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INTRODUCTION

Prediction, understood as the process of fore-
casting future values based on historical data, is 
a  key analytical tool widely applied in various 
domains, particularly in traffic flow management. 
Short-term prediction is especially important, as it 
enables real-time responses to dynamic conditions, 
such as adjusting traffic signals, optimizing vehicle 
routing, or managing traffic during emergencies. In 
recent years, regression models have attracted sig-
nificant attention as effective tools for short-term 
traffic prediction. 

Accurate and timely prediction of traffic flow 
is a cornerstone of modern intelligent transporta-
tion systems (ITS), particularly in the context of 
smart cities and adaptive traffic management. With 
the growth of urban populations and increasing 
vehicle density, traffic congestion has become a 
critical societal and economic issue. Consequent-
ly, the development of reliable models for short-
term traffic prediction has become an active area 

of research. These models support real-time deci-
sions, including dynamic traffic light control, route 
optimization, congestion mitigation, and emergen-
cy management strategies.

Traditional approaches to traffic prediction, 
such as time series analysis and linear regression, 
have proven effective under certain conditions, 
particularly when traffic patterns exhibit strong 
seasonality or periodicity. However, the complex-
ity and variability of real-world traffic, influenced 
by factors such as weather, accidents, infrastruc-
ture, and human behavior, demand more flexible, 
data-driven methods. In response, machine learn-
ing techniques have gained significant traction in 
traffic prediction research due to their ability to 
model non-linear relationships and handle high-
dimensional datasets. 

The prediction of traffic flow has evolved sig-
nificantly over the decades, starting from classical 
statistical tools to advanced machine learning ap-
proaches. One of the foundational contributions to 
statistical analysis was made by Shapiro and Wilk 
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[1], who proposed a test for assessing the normal-
ity of a dataset. While their method is not directly 
used for traffic forecasting, it plays a crucial role 
in validating assumptions before applying more 
complex models. Early work on traffic predic-
tion emphasized probabilistic models, notably 
Bayesian methods. Zheng et al. [2] introduced a 
Bayesian combined neural network approach that 
improved short-term freeway traffic predictions by 
integrating multiple neural networks, achieving 
more robust generalization. Similarly, Sun et al. 
[3] proposed a Bayesian network model capable 
of handling uncertainty and variable dependencies 
in traffic flow. These models marked a shift toward 
data-driven, probabilistic approaches that account-
ed for real-world variability.

The development of real-time prediction mod-
els was advanced by Min and Wynter [4], who in-
corporated spatio-temporal correlations. Their ap-
proach reflected the growing complexity of urban 
traffic systems and the need to model interactions 
across time and space. Another significant method-
ology involves dynamic estimation using Kalman 
filtering. Wang et al. [5] employed the extended 
Kalman filter (EKF) to estimate real-time freeway 
states, showing its utility in modeling latent traffic 
variables like density and speed. The relevance of 
this topic is also reflected in numerous other stud-
ies. For instance, Lv and Duan [6], proposed the 
use of deep learning models for short-term traffic 
prediction, demonstrating their superiority over 
traditional methods when dealing with large and 
complex datasets. Similarly, Vlahogianni and Kar-
laftis [7] emphasized the effectiveness of hybrid 
approaches that combine statistical methods with 
machine learning techniques to enhance forecast 
accuracy under variable traffic conditions. Yang 
and Pan [8] showed that integrating data from di-
verse sources – such as road sensors, GPS, and 
weather data, significantly improves prediction 
performance. In this context, models based on long 
short-term memory (LSTM) neural networks have 
been developed to effectively handle temporal de-
pendencies and fluctuations in traffic volume.

Regression models, particularly those en-
hanced by machine learning, such as random for-
est regression, continue to play a central role in 
traffic flow modeling due to their robustness, sim-
plicity, and interpretability. For instance, studies 
by Dymora et al. [9, 10] evaluated the effective-
ness of classical and machine learning regression 
models in forecasting short-term traffic volumes 
within smart city environments. Their results 

highlight the trade-offs between computational 
cost and accuracy, underscoring the relevance of 
optimization in model construction and parameter 
tuning. Moreover, ensemble learning methods like 
random forest have shown superior generalization 
in traffic modeling tasks. As demonstrated by Liaw 
and Wiener [11], random forest s effectively han-
dle overfitting and provide internal error estimates, 
making them attractive for real-world deployment. 
Despite their advantages, systematic comparisons 
between machine learning regression models and 
classical linear models are still relatively scarce in 
the context of urban traffic data with high temporal 
granularity. In more recent years, the use of recur-
rent neural networks has gained traction. 

In parallel, ensemble learning techniques such 
as random forests (RF) have been explored for 
traffic prediction under complex conditions. Xu et 
al. [12] applied RF to forecast traffic during severe 
weather, highlighting the model’s robustness and 
interpretability. More recently, Sun et al. [13] ap-
plied RF for congestion prediction, demonstrating 
its superior performance compared to linear re-
gression models, particularly in ranking the impor-
tance of input features.

This study contributes to the ongoing discourse 
by providing a comparative analysis of two types 
of regression models: one based on the random 
forest algorithm and another on classical linear re-
gression. The models are trained and tested using 
empirical traffic data collected from intersections 
in the city of Rzeszów, Poland. Unlike previous 
studies that focus solely on prediction accuracy, 
this work evaluates a comprehensive set of statisti-
cal indicators, including R-squared, residual distri-
bution metrics (mean, standard deviation, kurtosis, 
normality), model stability across resampling, and 
computational performance [14, 15]. The scientific 
novelty of this work lies in its multi-faceted meth-
odological framework and practical orientation. 
Specifically, it introduces:
	• The use of Fourier-transformed time variables 

to encode weekly cyclic patterns in traffic data;
	• A systematic hyperparameter tuning process 

for random forest using grid search;
	• A detailed evaluation of model performance 

trade-offs between predictive accuracy and 
computational cost.

