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INTRODUCTION

The design of sound-absorbing structures 
with predefined frequency characteristics poses 
a significant challenge in acoustic engineering, 
especially in industrial, environmental, and ar-
chitectural applications. Traditional approaches, 
which rely on analytical models or experimental 
testing, tend to be time-consuming and become 
inefficient when dealing with complex multilayer 
topologies [5, 7, 10]. Recent developments in op-
timization theory and computational intelligence, 
including hybrid metaheuristics and multi-objec-
tive frameworks, have broadened the scope of 
heuristic search beyond acoustics. For instance, 
genetic algorithms have been effectively applied 
in structural engineering to optimize the layout of 
seismic isolators [11], while hybrid approaches 
combining ant colony optimization with grey 
wolf algorithms have been proposed to improve 
the exploitation–exploration balance in complex 

search spaces [12]. Comparative engineering 
studies have also highlighted the relevance of 
such algorithms for analyzing and optimizing ma-
terial and structural configurations in other disci-
plines, such as concrete diagnostics [13]. These 
cross-domain advances further confirm the ver-
satility of heuristic optimization techniques and 
motivate their application in challenging acoustic 
design problems.

In this work, the design task is reformulated 
as an inverse structural reasoning problem: a tar-
get acoustic performance (absorption coefficient 
spectrum) is predefined, and the aim is to iden-
tify the combination of materials and geometric 
configuration that yields such performance. Giv-
en the high dimensionality of the solution space 
and the lack of closed-form rules for optimal-
ity, especially in irregular and layered structures, 
classical techniques prove insufficient. Conse-
quently, methods of artificial intelligence (AI), in 
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particular evolutionary algorithms, offer a prom-
ising alternative [1, 6, 7, 9]. 

In the proposed approach, a genetic algorithm 
(GA) is used to model the de- sign process as a 
heuristic search over the solution space. Engi-
neering knowledge is encoded symbolically as a 
genome describing the order of layers, selected 
materials, and thicknesses. This representation 
supports classical GA operators – inheritance, 
mutation, and selection – and enables logic-guid-
ed heuristic reasoning [4, 8]. 

Genetic algorithms have been successfully 
applied to the optimization of porous acoustic 
materials [7, 10], underwater anechoic coatings 
[3], active vibration control systems [4, 9], and 
noise barriers with optimized reactive geometries 
[1]. They are also effective in topology-based 
design and predictive modeling using hybrid AI 
techniques [5, 8].

The aim of this study is to develop and ex-
perimentally verify a GA-based de- sign method 
for layered sound-absorbing structures, achieving 
target frequency characteristics via a semi-auto-
mated evaluation loop. The proposed approach 
frames the design process as a decision-making 
system operating under partial information and 
limited resources, aligning with current AI logic 
paradigms ap- plied in optimization and automat-
ed reasoning. 

Problem identification 

In recent years, there has been growing inter-
est in the application of optimization algorithms 
in the design of sound-absorbing materials and 
structures. Among these, genetic algorithms have 
proven effective in solving high-dimensional, 
non-differentiable optimization problems, espe-
cially in contexts where analytical models are not 
available or impractical to use. 

 GA-based techniques have been successfully 
applied in various acoustic domains: the optimi-
zation of porous materials with high absorption 
efficiency [7, 10], the design of gradient-index 
acoustic lenses (GRIN lenses) [6], T-shaped noise 
barriers with reactive surfaces [1], and systems for 
active noise and vibration reduction [4, 9]. Fur-
ther studies addressed the optimization of under-
water anechoic coatings [3], lightweight damping 
materials [2], and hybrid intelligent models for 
predicting acoustic material behavior [8]. 

Despite these advances, the specific problem 
of designing multilayer soundabsorbing structures 

with predefined frequency characteristics remains 
insufficiently explored. Prior research typically 
focuses on homogeneous materials or simple 
geometries, often neglecting the combinatorial 
complexity of multilayer systems where both ma-
terial type and thickness vary. 

 Another important limitation is the lack of 
batch processing capabilities in most available 
simulation tools, such as Norflag or ZORBA. 
This limits the degree of automation, making the 
optimization process highly manual and ineffi-
cient, especially when many candidate designs 
need to be evaluated in sequence. Consequently, 
even with GA, the evolutionary loop is often con-
strained by human interaction, reducing scalabil-
ity and robustness [3, 4]. 

