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INTRODUCTION

Solar energy, as one of the main sources of 
renewable energy, plays a crucial role in the cur-
rent energy transition. Electricity production in 
Europe increased from 91,096 MW in 2014 to 
288,644 MW in 2023. Globally, production from 
solar panels grew from 192,602 MW in 2014 to as 
much as 1,294,481 MW in 2023 (1). Although the 
topic remains controversial, public attitudes are 
generally positive, even in regions with currently 
low levels of energy production (2). Despite the 
rapid development of this technology, many chal-
lenges remain unresolved, particularly related to 
energy storage and utilization during maximum 
power generation by photovoltaic panels, the low 
efficiency of solar energy production and usage, 
especially in countries with limited sunny days 
(3) as well as self-consumption of energy, espe-
cially under conditions of low transmission net-
work efficiency (4).

Currently, the two most popular methods 
for dealing with both excess and shortage of 

production from solar panels are energy storage 
systems (energy banks) and Net-Metering. An en-
ergy bank is a large-sized battery connected to the 
installation, which stores the excess energy pro-
duced when generation exceeds demand. In case 
of a shortage, the energy bank releases energy 
to the household or building(s) of the company/
enterprise. Although this solution shows great 
potential, the economic feasibility of purchasing 
and installing an energy bank is often limited, 
as investment costs may outweigh the benefits 
derived from storing and using the accumulated 
energy. Additionally, energy banks could pose a 
fire hazard due to the use of lithium-ion energy 
storage, which would be virtually impossible to 
extinguish in the event of failure (5).

The second option, currently the most popu-
lar, is sending the generated energy to the grid 
(Net-metering) or dynamic billing for production 
(Net-billing). This method allows for “storing” 
energy in the grid. The system owner can send ex-
cess energy to the grid and later retrieve it during 
periods of lower production, after deducting the 
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appropriate fees, or purchase energy considering 
previously earned discounts. While Net-metering 
is a beneficial solution, the high density of photo-
voltaic panels in a given area can risk overloading 
the grid. To minimize this issue and enable further 
development of photovoltaic technologies, grid 
modernization or increased self-consumption of 
energy becomes necessary, while simultaneous 
network planning and optimization (6).

The purpose of the research is to verify the 
effectiveness of the XGBoost and LSTM predic-
tion algorithms for forecasting energy produc-
tion from photovoltaic (PV) installations, within 
a specified range of installation capacities, based 
on the weather conditions and specific character-
istics of local PV instalations. The study particu-
larly focuses on evaluating a modified version of 
the XGBoost algorithm in comparison to its stan-
dard implementation and another selected predic-
tive model in this case LSTM. This new approach 
is for solving these problems in the wide optimi-
zation of energy management. Predictive model-
ing plays a key role in optimizing energy manage-
ment by enabling precise estimation of electricity 
output based on weather data and site-specific 
PV parameters. Better forecasting allows users to 
align energy consumption with production peaks, 
utilize energy storage more effectively, and mini-
mize energy losses. In the long term, the use of 
accurate predictive models contributes to reduc-
ing operational costs, lowering grid dependency, 
and increasing energy self-sufficiency in house-
holds or small-scale PV farms.

METHODOLOGY

This chapter presents a detailed description 
of the methodological approach that was applied 
to develop and implement predictive models for 
photovoltaic installations.

The importance of solar radiation and 
atmospheric conditions on PV power 
production

The photovoltaic effect can be defined as the 
generation of potential when radiation ionizes the 
area inside or near the built-in potential barrier of 
a semiconductor. It is characterized by a self-gen-
erated electromotive force and a current that can 
deliver energy to a receiver; the primary source of 
energy comes from ionizing radiation (7,8).

The intensity of solar radiation, i.e., the power 
of sunlight per unit area (W/m²), is the main fac-
tor influencing energy production in photovoltaic 
systems. The solar radiation intensity consists of 
three components:
	• Global horizontal irradiance (GHI) – the total 

amount of solar radiation that can be received 
on a horizontal surface, including both direct 
and diffuse radiation;

	• Direct normal irradiance (DNI) – the amount 
of radiation received in the form of direct rays 
that fall perpendicularly to the surface and are 
not disturbed by clouds or other atmospheric 
factors;

	• Diffuse horizontal irradiance (DHI) – the portion 
of solar energy that reaches the horizontal sur-
face after being scattered in the atmosphere (9).

To maximize solar radiation utilization, it 
is crucial to position the installation relative to 
the sun. The total radiation intensity is the sum 
of direct, diffuse, and reflected radiation from 
the ground. This can be described by Equation 1 
(10–12).
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where:	β is the tilt angle of the photovoltaic pan-
els, and θ is the angle of incidence of the 
sunlight. The angle of incidence can be 
calculated using Equation 2 (13–15).
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where:	 z is the solar zenith angle (the angle be-
tween the vertical line and the direction of 
solar radiation), and φs is the solar azimuth 
angle (the angle between the southern di-
rection and the projection of solar radia-
tion onto the surface of the photovoltaic 
panel). The parameter α represents the 
solar altitude angle, and γ is the azimuth 
angle of the surface (15). A visualization 
of the most important angles can be found 
in Figure 1.