Furthermore, the study highlights that even 
lightweight, interpretable models such as lin-
ear regression – when properly optimized – can 
perform competitively against more complex 
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alternatives. This insight is especially relevant 
for real-world applications where computational 
resources may be constrained. In addition, this re-
search addresses a frequently overlooked aspect 
in the literature: the interpretability-performance 
trade-off in traffic forecasting models, offering a 
reproducible and scalable methodology that bal-
ances simplicity with predictive strength.

 The primary objective of this study is to de-
velop and evaluate a statistically robust regres-
sion model for predicting weekly traffic volumes, 
utilizing both classical and machine learning ap-
proaches. By comparing a random forest -based 
model with a  linear regression counterpart, the 
research addresses the question of whether in-
creased model complexity (in terms of algorith-
mic sophistication and computational cost) yields 
proportionally improved predictive power in real-
world, time-indexed traffic datasets. The main ob-
jective of this study is to construct a statistically 
significant regression model describing weekly 
traffic volume. This model will be based on the 
random forest algorithm. Additionally, a “com-
peting” model based on linear regression will be 
developed. The aim is to compare the effective-
ness of both methods in reflecting the nature of 
the analyzed traffic. Both models are to be opti-
mized to achieve the best possible fit. The nov-
elty of this work stems from its methodological 
integration: the transformation of time variables 
using Fourier series to encode temporal cycles, 
the fine-tuned comparison of model residuals us-
ing distributional statistics, and the systematic 
evaluation of model training time versus perfor-
mance trade-offs, a perspective that is often un-
derreported in related studies. In summary, this 
research fills a  methodological and applied gap 
in the current literature by delivering a reproduc-
ible, scalable, and empirically validated model-
ing framework for short-term traffic prediction. 
It offers insights into the efficacy and practical 
limitations of machine learning models relative 
to simpler baselines, ultimately guiding future 
deployments in urban mobility planning. Further 
objectives include evaluating the quality of both 
models using the following metrics: coefficient 
of determination R2, adjusted R2, mean of the 
residuals’ distribution, standard deviation of the 
residuals’ distribution, kurtosis of the residuals’ 
distribution, normality of the residuals’ distribu-
tion, mean and standard deviation of the R2 dis-
tribution on random samples and average model 

construction time [16]. The main programming 
environment used in this study is R [17].

To sum up this article, compares two ap-
proaches to traffic modeling: a linear trigonomet-
ric regression model and a nonlinear random for-
est model. The novelty lies in the optimized im-
plementation of the linear model, which enables 
fast and resource-efficient generation of forecasts, 
and the author’s parameter selection algorithm for 
the random forest model, which takes into account 
the seasonality and variability of the data. The in-
house contribution includes a detailed compara-
tive analysis of the two models in terms of the 
quality of fit, the distribution of residuals, the sta-
bility of the R² coefficient of determination, and 
the effect of the number of input variables on the 
model-building time. The experiments conducted 
showed that random forest achieves high predic-
tion quality already with a limited number of vari-
ables, making it an effective and flexible tool for 
analyzing seasonal data, such as traffic volume. 

The paper is divided into five sections. The 
introduction provides a review of the literature 
and recent trends in traffic prediction optimiza-
tion. “General description of the used dataset” of-
fers some information on the dataset and its pre-
processing. “The modelling process” describes the 
models applied: linear regression and random for-
est, as well as their application in this study. “Mod-
el testing” discusses model evaluation, including 
residual distribution and R-squared values on new 
data. The final section provides a summary, con-
clusions, and outlines the scope of future research.

GENERAL DESCRIPTION OF THE USED 
DATASET

The study utilized data obtained from the 
Municipal Road Authority in Rzeszów. The data-
set contains information regarding the number of 
vehicles passing through a network of measure-
ment points distributed across 71 intersections 
and pedestrian crossings in Rzeszów. The mea-
surements were taken in February and July 2022 
and were recorded at hourly intervals. The dataset 
includes 1.416 measurements collected at each of 
the 399 measurement points, resulting in a total of 
564,984 data points.

The original data is in the form of 59 Excel 
files, one for each day. Each worksheet in the file 
is dedicated to an individual intersection or pedes-
trian crossing. In Table 1, one can see a fragment 
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of the worksheet containing data on traffic flow at 
the intersection of Powstańców Warszawy Avenue 
and Batalionów Chłopskich Avenue on 1.07.2022.

To facilitate further processing, data from se-
lected intersections were copied into a new file in 
the form of a uniform table (Table 2), where the 
rows correspond to consecutive measurements, 
and the columns describe the time of measure-
ment and the recorded values at individual con-
nections. At this stage, the connections were also 
assigned abbreviated names, which are explained 
in the next paragraph.

One of the time measures in the table above is 
weekly hours. Week hour equal to 1 corresponds 
to the time interval from 0:00 to 1:00 on Monday, 
week hour equal to 2 corresponds to the interval 

from 1:00 to 2:00 on Monday, and this continues 
up to 168, which corresponds to the interval from 
23:00 on Sunday to 0:00 at the transition from 
Sunday to the following Monday.

Using weekly hours as an explanatory vari-
able allowed for the development of a model fit-
ted to weekly traffic intensity, which is in line 
with the objective of the study.