 This problem can be formalized as an inverse 
design task: given a desired frequency-dependent 
absorption profile, the objective is to identify a 
materiallayer configuration that best reproduces 
it. However, in the absence of an analytical model 
that would allow the application of classical tech-
niques (e.g., gradientbased methods) [5], heuris-
tic search strategies must be employed. Among 
them, genetic algorithms offer a natural frame-
work for symbolic reasoning in solution space. 

 Each valid design must also satisfy a set of 
physical and acoustic constraints, including ma-
terial properties, manufacturing feasibility, and 
performance requirements. The solution space is 
thus non-convex and multimodal, requiring strat-
egies that maintain population diversity and avoid 
premature convergence [1, 9]. 

 In this context, the genetic algorithm serves 
not only as an optimizer but also as a symbolic 
reasoning framework for structural hypothesis 
generation and evaluation. The genome encodes 
a discrete representation of a structural configu-
ration, while the evolutionary process acts as a 
logic-guided search mechanism. This approach 
fits within the broader paradigm of AI-based de-
cision-making systems operating under limited 
information and constrained automation. 

Research objectives and hypothesis

The main objective of this study is to devel-
op and experimentally validate a design method 
for multilayer sound-absorbing structures with 
specified frequency characteristics, using a ge-
netic algorithm as a heuristic optimization tool. 
The proposed approach relies on a symbolic rep-
resentation of structural knowledge in the form 
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of a genome that encodes the number of layers, 
the choice of materials, and their respective thick-
nesses. This encoding enables the use of genetic 
operators such as inheritance, mutation, and se-
lection for systematically searching for configu-
rations that match a predefined acoustic pattern. 
 The specific goals of the study are as follows: 
	• to verify whether an appropriately designed 

genome representation combined with a GA 
is capable of producing structures that ap-
proximate a target absorption curve, even un-
der conditions of limited population size and 
number of generations; 

	• to evaluate the effectiveness of the selected se-
lection and mutation strategies in terms of con-
vergence quality and optimization efficiency; 

	• to analyze the impact of manual control over 
the simulation process and to identify oppor-
tunities for further automation. 

 Based on these goals, the following research 
hypothesis is formulated: 

Hypothesis: A genetic algorithm, combined 
with a well-designed genome encoding, can ef-
fectively generate multilayer sound-absorbing 
structures that approximate a desired acoustic 
response, even under resource-constrained and 
semi-automated simulation conditions. 

 It is expected that, despite the limitations re-
lated to computational resources and the absence 
of full automation, the algorithm will be capable 
of achieving a high level of accuracy within a rel-
atively small number of evolutionary iterations. 
This would confirm the suitability of heuristic 
methods for engineering applications and support 
further development toward fully automated de-
sign workflows.

MATERIAL AND METHODS

Genetic algorithms, which belong to the class 
of evolutionary algorithms, are inspired by the 
principles of natural selection and biological evo-
lution. Their core components include selection, 
crossover, and mutation. GA operate by iterative-
ly exploring a solution space where each potential 
design is encoded as an individual genome. 

 In this study, a GA was applied to search for 
a multilayer configuration with specified acous-
tic absorption properties. Each individual in the 
population represents a candidate structure de-
fined by the number of layers, the materials used, 

and their respective thicknesses. The genome was 
designed to enable inheritance of traits, mutation 
operations, and the selection of the fittest individ-
uals – those whose frequency-dependent absorp-
tion characteristics best approximate a predefined 
target curve. 

 Due to limited computational resources and 
the absence of full automation in the simulation 
process, several constraints were introduced, in-
cluding a small population size and a simplified 
fitness evaluation. An elitist strategy was also 
implemented to reduce the risk of losing the best-
performing individuals across generations.

Genome

The acoustic structure considered in this study 
is modeled as an acoustic metamaterial composed 
of several layers with different sound-absorbing 
properties. Each layer is described by two pa-
rameters: the type of material and its thickness. 
To represent such a structure, a symbolic genetic 
encoding was employed, consisting of two chro-
mosomes: M and D.

The significantly limited range of acceptable 
values for material thickness and their number is 
a result of constraints imposed by the experimen-
tal design. The inability to run the algorithm for 
calculating sound absorption characteristics in a 
batch process and the need to perform a signifi-
cant portion of the operations manually forced a 
reduction in the search space for solutions (the 
space of cases). This approach enabled the algo-
rithm to converge within a reasonable time (in 
this case, approximately 30 generations). For the 
same reasons, a small population was used.

The maximum genome length was limited 
due to the fact that layers located deeper in the 
structure have a smaller impact on the character-
istics the deeper they are located. Increasing the 
genome length would rather increase the size of 
the search space for a solution, without signifi-
cantly improving its acoustic parameters.