In addition to the positioning of photovoltaic 
panels and solar radiation, weather phenomena 
play a crucial role in the efficiency of electricity 
production. Key weather factors include (9):
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	• Cloud cover: Clouds can block solar radiation, 
causing fluctuations in energy production.

	• Humidity: High air humidity can lead to in-
creased cloud cover and scattering of radiation 
in the atmosphere, affecting the amount of so-
lar energy reaching the photovoltaic system.

	• Precipitation and dust: Atmospheric precipita-
tion such as snow or rain is often associated 
with cloud cover, which blocks or scatters 
sunlight. Snow and dust can also cover the PV 
panels, reducing the area available for elec-
tricity generation.

	• Temperature: The efficiency of a photovolta-
ic system typically decreases as temperature 
rises. As temperature increases, the efficiency 
of the cells in PV panels drops, leading to a re-
duction in overall energy production. Howev-
er, it is important to note that higher tempera-
tures are often linked to increased solar radia-
tion levels, which paradoxically may increase 
the available energy, although this does not 
fully compensate for the decreased efficiency 
of the cells.

Time series

Time series are datasets organized at suc-
cessive time intervals, used for the analysis and 
modeling of phenomena that change over time 
(16). The data in such series can be collected at 
regular or irregular intervals. In the case of ir-
regular intervals, resampling methods such as 
aggregation or interpolation can be used. The 
primary goal of time series analysis is to iden-
tify patterns in the data and forecast future values 
based on historical data.

Another aspect when working with time se-
ries is the transformation of values. Transforma-
tions are intended to improve the quality of the 

analysis and adjust the data to the requirements of 
predictive models. One commonly used approach 
is logarithmic transformation, which helps stabi-
lize the variance of the data and reduce the impact 
of large outliers. It should be noted that this meth-
od should only be used for positive values due to 
the properties of the logarithmic function, which 
is not defined for x < 0 in the set of real numbers. 
The second approach is the Box-Cox transforma-
tion, defined by the formula (3).
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where:	yt is the value of the time series and λ is the 
transformation parameter. The value of λ 
is chosen in such a way as to minimize 
deviations from normality in the trans-
formed time series. The third approach is 
power transformation, described by the 
formula (4).
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where:	yt is the value of the time series and p is 
the parameter determining the degree 
of transformation. In most cases, trans-
formations are not necessary, but if this 
method is applied, it is important to in-
vert the transformation in order to obtain 
prediction results in the original scale. 
Another method of time series process-
ing is smoothing. It involves smoothing 
fluctuations in the time series to eliminate 
noise (outlying observations) and high-
light major trends or patterns. There are 
two methods of data smoothing:

	• Moving average: This method calculates the 
average value within a window that includes 

Figure 1. Visualization of characteristic angles (15)
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neighboring points. The moving average is 
computed using formula (5).
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	• Exponential smoothing: This type of smooth-
ing uses the formula (6).
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One of the methods of processing time se-
ries is called decomposition. The decomposition 
method is an analytical technique that allows for 
the breakdown of data into individual compo-
nents with different characteristics, such as trend, 
seasonality, and residuals.

Decomposition

Decomposition can be divided into:
	• additive decomposition. In this approach, the 

values of the time series yt are represented as 
the sum of components (7) (17).
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where:	St is the seasonal component, Tt is the 
trend/cycle component, and Rt is the re-
sidual component, which represents ran-
dom fluctuations or noise,

	• multiplicative decomposition. This decompo-
sition is useful when seasonal fluctuations or 
variability around the trend are proportional to 
the level of the values in the series (16). The 
multiplicative decomposition is described by 
the formula (8) (17).
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In addition to time series processing, the im-
portance of feature engineering should be noted. 
Feature engineering refers to creating new vari-
ables based on the original data. For time series, 
the most common features are those based on 
time-related parameters such as hours, months, or 
seasons. Furthermore, features related to lag (lag 
features), aggregate statistics, or autocorrelation 
can be extracted. Lag features are created based 
on previous values of the time series. Other fea-
tures include aggregate statistics calculated over 
specific time windows, such as the mean, medi-
an, maximum and minimum values, or standard 

deviation. These statistics provide valuable infor-
mation about local trends or variability over time. 
Additionally, feature engineering involves analyz-
ing and utilizing autocorrelation, which measures 
how values of the time series are related at differ-
ent time lags. High autocorrelation at specific lags 
may indicate the presence of repeating patterns in 
the data, which are important for forecasting (9).

All the aforementioned time series process-
ing and analysis methods help improve the qual-
ity of data, which, when combined with predic-
tive methods, allow for more accurate forecast-
ing of future values.

Prediction methods

There are various approaches to forecasting, 
ranging from simple methods, which are easy to 
implement and interpret, to more advanced algo-
rithms that require more data and computational 
power but offer higher forecasting accuracy.