Figure 1 clearly shows distinct daily cycles, 
with increased traffic during the day and reduced 
traffic at night, as well as local peak hours. Typi-
cally, traffic is noticeably lower on weekends. 
A recurring weekly cycle is also evident. This cy-
cle is somewhat blurred for certain connections, 
such as Ht1_Ldl, due to factors not directly relat-
ed to time. However, the majority of connections 

Table 1. The worksheet contains data on traffic flow at the intersection of Powstańców Warszawy Avenue and 
Batalionów Chłopskich Avenue on 1.07.20224

 

left ahead right left, ahead right left, ahead right left ahead right

00:00:00 01:00:00 14 85 11 159 11 69 61 11 80 17 518
01:00:00 02:00:00 5 39 5 87 5 68 39 9 70 18 345
02:00:00 03:00:00 7 30 6 76 2 61 32 7 58 11 290
03:00:00 04:00:00 6 39 3 85 3 100 38 4 43 20 341
04:00:00 05:00:00 13 73 10 135 6 153 68 3 79 42 582
05:00:00 06:00:00 17 165 25 485 25 374 200 8 188 81 1568
06:00:00 07:00:00 54 264 67 1068 52 665 398 36 489 279 3372
07:00:00 08:00:00 66 310 89 1008 61 840 462 83 661 235 3815
08:00:00 09:00:00 83 348 74 962 73 736 428 79 557 242 3582
09:00:00 10:00:00 75 378 76 915 83 666 486 86 740 233 3738
10:00:00 11:00:00 108 357 72 1146 77 657 470 77 742 264 3970
11:00:00 12:00:00 81 415 71 1219 101 674 475 66 614 237 3953
12:00:00 13:00:00 91 441 74 1241 68 717 448 72 714 240 4106
13:00:00 14:00:00 71 493 74 1155 69 713 483 88 658 263 4067
14:00:00 15:00:00 63 464 72 1317 69 880 377 110 593 243 4188
15:00:00 16:00:00 55 469 74 1140 71 650 282 105 543 224 3613
16:00:00 17:00:00 52 456 66 1096 58 576 376 104 579 230 3593
17:00:00 18:00:00 61 372 70 1047 52 554 456 60 703 222 3597
18:00:00 19:00:00 51 356 49 1130 61 485 464 53 684 193 3526
19:00:00 20:00:00 75 338 53 1027 37 498 466 57 550 178 3279
20:00:00 21:00:00 52 261 37 917 52 397 334 43 502 144 2739
21:00:00 22:00:00 42 226 31 763 42 346 236 35 396 103 2220
22:00:00 23:00:00 32 189 26 558 34 298 228 27 260 64 1716
23:00:00 00:00:00 21 159 24 289 19 161 135 17 186 33 1044

1195 6727 1159 19025 1131 11338 7442 1240 10689 3816 63762

Powstańców Warszawy Avenue - Batalionów Chłopskich Avenue

TotalRelation

Date: 01.07.2022

Time\Inlet

North -  from Dąbrowskiego 
Street

East - from Powstańców 
Warszawy Avenue

South - od from 
Podkarpacka Street

West - from Batalionów 
Chłopskich Avenue

Relation Relation Relation

Updated: 06.12.2023 12:28:41
Total

Table 2. A set of processed tables with data prepared for import to the R environment
Date Week hour Db_PW Db_Pk … BCh_Pk

1.07.2022 121 14 85 … 17

1.07.2022 122 5 39 … 18

… … … … … …

1.07.2022 129 83 348 … 242

… … … … … …
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exhibit a high concentration of measurement 
points around a specific curve, which is promis-
ing for a model based on a weekly perspective.

It was noted that on some connections, the traf-
fic was different between the two tested months, 
most notably in the case of the BCh_Db connec-
tion, where the traffic in February was on average 
15% higher than in July. It is clear that seasonal 
aura has some impact on the traffic volume, but to 
test this notion further, a more expansive dataset 
is required to cover the other 10 months as well. 
Due to constraints of the current dataset, this has 
to be tested in the future.

17 out of the 71 monitored connections were 
selected for the study, each with 1,416 measure-
ment points. Each connection received its linear 
model and random forest model. Within the in-
tersection of Powstańców Warszawy Avenue and 
Batalionów Chłopskich Avenue, the following 
connections were selected:
	• Db_PW – left turn from Dąbrowskiego St. to 

Powstańców Warszawy Av.,
	• Db_Pk – straight passage from Dąbrowskiego 

St. to Podkarpacka St.,
	• Db_BCh – right turn from Dąbrowskiego St. 

to Batalionów Chłopskich Av.,
	• PW_Pk.BCh – left turn from Powstańców 

Warszawy Av. to ul. Podkarpacka and straight 
passage to Batalionów Chłopskich Av.,

	• PW_Db – right turn from Powstańców War-
szawy Av. to Dąbrowskiego St.,

	• Pk_BCh.Db – left turn from Podkarpacka St. 
to Batalionów Chłopskich Av. and straight 
passage to Dąbrowskiego St.,

	• Pk_PW – right turn from Podkarpacka St. to 
Powstańców Warszawy Av.,

	• BCh_Db – left turn from Batalionów 
Chłopskich Av. to Dąbrowskiego St.,

	• BCh_PW – straight passage from Batalionów 
Chłopskich Av. to Powstańców Warszawskich 
Av.,

	• BCh_Pk – right turn from Batalionów 
Chłopskich Av. to Podkarpacka St.