The M chromosome contains a sequence of 
symbols corresponding to the materials used in 
successive layers, while the D chromosome en-
codes their thicknesses. The genome length varies 
between individuals and corresponds to the num-
ber of layers in a given structure. A schematic of 
the genome representation is shown in Figure 1. 

The material set includes eight predefined 
types, labeled from a to h, comprising porous me-
dia (e.g., mineral wool), foams, metals, and air as a 
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reference medium. Each material is characterized 
by a set of physical and acoustic properties, includ-
ing density, Young’s modulus, porosity, flow resis-
tivity, Poisson’s ratio, and loss factor. Layer thick-
ness is encoded as an integer value, interpreted dif-
ferently depending on the material type. For mate-
rials b–e, the encoded value corresponds directly to 
the thickness in millimeters. For materials a, f–h, 
the thickness is scaled (e.g., code 1 represents 10 
mm, code 9 = 90 mm). Table 1. summarizes the 
material definitions and their associated properties. 
The acoustic and mechanical material parameters 
listed in Table 1 are taken from the material speci-
fications available in the NorFlag software and its 
documentation. These are the parameters NorFlag 
takes into account when estimating the acoustic 
parameters of a layered structure. This genome 
structure enables the use of crossover and mutation 
operations while preserving a clear mapping to the 
physical design of the structure. At the same time, 
it allows for effective exploration of a broad design 
space during the optimization process.

Reproduction

The reproduction process in the implemented 
genetic algorithm involves generating a new in-
dividual from the genomes of two parents. The 
offspring is produced in four steps:
1.	Shift – the genome of Parent_2 is shifted by a 

random number of positions relative to Parent_1.
2.	M-chromosome cutting – the cutting point for 

the M chromosome is selected within the over-
lapping region of the two parents.

3.	D-chromosome cutting – similarly, the cutting 
point is selected for the D chromosome.

4.	Fusion – the offspring is created by joining the 
segment of Parent_1 before the cut with the 
segment of Parent_2 after the cut.

The M and D chromosomes are split indepen-
dently. The resulting genome length depends on 
the parent genomes, the shift size, and the cut-
ting points. If the offspring’s genome exceeds the 
predefined maximum length, it is truncated by 
randomly removing excess genes from either the 
beginning or the end. The replication process is 
illustrated in Figure 2.

Parent selection is performed using the rou-
lette wheel method, where each individual’s 
probability of being selected is proportional to its 
fitness value. This approach favors better-adapted 
individuals while still preserving weaker ones, 
which helps maintain population diversity and 
prevents premature convergence to local optima.

Additionally, due to the small population size, 
an elitist strategy was employed: the two best-
performing individuals in each generation are 
carried over unchanged to the next generation. 

Figure 1. Structure of an individual’s genome. The M and D chromosomes represent material type and layer 
thickness, respectively

Table 1. List of materials used in the experiment

Symbol Type
Thickness Att. 

coef. Density E-modulus Poissons 
number

Loss 
factor Resistance Resistivity Porosity

[mm] [1/km] [kg/m3] [Gpa] [--] [--] [Pa·s/m] [kPa·s/m] [%]

a Air 10–90 0

b Gum/elastic 1–9 1100 8000

c Wooden 
chipboard 1–9 650 3.8 0.2 15

d Steel 1–9 7800 200 0.3 0.1

e Aluminium 1–9 2700 70 0.34 0.1

f RockWool 
lowdensity 10–90 40 95

g RockWool 
highdensity 10–90 194 95

h Expanded 
Polystyrene 10–90 15 0.0015 0.12 10
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This mechanism protects the most promising so-
lutions from being lost during evolution.

Mutations

Mutations are applied with a fixed probability 
of 0.01 after the reproduction phase. Their pur-
pose is to introduce diversity into the population 
by randomly modifying genomes, which helps 
prevent the algorithm from getting stuck in local 
optima and enhances solution space exploration.

The algorithm defines three types of muta-
tion, which may occur at a randomly selected po-
sition in both the M chromosome (material) and 
the D chromosome (thickness).

Figure 3 shows an example genome prior to 
mutation. The mutation at a given position (e.g., 
index 4) can take one of the following forms:
	• replacing the existing gene (material and/or 

thickness) with a new randomly selected value 
(Figure 4a);

	• inserting a new gene (layer) between existing 
ones, increasing the genome length by one 
(Figure 4b), in this case the length of the ge-
nome is extended by 1, which entails the need 
for a possible correction of the length in if 
the maximum length is exceeded (see section 
Reproduction);

	• removing a single gene pair (material + thick-
ness) from the genome (Figure 4c).

