity. The
experimental results confirmed the proposed system’s stability and accuracy in handling uncertain or vague com-
mands, thereby ensuring smooth control performance. The study identified key advantages, including enhanced user
convenience, streamlined decision-making processes, and improved responsiveness to operator intent. However, it
is essential to note that potential issues, such as misinterpreting commands due to environmental noise or ambigu-
ous wordings, may arise. Nevertheless, the model is designed to prevent erroneous settings and false propagation
of commands by clearly separating the model from the external environment. The study confirms that sentiment-
augmented fuzzy logic control is a viable solution to intelligent and adaptive two-phase flow control. Future studies
should aim to refine sentiment interpretation and broaden the system’s applicability to other industrial processes.

Keywords: fuzzy controller, hybrid AI model, sentiment analysis, two-phase flow type control.

INTRODUCTION

their sensitivity to the operating conditions of
installations and the regulation of gas and liquid

In the author’s earlier work on a fuzzy con-
troller [1], human thinking processes were shown
to be effectively equated with the control of two-
phase gas-liquid flow phenomena. The adaptabil-
ity of this method was further enhanced by ad-
justing the slopes of the membership functions.
The concept of remapping membership functions
was an effort to demonstrate that while functions
with regular shapes tend to produce acceptable
results, they may fail under certain circumstances
or need to be supplemented by support functions.
Evidence revealed that slight modifications in the
membership function topology could enhance
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flow streams. It is imperative to note that the ex-
tent of these adjustments must be tailored to the
specific requirements of each installation.

The selection of fuzzy logic as a control sys-
tem is attributed to the distinctive characteristics
of two-phase gas-liquid flow phenomena. Given
the extensive range of instruments available for
the classification of two-phase flow phenomena
with varying degrees of accuracy, the effective-
ness of the proposed approach was primarily eval-
uated through expert opinions. The determination
ofthe flow type is typically made by experts based
on their experience and knowledge, a qualitative
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process. This reliance on human expertise is con-
sistent with the application of fuzzy logic, which,
according to Professor Zadeh, emulates human
reasoning processes [2]. The utilization of fuzzy
logic facilitates the automation and formalization
of expert knowledge through the implementation
of fuzzy rules within a knowledge base.

Note that other artificial intelligence tech-
niques, such as neural networks, also hold prom-
ise for the classification of two-phase flows and
for determining void fractions [3]. However,
these techniques have additional complexities
and limitations. To obtain adequate performance
from neural networks, professionals must ac-
cumulate and label training data. Extensive and
varied datasets are also needed to generalize the
network well, and these might be hard to acquire.
In the context of two-phase flow processes, the
acquisition of such data necessitates extensive
and time-consuming experimental campaigns.
Alternative approaches, such as synthetic data
generation through computational fluid dynamics
(CFD), data augmentation [4], and transfer learn-
ing, can be employed to address these challenges.
Transfer learning involves using pre-trained mod-
els or applying publicly available datasets from
fellow researchers.

A promising approach to addressing these
challenges is using generative networks and plat-
forms that facilitate the development and adapta-
tion of Al agents for specific tasks [5]. Advance-
ments in generative artificial intelligence and large
language models have enabled the development
of specialized agents with the capacity to perform
complex cognitive tasks. Integrating these intelli-
gent systems with process control software could
enhance automation and decision-making pro-
cesses. The research would implement a hybrid
model incorporating the strengths of fuzzy logic
and deep learning techniques to emulate human
cognitive abilities. The model could be founded
on the concepts described in the cited source [1],
in which fuzzy rules were employed to build a
system of decision-making logic. For example:

“If the desired flow type is slug flow, and the
current flow type is plug flow, then set the liquid
stream to medium and the gas stream too high”.

This method is familiar to most fuzzy control-
lers. Nevertheless, the innovation in the suggest-
ed solution lies in its utilization of fuzzy signals
derived from an identification module as inputs to
the controller.

The method’s applicability to deep learning
models is a notable feature. The overarching ob-
jective is to attain interpretability that approxi-
mates human reasoning in generating control
commands. The aim is to transition from rigid
control parameters, where gas and liquid flow
rates are defined within fixed, predefined ranges
with safety margins, to more advanced control
tuning, thus providing high precision in realizing
the desired flow characteristics. The proposed
model endeavors to interpret commands such as:
“Maintain the plug flow, but increase the plugs’
length slightly.”

The qualitative term “slightly” necessitates
a relative adjustment strategy, considering both
past system parameters and, more crucially, the
intention behind the issued command. Integrating
these interpretation schemes within the proposed
framework is expected to enhance the responsive-
ness and flexibility of control systems in response
to variations in operating conditions.

2

RELATED WORKS

The control of two-phase gas-liquid flow phe-
nomena has long been interesting in control en-
gineering. This interest has resulted in the estab-
lishment of varied methodologies for process sta-
bility and operational efficiency enhancement. In
particular, fuzzy logic-based control systems [6]
have proven to be an extremely viable approach
due to their ability to mimic human thought and
efficiently counter uncertainty.

This section provides an overview of the state
of the art of fuzzy logic applications, fuzzy logic-
deep learning hybrid control models, and data-
driven models in two-phase flow systems.