	• In the intersection of ul. Hetmańska and ul. 
Wincentego Pola, the following connections 
were chosen:

	• Ht1_Ldl – left turn from Hetmańska St. (north 
inlet) to the Lidl store parking lot,

	• Ht1_Ht2 – straight passage through Hetmańska 
St. (from north to south),

	• Ht1_WP – right turn from Hetmańska St. 
(north inlet) to Wincentego Pola St.,

	• Ldl_Ht1.WP.Ht2 – exit from the Lidl store 
parking lot in any other direction,

	• Ht2_Ht1.WP – straight passage through 
Hetmańska St. (from south to north) and left 
turn to Wincentego Pola St.,

	• Ht2_Ldl – right turn from Hetmańska St. 
(south inlet) to the Lidl store parking lot,

	• WP_Ht1.Ldl.Ht2 – passage from Wincentego 
Pola St. to any other direction.

It should be noted that combining the individ-
ual models of connections in a similar manner to 

Figure 1. Registered traffic volume on the BCh_Db connection over a weekly span. The traffic is visibly higher 
in February than in July
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what is done in [9, 10] is not feasible because not 
all connections are “one-to-one”. There are also 
“one-to-many” connections, like WP_Ht1.Ldl.
Ht2, which cannot function as an edge in a graph.

THE MODELLING PROCESS

Since the study focuses on modeling traffic 
intensity weekly, the primary explanatory vari-
able for each of the considered models is the hour 
of the week in which each measurement was tak-
en. The range of this variable is from 1 to 168, 
meaning the resolution of the model (the length 
of the model cycle) is 168. Following the trigono-
metric model approach, the primary explanatory 
variable was transformed into a series of pairs of 
normalized sines and cosines, functionally simi-
lar to a Fourier series [11]. To achieve this, the 
following script was used (see Listing 1):

The first pair of curves has a period of 168 
hours, completing one full cycle within a week. 
The next pair has a period of 84 hours, thus com-
pleting two full cycles in a week, and so on. Each 
subsequent pair completes one more cycle than 
the previous one. The last pair completes 84 cy-
cles in a week. The number of cycles is equal to 
half the number of measurements taken in a week. 
Tests have shown that for the linear model, fur-
ther increasing the frequency of the curves does 
not lead to an increase in the R-squared value, in-
dicating that it does not contribute any additional 
informational gain. Therefore, it can be assumed 
that the upper limit for the significant frequency 

of curves in a single model cycle is equal to half 
the resolution of the model. 

Up to the point of reaching this limit, the 
goodness-of-fit of the linear model (measured by 
the R-squared coefficient) increases with each ad-
ditional pair of curves as model variables. In con-
trast, in the case of the random forest model, the 
number of pairs of curves does not significantly 
affect the model’s goodness-of-fit. The changes 
in the R-squared values based on the number of 
pairs of curves were investigated separately for 
each connection considered. Figures 2 and 3 pres-
ent some of the notable examples.

A noticeable stepped shape of the fit graph of 
the linear model can be noted. This is observed in 
all studied connections. The jumps typically oc-
cur at points where the number of curve pairs is a 
multiple of 7. This is because the weekly model 
cycle consists of 7 daily cycles that are generally 
very similar to one another. An interesting excep-
tion is the connections where the daily cycles dif-
fer. In such cases, the traffic pattern on weekends 
is often different from that on weekdays. The best 
example of such a connection is Ht1_Ldl.

This observation leads to the conclusion 
that for most of the studied connections, a lin-
ear model can be constructed using only curves 
with frequencies that are multiples of seven, with 
only a slight decrease in R-squared. This is be-
cause these frequencies provide the greatest in-
formational gain. This approach would allow for 
a somewhat “slimmer” linear model at the cost of 
slightly worse goodness-of-fit.

Listing 1. A function for transforming the primary explanatory variable
524

525

526

527

528

529

530

531

532

533

fourierize <- function(t, range) { #t = week hour, #range = vector 
of sine/cosine frequencies to be used

  result <- c()

  for (i in range) {

    result <- c(result, sin(2*t*i*pi/168)) #sine function value

  }

  for (i in range) {

    result <- c(result, cos(2*t*i*pi/168)) #cosine function value

  }

  return(result)

}
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In most cases, the goodness-of-fit levels for 
both types of models are quite similar, although 
the linear model generally has an R-squared value 
that is a few thousandths higher, which is not a 
significant difference. A key conclusion from the 
analysis of the above graphs is that the random 
forest model does not require an elaborate set of 
explanatory variables in the form of sines and 
cosines to achieve the highest possible fit on any 
of the studied connections. This simplification al-
lows for an easier modeling process for this type 
of model.

BUILDING THE LINEAR MODEL

The construction of the linear model follows 
a process similar to that of the trigonometric mod-
el described in [9, 10]. The model consists of a 
regression equation (common to all connections) 
and a coefficient table that stores an individual 
set of regression coefficients for each connection. 
Given that the explanatory variables are a series 
of sines and cosines with frequencies ranging 
from 1 to 84, the general form of the regression 
equation is as follows:

Figure 2. The R-squared value as a function of the number of curve pairs on connection BCh_Pk. Chart A 
presents the full range, while Chart B is zoomed in on the further part of the range, demonstrating that the 

stepped pattern still occurs. Dashed lines represent selected multiples of 7

Figure 3. The same type of graph as Figure 2, this time the connection presented is Ht1_Ldl. The stepped pattern 
is less prevalent and is visibly decaying with each new curve pair
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	 𝑓𝑓(𝑡𝑡) = 𝛽𝛽0 + ∑ (𝛽𝛽𝑖𝑖 sin
𝑡𝑡𝑡𝑡𝑡𝑡
84 + 𝛽𝛽𝑖𝑖+84 cos

𝑡𝑡𝑡𝑡𝑡𝑡
84)

84
𝑖𝑖=1     (1) 

 
 
 

	(1)

where:	β0, β1, β2,… are the regression coeffi-
cients, t - is the current time expressed in 
week hours.