The selection of mutation type is random and 
uniformly distributed. This mechanism enables 
the algorithm to introduce new traits into the pop-
ulation while maintaining optimization stability 
due to the low overall mutation rate.

The mutation rate was determined experi-
mentally in the initial phase of the experiment 
during the first attempts to run the test procedure. 
At a lower value, the rate of change in the ob-
jective function value in subsequent generations 
was very slow. At a higher value, the effect of 
destroying potentially promising individuals was 
observed. In both cases, the algorithm’s conver-
gence rate was not satisfactory.

Objective function

The objective function (fitness function) is 
used to evaluate the quality of each individual in 
the population. In the context of designing sound-
absorbing structures, its role is to determine how 
closely the frequency-dependent absorption char-
acteristics of a candidate structure match a pre-
defined reference curve.

Evaluation is based on the mean squared error 
(MSE) between the absorption coefficient values 
for the tested structure and those of the reference 
model, computed across one-third octave fre-
quency bands. The frequency range considered is 
from 50 Hz to 2000 Hz, which includes the most 
relevant bands for practical acoustic applications. 
This range consists of 17 one-third octave bands.

Figure 2. Diagram of the replication process

Figure 3. Example genome before mutation
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The objective function is defined as:

	

 

𝑂𝑂𝑓𝑓 =
1
𝑇𝑇∑(𝑓𝑓𝑂𝑂𝑂𝑂 − 𝑓𝑓𝑖𝑖𝑖𝑖)2

𝑇𝑇

𝑡𝑡=1
 

(1) 

 

	 (1)

where:	 T = 17 is the number of evaluated frequen-
cy bands, fOt is the absorption coefficient 
for the reference curve at band t, fit is the 
corresponding coefficient for the tested 
structure. 

The objective value Of decreases as the indi-
vidual’s curve more closely approximates the ref-
erence. The square root is deliberately omitted (i.e., 
MSE is used instead of RMSE) to more strongly 
penalize poorly matched individuals and to em-
phasize high-fidelity solutions. This formulation 
enables precise control over the evolutionary di-
rection of the population and plays a central role in 
the selection mechanism of the genetic algorithm.

The experiment

To verify the effectiveness of the algorithm, 
numerical experiments were conducted to find 
a multilayered acoustic metamaterial structure 
whose absorption characteristics closely matched 
a predefined reference curve.

The Norflag software was used to numerical-
ly estimate the acoustic properties of each tested 
structure. Although Norflag provides a graphical 
user interface (GUI) to define and analyze layered 
configurations, it lacks support for batch process-
ing. As a result, every simulation step must be 
executed manually, which hinders repetitive pro-
cessing and limits automation. Fortunately, Nor-
flag reads input and writes output in text format, 
which enables partial automation.

To manage this limitation, a custom software 
application was developed in C++. It handled the 
generation of the population, creation of Norflag 
input files, and parsing of output results for fur-
ther evaluation. The general flow of the experi-
ment is illustrated in Figure 5.

To guarantee the convergence of the algorithm, 
a reference structure with genome {M=eacgah, 
D=191554} was selected. This structure was cho-
sen based on the non-trivial shape of its absorption 
characteristic α(f). It exhibits a high absorption 
coefficient in the frequency range up to 200 Hz, 
with a maximum between 100 Hz and 125 Hz.

To enhance the selection pressure in the evo-
lutionary process, the reference curve was slight-
ly modified by increasing the target absorption 
level in the 100–125~Hz range. Figure 6 presents 
both the original and the modified curves used for 
evaluating evolving individuals.

Figure 4. Examples of mutation operations applied to 
the genome: (a) gene replacement with a new material 
and thickness, (b) insertion of a new gene at a random 

position, (c) removal of a gene from the genome

Figure 5. Flowchart of the experiment
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Next, an initial population was generated 
and each individual’s genome was converted 
into a set of text files in Norflag format, describ-
ing the type, thickness, and order of layers. Each 
configuration file was manually loaded into Nor-
flag, a simulation was performed, and the results 
were saved.

The output files were then transferred to the 
C++ genetic algorithm engine, which assessed 
each solution by comparing it with the modified 
reference curve. Based on the evaluation, crossover 
and mutation operations were carried out to form 
the next generation. The process was repeated in a 
loop until satisfactory results were obtained.