Fuzzy logic in control two-phase flow
processes as non-linear systems

As defined by Zadeh [2], fuzzy logic is a
mathematical system that allows reasoning under
imprecise information. Unlike conventional bi-
nary logic, fuzzy logic provides truth values on
a continuous range from 0 to 1, making it suit-
able for complex systems where it isn’t easy to
develop precise models. The approach is particu-
larly well suited to systems with high uncertainty
and variability, such as two-phase flow processes.
The first practical implementation of fuzzy logic
in control systems was realized by Mamdani and
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Assilian [7], where they developed a fuzzy con-
troller for a steam engine. This initial effort paved
the way for using fuzzy inference systems in vari-
ous industrial applications. Two general catego-
ries of fuzzy inference systems are widely used:
the Mamdani and Takagi-Sugeno models [8]. The
Mamdani model is used because of its simplicity
of interpretation, which makes it suitable for ap-
plications where reasoning like human thinking
is critical, e.g., two-phase flow control. However,
the Takagi-Sugeno model is computationally fast-
er and ideal for systems requiring accurate out-
puts. Fuzzy logic is quite efficient in process con-
trol in dealing with the non-linearities and uncer-
tainties characteristic of two-phase flow systems.
Research by Shteimberg et al. [9] has shown that
fuzzy control systems can provide improved per-
formance over conventional PID controllers in
the control of non-linear and time-varying in-
dustrial processes. Other researchers have inves-
tigated fuzzy logic in several industrial applica-
tions. To illustrate this point, the application of
fuzzy control systems in various settings has been
documented. These settings include chemical re-
actor operation [10], heating, ventilation, and air
conditioning systems [11], directional emissiv-
ity regulation [12], and water treatment facilities
[13]. These studies demonstrate the breadth of
fuzzy control system applications across various
industries, hence the increased support for using
them to control two-phase flow.

Two-phase flow processes involve intricate
and dynamic gas-liquid phase interactions that
are difficult to simulate with conventional ap-
proaches. Conventional classification techniques
rely heavily on expert knowledge and visual per-
ception, introducing variability and subjectivity.
Some empirical models have been proposed to
classify flow regimes; however, their accuracy is
typically constrained to specific operating condi-
tions [14, 15]. A significant research study [16,
17] compared several artificial intelligence mod-
els to classify two-phase flow patterns in pipeline
systems. Using an extensive dataset, the research-
ers ascertained that the Extra Trees model at-
tained the most optimal classification. The study
identified the superficial velocities of gas and lig-
uid, as well as the inclination angle and diameter
of the pipe, as the primary parameters influencing
flow patterns. However, the study also identified
constraints related to the models’ flexibility in
accommodating diverse operational conditions,
emphasizing the necessity for comprehensive,
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high-quality datasets to enhance the reliability
of predictions. Fuzzy logic provides an alterna-
tive solution in the form of fuzzy rules that en-
capsulate expert experience. The application of
expert-derived rules facilitates the delineation of
boundaries between diverse flow regimes, uti-
lizing measurable parameters such as pressure,
gas flow rate, temperature, and liquid flow rate.
This approach [18] serves to minimize subjectiv-
ity and enhance automation. Fuzzy logic in two-
phase flow control systems has been explored ex-
tensively due to its ability to handle uncertainty
and adapt to varying operating conditions. De-
spite the referenced author’s work, Wang et al.
[19] proposed a fuzzy logic-based controller for
regulating two-phase flow in process industries.
Their work focused on using fuzzy controllers to
regulate flow stability and robustness of systems.
These controllers are based on expert knowledge-
generated fuzzy rules, enabling them to produce
decisions that imitate humans when identifying
and altering flow parameters.

However, fuzzy logic systems are not im-
mune to limitations despite their efficiency. A
disadvantage of conventional fuzzy controllers is
the requirement for extensive fine-tuning and rule
presetting, which is time-consuming and subject
to experience. The usage of human expertise is
inherently prone to limitations and potential bi-
ases. Consequently, the proposed methodology is
contingent on operator expertise and susceptibil-
ity to bias, thereby circumventing the necessity
for extensive manual formulation of vague rules,
which can be time-consuming. Recent literature
in the field has sought to integrate fuzzy logic
into machine learning approaches based on deep
learning to address these limitations.