Simple methods

The first methods for time series prediction 
are simple methods. Some of these include:
	• mean: the forecast is the average of the time 

series values calculated on training data,
	• naive: the forecast is the most recent observed 

value in the series,
	• naive with seasonality adjustment: the forecast 

is equal to the last value from the same season,
	• drift: the forecast is calculated as the sum of 

the most recent value and the average change 
between consecutive observations.

Simple forecasting methods are mainly useful 
for very short-term forecasts, as their effective-
ness decreases as the forecast horizon extends.

Linear regression

This method assumes a linear relationship be-
tween the predicted variable y and other series. It 
is described by the formula (9) (18).
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ETS models (exponential smoothing 		
state space models)

This method is based on exponential smooth-
ing, taking seasonality and trends into account. 
The following ETS models can be presented:
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	• simple exponential smoothing;
	• holt’s method – an extension of simple expo-

nential smoothing, this technique allows for 
forecasting the next period based on actual 
data and previous predictions, and also reduc-
es the amount of data needed for analysis (19);

	• holt-winters method – also known as triple 
exponential smoothing. This method accounts 
for seasonal fluctuations in time series. An im-
portant element of this method is the gamma 
parameter, which allows smoothing the sea-
sonal component (20);

	• holt-winters with trend damping – this method 
includes an additional parameter that gradu-
ally reduces the influence of the trend, which, 
over time, becomes smoothed and eventu-
ally turns into a horizontal line. This approach 
makes the forecasts more realistic and stable 
over the long term (21).

ARIMA model (autoregressive integrated 
moving average)

The ARIMA method is used for the analysis 
and forecasting of time series. Its foundation lies 
in the assumption that the value of the time se-
ries at a given point in time depends on its previ-
ous values, as well as the earlier forecast errors. 
The ARIMA model consists of three parameters: 
(p, d, q) (21,22):

Autoregressive (AR(p)) part

Refers to autoregression, i.e., the use of pre-
vious values of the time series to predict the cur-
rent value. This part is described by formula (10) 
(21). It is worth noting that for higher degrees 
of non-stationarity, differencing of higher orders 
may be needed.
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where:	ϕ are the autoregressive coefficients, p is 
the number of lags, ∈t is the random error.

Integrated (I(d)) part

Involves differencing the time series to make 
it stationary (eliminating trends and non-station-
arity in the mean). The first-order differencing is 
described by formula (11) (21).
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𝑛𝑛  

 

𝐸𝐸𝑆𝑆𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1 + 

+ + 𝛼𝛼(1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2 + ⋯ 

 

𝑦𝑦𝑡𝑡 = 𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑡𝑡 + 𝑅𝑅𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝑆𝑆𝑡𝑡 ⋅ 𝑇𝑇𝑡𝑡 ⋅ 𝑅𝑅𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1,𝑡𝑡 + 𝛽𝛽2𝑥𝑥2,𝑡𝑡 + 

+ ⋯ + 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝑡𝑡 + 𝜖𝜖𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + 

+ ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡  

 

𝑦𝑦𝑡𝑡
′ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 

 

 

	 (11)

Moving average (MA(q)) part

Uses earlier forecast errors to predict the cur-
rent value. The model utilizes the relationship 
between the observation and the residual error 
obtained from the moving average model applied 
to the lagged observations. The moving average 
component describes the error as a combination 
of earlier errors. The parameter q etermines the 
number of past errors to be considered in the 
model. The moving average calculation is de-
scribed by formula (12) (21).

	

𝐺𝐺TOT = 𝐺𝐺DNI ⋅ cos𝜃𝜃 + 𝐺𝐺DIFF ⋅ (1 + cos𝛽𝛽
2 ) 

+  + 𝐺𝐺REFL ⋅ (1 − cos𝛽𝛽
2 ) 

 

cos𝜃𝜃 = cos𝑧𝑧 ⋅ cos𝛽𝛽 + 

+ sin𝑧𝑧 ⋅ sin𝛽𝛽 ⋅ sin(𝜑𝜑𝑠𝑠 − 𝛾𝛾) 

 

𝑦𝑦𝑡𝑡
𝜆𝜆 = {

𝑦𝑦𝑡𝑡
𝜆𝜆 − 1

𝜆𝜆 for 𝜆𝜆 ≠ 0
log𝑦𝑦𝑡𝑡 for 𝜆𝜆 = 0

 

 

𝜔𝜔𝑡𝑡 = 𝑦𝑦𝑡𝑡
𝑝𝑝 

 

𝑀𝑀𝐴𝐴𝑡𝑡 = 𝑦𝑦𝑡𝑡 + 𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−2 + ⋯ + 𝑦𝑦𝑡𝑡−𝑛𝑛
𝑛𝑛  

 

𝐸𝐸𝑆𝑆𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1 + 

+ + 𝛼𝛼(1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2 + ⋯ 

 

𝑦𝑦𝑡𝑡 = 𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑡𝑡 + 𝑅𝑅𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝑆𝑆𝑡𝑡 ⋅ 𝑇𝑇𝑡𝑡 ⋅ 𝑅𝑅𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1,𝑡𝑡 + 𝛽𝛽2𝑥𝑥2,𝑡𝑡 + 

+ ⋯ + 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝑡𝑡 + 𝜖𝜖𝑡𝑡 

 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + 

+ ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡  

 

𝑦𝑦𝑡𝑡
′ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 

 

 

	 (12)

where:	θ are the moving average coefficients, q is 
the number of error lags.