Filling in the coefficient table is an automated 
process that utilizes built-in R functions (Table 3). 
Having prepared the regression equation and the 
coefficient table, we can make predictions by us-
ing the following script – Listing 2.

The first line of this function (see Listing 2) 
assigns the value of the intercept (aka β0) to the 
result, and then sequentially adds the value of 
each trigonometric function multiplied by its cor-
responding coefficient. Using the random forest 
package [17], the function somewhat “manually” 
performs the work of the built-in predict function 
in the R environment, but does so in a more opti-
mized manner. Also, storing the coefficient table 
and the LM_predict and fourierize functions re-
quires less memory than storing a whole series of 
models, since each connection has its own model. 

This makes this approach highly optimized in 
computational terms.

BUILDING THE RANDOM FOREST MODEL

When constructing the random forest model, the 
selection of two input parameters is crucial: ntree, 
which represents the number of decision trees in the 
model, and nodesize, which indicates the size of the 
random subset of variables at each node. To achieve 
this, a grid search algorithm was employed to test 
all combinations of these two parameters and to 
identify the one that provides the highest R-squared 
value. It is important to note that the R-squared co-
efficient used at this stage comes from the internal 
validation tests of the random forest algorithm and 
may slightly differ from the R-squared obtained at 
other stages of the research [17].

The range of values tested in the case of ntree 
parameter ranges from 10 to 40, while for the 
nodesize parameter, it is from 5 to 20. The results 
of the algorithm’s execution were recorded, and 

Table 3. Fragment of the coefficient table
Connection β0 β1 β2 β3 …

Db_PW 45.85 3.13 4.63 2.58 …

Db_Pk 246.32 19.98 33.92 15.86 …

Db_BCh 43.38 5.88 6.96 1.87 …

PW_Pk.BCh 712.35 74.60 89.74 46.77 …

PW_Db 43.90 3.96 4.64 1.36 …

Pk_BCh.Db 430.55 62.50 63.32 24.25 …

… … … … … …

Listing 2. Fragment of the linear model prediction script
899

900

901

902

903

904

905

LM_predict <- function(t, conn) { #t = week hour, #conn = 
connection

  result <- LM_params$beta0[conn] #initiating the result variable 
with the intercept value

  for (i in 1:167) {

    result <- result + LM_params[conn,2+i]*fourierize(t,1:84)[i] 
#adding coefficients multiplied by their respective sine/cosine value 
to the result

  }

  return(result)

}
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based on them, a data frame was created to store 
the optimal parameter values for each connection. 
The entire script is as follows (see Listing 3):

The seed is set so that random forest ‘s ran-
domness does not affect the results. The results of 
this algorithm are best displayed on a heatmap in 
Figure 4. The analysis of the heatmaps provides 
several observations. First, manipulating the pa-
rameters ntree and nodesize induces very minimal 
reactions. The range of the R-squared coefficient 
is at most 0.04, and in most cases, it is significant-
ly smaller, on the order of thousandths. There is 
a fairly significant correlation (r = -0.63) between 
the average value of the R-squared coefficient and 
its range. This suggests that poorly fitted models 
are more susceptible to manipulation of the ntree 

and nodesize parameters, although the sample of 
17 connections studied in this work is too small to 
draw definitive conclusions on this matter. 

Another observation is the overall increase in 
the R-squared value with an increasing number of 
trees in the model. Although this trend is present 
across all studied connections, it is not significant-
ly correlated (r = -0.13) with the R-squared value 
in the optima. The correlation level between the 
values of the ntree and nodesize parameters in the 
optima was also examined. It amounted to 0.26, 
which does not indicate a significant relationship 
between the values of these parameters.

In conclusion, given the current sample size, 
it is not possible to determine definitive patterns 
in the location of the optima while manipulating 

Listing 3. Grid search algorithm for optimizing random forest parameters
447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

for (nodesize in 5:20) { #loop iterated by nodesize parameter

  for (ntree in 10:40) { #loop iterated by ntree parameter

    traffic_RF[nrow(traffic_RF), 1:2] <- c(nodesize, ntree) #adding 
parameter values to the result dataframe

    for (conn in 44:ncol(traffic_main)) { #loop iterated by 
connection

      RF <- randomForest( #building the model with the given 
parameter set

        x = traffic_main[,6:43], #predictor variables

        y = traffic_main[,conn], #response variable

        nodesize = nodesize, 

        ntree = ntree

      )

      traffic_RF[nrow(traffic_RF), conn-41] <- mean(RF$rsq) #adding the 
R-squared value for a specific connection to the dataframe

    }

    traffic_RF[nrow(traffic_RF)+1, 1] <- NA

    print(paste(‘nodesize = ‘, nodesize, ‘, ntree = ‘, ntree, sep = 
‘’)) #progress indicator

  }

}

traffic_RF$mean <- rowMeans(traffic_RF[,3:(ncol(traffic_RF)-1)]) #adding 
the average of 17 connections for each parameter set to the 
dataframe
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the ntree and nodesize parameters. It can also be 
stated with moderate certainty that the appropri-
ate selection of these parameters is more crucial 
in models with a lower level of fit. The optimal 
parameters for the model established during the 
tests were saved in a data frame. Individual pa-
rameters will be used in the model construction 
for each connection.

MODEL TESTING

The primary goal of any model is to appro-
priately fit the data set, which is why a series of 
plots was used to visualize the fit of both types 

of models across each of the studied connections. 
The actual measurement points are represented by 
gray dots, while the lines indicate the values pre-
dicted by the models. The linear model is marked 
in blue, and the random forest model is marked in 
red (Figures 5–6).