Hybrid models: fuzzy logic and deep learning

Hybrid methods combining fuzzy logic and
deep learning have garnered significant attention
to enhance control systems’ flexibility and preci-
sion. Castillo and Melin [20] present a compre-
hensive review of hybrid methods, proposing that
deep learning can enhance fuzzy systems through
data-driven calibration of membership functions
and rules. Nguyen et al. [21] illustrated a hybrid
model using fuzzy logic and neural networks for
dynamic process control. This strategy exploits
the transparency provided by fuzzy rules while
simultaneously leveraging the inherent predic-
tive capacity in deep learning models. The idea
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of creating a hybrid fuzzy-deep learning frame-
work to control non-linear systems was investi-
gated in references [22, 23]. The findings in these
publications reveal system performance gains
relative to conventional controllers. A significant
challenge in implementing deep learning for two-
phase flow control is the requirement for exten-
sive, meticulously annotated datasets. Collecting
experimental data related to these processes re-
quires substantial labor and time investments. In
light of this challenge, researchers have explored
approaches for creating synthetic data and using
data augmentation techniques. Brunton and Kutz
[24] discuss the role of computational fluid dy-
namics (CFD) in generating synthetic data used
for training machine learning models. Shorten and
Khoshgoftaar [25] describe several data augmen-
tation methods that can be applied to increase the
training data available for neural networks. These
techniques can potentially minimize the necessity
for extensive experimental campaigns by gener-
ating diverse and comprehensive datasets.
Additionally, transfer learning has become an
essential method for data-driven control systems.
Pan and Yang [26] present an overview of trans-
fer learning methods, emphasizing their capacity to
reduce the data requirements for training artificial
intelligence models by implementing pre-trained
models on analogous tasks. Zhuang ef al. [27] ex-
amine the developments in transfer learning, focus-
ing on its relevance in industrial control systems.

Generative Al and intelligent assistants in
process control

Recent advancements in generative artificial
intelligence have given rise to new possibilities
for developing intelligent control systems. Large
language models (LLMs), as exemplified by the
OpenAl GPT-Series [28-30], have exhibited ca-
pabilities for executing intricate cognitive func-
tions, including decision-making and process
optimization. These models have the flexibility to
serve as Al assistants for process control through
the integration of domain knowledge and system
real-time feedback. In their study, Siddique et al.
[31] explore the challenges and opportunities of
Al-assisted industrial process control. They em-
phasize the prospects of generative Al in helping
automate decision-making mechanisms, minimize
human knowledge dependence, and enhance the
overall system efficiency. The amalgamation of
generative Al with fuzzy logic-based systems has

the potential to facilitate the development of smart
agents that can interpret qualitative commands
and subsequently adjust control parameters.

However, their hallucination propensity is an
essential challenge in employing LLMs for pro-
cess control, particularly in two-phase flow sys-
tems [32, 33]. The inherent propensity of these
systems to generate coherent yet erroneous infor-
mation poses a critical risk factor when applied
in real industrial contexts. In contrast to the toler-
ance of inaccuracy in exploratory or creative ap-
plications, where the outcome is not significantly
impacted, process control prediction inaccuracies
can have disastrous consequences, including sys-
tem crashes, equipment failure, and even acci-
dents. A potential issue that should be highlighted
is the possibility of an LLM misinterpreting op-
erator input due to hallucinated text, which could
result in the system regulating incorrect set points
for system variables. This, in turn, could lead to
unintended changes in flow rates, pressure ra-
tios, or phase distribution. Errors of this nature, if
propagated through chains of automated decision-
making, can unintentionally trigger emergency
shutdowns, destabilize coupled subsystems, or
engender hazardous situations in industrial fa-
cilities. To neutralize these risks, it is essential to
ensure that LLMs cannot access external, unveri-
fied knowledge. Instead, they should be supplied
with only carefully curated, domain-specific in-
formation relating to the prevailing control envi-
ronment [34]. The danger of invalid inferences
can be significantly reduced by ensuring that de-
cisions are made using only verified operational
facts and properly framed command inputs. This
approach aligns with recent research advocating
for knowledge-constrained LLM architectures,
in which models are designed to operate within
established epistemic boundaries to mitigate the
likelihood of unreliable outputs. Applying these
constraints within the framework of controlling
two-phase flow will enhance the system’s robust-
ness, ensuring that intelligent assistants function
as reliable aids rather than as potential sources of
uncontrollable variability.

The future of two-phase flow control technol-
ogy lies in developing intelligent systems that le-
verage the strengths of fuzzy logic, deep learning,
and generative Al. The primary research direc-
tions are as follows: the development of Al-based
transparent and interpretable control decisions;
the development of adaptive control systems that
generate control strategies in real-time to adapt
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to emerging operating conditions; and the devel-

opment of control systems that engage human

knowledge enhanced by Al automation to achieve
optimization of control performance.

Fuzzy logic remains a fundamental compo-
nent of two-phase flow control because it mim-
ics human thought. However, the integration of
fuzzy logic with machine learning and generative
Al has the potential to reveal new avenues for
enhancing control performance and versatility.
Future research endeavors should focus on devel-
oping hybrid models that balance interpretability
and performance while addressing the distinc-
tive challenges of two-phase flow processes. The
research work outlined herein seeks to improve
the regulation of two-phase flow systems by com-
bining fuzzy inference algorithms and supervi-
sory directive sentiment analysis [35]. The novel
method exploits the robustness of fuzzy logic
in dealing with uncertainty and adapting to new
conditions while concomitantly eliminating its
drawbacks through sentiment analysis and voice
command recognition.