The ARIMA model often encounters difficul-
ties in handling nonlinearities and higher-order 
seasonal variations. In such cases, it is recom-
mended to use the Seasonal ARIMA (SARIMA) 
model. However, due to its seven parameters, the 
SARIMA model (p,d, q) (P, D,Q) is quite com-
plex and inefficient for large datasets. An alterna-
tive approach to reduce the complexity of such 
models, resulting from their dynamic nature, is 
the use of the sliding window technique with a 
fixed size (23).

The ARIMA model is relatively easy to im-
plement, but it may not be sufficiently effective 
in capturing the complex relationships between 
solar radiation intensity, weather conditions, and 
PV energy production.

XGBoost model (extreme gradient 	
boosting algorithm)

The XGBoost algorithm uses gradient 
boosting of decision trees, iteratively building 
models (in this case, decision trees) to improve 
results based on the residuals of previous mod-
els (22,23). Each iteration adds a new tree to 
minimize the loss function, so each successive 
model learns to correct the errors of its prede-
cessors. The XGBoost algorithm can be applied 
to both classification and regression problems. 
The most important operations in the algorithm 
are the computation of the loss function and 
feature importance.

Formula (13) describes the computation of 
the loss function (24–26).
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𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	(13)

where:	L(t) – the loss function in the t-th itera-
tion of the model, 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1)) 

 

𝑦𝑦𝑖𝑖
(𝑡𝑡−1) 

 

𝐼𝐼 = 𝐼𝐼𝐿𝐿 ∪ 𝐼𝐼𝑅𝑅 

 

𝑦𝑦𝑖̂𝑖 

 

𝑦𝑦‾ 

 

 

: The loss 
function for the i-th sample, based on the 
actual value yi and the predicted value 
in the previous iteration 

𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖
(𝑡𝑡−1)) 

 

𝑦𝑦𝑖𝑖
(𝑡𝑡−1) 

 

𝐼𝐼 = 𝐼𝐼𝐿𝐿 ∪ 𝐼𝐼𝑅𝑅 

 

𝑦𝑦𝑖̂𝑖 

 

𝑦𝑦‾ 

 

 

 , gi – the 
first-order gradient of the loss function 
with respect to the predicted value in the 
previous iteration. It represents the direc-
tion and magnitude of the change needed 
in predictions to reduce the loss function, 
ft(xi) – the predicted value by the current 
decision tree ft for the i-th sample xi, hi –
the second-order gradient. Including this 
term improves the stability of optimiza-
tion and accounts for the curvature of the 
loss function, ω(ft) – the regularization 
parameter. It reduces the complexity of 
the model, preventing overfitting (25).

The regularization parameter is calculated 
based on formula (14) (24–26):

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (14)

where:	T – the number of leaves in the decision 
tree, ωj: the value assigned to leaf j, γ – 
the regularization parameter penalizing 
tree complexity (the number of leaves), λ 
– the regularization parameter penalizing 
the weights of the leaves.

Formula (15) describes the calculation of 
feature importance in the XGBoost algorithm 
(25,26).

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (15)

where:	

𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖
(𝑡𝑡−1)) 

 

𝑦𝑦𝑖𝑖
(𝑡𝑡−1) 

 

𝐼𝐼 = 𝐼𝐼𝐿𝐿 ∪ 𝐼𝐼𝑅𝑅 

 

𝑦𝑦𝑖̂𝑖 

 

𝑦𝑦‾ 

 

 

 , IL and IR represent the num-
ber of samples in the left and right nodes 
of the decision tree, λ and γ are the regu-
larization parameters. The higher the fea-
ture’s strength, the higher its importance 
for the objective and the more crucial the 
feature becomes (21).

The XGBoost algorithm is currently one of 
the most popular choices for forecasting time 
series values. Based on the literature review it 
can be said that the main advantages of this al-
gorithm are (23–25): effectiveness in handling 
nonlinear and multidimensional data, flexibility 
in handling missing data thanks to the “sparsity-
aware” mechanism, scalability and optimization 
as well as high prediction accuracy. An additional 
advantage of the XGBoost algorithm is its ability 
to handle time series with low frequency or insuf-
ficient data, where solutions such as deep learning 
may not be applicable.

Deep networks with LSTM layer 		
(long short-term memory)

Deep neural networks with LSTM layers are 
increasingly being used for time series problems. 
LSTM is an advanced type of recurrent neural 
network (RNN) layer designed to store informa-
tion over long periods of time. “The LSTM mem-
ory approach works well for time series fitting 
because it can handle both long-term and short-
term dependencies in the data” (25). An important 
advantage is the absence of the gradient explo-
sion problem, as well as the lack of the need for 
manual feature selection.