To verify if the predictions of both models 
are identical, the Wilcoxon signed-rank test [18] 
with a significance level of 0.05 was used as 
the populations were not expected to follow the 
normal distribution. The null hypothesis is that 
predictions of both models are identical. Each 
connection was tested separately. The results are 
inconclusive, as for 8/17 connections the p-value 
is below the significance level, indicating that for 

Figure 4. Heatmap illustrating the results of the grid search for Ht1_Ldl connection. 
The optimum is marked in red

Figure 5. Fit of both tested models on BCh_Pk connection, where the measuring points scatter is very minimal. 
There are next to no visible differences
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these connections the predictions are significantly 
different. For the remaining connections, there is 
no basis to reject the null hypothesis.

Visually, any differences between the mod-
els are very difficult to spot, even in the case of 
connections where both models were marked as 
significantly different by the Wilcoxon test. The 
lowest p-value was noted in the Ht2_Ht1.WP 
connection. However, R-squared for this con-
nection is 0.976 for both models; therefore, by 
this metric, the models are not that different since 

they are both very close to the perfect fit. The 
differences between each model and the actual 
values were also tested. In the case of the linear 
model, no significant differences were identi-
fied by the Wilcoxon test. For the random for-
est model, only 1 connection notes a significant 
difference, that being the same connection as 
mentioned in the paragraph above. This contrasts 
with the near-perfect R-squared value; therefore, 
further tests are necessary to properly assess the 
model’s performance.

Figure 6. Fit of both tested models on the Ht1_Ldl connection, where the scatter is wider. While still very 
similar, there are some more pronounced differences, e.g., around the dip in the vicinity of week hour 120, 

corresponding to Friday night

Figure 7. Residual distribution on the BCh_Pk connection. Note the tall central spike indicating a near-perfect fit 
in most measuring points. Accordingly, the kurtosis is very high (around 16 in both cases). Several outliers are 

visible, representing traffic anomalies
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RESIDUAL DISTRIBUTION

Another indicator of model quality is the distri-
bution of residuals. The general aim for it is to be 
as close as possible to a normal distribution. The 
linear model is marked in blue, while the random 
forest model is marked in red. Additionally, the 
plots include the mean, standard deviation, and kur-
tosis of the distribution, as well as the results of the 
Shapiro-Wilk normality test. All these values are 
rounded to three decimal places (see Figures 7–8).

The most conclusive observation from this 
testing is the p-value close to zero. This provides 
grounds to reject the hypothesis of normality of 
the distributions. The most likely cause of such 
test result is positive kurtosis of the distributions, 
indicating that the distribution is more peaked 
than a normal distribution. With such a large 
sample (1416 measurement points), even a small 
deviation of kurtosis from zero drastically low-
ers the p-value. In some cases, such high kurtosis 
might suggest an overfit of the models; however, 
the model fit test on new data discussed in the 
next section dispels these doubts.

Two things should be noted. First, with a large 
sample size, the sensitivity of the Shapiro-Wilk 
test increases, causing a distribution that only 
slightly deviates from normal to be interpreted as 
strongly different from normal [19]. Analysis of 
histograms and kurtosis leads to the conclusion 
that some of the examined residual distributions 
deviate just barely from normality, as they are 

roughly symmetrical, and the kurtosis in several 
cases is close to 1.

Second, the deviations of the residual distri-
butions from normality are not, in this case, in-
dicators of significant flaws in the model due to 
the large sample size [20]. If a smaller sample 
were taken from the residual distribution, the p-
value would probably rise above the significance 
level (we could assume a typical α = 0.05), which 
would change the outcome of the test and allow 
the distribution to be considered normal.

R-SQUARED DISTRIBUTION ON NEW 
DATA

To test the fit of the models on new data, the 
dataset was split into a training subset and a test 
subset in proportions of 80% and 20%, respec-
tively. Then, the R-squared value obtained by the 
model on the test set was measured. This entire 
process was repeated 1000 times with different 
subsets for each connection and each type of mod-
el separately, setting the seed sequentially from 1 
to 1000 to eliminate randomness as a factor [21].

An interesting observation is the left (nega-
tive) skewness of all the above distributions, typi-
cally stronger in better-fitting connections (i.e., 
those with higher average R-squared values). The 
coefficient of skewness with the largest absolute 
value (approximately -0.94 for the linear model 
and -0.93 for the random forest model) is found in 

Figure 8. Residual distribution of both tested models on the Ht1_Ldl connection. This time, there is no narrow 
spike at the center. The distribution is less concentrated as the model cannot fit closely to the measuring points 

scattered so widely. In line with this observation, the kurtosis is much lower at around 1.9 in both cases
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the connection PW_Pk.BCh. On the other hand, 
the connection Ht1_Ht2 exhibits the smallest ab-
solute value of the skewness coefficient (approxi-
mately -0.1 for the linear model and -0.11 for the 
random forest model).

There is a moderate correlation between the 
skewness coefficient and the average value of the 
R-squared distribution (see Figure 9–10). It is ap-
proximately -0.41 for the linear model and -0.413 
for the random forest model. This indicates a re-
lationship between the skewness of the R-squared 
distribution and its average value. Specifically, 

the higher the model fit on a specific connection 
(i.e., higher average R-squared), the fewer outlier 
values on the right side of the distribution and 
more is on the left. This suggests that the model 
is approaching the limits of its fitting capability, 
as even “lucky” splits into the training and test 
subsets do not significantly raise the score.

However, there are exceptions to this rule, 
such as the connection Ht1_Ht2, which shows 
one of the highest average R-squared values 
while having a skewness coefficient almost equal 
to zero, indicating it is nearly symmetrical.