Incorporating human emotion into the control
loop of the system enhances its flexibility. It re-
duces its reliance on precise tuning of member-
ship functions, thereby minimizing the complex-
ity and quantity of inference rules required. The
novelty of this solution lies in its dual feedback
loop mechanism, where the expected flow type
is compared not only with the actual flow gener-
ated but also with the sentiment of the supervising
engineer. This approach allows for more intuitive
and adaptive control, making the system more us-
er-friendly and efficient. Additionally, incorporat-
ing voice commands and emotional assessment
adds a new aspect to human-machine interaction
and increases the overall effectiveness and perfor-
mance of the control system. Therefore, the pres-
ent study will facilitate the reader in the pursuit
of responses to the following research questions:
e How does integrating sentiment analysis with

fuzzy inference algorithms improve the con-

trol accuracy and adaptability of two-phase
flow systems?

e What are the potential benefits and limitations
of'using a hybrid approach that combines fuzzy
logic, sentiment analysis, and voice command
recognition in two-phase flow control?

e How can the proposed system be optimized
for real-time performance and scalability in
various industrial applications?
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The research thoroughly examines the merits
and demerits of integrating fuzzy logic with sen-
timent analysis and voice command recognition
in two-phase flow control systems by addressing
these questions. The findings of this study will pave
the way for the development of more advanced and
user-friendly control solutions in the future.

METHODS AND IMPLEMENTATION

A series of interconnected cognitive services
from the Microsoft Azure public cloud portfolio
were applied to facilitate sentiment recognition as
a core analytic feature of the system. Speech-to-
Text and Language Services were initially used
to implement natural language processing and
textual analytics. These services enabled the sys-
tem to transform the operator’s commands into
a structured textual format suitable for compu-
tational analysis. Following this, the sentiment
recognition stage was initiated, determining each
command as negative, neutral, or positive, with
sentiment scores returned in a fuzzy format. Each
sentiment classification was assigned a probabili-
ty distribution. For instance, a command could be
classified as 0.8 negative, 0.15 neutral, and 0.05
positive. This approach was adopted to ensure the
capture of linguistic nuances and ambiguity, thus
avoiding a simplistic binary classification. An
API-based architecture was developed to handle
sentiment analysis as a function, enabling interac-
tion with external applications. Subsequently, an
agent was produced in Copilot Studio and inte-
grated into Microsoft Teams to interact in voice
in real time. This function allowed the system
to analyze operator speech before the sentiment
determination classification. A notable feature of
the system was incorporating a control loop to
manage an experimental installation. In instances
where a supervisor was speaking during the con-
trol loop and employed keywords pertinent to the
domain, such as “bubble”, “plug”, and “slug”, the
sentiment of the command was integrated into
a fuzzy inference system. Further contextual in-
formation was dynamically retrieved from an al-
ready established Service Bus topic to which the
agent was subscribed. The inference results were
published on another topic, which was created
for communicating with experimental installation
control devices. The devices (pump and compres-
sor) subscribed to the topic to receive live up-
dates on the status, ensuring an adequate system
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response based on supervisor sentiment and con-
textual information.

The following subsections will detail the
knowledge base created, the topic configura-
tions, the installation device integration, and
the sentiment analysis techniques. Additionally,
these subsections will clarify the implementation
framework and its operational dynamics.

Knowledge base

The experimental data were prepared based
on measurements conducted several years ago
[18]. The measurement campaign included a
comprehensive dataset incorporating tomograph-
ic data, pressure gauge readings, and flow meter
measurements. In addition to the fundamental la-
beling of data based on the flow type (e.g., plug,
slug, foam, etc.), it was necessary to incorporate
information on supplementary parameters such as
plug lengths, bubble sizes, and others.

The knowledge base of the proposed solution
consists of three sets of fuzzy rules. The first set
is used to determine the current type of two-phase
flow in the installation. These rules are structured
as follows:

If

The value of the gas stream is t t, t;the val-
ue of the liquid stream is t* t°, the 51m1lar1ty
value of the flow to R /R /.. /R is t” ” ; then
the analyzed flow is of type R, /R /.. /R where
* t t, t arethe fuzzy terms for the Value of the

gas stream supplied to the installation during
the analysis of the two-phase flow,

o ' t’, ' are the fuzzy terms for the value of
the l1qu1d stream supplied to the installation
during the analysis of the two-phase flow,

o 7 7, t7 are the fuzzy terms for the simi-
lar1ty Value of the analyzed two-phase flow to
a previously defined reference flow type R/
R/../R,

e R/R/../R are the fuzzy terms describing the
possible types of two-phase flow that can be
generated within the given measurement range.

The second set involves control rules that en-
roll the automatic generation of the desired type
of two-phase flow. This set of rules is structured
as follows:

If the value of the gas stream is tt, t; the
value of the liquid stream is t’, t°, the current
flow in the installation is R, /R/ /R the desired
flow type is R /R /.../R then the Value of the gas

stream is tt ts the value of the liquid stream is
v, O

The third set in the knowledge base includes
adjustment rules that facilitate altering a two-
phase flow type based on the perspectives of
commands. The adjustment rules are developed
to modify the characteristic properties associated
with a particular flow type and will vary across
some measurement ranges. This set of rules is
structured as follows:

If the current flow in the installation is R,/
R/../R; the desired structure changes in the
manner s s, s the sentiment of the operator’s
speech is p0s1t1ve/neutral/negat1ve then the value
of the gas stream is t, t, t; the value of the liquid
streamis t’ t*) 7.