In Figure 2, the LSTM layer is visualized. 
xt represents the value at time t in the sequential 
data, and Ct and ht correspond to the cell state 
and hidden state of the sequential unit at time t 
respectively.

The learning process of each LSTM neural 
unit consists of three main phases: forgetting, se-
lective retention, and output (25). In the forgetting 
phase, the first gate σ (from left to right) at time tf1 
determines which information from the previous 
cell state Ct–1 should be discarded. In the selec-
tive retention phase, the second gate σ at time t1 
decides which information from the current input 
should be updated. Then, the tanh function gener-
ates candidate values for the new cell state at time 
tc1. A part of the cell state Ct–1 is forgotten, creat-
ing its modified version. The retained candidate 
values are then combined with the remaining con-
tents of Ct–1. The result of these operations is the 
new cell state at time t, obtained by combining the 
candidate and forgotten values. In the final phase, 
known as the “output” phase, the third gate σ at 
time t computes the output value Ot, which deter-
mines which data should be output. The cell state 
at time t is transformed using the tanh function to 
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obtain the hidden layer ht, which represents the 
result of the network (25).

Formulas 16–21 represent the operations as 
follows:
	• input gate:

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (16)

	• forget gate:

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (17)

	• output gate:

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (18)

	• candidate for the new cell state:

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
 

	 (19)

	• cell state at time t:

	

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + 

+⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 

 

𝐿𝐿(𝑡𝑡) ≈ ∑[
𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖

(𝑡𝑡−1))

+𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖) + 𝜔𝜔(𝑓𝑓𝑡𝑡)

]
𝑛𝑛

𝑖𝑖=1
 

 

𝜔𝜔(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑𝜔𝜔𝑗𝑗

2
𝑇𝑇

𝑗𝑗=1
 

 

gain = 1
2

[
 
 
 
 ∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝐿𝐿

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝐿𝐿
+

+
∑ 𝑔𝑔𝑖𝑖

2
𝐼𝐼𝑅𝑅

∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼𝑅𝑅
+

∑ 𝑔𝑔𝑖𝑖
2

𝐼𝐼
∑ (ℎ𝑖𝑖 + 𝜆𝜆)𝐼𝐼 ]

 
 
 
 
− 𝛾𝛾 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

 

𝐶𝐶𝑡̃𝑡 = tanh(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) 

 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
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	• hidden layer output at time t:
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Data preprocessing

The dataset used in this work originates from 
private databases provided by third parties. The 
measurements from photovoltaic panels come 
from four locations with installations of the fol-
lowing capacities: 26 kWp, 25.55 kWp, and two 
installations of 49.5 kWp each. Measurements 
for the 26 kWp and 25.55 kWp installations were 
taken from October 15, 2023, to October 15, 
2024. Measurements for the 49.5 kWp installa-
tions were taken from May 8, 2023, to May 8, 
2024. Weather data was retrieved using the Open-
Meteo API. Table 1 describes all the features used 
in the model training process.

Prior to model training, a comprehensive data 
preprocessing pipeline was implemented to en-
sure data quality and consistency. As illustrated 
in Figure 3, the process began with the removal 
of erroneous PV measurements and nighttime 
weather data, which are not relevant for solar en-
ergy prediction. Subsequently, PV and weather 
datasets were merged and resampled to a uniform 
15-minute resolution, then further aggregated to 
hourly intervals to reduce short-term variability. 
Feature engineering techniques were applied to 
enrich the dataset with additional variables, such 
as season indicators and solar altitude. Finally, 
both input and output data were normalized – the 
inputs to a [0, 1] range, and the outputs to [0, 1] 
kW based on the rated power of each installation 
– to facilitate model convergence and compara-
bility across systems.

Based on the input data, a heatmap was cre-
ated showing the correlation between the input 
parameters and the “value_kW”, which repre-
sents the historical hourly measurements from the 
photovoltaic installations. Figure 4 illustrates the 
relationships between these parameters.

Experiments

Traditional predictive modeling methods 
can be prone to overfitting and may exhibit low 
forecasting accuracy when dealing with com-
plex, multidimensional datasets. Therefore, the 
prediction model for PV power was based on a 
long short-term memory (LSTM) neural network, 
which is well-suited for capturing long-term de-
pendencies in the data (24).

During the experiments, several LSTM net-
work configurations were tested in order to 
identify the optimal structure for the prediction 
task. The number of LSTM layers (num_layers) 
varied from 1 to 5, while the number of hidden 
units per layer (hidden_size) ranged from 16 to 
256. Each model received an input sequence of 
time-dependent features, with a sequence length 
(sequence_length) between 32 and 72 time steps, 
depending on the configuration. The network out-
put was a single value (output_size = 1), repre-
senting the predicted PV power. The number of 
input features (input_size) depended on the data-
set and remained constant for a given experiment. 
Training was conducted for 10 to 250 epochs 
(num_epochs), with learning rates (learning_rate) 
explored in the range from 0.0001 to 0.1. These 
values were manually adjusted through iterative 

Figure 2. Example LSTM layer (25)
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experimentation in order to balance convergence 
speed and model stability.