Figure 9. R-squared distribution of both tested models on the BCh_Pk connection. Note the left (negative) 
skewness

Figure 10. R-squared distribution of both tested models on the BCh_Pk connection. No obvious skewness can be 
discerned
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To follow up on the significant difference in 
predictions made by the random forest model 
in connection Ht2_Ht1. WP, as indicated by the 
Wilcoxon test, special attention was paid to its 
performance in other tests. However, no deficien-
cies were identified to corroborate the result of 
the Wilcoxon test; therefore, the model’s perfor-
mance is deemed satisfactory.

A Wilcoxon test was also performed on the 
R-squared distribution on the new data for each 
connection separately. First, a two-sided test was 
performed to identify any significant differences. 
At a significance level of 0.05 the null hypoth-
esis was rejected for all connections but Db_Pk, 
meaning there are significant differences at 16/17 
tested connections. A two-sided test was followed 
up with a right-sided test with the intention to 
verify if the random forest model has a signifi-
cantly higher R-squared in this experiment. This 
hypothesis was rejected in 14/17 connections. For 
the sake of completeness, an opposite, left-sided 
test was also performed, resulting in rejection of 
the null hypothesis of the random forest model 
having a lower R-squared in 2/17 connections. 
Table 4 presents a summary of the obtained Wil-
cox test results. 

Overall, in this test, the linear model was 
more favorable in 82% of the tested connections. 
This suggests an overwhelming advantage of 
the linear model in predicting values it was not 

trained on, but in truth, the absolute differences 
of average R-squared values on each connection 
are minimal, reaching the third decimal place at 
best. These results should ideally be verified with 
a sample larger than 17 connections to confirm 
whether the linear model advantage will hold in a 
larger population.

MODEL BUILDING TIME

An important issue from a practical perspec-
tive is the computation time required for model 
training. Due to the use of two completely differ-
ent algorithms, the linear model and the random 
forest model have different time demands.

The selection of explanatory variables can 
have a significant impact on model-building time, 
so this factor was examined first. The time was 
measured by sequentially adding another sine/co-
sine pair to the model. Measurements were taken 
once for each connection, and then the average 
for a specific number of curve pairs was calcu-
lated (see Figure 11).

A clear upward trend is evident in both types 
of models, indicating that the introduction of ad-
ditional explanatory variables increases the time 
required for their construction. In the case of the 
random forest model, this trend is almost perfect-
ly linear (the correlation between the number of 

Table 4. Summary of paired Wilcox test results at a significance level of 0.05. Each cell presents a p-value for a 
specific test at a specific connection. The results are rounded to the third decimal place

Connection Two-sided test Right-sided test Left-sided test Verdict

Db_PW 0.000 0.000 1.000 Linear model preferred

Db_Pk 0.739 0.369 0.631 Both tied

Db_BCh 0.000 0.000 1.000 Linear model preferred

PW_Pk.BCh 0.000 0.000 1.000 Linear model preferred

PW_Db 0.000 0.000 1.000 Linear model preferred

Pk_BCh.Db 0.004 0.998 0.002 Random Forest preferred

Pk_PW 0.000 0.000 1.000 Linear model preferred

BCh_Db 0.000 0.000 1.000 Linear model preferred

BCh_PW 0.000 0.000 1.000 Linear model preferred

BCh_Pk 0.000 0.000 1.000 Linear model preferred

Ht1_Ldl 0.000 1.000 0.000 Random Forest preferred

Ht1_Ht2 0.000 0.000 1.000 Linear model preferred

Ht1_WP 0.000 0.000 1.000 Linear model preferred

Ldl_Ht1.WP.Ht2 0.000 0.000 1.000 Linear model preferred

Ht2_Ht1.WP 0.000 0.000 1.000 Linear model preferred

Ht2_Ldl 0.001 0.000 1.000 Linear model preferred

WP_Ht1.Ldl.Ht2 0.000 0.000 1.000 Linear model preferred
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pairs of functions and time is close to one). For 
the linear model, it appears to be a power trend, 
as the correlation is about 0.95, but the correla-
tion between the square of the number of pairs of 
functions and time is approximately 0.98.

Significantly longer average execution time 
for the random forest model across the entire 
range studied is also observed. Additionally, the 
upward trend is stronger for this type of model. 
However, since the linear model exhibits a power 
growth trend, it could become more time-con-
suming to construct with a sufficiently large num-
ber of explanatory variables. This number, how-
ever, is impractically large in the context of the 
research documented in this work.

Despite the fact that the random forest model 
is more time-consuming than the linear model 
when both have the same number of variables, it 
has a property that completely reverses this situ-
ation in a broader picture. Specifically, the ran-
dom forest model does not require such a  large 
number of curve pairs to achieve its maximum 
performance (see Figures 2–3). It only needs 1 
curve pair to reach a fitting level nearly equal to 
that of the linear model with 84 curve pairs. The 
random forest model using 1 curve pair requires, 
on average, about 0.021 seconds for construction, 
while the linear model using 84 pairs takes about 
0.039 seconds, which is nearly twice as long. 
This means that the random forest model is more 
time-efficient while maintaining a very similar 
level of fit. The dependence of the random forest 
model’s construction time on the parameters ntree 

and nodesize was also examined Figure 12). As 
before, the time was averaged across all 17 con-
nections. For this test, a model using 1 curve pair 
was employed.

The time increases with the number of trees in 
the model, while its dependence on the nodesize 
parameter is unclear. The heat map (Figure 12) 
is divided into distinct horizontal bands, creating 
two alternating groups. This is not an ideal divi-
sion, as the bands appear to be slightly “skewed”. 
Additionally, there are a few outlier values pres-
ent on the plot. The most prominent are at the co-
ordinates (17, 10) and (29, 19).