Topics

The usage of Copilot Studio noticeably ad-
vanced the implementation of the proposed solu-
tion. The process created using Copilot allowed
the first training of an LLM (OPEN AI GPT 4.0
Global Deployment) on the fuzzy rules described
in the knowledge base. The agent embedding into
the MS Teams application facilitated seamless
integration with the system. The most significant
advancements were achieved by creating topics
that encapsulate operator commands. The topics
are based on the sample patterns of the analyzed
two-phase flows:

e plug — the plug can be extended or reduced by
modifying the gas and liquid flow values input
into the installation,

e air bubbles — the number of air bubbles can be
enhanced or reduced by modifying the gas and
liquid flow values input into the installation,

e slug — the slug can be extended or reduced
by modifying the installation’s gas and liquid
flow values.

Within each topic, the operator’s command
is first checked against the current type of two-
phase flow in the installation. When the expected
structure is identified in the analyzed flow, the
sentiment of the operator’s command is detected.
The sentiment of the operator’s command, which
is fuzzy (e.g., ‘slightly’, ‘definitely’, or ‘signifi-
cantly’), is then applied to refine the command
using the Centre of Gravity principle [1].

The sentiment analysis and fuzzy com-
mand recognition yield an exact adjustment of
the input signals to the installation, leading to
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an improved quality of two-phase flow genera-
tion as determined by the supervising operator.
A reduction in the necessity for extensive human
fine-tuning of membership functions and infer-
ence rules accompanies this enhancement in
adaptability and responsiveness.

The integration of the Copilot Studio with MS
Teams enables dynamic adjustments to occur un-
der the analyzed commands and sentiments from
the operator, aligning best with the performance
and satisfaction of the user. Incorporating topics
and sentiment-based detection into the two-phase
flow control system represents a significant ad-
vancement, signifying a persistent evolution to-
wards a more intuitive and effective two-phase
flow control system.

Integration with installation systems

A custom connector was developed with
Power Automate to establish the connectivity be-
tween the proposed solution and the installation
management systems (see Figure 1). This connec-
tor integrates the control system with the installa-
tion by means of a message broker, Service Bus,
designed as a publish-subscribe architecture. The
Service Bus comprises two primary topics.

The first contains information from the instal-
lation management system, explicitly consolidat-
ing the information of the ‘current state’ as the
type of two-phase flow, the values of the gas and
liquid streams that the installation has supplied to
it, and the fuzzy degree of similarity coming from
the raw, 3D tomographic data [18, 36]. This first
topic provides input into the proposed solution.

On the other hand, the second topic contains
information from the designed agent, precisely

(Connector

)

P

Compressor

H = |[— M 0]

the ‘desired state’ values for the liquid and gas
streams. These values are then extracted by the
controllers that manage the pump and compressor
operation to ensure that the new expected input
settings for the installation are recognized.

The integration process employs the func-
tionalities of the Copilot Studio to train the LLM
model and embed a trained agent in MS Teams.
This combination facilitates real-time user inter-
action and command execution, enhancing the
system’s responsiveness and adaptability. Adopt-
ing topics for aggregating operator commands
enables the system to adapt to evolving condi-
tions and operator preferences. The communica-
tion interfaces have been designed with Human-
Computer Interaction (HCI) principles to ensure
usability and efficacy. Operators can issue voice
commands and receive feedback from the agent
quickly and efficiently via the interface. The im-
plementation of sentiment analysis on the com-
mands enables the refinement of control actions,
thereby enhancing the overall user-friendliness
and versatility of the system.

Sentiment analysis

Implementing sentiment analysis in control
systems for two-phase flow is contingent on cog-
nitive analysis services [37]. The application of
this technology is to identify the sentiment of the
commands issued by the operator in three principal
modes: positive, neutral, or negative. The impact
of each of these modes on command interpretation
and subsequent performance of the two-phase flow
control system is distinct. The sentiment analysis
employed in the context of two-phase flow con-
trol facilitates the dynamic adjustment of system

|

4,(_8

Copilot Agent
Operator

S

Knowledge base

Service Bus

Figure 1. The general structure of the system
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control parameters, with these adjustments being
based on the emotional sentiment of the command
issued. In the positive sentiment mode, the emo-
tional sentiment will lead to only a slight adjust-
ment in the values of the input signals, revealing
that the system is close to the inferred parameters.
Conversely, if a neutral sentiment is registered, the
rationale for further tuning holds merit, as the op-
erator will recognize the need to adjust the flow
system to a moderate extent. Conversely, nega-
tive sentiment commands elicit a more substantial
adjustment to the input signals through the imple-
mentation of more stringent regulation, as these
commands typically signal a considerable devia-
tion from expected values, necessitating a change
in the original input parameters.

Implementing this mechanism involved us-
ing Azure Cognitive Services APIs for natu-
ral language processing and command content
classification. A notable challenge was ensuring
sufficient accuracy in analyzing complex, con-
textual operator commands that deviated from
standard syntax. It was imperative to employ
techniques to enhance the machine learning
models by refining the dataset, incorporating ac-
tual operator interactions with the control sys-
tem to address this challenge.