The final model architecture, which yielded 
the best validation performance, used two LSTM 
layers with 64 hidden units each, followed by a 
feed-forward block composed of three dense lay-
ers with decreasing size and ReLU activations. 

Each dense layer included dropout regularization 
with rate of 0.3 to prevent overfitting. The full list 
of tested hyperparameters and their value ranges 
is presented in Table 2.

Additionally, XGBRegressor and XGBR-
FRegressor models were chosen for the experi-
ments due to their ability to handle complex and 

Table 1. Input features 
Feature Name Description

Temperature_2m Temperature at 2 meters (°C)

Relative_humidity_2m Relative humidity at 2 meters (%)

Dew_point_2m Dew point temperature (°C)

Apparent_temperature Apparent temperature (°C)

Precipitation Precipitation amount (mm)

Rain Rainfall in the given hour (mm)

Wind_speed_10m Wind speed at 10 meters (km/h)

Wind_gust_10m Maximum wind gusts at 10 meters (km/h)

Shortwave_radiation Instantaneous shortwave solar radiation (W/m²)

Diffuse_radiation Instantaneous diffuse solar radiation (W/m²)

Global_tilted_irradiance Instantaneous global radiation on a tilted surface (W/m²)

UV_index Ultraviolet (UV) radiation index

Altitude Sun altitude at the given moment

Is_Spring, Is_Summer,
Binary values (0/1) indicating the current season (spring, summer, fall, winter)

Is_Fall, Is_Winter

Weather_code Numerical code representing current weather conditions

Cloud_coverage Cloud cover percentage (%)

Surface_pressure Atmospheric pressure (hPa)

Date and Time Used for extracting time-based features

Historical PV Data Measurement data from photovoltaic panels

Figure 3. Steps of data preprocessing
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Figure 4. Relationship between input parameters 
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nonlinear relationships within the data (27). Fig-
ure 5 illustrates the process of analyzing the se-
lected machine learning models.

The hyperparameter space potentially contain-
ing the most optimal parameters was searched us-
ing the BayesSearchCV function, which works by 
creating a probabilistic model that maps input hy-
perparameters to the output objective function (28). 
In the search process, the user defines the hyper-
parameter space, which is the range of values that 
can be tested for a given model. This space may in-
clude both discrete variables (e.g., number of trees 
in a random forest model) and continuous variables 
(e.g., regularization coefficient in regression).

BayesSearchCV starts the optimization with 
several random samples, allowing the construc-
tion of an initial probabilistic model that de-
scribes the relationship between the hyperparam-
eters and the objective function value (e.g., model 
accuracy). In subsequent iterations, the algorithm 
selects new hyperparameter sets, guided by the 
exploration principle (trying new areas of the 
space) and the exploitation principle (focusing on 
the best values found so far).

For the hyperparameters selected by Bayes-
SearchCV, the model was analyzed using test 
data. The following metrics were used to evalu-
ate the model:

Mean absolute error (MAE) – This measures 
the average absolute error between the actual val-
ues yi and the predicted values 
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the same unit as the data. The formula for MAE is 
given in Equation 22 (25):
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Mean squared error (MSE) – This measures 
the average of the squared errors, meaning that 
larger errors have a greater impact on the result. 
The formula for MSE is given in Equation 23 (18):
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Root mean squared error (RMSE) – This 
metric is derived from MSE, but the result is ex-
pressed in the same units as the original data y. 
RMSE is particularly useful as it highlights large 
errors more than MAE, meaning that larger de-
viations from actual values are penalized more. 
This allows for better evaluation of models that 
should minimize large prediction errors. The for-
mula for RMSE is given in Equation 24 (25):

	 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑛𝑛∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2
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	 (24)

Coefficient of determination (R²) – A statisti-
cal measure used to determine how much of the 
variability in the dependent variable y is explained 
by the independent variables in the regression 
model. Its value is given by R2. When R2 = 1, it 
indicates the model’s predictive power. When R2 

= 0, the model does no better than predicting the 
mean value of the data 
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 . For R2  < 0, the model 
performs worse than simply predicting the mean. 
The formula for R2 is given in Equation 25 (25):
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If the quality metrics were better than in the 
previous trial, the model was saved, and the search 
space for hyperparameters was further refined. 
The process continued until the model consistent-
ly yielded a low R2 or, despite achieving a satis-
factory R2, failed to improve RMSE, MAE, and 
MSE. Finally, the model with the lowest RMSE 
and MAE values for the test data was selected. 
Table 3 presents the hyperparameter space con-
sidered during the tuning of the XGBRegressor 

Table 2. Hyperparameter space for the LSTM network
Hyperparameter Description Current Value Range

input_size Number of input features data.shape[1] - 1 Depends on the dataset

hidden_size Number of neurons in the hidden layer 64 16–256

output_size Number of output neurons 1 Always 1

num_layers Number of LSTM layers 2 1–5

learning_rate Learning rate 0.001 0.0001 - 0.1

num_epochs Number of training epochs 50 10–250

sequence_length Length of the input sequence (time window) 72 32–72
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model, along with the best values obtained as a 
result of the optimization process. 