If we compare Figure 12 to Figure 4, it can be 
observed that the fastest model has a poor fit com-
pared to models with more accuracy-optimized 
parameters. This leads to the conclusion that the 
most accurate model is not necessarily the fastest 
model in the case of random forest. Depending on 
whether the user’s needs are more focused on the 
time or precision of the model, a compromise can 
be achieved by selecting model parameters that 
ensure both satisfactory fit and construction time. 
However, it is worth noting that the time differ-
ences would become more significant if a consid-
erably larger number of models were constructed 
or if models were trained on a larger dataset than 
considered in this work. A similar compromise 
can be achieved for the linear model by appropri-
ately selecting explanatory variables, e.g., using 
only curves with frequencies that are multiples of 
seven as mentioned in “The modelling process” 

Figure 11. Dependence of the model construction time on the number of curve pairs used as explanatory 
variables
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Figure 12. Dependence of the model construction time on the ntree and nodesize parameters. The least time-
consuming combination is marked in red

section, or using Hellwig’s method of selection of 
variables [22].

The parallel development of the linear model 
allowed for continuous mutual improvement of 
both types of models. As a result, a fitting as good 
as the available dataset allows was achieved for 
both types, which was confirmed by a series of 
tests (Table 5).

CONCLUSIONS

Throughout the research, a highly accurate 
and statistically significant regression model 
based on the random forest method was con-
structed, as can be seen in Table 5; the results are 
very close, sometimes differing only in the fourth 
decimal place. In almost all metrics, the linear 
model proves to be slightly better, although this 
is a minimal advantage. This conclusion is sup-
ported by the results of Wilcoxon test performed 
on the R-squared on new data. In terms of sheer 
numbers, the only advantage of the random forest 
model is the construction time, which was found 

to be shorter by half, provided that the input vari-
ables were optimally selected.

From a technical standpoint, both models 
have their strengths and weaknesses. The advan-
tages of the random forest model over the linear 
model include: no need for special pre-processing 
of the dataset before training (transforming it into 
a series of sine and cosine functions), shorter 
model construction time while maintaining the 
same level of fit, and easier tuning of model pa-
rameters. Conversely, the advantages of the lin-
ear model include: slightly better fit with proper 
data preprocessing, continuity and cyclicity of the 
regression curve (allowing for its infinite exten-
sion without introducing points of discontinuity), 
smaller memory requirements, easier handling, 
and more built-in quality metrics.

The model based on the chosen machine 
learning method proved to be almost as good as 
the most refined linear regression model. The dif-
ferences between these types of models are more 
about technical aspects and user experiences, so 
the choice of one method depends on user pref-
erences. Both models show significant potential 

Table 5. Summary of tested metrics. All figures represent an average across the 17 tested connections. Construction 
time was measured once for each connection

Metrics Related figures Random forest model result Linear model result

R-squared on the full set 5, 6 0.9322 0.9329

Residual Standard Error 7, 8 24.5645 24.4694

R-squared on new data 9, 10 0.9128 0.9132

R-squared standard deviation 9, 10 0.0124 0.0122

Construction time 11, 12 0.021 s 0.039 s
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in traffic prediction and analysis, supporting de-
cision making regarding road network expansion 
and maintenance, and, with appropriate modifica-
tions, in other fields. 

This study, while offering valuable insights, is 
based on a relatively limited dataset, which may 
affect the broader applicability of the findings. The 
results are closely tied to the specific urban context 
in which the data was collected, and as such, may 
not fully capture the diversity of conditions pres-
ent in other cities or traffic systems. The analysis 
was based on a limited sample of traffic connec-
tions, which may affect the generalizability of the 
findings to larger or more diverse urban networks. 
Moreover, the results are context-specific and 
may not directly translate to environments with 
different traffic dynamics or infrastructure charac-
teristics. There is also a potential risk of overfit-
ting, particularly in data-driven models trained on 
smaller datasets. Despite these constraints, both 
evaluated models demonstrate practical advantag-
es: the random forest model effectively captures 
complex, non-linear relationships, while the linear 
regression model offers a lightweight and inter-
pretable alternative suitable for real-time forecast-
ing, especially under constrained computational 
resources. The comparative results, supported by 
statistical significance testing, reveal important 
differences in model performance, contributing to 
a better understanding of their strengths and limi-
tations. Importantly, this work lays the foundation 
for further research focused on improving model 
scalability, transferability, and integration with 
multimodal urban data.

In terms of future development, a natural next 
step is to expand the testing period to cover an 
entire year. This would allow the models to ac-
count for seasonal variations in traffic volume, 
which can be substantial—particularly in winter 
months, when road conditions tend to be more 
challenging, as noted in the “General description 
of the used dataset” section. Another promising 
direction involves enriching the feature set with 
external predictors, such as weather conditions, 
public holidays, or calendar effects. This is partic-
ularly feasible for random forest models, which 
require minimal preprocessing and can flexibly 
incorporate diverse input variables. Such addi-
tions may help address underperformance in ir-
regular or low-volume traffic connections. A more 
ambitious extension would include scaling the 
models to cover a broader transportation network 
and exploring strategies for integrating multiple 

local models into a unified predictive framework. 
Beyond traffic, the modeling approach presented 
here is well-suited for a variety of cyclical phe-
nomena – such as seasonal human activities, ani-
mal migration, tidal patterns, or sunspot cycles. 
These broader applications even open the possi-
bility of contributing to early warning systems for 
events such as solar storms or tsunamis.
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