The second key element in the implementa-
tion process was converting the sentiment analy-
sis output into the operation of a fuzzy controller
managing a two-phase flow. The sentiment map-
ping to setpoints had to reflect the idiosyncrasies
of the two-phase flow process in terms of vari-
ability in flow conditions and the modification of
manipulated parameters to plug length, generated
bubbles, and slug duration. The controller was
designed using interventions based on decision
matrices that weighed the values of input signals
across predetermined dimensions of sensitivity.

The primary challenge encountered during
implementation was maintaining a real-time en-
vironment and ensuring seamless system opera-
tion. The high command processing latency was
problematic, specifically because it created an
undesirable delay in the system’s response to op-
erator input, which resulted in uncontrolled pa-
rameter adjustment in a dynamic two-phase flow
environment. The solution to this issue entailed
the deployment of optimized natural language
processing models and the parallel processing of
inputs. This strategy proved highly effective in
substantially mitigating the system’s decision-
making delay.

RESULTS AND DISCUSSION

Experimental setup

To evaluate the flow regime control agents,
sentiment detection, and voice command pro-
cessing, an experimental sequence was designed
in collaboration with an expert at the two-phase
flow gas-liquid facility in the institute’s labora-
tory [18]. The experiments employed both hori-
zontal and vertical sections of the test rig. The test
rig is a closed-loop system consisting of a water
tank, a pump, an air compressor, and a pipeline
with horizontal and vertical sections. The pipe-
line is made of transparent acrylic glass with an
inner diameter of 26 mm. The liquid flow rate
was measured using a rotameter, and a gas con-
trol valve regulated the gas flow rate. A tomo-
graphic system with 3D Electrical Capacitance
Tomography (ECT) sensors was used to acquire
raw data for flow type evaluation. This setup al-
lowed for a comprehensive analysis of various
two-phase flow phenomena under different op-
erational conditions, providing a solid founda-
tion for evaluating the proposed hybrid control
system. The operator issued commands verbally
to the agents via the MS Teams application. The
agents then performed the commands, recogni-
tion, sentiment analysis, and interpretation of the
fuzzy commands. Subsequently, the system mod-
ified the input signals to the installation follow-
ing the interpretation of the commands. A camera
was mounted adjacent to the facility to capture
images of the stabilized flow regimes within the
transparent section of the pipeline. The two tables
below present the transcript of the operator’s dia-
logue (in blue) with the system (in green) for both
the horizontal and vertical segments. The com-
mands specified the expected flow regime, with
additional parameters conditioning the structure
characteristics, such as more extended plugs and
denser bubbles, depending on the flow regime.
The ensuing chats illustrate the agent’s response
to the flow regime and the subsequent inferences
regarding the command to act. The experiment
was designed to provide a comprehensive evalua-
tion of the performance of the control agents, the
accuracy of sentiment analysis, and the accuracy
of voice commands for the control of two-phase
flow systems (Table 1 and 2).

The core of this study focuses on the inter-
pretation and analysis of the hybrid control sys-
tem’s performance. The results demonstrate the

49



Advances in Science and Technology Research Journal 2025, 19(12), 42-55

Table 1. Chat of human-expert with Al agent to control the flow in the horizontal section

Chat with Al agent

Installation response
horizontal section, images taken after 20s

Start the flow and maintain the bubble type
OK. Bubble flow started.

OK. It's fine. Create gently fine bubbles
Sorry, the command not understood. Please repeat.
Reduce bubbles a little
OK. Reduced bubbles created.

OK. It's fine
Start the foam flow now
OK. Foam flow started.

OK. It's fine
Start the waved flow
OK. Waved flow started.

OK. It's fine
Add some slugs
OK. Slugs added.

OK. It's fine. Create shorter slugs a little
Sorry, the command not understood. Please repeat.
Reduce slugs a little
OK. Slugs reduced.

OK. It's fine.
Create even shorter slugs
OK. Shorter slugs created.

OK. It's fine
Create longer slugs now
OK. Longer slugs created.

OK. It's fine
Create slugs rarer and longer
OK. Rarer and longer slugs created.

OK. It's fine. Create slugs even rarer and even longer and
keep the layered flow
Sorry, the command not understood. Please repeat.
Create slugs even longer and keep the layered flow
OK. Longer slugs created. Layered type maintained.

OK. It's fine
Create foam flow with slugs
OK. Foam flow with slugs created.

OK. It's fine. STOP
OK. Flow stopped.
OK. It's fine

effectiveness of combining a fuzzy inference en-
gine with sentiment analysis for robust and flex-
ible control of two-phase flow. The system’s abil-
ity to handle ambiguous and emotionally charged
commands was a key finding. For instance, when
the operator issued a vague command like ‘Create
even shorter slugs’ the system’s sentiment analysis
component detected the underlying dissatisfaction
and interpreted the command as a request to stabi-
lize the flow regime actively. This is in contrast to
traditional control systems, which would typically
fail to process such subjective input. The system’s
response to emotionally charged commands high-
lights the effectiveness of sentiment analysis. The
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agent not only processes the explicit command
(‘even shorter’) but also recognizes the urgency
conveyed by the operator’s frustration, leading to
a more decisive control action. This aligns with
findings in human-computer interaction (HCI)
research, which emphasize the importance of sys-
tems that can understand and adapt to user’s emo-
tional states [38—40].