For each hyperparameter, the search range and 
the optimal value are provided. The number of trees 
(n_estimators) was tested within the range from 50 
to 2000, with the best result achieved at 1000. The 
maximum tree depth (max_depth) was set to 10 to 
maximize model complexity while avoiding over-
fitting. The learning rate (learning_rate), which af-
fects the convergence speed, was optimally set to 
0.0222. Other parameters controlling tree pruning 
(gamma, min_child_weight) and regularization 
(reg_alpha, reg_lambda) were also adjusted to max-
imize prediction accuracy. Parameters such as the 
loss function (objective), evaluation metric (eval_
metric), tree construction method (tree_method), 
and processing device (device) were kept fixed.

RESULTS AND DISCUSSION

This chapter presents a comparative evalu-
ation of the models discussed in the previous 

section. The analysis focuses on quantitative 
metrics to determine which algorithm offers the 
highest accuracy in short-term PV power fore-
casting. It is important to emphasize that the fi-
nal performance assessment was conducted ex-
clusively on a single, designated test installation 
(49.5 kWp) – the only dataset not used during 
the training phase. Each of the three models – 
XGBRegressor, XGBRFRegressor, and LSTM 
– was evaluated independently on this test data-
set, allowing for an objective comparison of their 
predictive capabilities. Moreover, the results re-
ported in this section represent values obtained 
solely for the test installation and are not aggre-
gated across all four installations. The remaining 
three PV systems were used strictly for training 
purposes. This distinction ensures that the re-
ported performance reflects the models’ ability to 
generalize unseen data.

Table 4 presents the best metric values 
achieved by the models, highlighting the perfor-
mance of XGBRegressor and XGBRFRegressor 
in particular compared to LSTM.

Figure 5. Analysis process of selected machine learning models 

Table 3. Hyperparameter space and best results for XGBRegressor
Hyperparameter Description Parameter space (Range) Best for XGBRegressor

n_estimators Number of boosting rounds 50–2000 1000

max_depth Maximum depth of each tree 2–20 10

learning_rate Step size shrinkage to prevent overfitting 0.005–0.05 0.0222

subsample Fraction of data used per tree 0.3–0.9 0.9

gamma Minimum loss reduction for further splitting 0.1–0.8 0.1

min_child_weight Minimum sum of instance weight in a child 1–8 6

reg_alpha L1 regularization (Lasso) 0.1–1.5 0.5

reg_lambda L2 regularization (Ridge) 0.5–10 0.1

colsample_bytree Fraction of features for each tree 0.5–0.9 0.714

colsample_bylevel Fraction of features per tree level 0.5–0.9 0.658

objective Loss function Fixed: reg:squarederror reg:squarederror

eval_metric Evaluation metric Fixed: rmse rmse

tree_method Tree construction algorithm Fixed: hist hist

device Processing device Fixed: cpu cpu
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In terms of the MSE metric, the lowest value 
was achieved by the XGBRegressor (32.77), 
while both XGBRFRegressor and LSTM per-
formed significantly worse, with results 181.32 
and 147.98, respectively. A similar trend is ob-
served in RMSE, where XGBRegressor reached 
5.72, clearly outperforming LSTM (6.27) and 
especially XGBRFRegressor (13.46). When 
considering the MAE, the XGBRegressor again 
achieved the best result (3.79), while the LSTM 
and XGBRFRegressor showed nearly identical 
and substantially higher errors (12.16 and 12.11, 
respectively). Similar results were observed 
across the datasets from all three training instal-
lations. However, since these datasets were used 
during the training process, the final outcome 
presented in Table 4 refers exclusively to the 
data from a single test installation.

The R2 score was the highest for the XG-
BRegressor (0.79), indicating strong model 
performance and goodness of fit. The XGBR-
FRegressor reached a moderate value of 0.54, 
suggesting a less precise model in compare to 
XGBRegressor. In contrast, the LSTM yielded 
a negative R2 of -0.27, indicating that its predic-
tions were worse than those of a simple base-
line model. This could be due to overfitting, not 
enough samples in training data, or inadequate 
hyperparameter tuning in the context of this 
specific task.

The main analysis of the best model’s perfor-
mance was based on a plot comparing the actual 
values (x-axis) with the predicted values (y-axis). 
Figure 6 shows the comparison of predictions 
versus actual values for the test data. The test data 
comes from a photovoltaic installation with a ca-
pacity of 49.5 kWp.