RESULTS

The genomes of individuals from the ini-
tial, randomly generated population are listed in 
Table 2. These structures differ significantly in 
the number of layers, types of materials used, 
and their thicknesses. Likewise, the objective 
function values span a wide range from 927 to 
281. Despite substantial differences in objec-
tive function values, none of the individuals in 
the initial population demonstrated characteris-
tics that closely matched the target. Only two 
cases; {M=hgfhb, D=23378} with Of = 634, 
and {M=cg, D=26} with Of = 462, showed fre-
quency responses somewhat similar in shape, 
but their peak absorption occurred at 630  Hz 
and 315 Hz respectively, which are outside the 
desired range.

The frequency characteristics of individuals 
in the initial population, along with the reference 

and ideal curves, are shown in Figure 8. In sub-
sequent iterations of the genetic algorithm, indi-
viduals with a wide range of genome structures 
and acoustic properties were obtained. Every 
few generations, there was a noticeable drop in 
the objective function value of the best-adapted 
individual. This behavior is the result of imple-
menting elitism in the reproduction process. 
Table 3 lists the best-performing individuals 
identified during the evolutionary process, along 
with their fitness values and the generation in 
which they appeared. Figure 7 shows the course 
of changes in the minimum, maximum and av-
erage values of the objective function in subse-
quent generations.

The corresponding frequency response 
curves for these individuals are shown in Fig-
ure 2. The lowest objective function value, Of 
= 127, was achieved in generation 28 by the in-
dividual {M=eafdh, D=15791}. However, the 

Figure 6. Absorption characteristics of the reference system (ideal) and its modified version used in the 
evaluation process

Table 2. Initial population
Chromosome

fit
M D

fedb 8888 925

bb 56 285

bdbb 1247 281

gbe 921 674

hgfhb 23378 634

gegdd 86386 672

fec 888 922

cg 26 462

fe 94 927

be 47 284
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Figure 7. Convergence graph across generations

Figure 8. Absorption coefficient as a function of frequency for the initial population compared to the reference 
and ideal characteristics

Table 3. A list of the best individuals in the course of 
evolution

Generation Chromosome
fit

x M D

0 bdbb 1247 281

5 chg 733 255

13 eacg 2594 232

14 eacb 2598 173

18 eahge 18331 132

28 eafdh 15791 127

Figure 9. Frequency characteristics of the best individuals in the course of evolution

experiment continued through generation 34. In 
generation 33, the algorithm produced an individ-
ual {M=eacgcg, D=156226} with Of = 169), fol-
lowed by {M=eacgcg, D=176226} in generation 
34, also with Of = 169.

Although their fitness values were higher, 
the shape of their frequency response curves ap-
peared better aligned with the target profile, indi-
cating the potential existence of multiple locally 
optimal solutions with comparable effectiveness.
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CONCLUSIONS

Despite significant progress in the applica-
tion of genetic algorithms to the design of acoustic 
structures, the design of complex, multi-layer sys-
tems with specified frequency characteristics re-
mains a challenge due to the large number of design 
variables and high computational requirements. An 
additional difficulty lies in the limited automation 
of available simulation tools, which complicates 
integration with optimization algorithms. The aim 
of this study was to address this gap by developing 
an optimization procedure adapted to conditions of 
limited computational resources and the absence 
of full automation. The conducted experiments 
confirmed the high effectiveness of using genetic 
algorithms in designing layered sound-absorbing 
structures with desired frequency characteristics. 
A significant match with the reference curve was 
achieved as early as the 28th generation. In sub-
sequent iterations, structures were obtained whose 
characteristics were very close in shape to the as-
sumed ideal. These results show that even with a 
small population size and manual control of simu-
lation steps, it is possible to carry out the optimi-
zation process effectively. The proposed method 
proved viable despite limitations related to the 
lack of full simulation automation, thanks to ap-
propriately designed genome encoding, selection, 
and mutation strategies. However, further develop-
ment of the methodology requires access to tools 
that support automated data processing, such as 
open simulation software with API access or batch 
processing capabilities. Due to the lack of commer-
cially available solutions offering such features, 
future research should focus on developing dedi-
cated, open platforms for acoustic analysis. These 
platforms would allow full integration with optimi-
zation algorithms, improving the efficiency of the 
design process, reducing optimization time, and 
expanding the range of analyzed structures. The 
experiment is a prelude to broader research and 
was designed to allow for the evaluation of each 
of its components. It was intended to demonstrate 
the feasibility of developing a proprietary engine 
for calculating the acoustic parameters of layered 
structures. The experiment was successful, so in the 
longer term, we intend to implement an algorithm 
for calculating acoustic characteristics that allows 
batch processing. At that point, we will investigate 
other, more sophisticated methods for calculating 
the objective function, with an expanded list of ma-
terials and more varied layer thicknesses.
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