The real-time operational benefits of this
hybrid approach are significant. Minimizing
the time lag between operator command and
system response makes the control loop more
efficient and safer. Fuzzy logic allows the sys-
tem to make nuanced adjustments based on the
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Table 2. Chat of human-expert with Al agent to control the flow in the vertical section

Chat with Al agent

Installation response
vertical section, images taken after 20s

Start the flow and maintain the slug type
OK. Slug flow started.

and rotated 90° clockwise

OK. It's fine.
Create slugs shorter a little
OK. Shorter slugs created.

OK. It's fine. Create more gently shorter slugs
Sorry, the command not understood. Please repeat.
Create slugs shorter a little
OK. Shorten slugs created.

OK. It's fine.
Create very long slugs
OK. Very long slugs created.

OK. It's fine.
Start the churn flow
OK. Churn flow started.

OK. It's fine.
Extend slugs significantly
OK. Slugs extended.

OK. It's fine.
Make dispersed bubble flow
OK. Dispersed bubble flow started.

OK. It's fine.
Now make the bubbles more dense
Sorry, the command not understood. Please repeat.
Increase the bubbles density a little
OK. Bubbles density increased.

operator’s subjective input, which would be im-
possible with binary logic systems. The experi-
mental results confirm that this approach leads
to a more stable two-phase flow, as evidenced
by the successful stabilization sequences re-
sponding to imprecise commands. This capabil-
ity is particularly relevant in industrial settings
where precise, unambiguous commands are not
always feasible, and human-in-the-loop control
is essential [41].

Furthermore, the system’s ability to interpret
and translate subjective human input into ob-
jective, quantifiable control parameters demon-
strates its potential as a next-generation control
interface. Leveraging sentiment and linguistic
analysis bridges the gap between human intuition
and machine precision.

Quantitative analysis of system performance

To validate the system’s robustness, 20 addi-
tional identical experimental runs were conducted
under consistent conditions. The experimental set-
up was maintained with a constant liquid flow rate
of 5 L/min and a gas flow rate adjusted to induce
a churn flow regime known for its instability. Dur-
ing each run, the operator was instructed to issue

a predefined set of 10 ambiguous and emotionally
charged commands (e.g., ‘reduce it more!’ or ‘this
is not good’).

The system’s performance was evaluated
based on two key issues: system response stabil-
ity and interpretation accuracy. The time taken for
the system to stabilize the two-phase flow after
receiving a command was recorded. Across the
20 repetitions, the average stabilization time was
7.5 seconds, with a standard deviation of 1.2 sec-
onds. This low variance indicates high stability
and repeatability of the system’s control actions,
confirming its consistent performance under sim-
ilar conditions.

Simultaneously, the frequency of successful
command interpretations was logged. The senti-
ment analysis and fuzzy logic components cor-
rectly interpreted 95% of the predefined ambigu-
ous commands. The 5% of misinterpretations
primarily occurred with exceptionally quiet com-
mands or overlapped with significant background
noise, suggesting potential areas for improvement
in the voice-to-text processing stage. Including
these quantitative data points complements the
qualitative insights from the dialogue transcripts,
providing a comprehensive view of the system’s
reliability and performance.
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Advantages and limitations

The recommended system has several key
advantages, allowing for an easier and more ef-
ficient option for sentiment analysis and rule-
based decision-making in an industrial environ-
ment. Nevertheless, the system has limitations
that must be considered before deployment and
for its ongoing usability. One of the system’s ad-
vantages is its ease of use, such that the operators
can operate the sentiment analysis model using
natural language communication. The integra-
tion with Copilot Studio and MsTeams assists
in seamless interaction. It does not require prior
extensive technical knowledge, which is benefi-
cial and lowers the barrier for non-expert users.
The system’s ease of use facilitates the utiliza-
tion of cognitive services in the cloud environ-
ment, thereby enabling the execution of complex
manual implementation processes. Consequently,
developers can focus on modifying the system’s
functionality rather than expending resources on
sentiment analysis and analysis from the begin-
ning. This approach can potentially reduce devel-
opment time and effort, resulting in afaster imple-
mentation and customization of existing deploy-
ments to meet specific use cases better. The user’s
lack of requirement for domain-specific expertise
is advantageous regarding ease of use and acces-
sibility. The sentiment analysis and fuzzy logic
processing capabilities are integrated into the au-
tomated system, thereby eliminating the need for
extensive expertise in artificial intelligence (Al)
and/or machine learning (ML) modeling, enhanc-
ing the practical usability of the proposed senti-
ment analysis solutions across a broader range of
industrial applications.