In our work, we were able to demonstrate 
that XBG alone performs even better, unlike 
XGBRF, which, as our research has shown, does 
not perform significantly better than LSTM. In 
[25], the use of a hybrid model combining XG-
Boost and LSTM was shown to improve the 

performance of a conventional LSTM-based 
predictor. In the study, the XGBoost model 
was employed to calculate feature importance. 
Based on the results of this analysis, features 
were either retained or removed prior to train-
ing the LSTM model. The reported outcomes 
(e.g. in (26)) demonstrated that this hybrid ap-
proach yielded better results compared to the 
standalone LSTM model. XGBoost was used 
independently to predict PV power generation. 
The findings indicated that the XGBoost model 
performed favorably in comparison to the Ran-
dom Forest algorithm, highlighting its potential 
as a strong standalone predictor in PV power 
forecasting tasks. In (29), the implementation 
of LSTM and XGBoost models was associated 
with a significant reduction in operational costs 
and CO₂ emissions, compared to scenarios in 
which these models were not utilized. Also in 
(30), a hybrid model integrating XGBoost and 
LSTM was proposed. The experimental re-
sults demonstrated that this configuration out-
performed the GRU model, another recurrent 
neural network variant. In (31), four hybrid 
models were compared: GRF-LSTM-XGBoost, 
GRF-XGBoost, LSTM-XGBoost, and GRF-
LSTM. The results showed that all configura-
tions achieved R² values around 0.9 or higher, 
accompanied by low RMSE values, indicating 
high predictive accuracy. In recent literature, 
the integration of XGBoost and LSTM – wheth-
er employed individually or as part of hybrid 
architectures – has gained substantial attention. 
The combination leverages the strengths of 
both methods: XGBoost offers efficient feature 
selection and high performance in structured 
data prediction, while LSTM excels in captur-
ing temporal dependencies within sequential 
data. However, our work demonstrated that 
using XGBoost alone, especially for weather 
data, yields noticeably better results than using 
LSTM or XGBFR alone.

Table 4. Comparison of quality metrics for XGBRegressor, XGBRFRegressor, and LSTM
for test installation (49.5 kWp)

Metric XGBRegressor XGBRFRegressor LSTM

MSE 32.77 181.32 147.98

RMSE 5.72 13.46 6.27

MAE 3.79 12.11 12.16

R2 0.79 0.54 -0.27
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CONCLUSIONS

This paper presented the problem of short-
term photovoltaic power forecasting using pre-
dictive models based on machine learning and 
deep learning techniques. The raw data under-
went a comprehensive preparation process, in-
cluding cleaning, preprocessing, normalization, 
and standardization. The models were trained 
and tested using real-world datasets collected 
from four PV installations located in Poland.

Our research has demonstrated that, among 
the tested approaches (XGB XGBRF, LSTM), 
the XGBRegressor model based on gradient 
boosting yielded the most accurate results (ob-
tained RMSE was 5.72 where the next value for 
the LSTM was 6.27). This confirms its effective-
ness in capturing complex relationships in the 
data and highlights its applicability in PV power 
forecasting tasks. In contrast, the XGBRFRe-
gressor model, which utilizes random forests 
instead of gradient boosting, did not perform 
as well, being even worse than the previously 
mentioned LSTM. This finding is particularly 
noteworthy, as it suggests that not all tree-based 
ensemble methods are equally effective for this 
forecasting problem. The observed underper-
formance of the LSTM-based neural network 
model can largely be attributed to the limited 
size of the available training dataset. The one-
year observation period likely constrained the 
model’s ability to learn seasonal and long-term 
temporal patterns. Furthermore, our results sug-
gest that XGBoost-based models can serve as a 
strong baseline in PV forecasting tasks, particu-
larly when data volume is limited. This indicates 

high added value, especially in the context of 
production prediction for new installations and 
wherever access to historical data is not pos-
sible or training in such a large time window is 
unprofitable (e.g. free predictive models on in-
verter manufacturers’ websites).

Another noteworthy added value of this work 
is the identification of the relationship between 
weather input parameters, which can be useful 
in selecting features relevant to energy produc-
tion prediction. Although such studies exist, the 
results may be linked to the data source and a 
specific latitude, so creating them independently 
for specific data is always a good starting point 
for meteorological data analysis.

The insights gained through our study also 
point to the potential of hybrid solutions. Fu-
ture work may focus on integrating XGBRe-
gressor with neural networks incorporating 
LSTM layers to better capture temporal depen-
dencies while preserving strong feature learn-
ing capabilities. Based on our findings, extend-
ing the dataset – both in terms of time span and 
measurement resolution – is expected to signif-
icantly improve model performance, especially 
for deep learning architectures – which – given 
the ongoing cooperation and continuous data 
collection from the installations will be possi-
ble in the future. Moreover, integrating proba-
bilistic forecasting techniques may help quan-
tify uncertainty, which is particularly relevant 
for grid operators and energy planning systems. 
These directions offer promising opportunities 
for enhancing the reliability and practical value 
of PV power prediction models.

Figure 6. Comparison of forecasts with actual data. The red line symbolizes the same values
for both axes (ideal scenario) 
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