Another advantage of the proposed solution
is the improved security against the risk of LLM
misinterpretation. As can easily be seen from the
illustrated interaction of the operator with the
agent, the model sometimes fails to acknowledge
or correctly interpret commands. This could be
caused by background noise, such as loud equip-
ment or an unintelligible accent from the opera-
tor. Significantly, however, these misinterpreta-
tions did not result in incorrect control actions
within the rig. This reliability results from the
model’s deliberate isolation from external, un-
controlled data sources and its focus on a domain
of knowledge consisting of pre-established flow
pattern designs. By operating solely within this
domain-specific framework, the system avoids
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hallucinatory outputs by not allowing erroneous
interpretations to propagate into high-stakes pro-
cess control actions. This capability is crucial in
high-stress industrial environments where clear,
predefined commands are not always feasible.
Such an approach significantly improves the
human-in-the-loop interaction, a key aspect dis-
cussed in the literature on advanced industrial
control systems [42]. Moreover, the time between
issuing a command and the agent’s response, as
well as sentiment detection and control setting
prediction, is several seconds. This is insignifi-
cant compared to the time taken to stabilize the
flow in the system. As a result, the system’s deci-
sion-making process does not introduce any oper-
ational delays, and sentiment-based adjustments
are incorporated into the overall control strategy
without compromising process efficiency. The
system’s architecture, particularly isolating the
control model from unvalidated data streams,
ensures operational reliability and reduces com-
putational latency. The control loop operates in
near real-time, minimizing the delay between
command processing and physical actuation. This
immediate responsiveness significantly improves
systems that might require more extensive data
processing, leading to improved safety and effi-
ciency. This design principle aligns with research
advocating for minimal-latency control architec-
tures in critical applications [43].

Despite its notable advantages, the system ex-
hibits several significant deficiencies. Primarily, the
system is excessively dependent on a specific ven-
dor of LLM, which complicates transitioning from
the current provider to a substitute without sub-
stantial alterations to the system. Consequently, the
greater the demand for flexibility in cloud vendors
among companies, the more significant the barriers
to adopting this solution. This reliance on a third-
party service introduces potential issues related to
cost increases, service instability, or discontinua-
tion. This aspect of the system’s architecture war-
rants further discussion regarding scalability and
long-term viability, a topic widely explored in the
context of cloud-based industrial solutions [44].

Furthermore, modifications and revalidations
are still required throughout the system due to its
need for updating. Changes to the top-level LLM
models, or cognition services affecting those
must also be addressed in the implementation.
This necessitates a substantial number of manual
tests and validations for the system to function
as intended. Critical infrastructure deployments
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introduce further complexity due to regulatory
requirements. In this context, robust encryption
can enhance security, albeit at the expense of
processing speed. While the system effectively
handles emotional and ambiguous commands, its
performance is highly dependent on the quality
and specificity of the sentiment analysis model.
A model trained on different linguistic nuances
might fail to interpret operator commands cor-
rectly. Future research should focus on devel-
oping a more adaptable and customizable senti-
ment model to enhance the system’s performance
across diverse operational contexts.

Finally, financial considerations must not be
overlooked. The initial setup and testing of the sys-
tem are estimated to cost 250 dollars (about 10 k
test messages with voice-to-text conversion, sen-
timent analysis, and developed agent interaction),
but long-term operating expenses are also high. Es-
timates indicate a cost of $15000 per 100 installa-
tions per month, a figure likely to be a considerable
expense for users managing multiple installations.

CONCLUSIONS

This study successfully demonstrates a nov-
el hybrid control system for two-phase gas-liq-
uid flow, integrating fuzzy logic with sentiment
analysis. The primary objective of the research
was to address key challenges in two-phase flow
control by enhancing the system’s ability to in-
terpret and respond to an operator’s subjective,
often emotionally charged, voice commands.
The experimental results confirm that this ap-
proach significantly improves control accuracy
and flexibility. By leveraging sentiment analy-
sis, the control loop can make nuanced adjust-
ments to stabilize the flow even with ambiguous
or emotional commands, a capability supported
by research in human-computer interaction
(HCI) and affective computing. This integration
of human-like reasoning refines the system’s re-
sponsiveness to dynamic changes and addresses
a principal weakness of conventional fuzzy con-
trollers, namely the manual tuning difficulty of
membership functions.

The key finding is the system’s demonstrat-
ed robustness and adaptability. The low-latency,
real-time control architecture is highly effective,
contributing to the system’s overall efficiency and
safety, a critical aspect in advanced industrial con-
trol systems. Operators can issue intuitive orders,

thereby improving the functionality of control
processes and facilitating harmonious human-
machine coordination. The system’s resilience is
strengthened by the model’s deliberate isolation
from external, uncontrolled data sources, effec-
tively preventing faulty command propagation
and ensuring it does not fail or generate erroneous
settings even in the presence of misinterpretations
due to background noise.

However, the system is not without limita-
tions. A key challenge is the reliance on a spe-
cific third-party API for voice-to-text conversion,
which poses a risk of vendor lock-in and warrants
further consideration in industrial deployment
strategies. The system’s scalability to different in-
dustrial applications also requires ongoing refine-
ment. Future research will therefore focus on de-
veloping a more flexible, open-source sentiment
model to mitigate these limitations and explore
the system’s applicability in a full-scale industrial
environment.
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